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PME-NA History and Goals 
 
PME came into existence at the Third International Congress on Mathematical Education 
(ICME-3) in Karlsrühe, Germany in 1976. It is affiliated with the International Commission for 
Mathematical Instruction. PME-NA is the North American Chapter of the International Group 
of Psychology of Mathematics Education. The first PME-NA conference was held in Evanston, 
Illinois in 1979. 
The major goals of the International Group and the North American Chapter are: 

1. To promote international contacts and the exchange of scientific information in the 
psychology of mathematics education; 

2. To promote and stimulate interdisciplinary research in the aforesaid area, with the 
cooperation of psychologists, mathematicians, and mathematics teachers; 

3. To further a deeper and better understanding of the psychological aspects of teaching and 
learning mathematics and the implications thereof. 

 
PME-NA Membership 

 
Membership is open to people involved in active research consistent with PME-NA’s aims or 
professionally interested in the results of such research. Membership is open on an annual basis 
and depends on payment of dues for the current year. Membership fees for PME-NA (but not 
PME International) are included in the conference fee each year. If you are unable to attend the 
conference but want to join or renew your membership, go to the PME-NA website at 
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and 
click on “Membership” at the left of the screen. 
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Preface 
 

Welcome 
On behalf of the 2017 PME-NA Steering Committee, the 2017 PME-NA Local Organizing 

Committee, and the Hoosier Association of Mathematics Teacher Educators (HAMTE), we 
welcome you to the 39th Annual Meeting of the International Group for the Psychology of 
Mathematics Education – North American Chapter held at the Crowne Plaza Indianapolis 
Downtown Union Station in Indianapolis, Indiana.  

The theme of this year’s conference is Synergy at the Crossroads: Future Directions for Theory, 
Research, and Practice. The metaphor of crossroads was inspired by the conference venue - the 
historic Indianapolis Union Station, as well as by the State motto, a reference to how Indiana is 
connected to the rest of the United States. PME-NA 39 includes research presentations, 
discussion, and reflection focusing on four driving questions connecting to the metaphor of 
crossroads: 1) What have we learned from the routes we have traversed, what are potential routes 
for mathematics education research in the future, and what considerations are relevant as we 
make choices about future directions in mathematics education? 2) How do we address issues of 
access and equity within mathematics education today? 3) How can we lay the groundwork for 
future crossroads or intersections between theory, research, and practice? and 4) What barriers 
within research traditions, educational policy, and teaching practice impede researchers', 
students' and teachers' success and how can we work to overcome these barriers? 

Rochelle Gutiérrez will present the opening plenary talk on Thursday evening, Living 
Mathematx: Towards a Vision for the Future, into which she brings ideas from 
ethnomathematics, postcolonial theory, aesthetics, biology, and Indigenous knowledge in order 
to propose a new vision for practicing mathematics. Edd Taylor will serve as discussant for the 
talk. In the Friday afternoon plenary session, Les Steffe will present several crucial radical 
constructivist research programs to argue that rather than repeat attempts to make wholesale 
changes in mathematics education based on mathematical knowledge for adults, what is needed 
is to construct mathematics curricula for children that is based on the mathematics of children. 
Two of Dr. Steffe’s former students, Erik Tillema and Amy Hackenberg, will serve as discussants, 
providing varied perspectives on the continuation of his work. Saturday’s plenary session, 
Elementary Mathematics Specialists: Ensuring the Intersection of Research and Practice will 
include a historical overview by Maggie McGatha followed by a discussion panel composed of 
Dionne Cross and Jane Mahan, facilitated by Sheryl Stump. A panel discussion of technology in 
mathematics education with representatives from the three PME-NA member countries will 
complete the plenaries on Sunday: Ana Isabel Sacristán (Digital Technologies in Mathematics 
Classrooms: Barriers, Lessons and Focus On Teachers); Nathalie Sinclair (Crossroad Blues); and 
Karen Hollebrands (A Framework to Guide the Development of a Teaching Mathematics with 
Technology Massive Open Online Course for Educators [MOOC-ED]). 

This year’s conference will be attended by about 550 researchers, faculty and graduate 
students from around the world including the US, Mexico, Canada, Turkey, Australia, South 
Korea, Malawi, and Iran. We received 529 submissions. The acceptance rate was 39% for 
research reports as research reports, 57% for brief research reports as brief research reports, 78% 
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for posters as posters, and 100% for working groups. The accepted proposals included 75 
research reports, 142 brief research reports, 167 posters, and 13 working groups. Continuing the 
efforts started at last year’s conference there will be some presentations in Spanish, as well as 
simultaneous oral interpretation (from English to Spanish, and from Spanish to English) for 
selected sessions.  

We would like to thank the many people who generously volunteered their time over the past 
year in preparation for this conference. This includes members of the PME-NA Local Organizing 
Committee, the PME-NA Steering Committee, Purdue Conferences, strand leaders, proposal 
authors and reviewers. We appreciate all of your hard work and dedication, and your 
commitment to ensure a high-quality conference program. We also wish to thank the generous 
financial support of the HAMTE member universities across Indiana. 

 

  
Enrique Galindo Jill Newton 
PME-NA 39 Conference Co-Chair PME-NA 39 Conference Co-Chair 
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LIVING MATHEMATX: TOWARDS A VISION FOR THE FUTUREi 

Rochelle Gutiérrez 
University of Illinois at Urbana-Champaign 

rg1@illinois.edu 

This paper offers specific implications for teaching and learning and brings into conversation ideas 
from ethnomathematics (including Western mathematics), postcolonial theory, aesthetics, biology, 
and Indigenous knowledge in order to propose a new vision for practicing mathematics, what I call 
mathematx. I build upon the work of sustainability in mathematics education and suggest we need to 
think not only about more ethical ways of applying mathematics in teaching and learning but 
question the very nature of mathematics, who does it, and how we are affected by that practice. 

Keywords: Equity and Diversity, Instructional Activities and Practices 

We need to be constantly considering the forms of mathematics and what they seek to deal with. 
As society presents new demands, new technologies, new possibilities, we must ask ourselves 
whether our current version of mathematics is adequate for dealing with the ignorance that we 
have (Gutiérrez and Dixon-Roman, 2011, p. 32).  

The ecology of knowledges enables us to have a much broader vision of what we do not know, as 
well as what we do know, and also to be aware that what we do not know is our own ignorance, 
not a general ignorance (Santos, 2007, p. 43). 

We are all the product of our worldview—even scientists who claim pure objectivity…Science 
and traditional knowledge may ask different questions and speak different languages, but they 
may converge when both truly listen to the plants (Kimmerer, 2013, p.163, 165). 

Everyday, we accumulate more evidence that humans are destroying the planet. We need only 
look at the increasing levels of air pollution, climate change, destruction of the ozone layer, and the 
elimination of various plant and animal species throughout the world to know that we cannot 
continue with the forms of living we have come to consider “normal.” However, not until recently 
has the public become aware that the effects will deeply impact us in our lifetime (Kolbert, 2015). 
One might ask: what role(s) should mathematics play in stopping or slowing the rate of such 
destruction of the environment? The field of mathematics might serve mainly to: describe the nature 
of the global problem; offer excellent models for prediction; or provide efficient data analysis and 
statistics for calculating risk. Mathematics might also offer something else altogether. In what way(s) 
are current forms of mathematics teaching and learning consistent with the kinds of environmental 
crises we face? Do we need to think differently about our relationship between mathematics, humans, 
and the planet? And, if so, how? 

In this article, I seek to bring into conversation ideas from ethnomathematics (including Western 
mathematics), postcolonial theory, aesthetics, biology, and Indigenous knowledge in order to propose 
a new vision for practicing mathematics, something I refer to as mathematx. I do so in order to 
promote interaction between different knowledges, different ways of knowing, and different 
knowers. I build upon the work of sustainability in mathematics education and suggest we need to 
think not only about more ethical ways of applying mathematics in teaching and learning but 
question the very nature of mathematics, who does it, and how we are affected by that practice. I 
introduce the concepts of In Lak’ech, reciprocity, and Nepantla to suggest we learn from other-than-
human persons, which, in turn, may change our relationships with them. Along the way, I underscore 
with examples from biology the potential limitations of current forms of mathematics for 
understanding/interacting with our world and the potential benefits of considering other-than-human 
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persons as having different knowledges to contribute. Finally, I suggest implications for teaching and 
learning.  

Identifying the Problem 
The relationship between mathematics, humans, and the planet has been one steeped too long in 

domination and destruction (O’Neil 2016; Martinez 2016). Due in large part to the way research is 
funded, the field of mathematics is often in the service of warfare and economics (BooB-Bavnbek 
and Hoyrup 2003; Gutiérrez 2013; Martinez 2016; O’Neil 2016; Porter 1995). With an emphasis on 
quantifying, categorizing, and reducing complex and multi-layered relationships between persons to 
mere abstractions, mathematics often supports a fallacy that modeling, big data, and software can 
solve anything. Some might suggest there is nothing inherent in the practice of mathematics that 
leads to domination; we simply need to follow more ethical practices in applying mathematics in the 
world around us.  

Highlighting this role of domination and arguing for a new form of teaching mathematics, Coles 
and colleagues (2013) note,  

The history of humanity’s relationship with the natural environment, at least in the West, can be 
summarized in one word: domination. The natural environment has been seen as a source of food 
and raw materials all to be placed in the service of human projects. Where the natural 
environment gets in the way of such projects, we simply blast our way through… (p. 4) 

In an attempt to change this relationship, Coles and colleagues suggest we begin by altering the 
forms of teaching and the curriculum to which students are exposed. By situating mathematical 
problems in contexts that relate to such issues as climate change, students will have the opportunity 
to develop a new relationship to mathematics and new uses of mathematics in making life decisions. 
That is, students can be encouraged to analyze real-world statistics of temperatures in different 
regions to make conclusions about both the rates by which the climate is changing and the 
probabilities that the climate will continue to change. In this way, students would also be allowed to 
ponder such questions as what kind of mathematical information is necessary to address climate 
change? What mathematics should the average citizen know in order to make informed decisions 
about the consequences of their actions and the actions of others? Learning mathematics in real world 
social and political contexts can help students see relationships between the decisions humans make 
and the destruction of the planet, thereby urging them to take action to save the planet. In this way, 
mathematics education can more clearly highlight the roles of ethics (e.g., Atweh 2013; Boylan 
2016) and practicality as they relate to the practice of mathematics. Thus, shifting the curriculum to 
more sociopolitical contexts (Gutiérrez 2010/2013ii), what some would refer to as teaching 
mathematics for social justice (Frankenstein 1990; 1995; Gutstein 2006), could broaden the service 
of mathematics beyond economics and warfare.  

However, attending to when and how mathematics is in the service of sustainability or ethics may 
be a necessary but insufficient step towards new relationships between humans, mathematics, and the 
planet (Gutiérrez, 2002). This, for me, has been one limitation of social justice mathematics (Gutstein 
2003; 2006; 2007), as it tends to assume we will keep intact as “classical” what I refer to as 
“dominant” mathematics rather than challenging whether that version or any single version should 
remain central. In the social justice mathematics tradition, students are taught to use classical 
mathematics as a tool to read and write the world, in order to develop their sociopolitical 
consciousness and mathematical proficiencies. But, in general, the tool itself is not questioned. 
Recognizing the limitations of using the master’s tools to dismantle the master’s house (Lorde 1984) 
leads me to argue that we must also be willing to question and reconceptualize what counts as 
mathematics in the first place, thereby taking up issues of epistemology and ontology.  
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I am not alone in suggesting we need to reconsider our definitions of mathematics in light of our 
current state of global crises. For example, Appelbaum (2016) suggests a different approach through 
curriculum, where a key component is questioning what counts as mathematics.  

…one key curriculum question that can no longer be pushed to the side is how very narrow, 
Western, “rational” conceptions of what mathematics “is” have continued to be wielded 
implicitly as tools of epistemicide, obliterating alternative epistemologies of number, size, 
quantity, possibility, shape, algorithmic problem solving, analogic representation, and other 
extended components of mathematical thinking and living. (p. 5) 

Similarly, Boylan (2016) considers the role of mathematics in relation to the planet and argues, 

An ecological ethics calls not only for an environmentally informed critical mathematics 
education but also for a critique of the social construction of mathematics itself as separate and 
disconnected from the earth (p. 9).  

The Program Ethnomathematics offers a useful starting point for broadening the definition of 
mathematics, something I will discuss later in this article.  

Not only must we: a) be conscious of the ways mathematics can dominate and b) constantly 
question what counts as mathematics and who decides, we must also c) think about how we, as living 
beings, practice mathematics as we interact with others and ourselves. As we begin to reimagine 
mathematics, we have the opportunity to reimagine the mathematician—who is considered a 
mathematician as well as how are mathematicians influenced by the mathematics they do? Many of 
the current efforts to reconsider mathematics and its role in our global society tend to rely upon a 
utilitarian version of mathematics that allows us to better survive on this planet. I am suggesting that 
a form that describes moving through the world and relates to all living beings is more likely to 
change our relationships with each other in this universe or in others. We need a definition that 
acknowledges mathematics as a verb and how that practice relates to our bodies, minds, and 
intentions. For that, we might consider our philosophical stance. 

Much of the philosophical research produced in mathematics education centers on European 
thinkers. For example, we are abundant with theories of postmodernism, poststructuralism, and 
psychoanalysis that regularly draw upon such writers as Deleuze and Guattari, Ranciere, Foucault, 
Lacan, Badiou, Derrida, and Freud. As a Chicanx scholar, a cis gender female with Rarámuriiii roots, 
I seek to decenter the field’s overreliance on Whitestream views. I use the term Chicanx (as opposed 
to Chicano, Chicana/o, or Chican@) as a sign of solidarity with people who identify as lesbian, gay, 
bisexual, transgender, queer, questioning, intersexual, asexual, and two-spiritiv (LGBTQIA2S). 
Chicanx represents both a decentering of the patriarchal nature of the Spanish language whereby 
groups of men and women are normally referred to with the “o” (male) ending as well as a rejection 
of the gender binary and an acceptance of gender fluidity. The “x” signifies a variable to represent 
any gender form. My choice to use this term reflects my respect for how people choose to name 
themselves.  

In this article, I introduce three Indigenous concepts that have guided my work over the years—
In Lak’ech, Nepantla, and reciprocity—and suggest they can serve as guiding principles of a new 
practice of mathematics.  

Indigenous Epistemologies 
Why privilege Indigenous concepts when considering the relationship between mathematics, 

humans, and the planet? The answer to that question lies partly in the way (Western) mathematics is 
viewed as universal (being able to explain everything in reality) and highly valued in society. When 
challenges of discontinuity or undecidability arise, mathematicians often protect the universal view 
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by suggesting that mathematics still holds true if we simply begin with different axioms (Barrow 
1992). Yet, no knowledge could fully describe or attend to our universe and our relations with/in it. If 
we look to the role that Aboriginalv knowledges have played in the reading of signs of distress from 
the land (i.e., predicting the global crises we face), the preservation of biodiversity, and the role of 
survival in general, we see the limits of Western mathematics/science practices as a means for 
intervention (Berkes et al. 2000; Brayboy and Maughan 2009; Cajete 1999; Deloria 1979; González 
2001; Heinrich, et al. 1998; LaDuke 1994; Little Bear 2000; 2009; Tallbear 2013; Watson-Verran 
and Turnbull 1995). I claim neither that all Western thought is colonizing/hegemonic nor that all 
Indigenous thought does not have the ability to dominate. However, modern Western thinking has 
been hegemonic in ways that erase Indigenous thought. In this way, I use the term “Western” to refer 
to the modern version that has tended to colonize and “Indigenous” or “Aboriginal” to refer to the 
version that has tended to be erased throughout history. 

Acknowledging the limits of Western mathematics is not to discount the value of mathematical 
knowledge in other realms. However, such limitations suggest that, in contrast to the global push to 
get more students to enter Science, Technology, Engineering, and Mathematics (STEM) fields in 
order to deal with the complexity and challenges in our world, we cannot fully address our problems 
through a reliance on Western mathematics/science.  

Santos (2007) suggests that the problem of domination may lie not in which knowledge is 
authoritative, but rather in our overreliance on any single knowledge as authority. As such, he 
suggests an epistemology of knowledges, underscoring the view that all knowledge is legitimate, 
partial, and interdependent. In fact, with respect to ignorance, learners do not just lack knowledge, 
they have “misknowledges” (i.e., stereotypes, incorrect knowledge) about others (Kumashiro 2001). 
And, those misknowledges may not easily be replaced by the introduction of new knowledge because 
desconocimiento (ignorance) can be a “refusal to know” when what is new disrupts what was 
previously believed to be true (Anzaldúa 2000).  

Yet, from a postcolonial perspective, it is important to unlearn what one thinks one knows, both 
to recognize a form of epistemological arrogance (thinking that one’s ways of knowing are superior 
to others’) and to learn to see oneself in relation to others (Andreotti, Ahenakew, and Cooper 2011). 
Such a perspective acknowledges that our ignorance is our own, not a general form that cannot be 
known or is not yet known (Santos 2007). That is, just as there is no unity of knowledge, there is no 
unity of ignorance. Each of us has knowledge and ignorance that is, to a certain extent, unique. 
Consistent with this epistemological pluralism, some scientists have argued against trying to develop 
a theory of everything (Gleiser 2015).  

Ecology of knowledges does not follow a single abstract universal hierarchy among knowledges. 
Rather, it sees knowledge practices as context dependent. In that sense, it recognizes that different 
knowledges can address our understanding and ability to relate to one another depending upon our 
different purposes (e.g., the ways we aim to connect, the problems we seek to solve, the ways we 
invite joy into our lives) (Little Bear 2009). For example, by seeking to be predictive, generalizable, 
reductionist, and quantifiable in nature, Western perspectives tend to privilege knowledge as a form 
of (re)presentation and explanation of reality (Aikenhead and Michell 2011). Yet, given the global 
crises we face, we might be better served by knowledge as action—a form of intervention (Santos 
2007; Andreotti 2011).  

Given these different purposes, it is important to create inter-knowledges, whereby learning 
another’s knowledge does not negate knowing one’s own knowledge (Santos 2007). In this way, 
learning how other living beings perform mathematics does not eliminate what is known in terms of 
academic mathematics. But, it does help us know what we do not know. Recognizing these inter-
knowledges can go a long way towards embodying humility and establishing the need for 
responsibility, and therefore reciprocity, toward another, as opposed to for another (Spivak, 1987).  
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While Santos is referring to an epistemology of knowledges that would include 
scientific/mathematical versus social scientific, I am arguing that within mathematics, we might 
acknowledge and value an epistemology of knowledges. That is, mathematically, we might come to 
see that different ways of knowing, different knowers, and different forms of knowledge are all 
legitimate, partial, and interdependent. Epistemological pluralism recognizes that there will be 
tensions, contradictions, and politics in translating Indigenous knowledges into Western 
categories/languages (Andreotti, et al. 2011). As such, an epistemology of knowledges is 
destabilizing because it interrogates the politics of knowledge and, unlike Western knowledge, does 
not presume causal outcomes—that is, that we can know the potential from any given actual. 
Therefore, the production of knowledge is an ongoing process that is not cumulative but relational. 

Centering Indigenous Knowledges 
To be clear, there is no universal “Indigenous worldview.” Within the US, alone, there are 567 

peoples federally recognized as American Indian and many more that are not recognized. Within 
México, there are 62 peoples recognized as Indigenous, comprising 13 percent of the nation’s 
population. Within Canada, there are 634 peoples recognized as First Nations, plus peoples who are 
Métis and Inuit, all accounting for 5.6 percent of the nation’s population. And, these populations 
cover only North America, not the globe. The use of particular languages and ties to particular lands 
create unique views held by Aboriginal peoples throughout the world and by individuals within those 
groups. And, many Aboriginal writers refuse to refer to themselves as Indigenous, Indian, or First 
Nations, as those categories are reflections of a colonizing history that blurs specificity. Even so, at 
times, “strategic essentialism” (Spivak 1987) is important for joining peoples and advancing common 
resistance tactics. As such, I speak of commonalities across the range of Indigenous knowledges. The 
perspectives I share are my view and do not necessarily reflect the views of others.  

Indigenous knowledges recognize that we are part of a system of intelligent and sentient beings, 
also referred to as persons, with interconnected spirits, including rocks and bodies of water. Plants, 
for example, have lived on this planet for millions of years before humans. In that sense, plants are 
our older brothers/sisters and have developed ways of efficiently using space, relating with other 
living beings, and sustaining life not just for themselves but for others, often with few resources at 
any given moment. They have been able to withstand long droughts, communicate about impending 
dangers, and collaborate in order to protect others in the community in ways that appear to be selfless 
acts. They have much to teach us; and we may have something to teach them. Breaking with a 
human/non-human binary is consistent with queer theory, which recognizes the violence that is 
justified when some are viewed to be more human than others (Chen 2012).  

Our choice to destroy the planet to serve our immediate/capitalistic/technology needs is a form of 
settler colonialism that perpetuates violence. That is, because a Western worldview does not consider 
plants, animals, and rocks as living beings of equal value with the same rights to this universe as 
humans, the result is that plants, animals and rocks suffer the same treatment as Indigenous peoples 
have endured throughout time. For example, like American Indians who were stripped of their lands 
and communities and forced to live in boarding schools, plants are yanked from their families and 
forced to assimilate into Western ways of doing things (e.g., to become suburban gardens). By 
respecting animals, plants, and even rocks as living beings, we can avoid some of the human/material 
binary that has plagued the sciences in the past. 

By referring to humans as a young species, I do not mean to imply a sense of posthumanism or 
transhumanism. That is, I am not looking to make humans better or into a fuller version of 
themselves by combining with technology, fiction, or art (Haraway 1990; but also Chela Sandoval’s 
extension). An Indigenous perspective, for me, seeks not to transform humans into another form of 
being; rather it serves to help us recognize our place in this world as the younger brothers/sisters of 
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animals, plants, and rocks who have much to teach us about making sense of and remaining 
connected to this planet and possibly other planets. In this sense, by changing our world view—how 
we move through this world and possibly into others—we will necessarily change ourselves, but not 
in a way that is separate from other living beings, not in a way that is necessarily tied to technology. 
There may be things we cannot yet access or understand because we are a young species. Other 
persons may have ways of accessing information that can be helpful for us.  

While our Elders have long spoken of the sentient capabilities of plants and rocks and of the 
collective spirit they/we share, only recently have modern scientists begun to acknowledge that claim 
with experiments that prove this to be the case, suggesting trees are sentient and intelligent (Haskill 
2017; Jahren 2017; Wohlleben 2016). For example, tracing isotopes of carbon dioxide gas offered to 
sample trees shows they turn that carbon dioxide into sugars that travel down through the trunk and 
use a complex system of roots, fungi, and mycelium to share that resource with other trees nearby, 
even trees of a different species (Simard et al. 2012). Similarly, when a tree is injured or attacked by 
pests, it is able to communicate by way of pheromones to nearby trees to tell them to start changing 
the chemistry of their leaves to be unfavorable to the intruder (Wohlleben 2016). And, mother trees 
are able to both reduce their root system to make room for their offspring as well as send defense 
signals through their mycorrhizal network to increase the resistance of their offspring to future stress 
(Teste, et al. 2009).  

Beyond embracing the intelligence and sentience of other living beings, Indigenous 
epistemologies connect place, body, spirit, and consciousness. They reflect understandings of land, 
history, culture, identity relationships, and therefore, politics (Deloria 1979). Many Indigenous 
knowledges have been developed with roots in survivance; that is, not surviving in the colonialist 
depiction of escaping catastrophe or being positioned as victims, but resisting dominance in a way 
that renews Indigenous knowledges that are particular and have always been present (Vizenor 2008). 
While there are many Indigenous concepts that could be fruitful to revisioning mathematics, I present 
three that have been important in my upbringing. I do so in order to set the stage for an epistemology 
of knowledges that can guide our practice of mathematics. 

In Lak’ech 
The Mayan definition of human being (huinik’lil) translates to “vibrant being” in recognition of 

the idea that all human beings are part of a universal vibration (Arguelles 1987; Paredez 1964). 
Acknowledging that all beings are connected, Mayan philosophy includes the important concept of 
In Lak’ech woven into everyday thought and action. When a person meets another, they begin with 
the saying In Lak’ech (You are the other me), to which the receiver responds with Ala K’in (I am the 
other you). This greeting highlights for all persons (human and other-than-human) their connection 
with each other and the need to protect each other. Consistent with Indigenous knowledge, I use the 
terms “living beings” and “persons” interchangeably, as each term refers to all things living.  

Seeing a version of oneself in other living beings or persons is a powerful reminder to move 
through the world with compassion, gratitude, and interdependence. For me, In Lak’ech suggests that 
if we look closely, we can see ourselves in others and others in us, but not in a way that implies an 
erasure of our uniqueness, even while recognizing that uniqueness does not imply a sense of self 
without others. To be clear, In Lak’ech does not translate to “I am you; You are me.” Seeing a 
version of oneself in others and others in us is a kind of mirror, an affirmation; while the concept also 
recognizes we are not exactly the same. In the same way that a mirror refracts light, produces words 
that are backwards, and has imperfections from the glass, In Lak’ech reminds us that each person is 
unique. In this sense, other persons also serve as a kind of window, a way of viewing another world, 
another self, another (possibly better) you.  
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Over time, Chicanx scholars have brought the concept of In Lak’ech into poems and theater as 
reminders of how we should move through the world. 

Tú eres mi otro yo. 
You are my other me. 
Si te hago daño a ti, 
If I do harm to you, 
Me hago daño a mi mismo. 
I do harm to myself. 
Si te amo y respeto, 
If I love and respect you, 
Me amo y respeto yo. 
I love and respect myself. (Valdez and Paredez n.d.) 

Through this poem and other writings (e.g., Valdez 1971), Valdez highlights the ways in which 
Chicanx might relate to others in order to move with the cosmos. The meaning of In Lak’ech is 
similar to the Lakota saying Mitakuye Oyasin “we are all related” (Cajete 1999 cited in Hatcher et al. 
2009). The idea that we are all related can, in some ways, bring us joy, a simultaneous affirmation of 
self and others. Building upon the idea that we are all interconnected, an Indigenous production of 
knowledge to benefit others is in opposition to knowledge production as performance that benefits 
mainly oneself and that is seen in most White institutions or places that value Western thought. 
Brayboy and Maughan (2009) remind us, 

Indigenous communities have long been aware of the ways that they know, come to know, and 
produce knowledges, because in many instances knowledge is essential for cultural survival and 
well-being. Indigenous Knowledges are processes and encapsulate a set of relationships rather 
than a bounded concept, so entire lives represent and embody versions of IK (p. 3). 

Reflecting these relationships, In Lak’ech focuses not on description of reality but on movement 
through the world and metaphysics. By metaphysics, I simply mean a set of first principles by which 
we make sense of the world around us (Deloria 1979). 

Reciprocity 
Extending the idea of In Lak’ech, the second concept upon which I draw is reciprocity. The 

concept of reciprocity highlights the idea that different persons have different strengths and needs, 
and thus must rely on others for what they lack. More than simply recognizing that reciprocity 
enables persons to do things they could not otherwise do alone, it underscores a kind of ethic that is 
valued in maintaining harmony of the cosmos. In this sense, reciprocity is not only the productive 
thing to do, it is the right thing to do. Whereas In Lak’ech acknowledges the nature of the 
relationship between self and others, reciprocity highlights the actions that should result.  

As a botanist and a member of the Citizen Potawatomi Nation, Kimmerer (2013) weaves the 
view of a scientist with an Indigenous view on the role of reciprocity and suggests that when we 
honor other living beings (e.g., plants), it changes our relationships with them. She says, 

When I speak of the gift of berries, I do not mean that Fragaria virginiana has been up all night 
making a present just for me, strategizing to find exactly what I’d like on a summer morning. So 
far as we know, that does not happen, but as a scientist I am well aware of how little we do know. 
The plant has in fact been up all night assembling little packets of sugar and seeds and fragrance 
and color, because when it does so its evolutionary fitness is increased. When it is successful in 
enticing an animal such as me to disperse its fruit, its genes for making yumminess are passed on 
to ensuing generations with a higher frequency than those of the plant whose berries were 
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inferior…what I mean is that our human relationship with strawberries is transformed by our 
choice of perspective…when we view the world this way, strawberries and humans alike are 
transformed. The relationship of gratitude and reciprocity thus developed can increase the 
evolutionary fitness of both plant and animal. (p. 29-30) 

Can we come to understand mathematics as a living practice that needs actors and can respond to 
their needs? Are there already ways in which these concepts play into mathematics?  

Kimmerer highlights how in the Thanksgiving Address, humans are reminded of the importance 
of balance and harmony, “We have been given the duty to live in balance and harmony with each 
other and all living things” (p. 107) and she asks the non-Native reader, “What would it be like to be 
raised on gratitude, to speak to the natural world as a member of the democracy of species, to raise a 
pledge of interdependence?” (her emphasis, p. 112) 

This is very similar to Cajete’s notion of laws of interdependence. What might it look like to 
view mathematics (what it is, how we practice it, who is considered a mathematician, what 
knowledge we produce) as having a basis in interdependence? Kimmerer expands, 

Cultures of gratitude must also be cultures of reciprocity. Each person, human or no, is bound to 
every other in a reciprocal relationship. Just as all beings have a duty to me, I have a duty to 
them. If an animal gives its life to feed me, I am in turn bound to support its life. If I receive a 
stream’s gift of pure water, then I am responsible for returning a gift in kind. An integral part of a 
human’s education is to know those duties and how to perform them. (Kimmerer, p. 114) 

 
If we keep in mind our duties to others, might we think about the forms of mathematics we are 

producing and practicing as well as how those forms impact other persons, not just ourselves or other 
humans?  

In describing the relationship between beans, corn, and squash, referred to collectively as Las 
Tres Hermanas (the Three Sisters), Kimmerer highlights, for me, the particular way in which these 
sisters perform mathematics. 

The corn stands eight feet tall; rippling green ribbons of leaf curl away from the stem in every 
direction to catch the sun. No leaf sits directly over the next, so that each can gather light without 
shading the others. The bean twines around the corn stalk, weaving itself between the leaves of 
corn, never interfering with their work. In the spaces where corn leaves are not, buds appear on 
the vining bean and expand into outstretched leaves and clusters of fragrant flowers. The bean 
leaves droop and are held close to the stem of the corn. Spread around the feet of the corn and 
beans is a carpet of big broad squash leaves that intercept the light that falls among the pillars of 
corn. Their layered spacing uses the light, a gift from the sun, efficiently, with no waste. The 
organic symmetry of forms belongs together; the placement of every leaf, the harmony of shapes 
speak their message. Respect one another, support one another, bring your gift to the world and 
receive the gift of others, and there will be enough for all. (p. 131-132) 

Phyllotaxis, the study of the ordered position of leaves on a stem, highlights the fact that many 
plants grow in ways that mirror “Fibonaccivi” numbers and the ratios of two consecutive numbers 
tend towards the golden ratio (Douady and Couder 1992). Interestingly, scientists who have studied 
Las Tres Hermanas have documented that when grown together, they out-produce what the plants 
would if cultivated individually (Mt. Pleasant 2006). That is, the corn makes light available; the 
squash reduces weeds; and the beans turn atmospheric nitrogen into mineral nitrogen fertilizer. 
Reciprocity is modeled in their relationship. This form of reciprocity is also present in research 
methods used by indigenous scholars and scholars of color (e.g., Dance, Gutiérrez, and Hermes 2010; 
Kovach 2009; Rigney 1999; Smith 1999). 
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Drawing upon ten years of teaching integrative science that acknowledges both Western science 
and Indigenous sciences, Hatcher et al., (2009) argue that knowledge is only passed on from one 
living being to another when a relationship between the two is formed and when the receiver is 
ready. In this sense, knowledge is a verb; teacher and learner both play constructive parts in it, 
highlighting the role of reciprocity. In fact, the Mi’kmaq word netukulimk means to “develop the 
skills and sense of responsibility required to become a protector of other species.” While a 
Whitestream view might privilege the problem solving/utilitarian aspect of reciprocity, I see 
reciprocity (along with In Lak’ech) as related to experiencing connections and joy—knowing that 
one’s actions are positively affecting oneself and others.  

The overall point I am making is for us to live in harmony, without domination, as a form of 
metaphysics, and to continue to note the similarities and differences between our modes of being and 
those of other-than-human living beings. Recognizing other persons as having something to “teach” 
us is not to begin with a stance that other living beings are a means to our end, in order to better 
ourselves and our time on this planet or in our multiverse, though that can be a byproduct. Rather, 
this stance is simply reflective of a deep belief that we must show respect for others, a form of ethics, 
because in doing so, we are showing respect for ourselves, a frame of mind consistent with In 
Lak’ech. 

Nepantla 
Nepantla is the third concept upon which I draw. Nepantla is the Nahuatl (Aztec) term for the 

interstitial space between worlds. Gloria Anzaldúa explains, 

Nepantla can be seen in the dream state, as well as in transitions across borders of class, race, or 
sexual identity. Nepantla experiences involve not only learning how to access different kinds of 
knowledges—feelings, events in one’s life, images in-between or alongside consensual reality. 
They also involve creating your own meaning or conocimientosvii. (Anzaldúa 2000; p.267) 

In many ways, Nepantla serves as a space of tensions, of multiple realities. Anzaldúa highlights 
those tensions, explaining how as a lesbian Chicana poet, she is neither fully accepted by her White 
feminist colleagues who do not acknowledge her Indigeneity nor by the Chicano community who 
does not recognize her as a lesbian. She is neither and both at the same time; she is in Nepantla. The 
same could be said for people who identify as two-spirit, a translation of niizh manidoowag, the 
Anishinaabe (Ojibwe) term for spiritual people who walk in two worlds, one foot in female and one 
foot in male. In fact, Nepantla has been compared to the action of walking, whereby one is constantly 
in motion and where each step shifts the center of gravity so there is no solid grounding. Anzaldúa 
highlights this movement and potentiality,  

Nepantla, where the out boundaries of the mind’s inner life meet the outer world of reality, is a 
zone of possibility. You experience reality as fluid, expanding and contracting. In Nepantla, you 
are exposed, open to other perspectives, more readily able to access knowledge derived from 
inner feelings, imaginal states, and outer events, and to “see through” them with a mindful, 
holistic awareness. (Anzaldúa and Keating 2002, p. 544). 

For Anzaldúa, being able to see through human acts of identity, knowledge, and construction 
allows us to question when/if the actions of some violate the actions of others, thereby attending to 
issues of dehumanization.  

It is not simply the “space” of Nepantla that is powerful, but the power of being a Nepantlerxviii-
one who chooses to live in a place of tensions—as a border crosser, so as to birth new knowledge.  
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For Nepantlerasix, “to bridge is an act of will, an act of love, an attempt toward compassion and 
reconciliation, and a promise to be present with the pain of others without losing themselves to 
it.” (Anzaldúa and Keating 2002; p. 4)  

Bridging between two different views requires deep intellectual and emotional work. It means 
being willing to hold two or more contradictory views in one’s mind at the same time with the goal 
of not quickly coming to a conclusion that subsumes both ideas under an umbrella but maintains 
some of those views and reaches a third space that is neither and both of those views. The idea of 
Nepantla is consistent with Aboriginal knowledge of the metaphoric mind where we have the ability 
to hold two completely different thoughts simultaneously (Cajete 2000).  

Nahua metaphysics recognizes the shared collective consciousness of the cosmos. As such, a 
person is both in Nepantla and is Nepantla. That is, I am situated within a space of tensions and 
multiple realities that is called Nepantla. And, by virtue of being in that space, I am also the thing 
called Nepantla; I contribute to its essence. Therefore, Nepantla dictates how we move through the 
world. We are conscious of the multiple realities and energy in which we participate and to which we 
contribute as well.  

Elsewhere, I have argued that Nepantla can help mathematics education researchers think 
differently about knowledge (Gutiérrez 2012) and provide a guiding principle for teacher education 
(Gutiérrez 2015). Here, I am suggesting that Nepantla can help us interrogate the idea that 
mathematics is both a universal endeavor and not a universal endeavor. That is, the practice of 
mathematics is not universal in the sense that it is always localized and particular to the needs of 
those who practice it (e.g., D’Ambrosio 2006; Ascher 2002; Gerdes 1997; Powell and Frankenstein 
1997; Knijnik 2007; Restivo 2007). Yet, many of the forms that are practiced throughout the world 
have been identified as falling within six general forms: counting, locating, measuring, designing, 
playing, and explaining (Bishop 1988).  

For Hatcher et al. (2009), this is two-eyed seeing, learning to see with one eye through 
Indigenous ways of knowing and the other eye on Western ways of knowing.  

The principles of Two-Eyed Seeing are used for the purposes of collateral learning or colearning 
where Western Scientific concepts are constructed side by side with minimal interference and 
interaction with Indigenous Scientific concepts (p. 149).  

Unlike Hatcher’s goals, I choose to privilege the view of a Nepantlerx—seeing the 
interconnectedness between Indignenous and Whitestream knowledge of mathematics. I choose the 
term Whitestream instead of European American to highlight the role of global White supremacy in 
the enterprise of mathematics education. Like Hatcher et al., Ogawa (1995) advocates for a kind of 
multi-science teaching, seeing from multiple views. Aikenhead (2017) echoes this focus on seeing 
more than one reality, saying, 

Indigenous cultures, for instance, generally share presuppositions characterized as value-laden, 
contextualized, cultural, ideological, mostly subjective, and embracing multiple truths. (p. 29) 

In embracing these multiple truths, he suggests that students need to learn to be “cultural border 
crossers” (Aikenhead 1997), reminiscent of Anzaldúa’s Nepantleras. 

I choose to talk about knowledge from the point of view of a Nepantlerx because it highlights 
metaphysics and the choice for persons to stay in tensions rather than choosing one view over the 
other. A critical theorist might suggest an omnipotent perspective from above, a single version of 
mathematics that would be necessarily less oppressive and best at addressing ethics. In contrast, a 
post-structural view might suggest a relativist position where there is no one truth and all possibilities 
are viable for addressing ethics. For me, neither of these options is productive, as each requires a 
form of collapsing under one umbrella. From the view of a Nepantlerx, one is always trying to find 
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ways of staying in the tensions long enough to birth new knowledge. The value of Nepantla is 
reminding us to seek multiple realities and to hold those in view because they help us generate new 
knowledge. 

Embracing Nepantla would mean allowing these differing views to remain separate but in 
relation. Anzaldúa refers to this state of interdependence and solidarity as nos/otras,x meaning 
us/them intertwined. [See Gutiérrez (2012) for an explanation of nos/otr@s as it relates to 
mathematics education.] Like Nepantla, mathematics is always in motion and embodying principles 
that could be considered contradictory. Mathematically, the relationship between abstraction and 
contextualization is an example, as the definition of each relies upon the other. 

Mathematx 
Combining the views of In Lak’ech, reciprocity, and Nepantla allows us to raise new questions 

about a vision of practicing mathematics that might move past previous notions of Western versus 
other mathematics, past an idea of mathematics as either oppressing or liberating, beyond a 
mathematics that is either discovered or invented, towards an idea that allows us to deal with today’s 
complexity and uncertainties. Towards that end, I am calling for a radical reimagination of 
mathematics, a version that embraces the body, emotions, and harmony.  

Seeking/Performing Patterns for Problem Solving and Joy 
Mathematx is a way of seeking, acknowledging, and creating patterns for the purpose of solving 

problems (e.g., survival) and experiencing joy. Beginning with the principles of recognizing self 
and/in others, responsibility towards others, and valuing tensions, several things stand out as different 
from the typical way Western mathematics is conducted or experienced by students in school. First, 
although some mathematicians experience pleasure as a result of solving previously unsolved 
problems, that aspect of joy is often a very small percentage of the time and almost always absent 
from the “mathematical product” (e.g., new theorem, new proof) that is valued by the community. 
Yet, mathematics education researchers who study aesthetics highlight this domain as essential to 
human meaning making and to the insights that mathematicians develop (Sinclair 2009).  

Aesthetics join emotion, pleasure, and understanding for humans as they relate to their world 
(Dewey 1934). For mathematicians, aesthetics may serve as a precursor for intuition, whereby they 
do not rely upon a sense of logic and deduction but upon some general sense of how things connect 
together (Burton 1999), often illuminating a unity of meanings and values. In this sense, intuition and 
wonder may lead to joy and discovery (Sinclair and Watson 2001). That is, we seek what is 
surprising and wonderful, yet events must fit into a broader scheme; the parts must fit with the whole 
(Gadanidis and Borba 2008). In fact, because humans have had to discern patterns in their world in 
order to survive, we may be predisposed to attend to just “enough complexity to engage the mind 
but…not overwhelm it with incomprehensible irregularity or diversity” (Sinclair 2009, p. 52). 
Although much of this intuitive/aesthetic work remains at the subconscious level for many 
mathematicians, mathematx is intricately tied to what is pleasing and rewarding in a connected way, 
not just a utilitarian or “problem solving” manner. This perspective is consistent with Boylan’s 
(2016) call for putting passion and pleasure at the heart of mathematics education. For me, “pleasing” 
includes not just the playful way in which many “purexi” mathematicians invent new workspaces by 
beginning with different axioms, (e.g., 8-dimensional space) but also how other persons perform 
mathematx for/with us. This version of play deviates from Bishop’s definition surrounding games 
because play does not necessarily involve an organized game, but includes a kind of frivolous 
activity with value perhaps only for the one performing it.  

Like plants, humans also have a way of expressing ourselves (our tastes, our values) and our 
sense of beauty through patterns (e.g., braiding hair, creating symmetry in our surroundings, walking, 
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dancing, speaking, dressing, creating balance in a home). These patterns are both playful (useless) 
and purposeful (useful) at the same time because they have the potential to connect us with others. 
Reviewing the work of Dissanayake, Sinclair (2009) highlights that this form of expressing ourselves 
through aesthetics helps indicate that we are special. In terms of patterns, it might not be just 
regularity that matters for persons. Biologists have noted that the ability to embody opposites 
(Nepantla) is consistent with living systems that show simultaneous stability and plasticity, 
incomplete separation between internal and external topology, prolonged stages of criticality, and the 
co-existence of future and past (Soto et al. 2016; Longo and Montévil 2011; Montévil et al. 2016). 
Again, broadening our definitions of living beings may yield insights for mathematicians who seek to 
discern, appreciate, and reciprocate patterns. 

Current versions of what count as “beautiful” in mathematics tend not to reflect the diversity in 
our world. Instead, they tend to relate to truth (Stewart 2007), implying universals rather than 
uniqueness/expression that would align with performance or a plurality of epistemologies. If we can 
recognize that cultural theses of modes of living are aesthetic choices (Popkewitz 2002; 2008) and 
some aesthetics are not superior to others, then the means for controlling or dominating is lessened. 
The opportunity to appreciate another’s values is the embodiment of In Lak’ech. In other words, 
approaching life in this way of appreciating and looking for similarity is what helps us grow and also 
recognize difference. Ethics and aesthetics join in mathematics when we have guiding principles like 
In Lak’ech, reciprocity, and Nepantla.  

Intervention in Reality 
Second, whereas mathematics tends to be thought of as a noun (e.g., a body of knowledge, a 

science of patterns, a universal language), mathematx is performance and, therefore, a verb. Just as 
identity is not something that you are, but rather something you do (Butler 1999), mathematx 
emphasizes the guiding principles and the process as opposed to the product. Drawing upon the 
concept of reciprocity, mathematx is an intervention-in-reality (action) as opposed to a 
representation-in-reality (explanation) (Santos 2007). The starting point for Western mathematicians 
would be to begin with embracing the joy/emotions and seeking In Lak’ech, reciprocity, and looking 
for opportunities to be a Nepantlerx while doing mathematics. Let us consider an example. A 
common theme in combinatorics is to start with an object P, and define some sort of counting 
function to P, which makes sense for taking in positive values because it results in a polynomial. 
Then, negative values are substituted into the counting function and it is recognized as a new 
counting function for a different/new mathematical object. For mathematicians, this work is known 
as combinatorial reciprocity (Meléndez 2017). In fact, Beck and Sanyal (2017) ascribe animacy to 
the process by referring to it as moving from “your world” to “my world.” The new counting 
function has offered something that the original counting function could not. Is the mathematician 
grateful for the offering of this new counting function? Is there some joy in noting that functions can 
give back to each other? How might that starting point extend to other forms of reciprocity in doing 
mathematics with other persons?  

The idea of mathematx as verb is consistent with many Aboriginal languages that are largely 
verb-based and may relate to how persons practice mathematics (Lunney Borden 2011). Mathematx 
is an activity that cannot be extracted from the living being(s) in the process of solving problems 
and/or experiencing joy--the mathematxn. Although ethnomathematics tends to take into 
consideration the idea that different cultures do different mathematics, the unit of analysis normally 
remains at the level of the group and what they have produced, possibly promoting the unintended 
message that all members of that culture do the same things for the same purposes. Mathematx 
acknowledges this group relation, but recognizes the meaning that each person ascribes to what is 
being experienced.  
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The x at the end of the word signifies movement, an openness, the x being a variable that could 
be represented by anything. In this sense, mathematx is constantly evolving, depending upon what is 
represented with that x. This framing is consistent with the choice to use “x” as an ending (e.g., 
Latinx) to represent any gender performance instead of privileging a patriarchal view or ascribing to 
a binary of male/female.  

I choose mathematx instead of mathematix in order to distinguish between the two when spoken 
aloud. In Nahuatl, the “x” is pronounced “sh.” So, the word is pronounced mathematesh. The x is 
also political in the sense of Malcolm X, the human rights activist who took on the x to represent all 
of the unnamed ancestors and their cultures that had been lost through slavery. For me, mathematx is 
a political statement about reclaiming the persons who have been lost when humans remain at the 
center. As such, mathematx seeks to intervene in the status quo of mathematics.  

Living Mathematics  
The title of this article suggests a vision of living mathematx. What might it mean to live 

mathematx? Living mathematx means both that we live a version of mathematx as well as we are a 
living version of mathematx. This framing is consistent with Nahua metaphysics that suggests one is 
both in Nepantla and one is Nepantla. Living mathematx means moving through the world with other 
living beings, acknowledging, appreciating, and reciprocating the patterns produced. If we look to 
animals and plants for some insight, we see that Brassica oleracea (Romanesco cauliflower) performs 
itself in both utilitarian (compact) and non-utilitarian (pleasing) ways that may get us to pay attention 
to its form and to continue to cultivate it. On the one hand, Romanesco cauliflower performs a 
version of the “Fibonacci” sequence that maps onto Western mathematics, and the elegance of the 
pattern brings joy while at the same time solves problems of space. Yet, like all persons, every 
brassica oleracea, performs itself in a way, and over its lifetime, that shows variance and suggests a 
departure from a pre-determined set of possible outcomes programmed by genomes (Montévil et al. 
2016). We might ask ourselves, why is a grove of trees, each with similar but not perfect versions of 
fractals more pleasing than a computer-generated version of a grove of trees that precisely follows 
expanding symmetry? Is there something more in our relation that triggers a sense of pleasure, 
appreciating the aesthetics that plants perform? Are we able to discern and appreciate asymmetry 
along with symmetry? And, in what way(s) might this relate to aesthetics, intuition, or insight? Are 
there patterns in the ways in which our pleasure is communicated back to plants, for example, 
through pheromones or other means we are not yet able to understand or describe?   

Do other persons remind us of the importance of beauty in imperfection, of not relying upon a 
defined algorithm? That is, although they offer good approximations of such things as shorelines of 
oceans, fractals in Western mathematics do not map perfectly onto the universe around us. Moreover, 
not all symmetry is inherently beautiful or “natural.” Marcelo Gleiser refers to this phenomenon as 
the aesthetics of the imperfect. He notes that while synthesizing amino acids in a laboratory setting, 
biologists achieve approximately 50 percent right-handed chiralxii formations and 50 percent left-
handed formations. Yet, in living creatures, virtually all amino acids are left-handed. This asymmetry 
is critical for protein folding and reproduction. The same is true for the asymmetry of occurrence in 
matter and anti-matter in physicsxiii. So, asymmetry, not just symmetry, may be a form of 
performance by living beings to which we need to pay greater attention. Perhaps this asymmetry has 
aspects of a pattern that are complex enough without being overwhelming to initiate surprise or 
wonder.  

Can our older brothers and sisters in this universe (and others) teach us something based on how 
they have developed and organized themselves to relate with each other to please and solve 
problems? From a practical point of view, are there ways in which we can organize our living spaces 
to draw upon visions such as the Three Sisters and other geometric formations that our older brothers 
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and sisters use? In some respects this idea of learning from our older brothers and sisters is not new. 
Researchers have begun to rely upon biomimicry, copying the forms observed in “nature,” in order to 
solve complex problems of space, design, and efficiency. For example, termites have taught 
architects in Harare, Zimbabwe, how to erect buildings with patterns that create effective internal 
climate control systems; Kingfisher birds have taught engineers how to construct high speed trains 
that will move through the air with less noise; plants and insects are teaching aerospace engineers 
about miori folds in order to tightly package and then deploy enormous complex origami versions of 
sun shades to block the light and allow telescopes to take more accurate pictures; similar folds in the 
universe are helping physicists understand neighboring galaxies. However, all of this biomimicry is 
taking place in research labs, not in schools with students. We are missing an opportunity to expose 
students to plants, animals, and other persons as our teachers, and perhaps also our opportunity to 
reciprocate actions. 

In terms of recognizing and performing patterns—living mathematx—marine creatures such as 
salmon, sea turtles, trout, and eels have the ability to read magnetic fields in the earth and use them in 
migration (Pennisi 2017). Animals such as bears, dear, elk, great apes, macaws, lizards, and fruit flies 
are able to read (communicate with) plants in order to self-medicate when they have diseases 
(Shurkin 2014) or develop high levels of toxins in their skin and use other chemical signals to 
communicate and ward off predators (Hagelin and Jones 2007). Several tree species such as oak, 
spruce, and beech are known to communicate among themselves and with each other in order to ward 
off disease, share resources, and protect each other (Wohlleben, 2016). Like Las Tres Hermanas 
(corn, beans, squash) mentioned earlier, many of our cousins seem to recognize/acknowledge 
patterns and create new ones while collaborating and valuing reciprocity. To date, many researchers 
rely upon Bishop’s (1988) classification of six forms of mathematics: counting, locating, measuring, 
designing, playing, and explaining. I urge us to consider what forms of classification might we 
develop in looking to other-than-human persons and the ways in which they live mathematx in their 
local contexts? Which new forms of mathematics might arise? 

From a philosophical perspective, perhaps it is neither that we have come to appreciate the 
“natural” patterns present in plants, animals, and rocks, as Platonists would have us believe (i.e., that 
they have taught us patterns that were programmed within them or that they developed), nor that we 
simply project our own aesthetics onto our living cousins (i.e., that we see the mathematics we want 
to see in our environment) as Realists would have us believe. More likely, our relations and the 
tensions between us provide the multiple lenses on reality and instability. We are constantly in 
motion like a Nepantlerx. This is consistent, though different, from Barad’s (2001) notion of “intra-
action.” If, instead of perpetuating a human/non-human binary, we consider the shared consciousness 
between all living beings, the greater unity to which we belong, we are more likely to value 
mathematx for what it offers us. We can acknowledge both the potential for domination between 
living beings while also opening up the possibility of harmony and reciprocity in the practice of 
mathematics. 

As we look for new structures and forms of mathematics to help solve the global crises we 
encounter as well as to experience joy, we might consider how other living beings might offer 
lessons and insights. We have developed new structures and physics concepts by studying intently 
such things as symmetry and conservation laws in the physical world. Even using a narrow definition 
of living beings, biologists have noted that all organisms (uni-cellular or multicellular) do not simply 
follow prescribed rules or programming. They develop their own norms/rules in a way that balance 
between plasticity and robustness; that is, they show spontaneous organization and variance that does 
not appear in physics (Soto et al. 2016). If we broaden our understanding of living beings beyond the 
organism, we might find even further insights.  
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Reflecting an Ecology of Knowledges 
Building upon Andreotti, Ahenakew, and Cooper’s epistemic plurality (2011) and Santos’ (2007) 

call for a new ecology of knowledges, I suggest that mathematx guide our work in mathematics. 
Because mathematx acknowledges that all persons will seek, acknowledge, and create patterns 
differently in order to solve problems and experience joy, multiple knowledges are valued and 
sought. These multiple knowledges are important, given that all knowledge is partial and each offers 
us a different angle and understanding on the world. The goal is not to work towards a summative 
understanding, as if by simply adding the different knowledges we will have a complete or perfect 
view. Rather, our work is to locate ourselves in others and others in us, as we attempt to understand 
our world through patterns. Doing mathematics in this way offers us the opportunity to unlearn our 
epistemological arrogance. The concept of reciprocity draws upon complementarity in recognizing 
that different knowledges contribute something others do not. Mathematx nurtures a view of 
mathematics that always considers strengths and limitations for particular purposes. For example, we 
might ask ourselves: which forms of mathematics can our brothers/sisters perform for which we do 
not have a way to express? In looking to other persons, might we be more open to multiple versions 
of knowing that are constantly open to new axioms and even non-axiomatic mathematics? 

While others have noted that Western mathematics—sometimes referred to as Platonist 
mathematics or European mathematics or European American mathematics—is in opposition to 
Indigenous mathematics, I am not seeing that mathematx would be in opposition; rather it would 
include Aboriginal mathematizing. In the same way that Latinx rejects the gender binary, mathematx 
rejects the epistemological binary. Mathematx allows for a variety of expressions without suggesting 
one is “normal,” superior, or the reference point for erasing other epistemologies. However, 
mathematx is not everything and anything. It privileges a particular way of moving through the world 
that acknowledges and produces patterns that align with the collective consciousness and energy of 
the cosmos and respects other persons. Mathematx is less a way to describe how we currently do 
mathematics and more a goal for how to approach our relations with each other in the practice of 
mathematics. In this sense, mathematx is a quest for intersubjectivity and systems thinking, not unity.  

Moreover, mathematx acknowledges Nepantla by underscoring the fact that there is no absolute 
universalism or absolute relativism. That is, there is no umbrella term under which all forms of 
mathematics can collapse and explain everything in reality. When we move from a global universal 
mathematics to a form of mathematx, whereby we acknowledge epistemological pluralism and are 
guided by first principles of In Lak’ech, reciprocity, and Nepantla, we are likely to see changes in not 
only mathematical activity (and products) but also in mathematxns. 

Philosophers, sociologists, and anthropologists who study mathematics have long argued that 
“school mathematics” is but one small version of the many forms of mathematics practiced in the 
world and that such mathematics does not operate outside of individuals, morals, or politics (Brown 
1994; Clarke 2001; Ernest 1994, 2000; Fitzsimons 2002; Restivo 1994; 2007; Turnbull 2000; Verran 
2001). Often, in making these claims, researchers point to the field of ethnomathematics to highlight 
the fact that all cultures do mathematics in localized ways. In some respects, I am arguing for an 
extension of ethnomathematics to include animals, plants, rocks, bodies of water, and other persons. 
Mathematx is consistent with a focus on peace, education as relation, a recognition of the imprint of 
Western thought in dominant mathematics, and a language through which people could be more 
creative (D’Ambrosio 2007; Francois and Van Kerkhove 2010; Gerdes 1988; Powell and 
Frankenstein 1997). Even so, I choose mathematx as opposed to “ethnomathematics with the 
inclusion of other-than-human persons” because I aim to avoid some of the pitfalls of previous 
understandings and implementations of ethnomathematics (Cimen 2014; doCarmite and Pais 2009; 
Vithal and Skovsmose 1997). For example, I am not looking to use Western mathematics or a 
Platonist view as the standard by which we judge other persons to live mathematx or to suggest a 
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kind of essentialization of humans (Gutiérrez 2000; Francois and Van Kerkhove 2010). Moreover, I 
do not wish for the knowledge of our older brothers and sisters to simply be 
acknowledged/sanctioned and shared (Mesquita and Restivo 2013); I want such knowledge to be 
valued and applied. Although D’Ambrosio broadened his definition of “ethno” to include “all 
culturally identifiable groups with their jargons, codes, symbols, myths, and even specific ways of 
reasoning and inferring” (p. 17, cited in Francois and Van Kerkhove), people have continued to think 
about ethnomathematics as practiced by ancient ethnic (non-Western or non-White) culturesxiv or 
collapsed it into a form of cultural appropriation. By introducing mathematx, I also seek to decenter 
the notion of “tics” (technologies), which, for me, do not capture the body/spirit (feminine) and the 
ways we move through the world in the same metaphysical manner (Haraway 1988; Harding 2008). 
Mathematx is more than explaining and understanding in order to survive (D’Ambrosio 1990); it 
attends to aesthetics and the body. 

Implications for Teaching and Learning 
Elsewhere, I have argued that the practice of school mathematics in the US regulates the child by 

privileging: algebra/calculus over geometry/topology/spatial reasoning; rule following over rule 
breaking; Western mathematics (culture free) over ethnomathematics (recognizing that even 
academic mathematicians are a culture); the “standard algorithm” over invented or international 
algorithms; abstraction over context (“just pretend this is real world”); mind over body; logic over 
intuition; and encouraging students to “critique the reasoning of others” over appreciating their 
reasoning (Gutiérrez, in preparation). Not only can these repeated practices over a lifetime serve to 
dehumanize students and teachers in classrooms, the narrative about mathematics being a pure 
discipline, reflective of the natural world around us, universal, with an almost unilaterally positive 
relationship to society’s advancement, leaves many humans unable to challenge this narrative to 
consider other ways of doing mathematics. In this way, school mathematics comes to normalize and 
valorize particular practices and to make others seem deviant and in need of fixing (Skovsmose 1994; 
Walkerdine 1994). By continuing to privilege data analysis and probability over other kinds of spatial 
patterning, even if that data analysis concerns itself with issues such as climate change, we run the 
risk of limiting new ways of doing mathematics and our relationships to the practice.  

In contrast, what might teaching and learning look life if mathematx were embraced? First, 
students need time to relate with other-than-human persons in order to develop a familiarity with the 
kinds of patterns that exist outside of themselves—things that are both another version of us and yet 
not exactly us—so they can provide mirrors onto ourselves and windows onto another’s world. 
Rather than education happening within school walls, students might be asked to head outdoors. In 
lieu of a purely dominant mathematics curriculum (Gutiérrez 2002), students might be asked to 
investigate: How do we acknowledge, understand, and relate to the patterns in bird song? What are 
the patterns/signs/codes that allow some animals to relate to their plant relatives for the purpose of 
self-medication? What are some of the patterns that occur as insects package their wings and bodies? 
And, in what way(s) might those forms solve problems and bring joy? How do those packages of 
wings and bodies relate to other packages in humans, in other species, in the imagination? Where 
does the search for patterns fail to capture other meanings in these practices? These are all questions 
for which most teachers will not have answers. Therefore, different from the portrayal of the math 
teacher as the credentialed professional who has acquired the “knowledge base” and who is inserted 
into the child’s life in a coercive relationship whose success is conditional upon pre-set performance 
measures and criteria, living mathematx would involve the passing of knowledge only when the 
knowledge receiver is ready and a relationship is formed between giver and receiver, as suggested 
earlier by Hatcher et al. (2009).  
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In some respects, seeking to understand how we and our older brothers and sisters live 
mathematx can serve as both a problem solving exercise (in mental manipulation, spatial reasoning, 
and other things that might map easily onto current forms of humans doing mathematics), but it is 
also likely to deviate from the language we have to understand or describe. In this way, students will 
be learning how to be open to other forms of being and for recognizing the tools necessary for 
reading and responding (reciprocity) to those forms and also being fully present in the beauty of such 
performances. Such an education would shift the dynamics from an objectifying description and 
problem-solving manner towards one that includes joy, respect for the person, and the desire to act 
(reciprocate) in a way that is responsive to the particular situation at hand, thereby changing the 
individual learner in the process. In the same way that we might see traditional mathematics 
classrooms move away from students being taught to “critique” the reasoning of other students, as is 
called for in the Common Core State Standards in Mathematics (National Governors’ Association 
2010) towards what I refer to as “appreciating” the reasoning of other students (i.e., being able to 
stand in their shoes), we might see that process occur across all persons. 

Some researchers have started to bridge the gap between aesthetics and mathematics through the 
online game Fold It where players find pleasure in folding proteins in compact ways and earn game 
points (Cooper et al. 2010). The players’ unique folds are analyzed by researchers who then apply 
puzzle solutions to real world problems in the medical industry. In fact, this form of crowd sourcing 
has developed insights and answers to problems concerning the AIDS epidemic that researchers and 
computer-generated approaches alone had failed to solve. Researchers involved in the project are 
studying the intuition of players and how they approach the folding process in order to improve 
algorithms generated by computers. This form of pleasure and “learning” occurs outside of the 
school walls. However, combining versions of exploring the world to relate with other persons and 
then playing such games may help us identify certain trends that would have been difficult using our 
eyes alone. That is, there may be ways in which relating with plants, animals, rocks, or other persons 
inspire us to develop intuition in approaching the visual display of computer-generated objects that 
can be both pleasing for us as well as build upon the mathematx that other persons live in order to 
generate biomedical solutions to health problems. 

Learning through mathematx accedes that all knowledge is based on particular worldviews and 
ways of knowing that close down other possible choices; that is, knowledge is a political process, not 
a neutral product. Rather than mathematics being seen as the pursuit of truth in the sense of a 
unifying theory of reality (e.g., the unique solution to string theory) and, therefore, the means to 
control, learners embracing mathematx might come to see that the mathematics performed by 
humans is but one form that describes part of our world, but not all. Through living mathematx, 
teachers and students would practice walking alongside of other living beings, revising their 
understandings based upon their relations with them. In this sense, students would have opportunities 
to unlearn their epistemological arrogance. Teachers would focus upon helping create opportunities 
for learners to engage in an aesthetic experience—seeking surprise both in how similar something is, 
but also how it differs—to wonder about how other living beings seek, acknowledge, and perform 
patterns for their own survival and joy. Teachers might also encourage students to search for patterns 
that are felt/experienced (at the macro level), not just conceptually identified (at the micro level). 
What are the aesthetic preferences that help us define and understand the concept of pattern? 
Through mathematx, learners are likely to become more reflective about their learning and their 
relations in the world—what they know, what they do not know, as opposed to what can be known. 

Because mathematx involves the Nepantla state of both/neither when discussing problem solving 
and joy, learners will need to become comfortable with such uncertainty. In other words, they will 
come to know and practice mathematics as neither purely problem solving, nor as purely joy, but also 
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not both in a cumulative sense. Learning mathematics in this way means being able to, at times, 
acknowledge one side over the other, but always seeing the two in relation. 

Teachers’ roles would necessarily shift from telling/showing and towards living alongside of 
students and other persons. Teachers should be asking themselves, “Am I conducting mathematical 
activity with an eye towards reciprocity, Nepantla, In Lak’ech? Am I doing mathematics to see 
myself in others and others in myself, to give and to receive from my universe, to acknowledge 
multiple ways of knowing and multiple kinds of knowers?” Students would be learning to move 
through the world, appreciating, noting the forms, packages, and connections that plants, animals, 
rocks and other persons develop. In a sense, we are apprenticing learners to become “mathematxns” 
by providing guiding principles—In Lak’ech, Nepantla, and reciprocity. We are preparing them to 
look for what we already acknowledge/sanction as some humans doing mathematics with how other 
persons (human and other-than-human) live mathematx. In doing so, we must recognize that 
ignorance might not just be a lack of knowledge but an active refusal to know because it disrupts 
one’s previous beliefs. If we start early with young learners, it may be easier to disrupt what humans 
have come to consider normal in the practice of mathematics. That is, like learning a new language, 
young students often are able to absorb new ideas and new ways of gaining knowledge. 

Mathematx is not a rival body of formal knowledge to mathematics. Rather, mathematx is a 
worldview that surrounds and guides whatever it is that we are trying to accomplish mathematically. 
However, because of the performativity of mathematx, this new approach is likely to produce new 
structures and forms that academic mathematicians might acknowledge as new mathematics. 
Indigenous epistemologies value context and relationships, recognizing that our strength comes from 
understanding ourselves not with universal principles but in relation to particular lands and particular 
living beings. One could argue that the individual cannot be extracted from its environment and 
understood in any meaningful way. Biologists would agree, suggesting that because biological 
systems operate under different theoretical principles, a focus on living beings is likely to require 
different forms of mathematical modeling (Montévil, 2017). For example, breaking something down 
into its parts in order for study does not necessarily lead to anything meaningful about the results of a 
model when inserted back into its context. We saw this was the case with synthesized amino acids 
versus ones occurring in nature. So, our definition of a “useful mathematical model” may need to be 
reexamined when we include all living beings as performers of mathematx, including ones that 
would not be classified as organisms. 

I am not suggesting that humans have gotten it all wrong and that by turning to other-than-human 
persons, we will get it right. My goal is not to get closer to some absolute truth about our world. 
Rather, learning with other persons opens the door for us to have different lenses for viewing and 
relating with our universe and others. And, in doing so, we have the opportunity to learn how 
different approaches (mathematics or mathematx) make im/possible certain forms of knowing the 
world, recognizing that all of these forms are provisional, local, and legitimate. Even so, given the 
history of particular knowledges, knowers, and ways of knowing that have dominated in our history 
with respect to mathematics, it is important to give greater focus to the ways other-than-human 
persons live mathematx.  

I recognize the potential limitations of attempting to use a term like mathematx that is difficult to 
both say and spell, even if one understands conceptually what it can offer. The term 
ethnomathematics, even when being explicit that all cultural forms of mathematics are “ethno” has 
not prevented many researchers and teachers from continuing to use Western mathematics in 
opposition to, instead of as a version of ethnomathematics. That is, neither do we tend to refer to 
Western mathematics as such nor do we refer to other mathematics as Eastern, Mexican, Northern, or 
American. Ethnomathematics seems to encourage researchers and teachers to create a binary between 
Western and Indigenous, rather than recognizing a variety of forms, some with overlapping goals and 
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principles. Moreover, ethnomathematics also has not been well incorporated into the school 
mathematics curriculum. So, some might wonder, what is to prevent the same phenomena with 
mathematx?  

To avoid these potential pitfalls, I have suggested we expand our view to all living beings, 
thereby providing us with the ability to consider how some humans live mathematx differently from 
each other as well as from other persons, creating new lines of solidarity (In Lak’ech) or difference 
(and the need for reciprocity), or contradiction/tension (Nepantla). By expanding to other living 
beings, mathematx can avoid the trap of Western versus “other” mathematics and open the door for 
new categories to be drawn. For example, in what ways do humans live mathematx that are 
consistent or compatible with how trees live mathematx? And, how are individual humans affected 
by considering trees to be simultaneously another version of us (In Lak’ech) and not a version of us 
(Nepantla), but in need of our reciprocity?  In what ways are we incompatible? What are the new 
knowledges and sensibilities we need to fully develop to live in harmony? Moreover, because 
mathematx is not a description of the world, but rather a set of first principles in doing mathematics, 
it differs from ethnomathematics in that it sets out a form of intervention. 

Although the vision of living mathematx that I have outlined may sound outlandish, we need 
only remember Clarke’s (1973) third law: “Any sufficiently advanced technology is indistinguishable 
from magic.” In fact, I argue that mathematics as a field and as a human endeavor need only look to 
other sciences to see it is late to evolve. The field of physics used to promote the idea that there was a 
single time-space continuum. Then, Brian Greene (2011) introduced the concept of infinite parallel 
universes and physicists are now imagining how humans could participate in more than one space at 
one time. Moreover, the cosmologist Alexander Vilenkin has proposed a theory of our universe 
sitting within a bubble of other universes (Vilenkin and Tegmark 2016), the implication being that 
other universes may have different laws of physics. In a similar vein, I am suggesting that we may 
have different forms of mathematx in which we participate, but to which we are largely blind and 
numb. When we move 1through the world seeking connections and reciprocity, our views of 
ourselves and of others change. I ask us to open our minds to envision how such a view could change 
the relationship between humans, mathematics, and this universe with/in which we currently live.  

Endnotes 
i I am grateful to Federico Ardila-Mantilla, Kimberly Seashore, Andrés Vindas Meléndez, and 

Diana Zambrano at San Francisco State University; and Brandon Singleton at the University of 
Georgia for providing helpful comments on an earlier version of this article. 

ii I cite this article as 2010/2013 because it was published online through JRME in 2010 and some 
researchers began citing it as such then. It was not released in print until 2013, and some researchers 
have cited it as such since. Because the focus of the article is on a particular point in history, the 
work should reflect the earlier date. 

iii My maternal grandmother was a woman of Rarámuri (Tarahumara) descent. My ancestors are 
located in the Copper Canyon region of Northwestern México. 

iv Two-spirit is an Aboriginal term. 
v I use Indigenous and Aboriginal interchangeably. US authors tend to use the term Indigenous, 

whereas authors from Canada, Australia, and New Zealand tend to use the term Aboriginal. In 
Canada, Aboriginal includes First Nations, Métis, and Inuit peoples. 

vi I place Fibonacci in quotes to highlight the presence of settler colonialism. That is, although the 
Italian Leonardo Pisano (Fibonacci) receives credit for the pattern, many cultures and persons 
throughout the world, including Pingala in 200BC in India, had already known/performed the same 
pattern many years earlier. In fact, if humans are no longer the center, we might credit nautilus 
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pompilius (Nautilus shell), pinus coulteri (pinecone), or helianthus annus (sunflower) with the 
“discovery.” 

vii Conocimientos translates to “knowledges” in English. 
viii Similar to the use of Chicanx, Nepantlerx indicates solidarity with people who identify as 

LGBTQIA2S. In the Spanish language, the –ero/-era ending of a word typically signifies “one 
who…” As such, a Nepantlerx is one who chooses to reside in Nepantla. 

ix Anzaldúa’s terms do not reflect the “x” because she was writing before such language was 
common. She used a version that privileges a feminist perspective and therefore ends in “a” instead 
of “o.” 

x Anzaldúa’s terms do not reflect the “x” because she was writing before such language was 
common. She used a version that privileges a feminist perspective and therefore ends in “a.” 

xi I place pure in quotations to suggest that there is no such purity to mathematics. When we use 
terms like pure mathematics or fundamental mathematics, we are “othering” different forms of 
mathematics in ways that make them sound primitive or deviant. An Aboriginal stance would call 
into question whether any form of mathematics could be seen as pure, as it will always have a 
purpose and a grounding—cultural context—to start.  

xii Chirality refers to the geometric structure of a molecule, in particular how four different 
entities connect to a carbon center. Like hands, chiral molecules cannot be superposed onto their 
mirror image. 

xiii See, for example, Paul Dirac’s prediction of anti-matter that contradicted classical quantum 
physics where systems were thought to only have positive energy.  

xiv Noted exceptions include the work of Gelsa Knijnik (2011), who has chronicled the Peoples 
Land Movement in Brazil. 
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PSYCHOLOGY IN MATHEMATICS EDUCATION: PAST, PRESENT, AND FUTURE 
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Starting with Woodworth and Thorndike’s classical experiment published in 1901, major periods in 
mathematics education throughout 20th century and on into the current century are reviewed in 
terms of competing epistemological and psychological paradigms that were operating within as well 
as across the major periods.  The periods were marked by attempts to make changes in school 
mathematics by adherents of the dominant paradigm.  Regardless of what paradigm was dominant, 
the attempts essentially led to major disappointments or failures.  What has been common across 
these attempts is the practice of basing mathematics curricula for children on the first-order 
mathematical knowledge of adults.  I argue that rather than repeat such attempts to make wholesale 
changes, what is needed is to construct mathematics curricula for children that is based on the 
mathematics of children.  Toward that end, I present several crucial radical constructivist research 
programs.   

Keywords: Learning Trajectories, Research Methods, Cognition, Curriculum 

The accent must be on auto-regulation, on active assimilation – the accent must be on the activity 
of the subject. Failing this there is no possible didactic or pedagogy which significantly 
transforms the subject (Piaget, J., 1964). 

Mathematics Education—1900-1950 

Behaviorism and Faculty Psychology 
The classical experiment. The classical experiment by Woodworth & Thorndike (1901) at the 

beginning of the 20th Century introduced the “scientific movement” in education and it was 
considered as the death knell of faculty psychology, the doctrine of “mental discipline” (e.g., 
Whipple, 1930; Thorndike, 1922).  In faculty psychology, the mind was viewed as a collection of 
separate modules or faculties assigned to various mental tasks, such as reason, will, concentration, 
memory, or language and it was thought that training in one faculty would transfer to another.  As a 
result of their experiment, Woodworth & Thorndike (1901) concluded that, “The improvement in any 
single mental function rarely brings about equal improvement in any other function, no matter how 
similar, for the working of every mental function-group is conditioned by the nature of the data in 
each particular case” (p. 250).  The lack of transfer led Thorndike (1903) to develop his theory of 
identical elements: “The answer which I shall try to defend is that a change in one function alters any 
other only in so far as the two functions have as factors identical elements” (pp. 80-81).  Once this 
idea was accepted, “arithmetic was on its way to being analyzed into elements so that the stimulus-
response theories of Thorndike could be more readily applied” (Van Engen & Gibb, 1956, p. 1).  

Cartesian epistemology. There was also a separation or duality between the mind and the body 
in faculty psychology in that it was thought that mental discipline of the intellect would lead to 
control of the will and emotions, a duality that has become known as “Descartes error” (Damasio, 
1994, pp. 248)—“I think, therefore I am.”  It is interesting to me that this philosophical rationalism of 
faculty psychology was regarded as falsified by means of a “crucial experiment” that was conducted 
in the context of a competing paradigm, empiricism.i  Although I don’t wish to defend faculty 
psychology, in retrospect I believe that a basic reason why faculty psychology was abandoned 
transcended Woodworth and Thorndike’s classic experiment.  In empiricism, the doctrine that the 
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world imprints itself on the mind, there is a duality that is similar to the mind-body duality between 
an endogenic (mind centered) view versus an exogenic (world centered) view (Konold & Johnson, 
1991).  This mind-reality duality in the main explains why faculty psychology was rejected and why 
empiricism was so widely embraced.  In behaviorism, no explanation of mind was needed nor was it 
sought so there was already a major conflict in the two views of mind in faculty psychology and in 
the behaviorism of Woodworth and Thorndikeii.  That is, there was already a paradigmatic rejection 
of faculty psychology by the empiricists and the classical experiment corroborated the philosophical 
rejection.  Furthermore, in empiricism, something is true, “only if it corresponds to an independent, 
‘objective’ reality” (von Glasersfeld, 1984. p. 20).  So, the idea that the functioning of one faculty 
would be transferred to the functioning in another faculty would have to be validated by such 
functioning in objective reality, which is the crux of the classical experiment. 

Behaviorism and Progressive Education 
Progressive education. Although faculty psychology was abandoned as a psychological 

rationale in education, there was a competing paradigm to the scientific movement during the period 
of time that was known as Progressive Education.  Under the leadership of John Dewey, the 
Progressive Educational Association was formed in 1919 and it served as a counterpoint to the 
scientific movement.  Progressive Education promoted the idea of a child-centered education as well 
as other aspects of education.iii   As early as 1902 John Dewey wrote; 

Abandon the notion of subject matter as something fixed and ready-made in itself, outside of the 
child’s experience; cease thinking of the child’s experience as also something as hard and fast; 
see it as something fluent, embryonic, vital; and we realize that the child and the curriculum are 
simply two limits which define a single process.  Just as two points define a straight line, so the 
present standpoint of the child and the facts and truths of studies define instruction. (Dewey, 
1902, p. 11)   

This quotation might be interpreted as Dewey introducing a duality between the child and the subject 
matter. Dewey’s (1902) distinction here is the subject matter as known by the scientist and the 
subject matter as known by the teacher.  

Every subject thus has two aspects: one for the scientist as a scientist; the other for the teacher as 
a teacher.  These two aspects are in no sense opposed or conflicting.  But neither are they 
immediately identical.  (p. 22) 

For Dewey (1902), subject matter for scientists represented a given body of truths, whereas for the 
teacher,  

He is concerned not with the subject matter as such, but with the subject matter as a related factor 
in a total and growing experience.  Thus to see it is to psychologize it. (p. 23) 

Two concepts of number. Dewey’s emphasis on psychologizing subject matter was quite 
different than that of the behaviorists.  The difference is well illustrated in how Dewey and 
Thorndike regarded number. For McLellan & Dewey (1895), 

Number is not a property of the objects which can be realized through the mere use of the senses, 
or impressed upon the mind by so-called external energies or attributes…In the simple 
recognition, for example, of three things as three the following intellectual operations are 
involved: The recognition of the three objects as forming one connected whole or group—that is, 
there must be a recognition of the three things as individuals, and of the one, the unity, the whole, 
made up of the three things. (p. 24)  
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So, Dewey was not an empiricist.  Recognition is an indication of assimilation, which, for Piaget 
(1964), is the essential relation involved in learning.  Recognizing the three things as individuals is 
the result of using an operation of the mind, the unitizing operation (von Glasersfeld, 1981), and 
recognizing the three things as the one, the unity, is the result of using the operation of uniting the 
three things into a composite unity.  Unitizing sensory material from two or more sensory channels 
into experiential wholes stands in contrast to the assumption that the world imprints itself on the 
mind, an assumption on which Thorndike’s psychology of number was based. 

Thorndike (1922) identified three meanings of numbers—the series, collection, and ratio 
meanings—and he credited McLellan and Dewey for the ratio meaning.  However, he made no 
attempt to engage in an analysis of the operations of the mind that produce these meanings. Of the 
collection meaning, he wrote: 

Or we may mean by knowledge of the meaning of numbers, knowledge that two fits a collection 
of two units, that three fits a collection of three units, and so on, each number being a name for a 
certain sized collection of discrete things, such as apples, pennies, boys, balls, fingers, and the 
other customary objects of enumeration in the primary school. (pp. 2-3) 

As an empiricist, number was taken as a given in reality and imprinted itself on the mind through the 
senses. Rather than being concerned with the mathematical experience of the child, for Thorndike 
(1922), “The psychology of the elementary school subjects is concerned with the connections 
whereby a child is able to respond to the sight of printed words by thoughts of their meanings…” (p. 
xi).   

Thorndike’s influence. The influence that Thorndike had in mathematics education is illustrated 
in the twenty-ninth yearbook of the National Society for the Study of Education. 

Mainly, the main psychological basis is a behavioristic one, viewing skills and habits as fabrics 
of connections. This is in contrast, on the one hand, to the older structural psychology [faculty 
psychology]iv which has still to make direct contributions to classroom procedure, and on the 
other hand, to the more recent Gestalt psychology, which, though promising, is not yet ready to 
function as a basis of elementary education. (Knight, 1930, p. 5) 

Knight’s attempt to separate the behaviorist approach to elementary education and that of the faculty 
psychologists was spurious because it is difficult to distinguish faculty psychology’s educational 
model (mental discipline) and Knight’s development of a behavioristic educational model.  In faculty 
psychology, it was thought that the best way to strengthen the minds of younger students was through 
drill and repetition of what we might now call the basic skills in order to cultivate the memoryv, 
which is quite similar to Knight’s interpretation of Thorndike’s (1922) Psychology of Arithmetic.  
Thorndike thought that arithmetical knowledge should be treated as an organized interrelated system, 
whereas his students, of which Knight was one, focused on the mechanics of arithmetic (Van Engen 
& Gibb, p. 10).  Knight also wrote of avoiding progressive education in the same introduction to the 
yearbook. 

Some readers may feel that the spirit of this Yearbook is too conservative, that it lacks a bold and 
daring spirit of progressiveness.  There has been a conscious attempt to avoid the urging of any 
point of view not supported by considerable scientific fact. (Knight, 1930, p. 2) 

A contentious relationship.  The contentious relationship between progressive educators and 
educators who held the opinion that the function of the school was to train the working class, be they 
empiricist or faculty psychologists, appeared prior to the publication of the twenty-ninth yearbook.  
In 1918 Harold Rugg and John Clarke critically analyzed attempts to reconstruct ninth-grade 
mathematics and presented their own program in the last chapter of their study. “[T]he construction 
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of a continuous mathematical course, worked out around two basic principles, one mathematical and 
the other psychological” (p. 176) was a major component of their program.  They did cite a classic 
textbook series (Wentworth, Smith, & Brown, 1918) as an attempt to reconstruct ninth grade 
mathematics, but such texts were regarded as coming up short.  In a perusal of the cited text I found 
that basic algebra was as formal, rule bound, and manipulative as one would expect in a text designed 
to train students in algebra.  

The contentious relationship continued on after Rugg and Clarke’s 1918 study, this time directed 
toward Harold Rugg’s social study textbooks.  Rugg eventually became one of a small group of 
progressive educators at Teachers College, Columbia University where he published a social study 
textbook in 1929 from a social-justice perspective titled, “Man and his changing society,” that 
became widely used.  Being a social studies textbook, it was appropriate that there was a focus on 
social problems in the Unites States and the author encouraged students to explore potential 
solutions.  Rugg was eventually accused of socialism and conservative patriotic business groups who 
did not want school children raising questions about the capitalistic economic system censured his 
books.   

By the end of the decade Rugg's books and several others were condemned by the American 
Legion, the Advertising Federation of America, and the New York State Economic Council. In 
1940, in a speech to the leaders of the oil industry, H.W. Prentis, the President of the National 
Association of Manufacturers (NAM), complained that public schools had been invaded by 
"creeping collectivism" through social science textbooks that undermined youths' beliefs in 
private enterprise.vi  

Progressive education was repudiated and, during the decade of the 1950’s, it disintegrated as an 
identifiable movement in education.vii  Although the movement may have disintegrated, that doesn’t 
mean that the involved principles died with it.      

Mathematics Education 1950-1970: The Era of Modern Mathematics  
After World War II, wide spread concern for the state of the education of scientists and engineers 

emerged when compared with that of the Russians.  As a result, the mathematics community became 
integrally involved in the reeducation of college teachers of mathematics (Price, 1988).  The concern 
soon shifted to the education of precollege mathematics (and science) teachers, especially after the 
Soviet Union launched Sputnik I in October of 1957.  Buttressed by the National Science 
Foundation, a concerted effort was made by several mathematicians to upgrade the precollege 
mathematics curriculum in order to educate college capable students (CEEB, 1959; Price, 1988).  
Classical idealism (the doctrine that reality, or reality as we can know it, is fundamentally mental) 
replaced empiricism as the dominant philosophical position among the reformers and mathematics 
textbooks were written from the point of view of a mathematician’s mathematics (e.g., Allendoerfer 
& Oakley, 1959; School Mathematics Study Group, 1965).   

However, among the curriculum reformers the belief was, and it still is by most contemporary 
mathematicians, that mathematics is discovered rather than invented by human beings (Stolzenberg, 
1984).  So, despite a major shift from empiricism to idealism, Cartesian epistemology was still the 
prevailing epistemology of the curriculum developers and others primarily involved in the modern 
mathematics movement, including researchers in mathematics education.  Behaviorism was rejected 
and problem solving along with learning by discovery became the major psychological emphases 
(Pólya, 1945, 1981) for which Wertheimer’sviii (1945) work on productive thinking served as a basic 
psychological rationale.  Wertheimer considered productive thinking, or the solving of problems, as 
based on insight and criticized reproductive thinking such as repetition, conditioning, and habits, all 
of which are emphasized in behaviorism.   
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Teaching Modern Mathematics 
Interestingly enough, during the modern mathematics movement of the 1960’s, mathematics 

teachers in the main did not change their traditional, behavioristic ways of teaching mathematics. 
There were at least three reasons for this state of affairs.  First, mathematics teachers were not 
knowledgeable about what was purported to be the psychological emphases of the modern 
mathematics programs.  Institutes for mathematics teachers were held, but the institutes did not offer 
courses on problem solving or learning by discovery.  The primary emphasis in the institutes was on 
upgrading the mathematical preparation of mathematics teachers.ix,x  Second, the modern curricula 
emphasized mathematical structure and the logical, deductive presentation of ideas rather than 
problem solving and learning by discovery.xi There were minimal attempts to psychologize the 
subject matter in these ways, which was a major oversight because of the influence textbooks have 
on the classroom teaching of mathematics.  Finally, behaviorism is a common sense psychology.  
Although I would say that few mathematics teachers, including myself, had a working knowledge of 
Thorndike’s psychology of arithmetic or algebra, or of behaviorism more generally, being held 
accountable for four or five classes of 25-35 students per class can easily lead a teacher to using 
common sense psychology in teaching without being reflectively aware of doing so.  What I mean by 
a common sense psychology is amply demonstrated in the following citation from an introduction to 
Thorndike’s psychology of algebra. 

Suffice it to say here that it emphasizes the dynamic aspect of the mind as a system of 
connections between situations and responses; treats learning as the formation of such 
connections or bonds or elementary habits; and finds that thought and reasoning—the so-called 
higher powers—are not forces opposing those habits but are those habits organized to work 
together and selectively. (Thorndike, Cobb, Orleans, Symonds, Wald, & Woodyard, 1926, p. v) 

Piaget’s Genetic Structures as a Psychological Rationale 
It is very interesting that Piaget’s genetic structures and stage theory of cognitive development 

served as a psychological rationale for the modern mathematics programs at the elementary school 
level (Bruner, 1960).  This was primarily due to the logical-mathematical structural emphasis in the 
modern mathematics programs that left the programs without a psychological rationale.  Piaget’s 
constructivism did not serve as an epistemological basis for the modern mathematics programs nor 
was it even emphasized in a conference devoted to Piaget’s work and the modern programs that was 
held at Cornell University in 1964 (cf. Ripple & Rockcastle, 1964).  Instead, the interest was in 
Piaget’s stage theory and his formalizations of the thinking of children within the stages as can be 
seen by Bruner’s (1960) citation of Bärbel Inhelder, Piaget’s close collaborator, in The Process of 
Education: 

Basic notions in these fields are perfectly accessible to children of seven to ten years of age, 
provided that they are divorced from their mathematical expressions and studied through material 
the child can handle himself. (p. 43) 

Inhelder’s idea was that children in the concrete operational stagexii were ready to learn, and indeed 
could learn, “basic notions in these fields”.  This idea served as the basis of Bruner’s (1960) famous 
concept of the readiness to learn the basic structures of mathematics:   

Any subject can be taught effectively in some intellectually honest form to any child at any stage 
of development. (p. 33)    

Bruner (1960), however, conflated basic structures of mathematics and Piaget’s genetic structures 
when he referred to “less able students”:   
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Good teaching that emphasizes the structure of the subject is probably even more valuable for the 
less able students than for the gifted ones. (p. 9)   

By “less able students,” I take Bruner as referencing children in Piaget’s preoperational stage, 
children who’s thinking was not explained by Piaget’s Grouping structures.  In this quotation, he 
seemed caught in Cartesian anxiety.   

[Cartesian anxiety] is an anxiety that permeates all metaphysical and epistemological questions 
concerning the existence of a stable and reliable rock upon which we secure our thoughts and 
actions.  As Bernstein explains: “Either there is some support for our being, a fixed foundation 
for our knowledge, or we cannot escape the forces of darkness that envelope us with madness, 
with intellectual and moral chaos (p. 18).” (Konold & Johnson, 1991, p. 2)   

In spite of using Piaget’s psychology as a rationale for the emphasis on mathematical structure, 
Piaget was considered to be an observer rather than a teacher, and the elasticity of the limits of 
children’s minds was not considered as having been established:  

These reformers (and I speak now not only of SMSG) have been so successful in teaching 
relatively complex ideas to young children, and thus doing considerable violence to some old 
notions of readiness, that they have become highly optimistic about what mathematics can and 
should be taught in the early grades. (Kilpatrick, 1964, p. 129) 

I had no problem with Kilpatrick’s assertion for children who were in Piaget and Inhelder’s more 
advanced concrete operational stage.xiii   But I did not accept Bruner’s famous hypothesis about the 
readiness to learn for the “less able” children nor did I accept Kilpatrick’s assertion for children in 
Piaget’s preoperational stage.  Consequently, the way in which Piaget’s grouping structures might be 
relevant in the mathematics education of children became a major problem for me soon after I earned 
my Ph.D. from the University of Wisconsin in 1966.  At that point, research in mathematics 
education was still based in empiricism and to work scientifically meant to use experimental and 
statistical methods (Stanley & Campbell, 1963) in the test of hypotheses in a way that was quite 
similar to Thorndike and Woodworth’s classical experiment.   

Applying Piaget’s Psychology 
After joining the Department of Mathematics Education in 1967, I turned to working for a period 

of approximately eight years in an attempt to reject Bruner’s famous hypothesis concerning the 
readiness to learn mathematics for children who were in Piaget’s pre-operational stage.  In this effort, 
I functioned as an experimental researcher with little awareness that Piaget (1980) rejected 
empiricism.  

Fifty years of experience has taught us that knowledge does not result from a mere recording of 
observations without a structuring activity on the part of the subject. (Piaget, 1980, p. 23) 

My efforts were directed toward applying Piaget’s psychology in the mathematics education of 
preoperational children in a “scientific” manner. Although I experimentally rejected Bruner’s 
readiness hypothesis for these children (e.g., Steffe, 1966, 73), the children rather forcefully taught 
me that I had no insights into the psychology of their mathematical thinking (Steffe, 2012).  I 
considered myself as doing pseudo-science and making only accretional progress if I was making 
any progress at all.  The relationships with the mathematics students that I taught as a mathematics 
teacher was missing.  That is, my contributions to the mathematical thinking and reasoning of the 
children who were my “subjects” in the experiments was not being realized.      

So, rather than rely on Piaget’s Grouping structures as a psychology of the child, I returned to my 
identity as a mathematics teacher and taught two classes of first-grade children over the course of a 
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school year so the children could teach me how they think when engaging in mathematical activity 
(Steffe, Hirstein, & Spikes, 1976).xiv  The involved children taught me that counting was their 
primary and spontaneous way of operating in discrete quantitative situations and that counting could 
have quite different meanings for different children.  Piaget had not explained children’s counting, so 
this finding corroborated abandoning attempts to apply Piaget’s psychology in children’s 
mathematical education.  It also led to throwing off the straight jacket that controlled experimentation 
and statistical methodology had on my conception of doing science in mathematics education.  In 
fact, it led to developing the teaching experiment as a method of doing research and using teaching as 
a method of scientific investigation (Cobb & Steffe, 1983; Steffe, 1983; Steffe & Thompson, 2000b; 
Steffe & Ulrich, 2013).   

The shift to using teaching as a method of scientific investigation was a major shift in doing 
research and, to my knowledge, at the time it was unprecedented in the United States.  I learned later 
that researchers in the Academy of Pedagogical Sciences in the USSR had already used versions of 
teaching experiment in their work (Kilpatrick & Wirszup, 1975–1978).  Not only did their work 
provide academic respectability for what then was a major departure in the practice of research in 
mathematics education in the United States, it was also a departure in the goals of the research. In 
El’konin’s (1967) assessment of Vygotsky’s (1978) research, the essential function of a teaching 
experiment is the production of models of student thinking and changes in it. 

Unfortunately, it is still rare to meet with the interpretation of Vygotsky’s research as modeling, 
rather than empirically studying, developmental processes. (El’konin 1967, p. 36)  

So, the new problem that faced me was to construct explanations of the mental processes that are 
involved in children’s counting and, further, to construct explanations of how children might 
construct those mental processes.  I had constructed a typology of the units children create in 
counting that they taught me.  However, I could not explain the processes that are involved in 
children’s construction of these unit types other than Piaget’s account of children’s construction of 
what he called arithmetical units (Piaget & Szeminska, 1952).  That is, I realized that it was I who 
had to construct a psychology of the mathematical children that I taught rather than attempt to apply 
a psychology that had been constructed for a different purpose.  That was a major breakthrough in 
my conception of what it meant to do research in mathematics education.    

Mathematics Education 1970-2000: The New Progressive Educators 

Interdisciplinary Research on Number 
The modern mathematics era ended circa 1970 and behaviorism came roaring back into 

mathematics education.  When von Glasersfeld and I started to work on the project, Interdisciplinary 
Research on Number (IRON), he had just published his manifesto on radical constructivism (von 
Glasersfeld, 1974) and it was his intention to start an epistemological revolution that would eliminate 
the duality between mind and reality in Cartesian epistemology.  It was also his intention [and mine] 
to countermand the stranglehold that behaviorism once again had on mathematics education 
throughout 1970’s and 1980’s.  Radical constructivism emerged as an epistemology in mathematics 
as well as in science education (e.g., Driver, 1995) throughout the 1980’s and played a role similar to 
that of progressive education during the first one half of the century.  But the role was essentially 
based on von Glasersfeld’s (1989) first principle that, “knowledge is not passively received but 
actively built up by the cognizing subject” (p. 182) rather than on the research that we were doing in 
IRON.  In fact, I frequently was told that joining radical constructivism was like joining a political 
party.  Few progressive educators appreciated the implications von Glasersfeld’s (1989) second 
principle that, “the function of cognition is adaptive, and serves in the organization of the experiential 
world, not the discovery of ontological reality” (p. 182), which was the “radical” part of radical 
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constructivism that eliminated the Cartesian dualism between mind and reality (von Glasersfeld, 
1974, 1984).   

The Standards Movement and the “Math Wars” 
Mathematics education was a conceptual wasteland during the 1970’s, so it was no surprise that 

another crisis in education emerged that was marked by the publication of A Nation at Risk (National 
Commission on Excellence in Education, 1983).  Influenced by this newly perceived crisis, the 
constructivist revolution, and the recommendation that problem solving be the focus of school 
mathematics in the 1980’s (National Council of Teachers of Mathematics, 1980), the standards 
movement in mathematics education officially began in 1989 with the publication of the Curriculum 
and Evaluation Standards for School Mathematics (CESSM; National Council of Teachers of 
Mathematics, 1989).  The influence of Cartesian epistemology was still strong among the progressive 
educators, so CESSM was a strange mixture of realism and constructivism in spite of the commission 
claiming a constructivist view of learning, where learning was thought to, “occur through active as 
well as passive involvement with mathematics” (CESSM, p. 9).   

The National Science Foundation funded ten curriculum projects based on the CESSM that were 
published circa 2000, curricula that unfortunately became known as “constructivist curricula.”  The 
publication of these curricula extended the famous “math wars” between conservative 
mathematicians and progressive mathematics educators that erupted in California (cf. Klien, 
http://www.csun.edu/~vcmth00m/).  The “math wars” had their origin in the 1985 California 
Mathematics Framework (California State Department of Education, 1985).  This framework, 

[W]as considered a progressive document—an antecedent of the 1989 NCTM Standards. 
California’s professional teacher organization, the California Mathematics Council, was one of 
the most progressive teacher organizations in the country, and one of the most enthusiastic 
adopters of the spirit of the 1989 Standards. When the next adoption cycle came, the 1992 
California Mathematics Framework (California State Department of Education, 1992) “pushed 
the envelope” a good deal further: it emphasized reform, focusing on “mathematical power” and 
collaborative and independent student work while de-emphasizing traditional skills and 
algorithms. (Schoenfeld, 2007) 

The attempts of the constructivist curricula writers to focus on student work were realized in part 
through their social agenda, “Mathematics for All,” and concomitantly, how they regarded 
mathematics learning and teaching.  In this agenda, it was assumed that all students could learn the 
mathematics specified in the content standards of CESSM. 

If all students do not have an opportunity to learn this mathematics, we face the danger of 
creating an intellectual elite and a polarized society. The image of a society in which a few have 
the mathematical knowledge needed for the control of economic and scientific developments is 
not consistent either with the values of a just democratic system or with its economic needs. 
(CESSM, 1989, p. 9) 

The social agenda of the writers of the so-called constructivist curricula was based on social 
constructivism (Bauersfeld, 1995, 1996; Cobb & Yackel, 1996, Voight, 1989). The orientation that 
shaped the social agenda and the recommendations for teaching is cogently caught in a comment 
made by Bauersfeld (1995) that, “We can understand the development of mathematizing in the 
classroom ‘as the interactive constitution of a social practice’” (p. 150).  This sociological emphasis 
is compatible with von Glasersfeld’s (1989) first principle of radical constructivism if “interactively” 
is included in “actively.”  It doesn’t, however, take into account von Glasersfeld’s (1989) second 
principle. The reason is that, although interaction is a fundamental assumption in radical 
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constructivism, there are two types of interaction: within subject and between subject interaction 
(Steffe & Thompson, 2000a).  The social constructivists emphasize between subject interaction and 
make few attempts to model what might go on inside of the heads of children, which is where 
learning and development take place.     

The social agenda served to exacerbate the dissatisfaction the mathematical critics had with the 
“constructivist” curricula. 

[T]here is a unifying ideology behind “whole math.” It is advertised as math for all students, as 
opposed to only white males. But the word all is a code for minority students and women (though 
presumably not Asians). In 1996, while he was president of NCTM, Jack Price articulated this 
view in direct terms on a radio show in San Diego: “What we have now is nostalgia math. It is 
the mathematics that we have always had, that is good for the most part for the relatively-high 
socioeconomic anglo male, and that we have a great deal of research that has been done showing 
that women, for example, and minority groups do not learn the same way. They have the 
capability, certainly, of learning, but they don’t. The teaching strategies that you use with them 
are different from those that we have been able to use in the past when ... we weren’t expected to 
graduate a lot of people, and most of those who did graduate and go on to college were the anglo 
males.” (Klein, 2000) 

Klein went on to say that; “I reject the notion that skin color or gender determines whether students 
learn inductively as opposed to deductively and whether they should be taught the standard 
operations of arithmetic and essential components of algebra” (Klein, 2000).  So, not only did Klein 
critique the standards in CESSM and the mathematics that was involved in the “constructivist” 
curricula, he was also a critic of how teaching was conceptualized and practiced.  Essentially, the 
“math wars” were reminiscent of the contentious relationship between conservative patriotic business 
groups and progressive educators concerning Rugg’s social science textbooks.   

Mathematics Education 2000 and Forward: Outcome-Based Education 
Klein’s rejection of the standards and the social agenda of the constructivist curricula writers 

foreshadowed the mission of the Common Core State Standards for Mathematics (CCSSM) 
(National Governors Association for Best Practices and Council of Chief State School Officers, 
2010).  The release of the CCSSM helped thaw the “math wars” (Lobato, 2014; Norton, 2014) 
primarily, in my view, because of the presence of more rigorous curriculum standards.  We find the 
following statement in the introduction to CCSSM.  

The standards are designed to be robust and relevant to the real world, reflecting the knowledge 
and skills that our young people need for success in college and careers. With American students 
fully prepared for the future, our communities will be best positioned to compete successfully in 
the global economy. The Common Core State Standards provide a consistent, clear 
understanding of what students are expected to learn, so teachers and parents know what they 
need to do to help them (CCSSM, 2010, Introduction).  

The CCSSM, similar to the CEEB in 1969, was designed primarily for college bound students.xv  
It has carried the emphasis on outcome-based education forward to the present time, whose 
beginning was marked in mathematics education by the publication of the CESSM in 1989.  It might 
seem surprising that I would say that CESSM ushered in outcome-based education given that it also 
was an impetus of the constructivist curricula that was so severely criticized in the “math wars”.  
However, one of the main criticisms of the “constructivist” curricula and CESSM by the 
mathematicians was that the involved standards were weak, not that there were not any standards.   
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Outcome-based education is based on Cartesian epistemology with its requirement that 
something is true only if it corresponds to an independent, objective reality, where the standards 
constitute that objective reality.  The neo-behaviorism of outcome-based education along with the 
national emphasis on standards-based education by the No Child Left Behind Act of 2001 has had 
the effect of standardizing precollege mathematics education. For example, students are required to 
take standardized test throughout their years in schoolxvi and these tests are used in evaluating 
teachers, a practice that has become known as Value Added Measures [VAM’s] of teacher 
performance.  This surge of neo-behaviorism in mathematics education during the first years of the 
21st century is exemplified in the report of the National Mathematics Advisory Panel (2008) with its 
emphasis on rigorous scientific research.  The research conducted in IRON concerning children’s 
number sequences and fraction schemes and how they are used in the construction of adding, 
subtracting, multiplying, and dividing schemes that has been published in books and various articles 
(e.g., Steffe, von Glasersfeld, Richards, & Cobb, 1983; Steffe & Cobb, 1988; Steffe, 1992; Steffe & 
Olive, 2010) was not even mentioned in that report.  So, obviously, the authors of the report did not 
consider that research as scientific research if they considered it at all.    

Given the ubiquity of the influence of outcome-based education, one might think that there 
should be another major effort by progressive educators to countermand that influence similar to the 
era of the modern mathematics programs or to the era of the constructivist curricula.  While that may 
be of critical importance given the current state of mathematics education in precollege education, 
essentially the attempted wholesale changes in mathematics education that were made following 
national reports were abandoned after the changes led to major disappointments and failures.  If this 
history can be used to predict what might happen if another round of national reform in mathematics 
education is attempted, a strong argument can be made that what is needed is to construct 
mathematics curricula for children that is based on the mathematics of children rather than continue 
on with the historical practice of basing mathematics curricula for children on the first-order 
mathematical knowledge of adults.  Simply put, if lasting progress in mathematics education is to be 
made, researchers must establish the construction of mathematics curricula for children as an 
academic field.  I think of constructing mathematics curricula for children that is based on the 
mathematics of children as a result of intensive and longish periods of teacher/researcher interactions 
with children. Toward that end, I present several radical constructivist research programs that are 
tailored toward constructing mathematics curricula for children that emerge from the work in IRON.  
Before presenting the programs, I present several basic concepts that I feel will help understand the 
research programs. 

Radical Constructivist Research Programs 

Basis Concepts 
First- and second-order models.  I understand children’s mathematics as a result of maturation 

coupled with what children have constructed as a result of interacting in their social-cultural milieu in 
all of its aspects.  The assumption that children construct mathematical knowledge is an assumption 
of an observer.xvii  Children’s mathematics is thought of as first-order knowledge, which are, “the 
hypothetical models that the observed subject constructs to order, comprehend, and control his or her 
own experience (Steffe, et al., 1983, p. xvi).  An observer psychologizes children’s mathematics by 
constructing second-order models, which are, “the hypothetical models observers may construct of 
the subject’s knowledge in order to explain their observations (i.e., their experience) of the subject’s 
states and activities” (Steffe et. al. 1983, p. xvi).  The second-order models are referred to as the 
mathematics of children and the children’s first-order models are referred to as children’s 
mathematics.xviii  The concept of children’s mathematics is based on the belief that mathematics is a 
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product of the functioning of human intelligence (Piaget, 1980).  The mathematics of children, which 
is an explanation of children’s mathematics, is a legitimate mathematics to the extent that 
teachers/researchers can find rational grounds to explain what children say and do.  

Epistemological analysis and conceptual analysis.  Conceptual analysis is the method by 
which the second-order models that constitute the mathematics of children are produced.  Conceptual 
analysis is an analysis of mental operations.  In explaining conceptual analysis, von Glasersfeld 
(1995) drew from his experience with Silvio Ceccato’s Italian Operational School, whose goal was 
to, “reduce all linguistic meaning, not to other words, but to ‘mental operations’” (p. 6).  The main 
goal of conceptual analysis is defined by a question from Ceccato’s group: “What mental operations 
must be carried out to see the presented situation in the particular way one is seeing it?” (p. 78).  
Thompson & Saldanha (2000) reformulated the goal in a way that is more relevant to constructing 
second-order models of children’s language and actions.  Their goal is to describe, “conceptual 
operations that, were people to have them, might result in them thinking the way they evidently do” 
(p. 315).  Although I have extensively engaged in conceptual analysis in the construction of the 
mathematics of children, I know of no papers that have been written that address the problem of how 
one might creatively use the analytical tools that are available in radical constructivism in conceptual 
analysis of children’s mathematical concepts and operations. 

When conceptual analysis is used in the construction of second-order models, I refer to it as a 
second-order conceptual analysis.  Thompson & Saldanha (2000) included what I refer to as first-
order conceptual analysis in their discussion of epistemological analysis, that is, an analysis of one’s 
own mathematical concepts and operations (cf. Thompson, 2008).  According to Thompson & 
Saldanha (2000), epistemological analysis, “is used to model what might be called systems of ideas, 
like systems of ideas composing concepts of numeration systems, functions and rate of change, or 
even larger systems like those expressed in quantitative reasoning” (p. 316).  First-order conceptual 
analysis is inextricably involved in second-order conceptual analysis of children’s mathematical 
language and actions.  Thompson & Saldanha (2000) also included a teacher/researcher analyzing 
their own concepts and operations relative to children’s concepts and operations in interactive 
mathematical communication. This kind of analysis involves the teacher/researcher operating as 
Maturana’s (1978) second-order observer; that is, an “observer’s ability through second-order 
consensuality to operate as external to the situation in which he or she is, and thus be observer of his 
or hers circumstance as an observer (p. 61).   

In the following quotation, if “intentionally isomorphic” is interpreted as imputing operations to a 
mathematically operating child, what I said about making explanations is similar to Maturana’s 
second part of the scientific method.   

As scientists, we want to provide explanations for the phenomena we observe. That is, we want 
to propose conceptual or concrete systems that can be deemed to be intentionally isomorphic to 
(models of) the systems that generate the observed phenomena. In fact, an explanation is always 
an intended reproduction or reformulation of a system or phenomenon.  (Maturana, 1978.  p. 30). 

Maturana’s second part of the scientific method emphasized second-order conceptual analysis 
and his first part emphasized first-order conceptual analysis, which was, “observation of a 
phenomenon that, henceforth, is taken as a problem to be explained” (Maturana, 1978, p. 29).  Of the 
observer, he commented,  

Yet we are seldom aware that an observation is the realization of a series of operations that entail 
an observer as a system with properties that allow him or her to perform these operations, and, 
hence, that the properties of the observer, by specifying the operations that he or she can perform 
determine the observer’s domain of possible observations. (Maturana, 1978, p. 30) 
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Like Maturana, I take the subject dependent nature of science in mathematics education as a starting 
point.  But I expand on it in two ways.  First, the primary reason for engaging children as a 
teacher/researcher is to allow children to teach one how and in what ways they operate 
mathematically and, as commented by Thompson & Saldanha, to create operations that if a child had 
those operations, the child would operate as observed.  Second, as a teacher/researcher kind of 
scientist, my contributions to children’s ways and means of operating mathematically by teaching 
them is a constitutive part of a conceptual analysis of children’s mathematical language and actions.  
In the words of Steier (1995);  

Approaches to inquiry … have centered on the idea of worlds being constructed … by inquirers 
who are simultaneously participants in those same worlds. (p. 70) 

This understanding of the subject dependent nature of science in mathematics education provides 
researchers with the power to create images of unrealized possibilities in the mathematics education 
of children.  But these possibilities are subject to the constraints of children as self-organizing 
systems—the mind organizes the world by organizing itself (Piaget, 1935/71).   

Learning and development.  A central goal that runs throughout each research program is to 
learn how to operationalize children’s mathematics learning and development as spontaneous 
processes in mathematics teaching.  A virtue of teaching that is focused on constructive itineraries of 
children’s mathematics in which the teacher/researcher is a participant is that it allows the 
teacher/researcher to become aware of children’s constructive processes, which are understood as the 
construction of schemes and the accommodations that children make in them (cf. von Glasersfeld, 
1980).  Because of continual interaction with children, a teacher/researcher is likely to observe at 
least the results of those critical moments when restructuring is indicated by changes in children’s 
operations and anticipation (Tzur, 2014).  Major restructuring of mathematical schemes is compatible 
with a vital part of Vygotsky’s (1978) emphasis on studying the influence of learning on 
development.   

Unlike Vygotsky, however, I regard both learning and development in the context of 
accommodations that children make in their schemes (Steffe, 1991b).  But there is a difference in the 
two kinds of accommodations.  Learning is captured by the functional accommodations that occur in 
a scheme in the context of the scheme being used, whereas development is captured by metamorphic 
accommodations that occur independently in no particular application of a scheme.  A 
metamorphosis of a scheme is thought to be the result of autoregulation of the process of 
interiorizing the scheme (cf. Simon, Saldanha, McClintock, Akar, Watanabe, & Zembat, 2010, for a 
related view).   

Learning and development are not spontaneous in the sense that the provocations that occasion 
them might be intentional on the part of the teacher/researcher.  In children’s frames of reference, 
though, the processes involved are essentially outside of their awareness.  This is indicated by the 
observation that what children learn or develop often is not what was intended by the 
teacher/researcher.  It also is indicated when a child learns or develops when a teacher/researcher has 
no such intention.  Even in those cases where children learn what a teacher/researcher might intend, 
the event that constitutes learning arises not because of the teacher’s actions.  Rather, teaching 
actions only occasion children’s learning (Kieren, 1994).  Learning as well as development arises as 
an independent contribution of the interacting children.  So, although I do not use “spontaneous” in 
the context of learning and development to indicate the absence of elements with which children 
interact, I do use the term to refer to the non-causality of teaching actions, to the self-regulation of 
the children when interacting, to a lack of awareness of the learning process, and to its 
unpredictability.  Because of these factors, I regard learning and development as spontaneous 
processes in children’s frame of reference.  
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Trajectories of the constructive activity of children.  The construction of trajectories of 
children’s learning and development is one of the most daunting but urgent problems facing 
mathematics education today. It is also one of the most exciting problems because it is here that we 
can construct an understanding of how teacher/researchers can profitably affect children’s 
mathematics (Steffe, 2004). By building an understanding of children’s mathematical concepts and 
operations and how a teacher/researcher can engage children to bring forth changes in those concepts 
and operations, a vision of children’s mathematics education can emerge in which children engage in 
productive mathematical learning and development and teacher/researchers engage in productive 
mathematical teaching. The principle of self-reflexivityxix compels teacher/researchers to consider 
their own knowledge of children’s mathematics, including accommodations in it, as constantly being 
constructed as they interact with children as the children construct mathematical knowledge. Through 
the construction of trajectories of children’s learning and development that are coproduced by 
children and teacher/researchers, it is possible to construct trajectories that include an account of 
teacher/researchers’ ways and means of acting and operating relative to children’s ways and means 
of acting and operating (Ellis, 2014).  Such an account entails the teacher/researcher operating as a 
second-order observer. 

A trajectory of children’s learning and development includes a model of the children’s initial 
concepts and operations, an account of children’s constraints and necessary errors, an account of the 
observable changes in children’s concepts and operations as a result of their interactive mathematical 
activity in situations that are used by a teacher/researcher when interacting with children, an account 
of the situations relative to a teacher/researcher’s models of the involved children’s mathematics and 
the teacher/researcher’s goals and intentions, and an account of the involved mathematical 
interactions.  A similar historical account of what transpires in between observed changes is critical 
not only to understand the changes, but also to provide estimates of the length and the nature of the 
plateaus in children’s mathematical learning and/or development.   

Trajectories of the constructive activity of children are third-order models that include the 
second-order models that constitute the mathematics of children, the first-order models of the 
teacher/researcher, and relationships between them.  In the following research programs that I 
present, I assume that the models that constitute the mathematics of children produced by IRON will 
be used at least as starting places in the construction of the trajectories.  Because of the nature of the 
trajectories, I will refer to them as mathematics curricula for children throughout the rest of the paper 
(Steffe, 2007).  Concentrating on constructing mathematics curricula for children does not exclude 
research programs that center on teacher/researchers working with classroom teachers of 
children.xx,xxi  In fact, each stated research program can be reformulated so that it is a research 
program that involves teacher/researchers working with classroom teachers of children.  

The First Research Program 

The first research program is to construct mathematics curricula for children who enter their 
first grade as counters of perceptual unit items over the course of their first eight years in 
school.xxii  

The second-order models that were constructed in IRON concerning children’s number 
sequences and how the number sequences are used in the construction of adding, subtracting, 
multiplying, and dividing schemes have been published in books and various articles (e.g., Steffe, et. 
al., 1983; Steffe & Cobb, 1988; Steffe, 1992; Steffe & Olive, 2010).  Ulrich (2015-16) has published 
two very readable papers that provide an introduction to the units, schemes, and operations that were 
constructed in IRON as well as to some of the work that has extended the basic work (e.g., 
Hackenberg, 2013; Hackenberg & Lee, 2015; Hackenberg & Tillema, 2009; Hunt, Tzur, & 
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Westenskow, 2016; Norton & Wilkins, 2013; Tillema, 2013; Ulrich, 2012).  To start, I provide a 
brief summary of the first two stages in the construction of children’s number sequences.   

The first stage is a sensory-motor or pre-numerical stage that comprises pre-counters, counters of 
perceptual unit items (CPUI), and counters of figurative unit items (CFUI). Counters of perceptual 
unit items are restricted to counting items that are in their perceptual field, such as the toys in their 
toy box, their steps, their heartbeats, or the chimes of a Grandfather clock.  For example, an 
interviewer covered six of nine marbles with his hand and asked Brenda, a six-year-old child, to 
count all the marbles. Brenda first counted the interviewer's five fingers and then counted the three 
visible marbles. The interviewer pointed out that he had six marbles beneath his hand and Brenda 
replied, “I don't see no six!” (Steffe, & Cobb, 1988, p. 23) 

Counters of figurative unit items might attempt to count the items in a closed container when told 
that there are, say, seven items in the container, by touching the container where they believe items 
might be hidden in synchrony with uttering number words.  Because they concentrate on generating 
images of the items they are counting, they can easily become lost in counting and stop fortuitously.  
Counting figurative unit items is a step in interiorizing the countable items, which produces abstract 
unit items (Steffe et.al, 1983).  If the child also interiorizes the acts of counting, I mark this 
monumental event by referring to it as the stage of the initial number sequence (INS).  Spontaneously 
counting-on is the indication of the INS (Steffe, & Cobb 1988).  

To illustrate some of the constraints that I experienced when teaching CPUI, I recount my 
experience teaching three such children at the start of their first grade in school.  I taught them 
approximately 60 times in teaching episodes over their first two school years to explore their 
progress in the construction of counting-on (Steffe, & Cobb, 1988).  Although these children also 
participated in their regular mathematics classrooms, they did not spontaneously count-on in spite of 
my best efforts to provoke it and, presumably, the best efforts of their teachers.  It wasn’t until their 
3rd Grade that at least one of them had constructed counting-on.  Based on my experience in working 
in teaching experiments and teacher education at UGA and data that were supplied to me by 
Professor Bob Wright of Southern Cross University, Australia, who started the Mathematical 
Recovery Program (Wright, Martland, & Stafford, 2000; Wright, Stewart, Stafford, & Cain, 1998), I 
estimate that 40% of entering first graders in the United States are CPUI. Of this estimate, Professor 
Wright commented that, “I think that is a good estimate for the number in the perceptual stage or 
lower, that is the children who can't yet count perceptual items.  I think the percentage would be 
lower in Australia and New Zealand, say about 30%” (Personal Communication).  

Of the 40% who enter the 1st Grade as CPUI, I expect that a majority of them to construct 
counting-on during their 3rd Grade [Wright estimated that from 5 to 8% might not be counting-on by 
the 3rd Grade].  From that point on the relative percentages are not certain, but because of the length 
of time and the great difficulties we had in teaching experiments in engendering progress beyond 
counting on (Biddlecomb, 2002, Hackenberg, 2005; Tillema, 2007), my best estimate is that 
approximately 30% of the children entering the 6th Grade will be only able to count-on.  And those 
who are at that stage will remain there until their 8th Grade.  Wright’s estimate was, “that about 30% 
of kids entering the 6th Grade in the US will only be able to count-on” (Personal Communication).    

I consider this program as the most important research program in mathematics education today.  
My appeal to those who choose to work in such an intractable but crucial research program is to learn 
how to teach these children in such a way that they do not lose confidence.  My practitioner’s maxim 
is that children are never wrong; even children who are CPUI.  An adult can easily induce “mistakes” 
in these children, but my basic and pervasive assumption is that children are rational beings and our 
responsibility is to find ways of acting and interacting that are not only harmonious with their ways 
and means of operating, but will also affect them in productive ways.  It is crucial to re-establish the 
NCTM’s vision of mathematics for all.   
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The Second Research Program 

The second research program is to construct quantitative mathematics curricula for children 
who enter their first grade as CFUI or children who can only count-on (1) in the construction of 
operative measuring schemes, and (2) in the construction of adding and subtracting schemes as 
reorganizations of their operative measuring schemes during their first two grades in school. 

Children who enter their first grade as CFUI have a quite different constructive trajectory than 
those who enter as CPUI.  It is possible for CFUI to construct the INS by means of a metamorphic 
accommodation by the end of their first grade in school (Steffe & Cobb, 1988, pp. 308ff).  By the end 
of the second grade, it is possible for their INS to undergo another metamorphic accommodation in 
the construction of the explicitly nested number sequence (ENS), which is indicated when children 
spontaneously count-up-to (Steffe, 1992, 94: Steffe & Cobb, 1988).   

There are three principal operations of the ENS that were not available to children who have 
constructed only the INS. The first is that units of one have been constructed as iterable units; for 
example, at noon a grandfather clock strikes one twelve times in contrast to simply making 12 
chimes.  The second is that any initial segment of a (finite) number sequence can be disembedded—
“lifted”— from the complete sequence without destroying the sequence.xxiii  The remainder of the 
initial segment in the sequence can be also disembedded from the sequence and the numerosity of the 
remainder can be found by counting its elements starting with “one.”  This way of counting is 
referred to as the recursive property of the ENS in that children can take the number sequence as its 
own input (Steffe & Cobb, 1988).  That is, children who have constructed the ENS can willfully 
create their own countable items using elements of their number sequence and count these elements 
using the same number sequence that was used to create the countable items.  It is as if the child has 
two number sequences “side by side,” one to use to create countable items and the other to count the 
countable items.  ENS children have more “mathematical power” than do INS children, to borrow a 
phrase from the California Mathematics Framework.  So, there are three distinct stages in children’s 
construction of their number sequences entering their first grade in school; CPUI, CFUI and the INS, 
and the ENS.  There is a more advanced number sequence that only rarely can be observed that is 
referred to as the generalized number sequence (GNS; Ulrich, 2014, 2016) 

My best estimate is that children who enter their first grade as CFUI or who can only count-on 
comprise 45% of the first-grade population. Table 1 contains my best estimates of the percent of 
children who enter their first grade in each of the three number sequence types. The question of 
whether stage shifts can be engendered by means of specialized interactions has been 

Table 1: Number Sequence Type Across Grades for Children Who Enter their First Grade 
Counting-on (INS) or as CFUI. 

Grade/N Seq. CFUI or INS ENS GNS 

First ≈ 45 Percent ≈ 10 to 15 Percent ≈ 0 to 5 Percent 

Second ≈ 30 Percent ≈ 25 to 30 Percent ≈ 0 to 5 Percent 

Third ≈ 5 Percent ≈ 45 to 50 Percent ≈ 0 to 10 Percent 
 

worked on by Norton and Boyce with an eleven-year old child (2015).  These authors did 
demonstrate that by working intensively with the child individually in 14 teaching sessions, he did 
make progress in reasoning from one level of units (INS) to two levels of units (ENS).  The authors 
note, however, that, 
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Cody did not seem able to coordinate units in continuous contexts in the same way he could in 
discrete contexts…We conjecture that that limitation is due to the lack of physical referents for 
the embedded units within composite units that are continuous. For example, a tablespoon 
contains three teaspoons, but these three units are not as evident within the tablespoon as they 
would be with three chips within a cup. Rather, students have to produce the units within a 
continuous composite unit through some kind of segmenting or partitioning activity (Steffe, 
1991a), which involves breaking down the composite unit. (Norton & Boyce, 2015, p. 229) 

Children who have constructed the ENS and, hence, two levels of units, do use their number 
concepts spontaneously in partitioning continuous units.  So, there is always an issue of the 
generality of the learning process when the situations used in the teaching experiment are with only 
one type of quantity.  According to some authors, a fundamental question that pervades mathematics 
education today is whether mathematical thinking begins with counting or with comparisons of 
quantity (Sophian, 2007).  Based on the work of Davydov (1975) and influenced by Doughtery 
(2004), Sophian (2007) commented that, “The most fundamental idea I have derived from those 
papers is the idea that mathematical thinking begins, not with counting, but with comparisons 
between quantities, in particular the identification of equality and inequality relationships” (p. xiv).  
This notion of quantity is based on Davydov’s (1975) formal definition that a quantity is any set for 
the elements of which criteria of comparison have been established.  However, establishing the 
quantitative property of a composite unit called its numerosity and the quantitative property of a 
continuous item called its length precedes a need for comparing the numerosity of two collections or 
the length of two continuous items (Steffe, 1991a).  So, it’s not a matter that mathematics begins with 
comparisons between quantities be they discrete or continuous.  Rather, one might say that 
mathematics begins with establishing the quantitative properties of objects (Steffe, 1991a).  This fits 
with Thompson’s (1994) notion of a quantity as, “composed of an object, a quality of that object, an 
appropriate unit or dimension, and a process by which to assign a numerical value to the quality” (p. 
184).  This idea of quantity, both discrete and continuous, leads to the following reorganization 
hypothesis.   

Reorganization Hypothesis: Operative measuring schemes and their use in constructing adding 
and subtracting schemes can emerge as reorganizations of children’s INS.xxiv  

In this hypothesis, the main goal is for children to use their INS in measuring activity in order to 
transform the measuring activity, such as described in CCSSM standard 1.MD.2 stated below, into 
operative measuring schemes and to what Thompson, Carlson, Byerley, & Hatfield, (2014) referred 
to as additive measurement.   

Express the length of an object as a whole number of length units, by laying multiple copies of a 
shorter object (the length unit) end to end; understand that the length measurement of an object is 
the number of same-size length units that span it with no gaps or overlaps. Limit to contexts 
where the object being measured is spanned by a whole number of length units with no gaps or 
overlaps. 

It is important to note that this CCSSM standard is written in such a way that emphasizes the activity 
of measuring.  After actually measuring linear objects to establish how to measure and the units used 
in measuring, INS children can engage in operational measuring activity such as finding the length 
of a 64-inch string after it is increased by seven inches.  If operational measuring is generalized 
across other quantities such as time, money, temperature, weight, etc., children can construct 
operational measuring schemes that they could use as if they were using the INS in discrete 
quantitative situations.  They could also be asked to find, say, how many tablespoons of powder 
could be made from nine teaspoons of powder to engender the construction of composite units—or 
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units of units—which, at this point, I consider as essential in engendering a metamorphosis of the 
“INS measuring schemes.”  Furthermore, in the case of discrete quantity, children construct adding 
and subtracting schemes as reorganizations of their number sequences (Steffe, 2003).  So, by the 
children using their INS in the construction of operative measuring schemes, they can in turn use 
their measuring schemes in the construction of operative adding and subtracting schemes across 
different quantitative contexts.  My hypothesis is that if a stage shift is observed from an INS to an 
ENS measuring scheme in the case of one type of quantity, a corresponding stage shift will be 
observed in all of the measuring schemes that the INS was used in establishing.  Such a constructive 
generalization would lead to considerable mathematical power of the children, to borrow a phrase 
from the California standards.   

For children who are CFUI, engaging in measuring activity that includes counting activity 
extends the goals, situations, activities, and results of their figurative counting schemes.  Similar to 
the INS children who use their counting schemes in measuring activity, the effects of the CFUI using 
their figurative counting schemes in measuring activity is yet to be determined.  Still, it is possible 
that their measuring activity could serve in engendering metamorphic accommodations like that 
which produces the INS (cf. Steffe, & Cobb, 1988, pp. 306 ff) if for no other reason than a 
teacher/researcher could capitalize on children’s need to measure things in such a way that provokes 
monitoring re-presentations of measuring activity.    

The Third Research Program 

The third research program is to construct quantitative mathematics curricula for ENSxxv 
children in the construction of extensive quantitative measuring schemes and their use in 
constructing adding, subtracting, multiplying, dividing, and numeration schemes in which 
strategic reasoning and relationships between quantities are of primary importance. 

I agree with Smith & Thompson (2007) that an emphasis on quantitative reasoning needs to 
begin early on in children’s mathematics education and that building quantitative reasoning skills for 
the majority of students is not a one or two-year program.  Their paper concerned how a shift in 
current school curricula could emphasize quantitative reasoning, whereas my emphasis is on 
constructing a quantitative mathematics for children based on abstractions from actually teaching 
children to establish learning trajectories in the sense that Ellis (2014) explained.  In this context, it is 
critical to understand what schemes can be considered as extensive quantitative schemes, which I 
refer to as genuine measuring schemes. Rather than think of extensive quantities as substances as 
would be the case when considering 5/4 as referring to a point on the number line, von Glasersfeld & 
Richards (1983) pointed out that Gauss focused on extensive quantities as relations.  

To forestall the idea that the extensive quantities he is referring to are a matter of inches or 
degrees, Gauss hastens to add that mathematics does not deal with quantities as such, but rather 
with relations between quantities. These relations he calls “arithmetical” and in arithmetic, he 
explains, quantities are always defined by how many times a known quantity (the unit), or an 
aliquot part of it, must be repeated in order to obtain a quantity equal to the one that is to be 
defined, and that is to say, one expresses it by means of a number” (pp. 58-59).  

The ENS is the first numerical counting scheme that qualifies as an extensive quantitative 
scheme in that any number such as 50 can be conceived of as one fifty times as well as 50 ones.  The 
other operations of the ENS are also critical in constituting this scheme as an extensive discrete 
quantitative measuring scheme.  So, by viewing the construction of measuring schemes more 
generally as reorganizations of the operations that produce the ENS, the hypothesis is that the 
measuring schemes will emerge as extensive quantitative schemes.   
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The Fourth Research Program 

The fourth research program is to construct quantitative mathematics curricula for children in 
(1) the construction of quantitative measuring schemes as reorganizations of their fraction 
schemes,xxvi and (2) the construction of multiplicative and additive measuring schemes as 
reorganizations of their fraction schemes. 

A reorganization hypothesis that was fundamental in the work of IRON that centered on 
children’s construction of fraction schemes was that children’s fraction schemes can emerge as 
accommodations in their numerical counting schemes.  The fraction schemes that emerged were of a 
different genre than the number sequences that were used in their construction primarily because 
children used their number sequences (or concepts) in partitioning in their construction of fraction 
schemes.xxvii  Two basic fraction schemes that emerged were the partitive and the iterative fraction 
schemes.   

The partitive fraction scheme. When ENS children use their number concepts in partitioning, 
they establish an equi-partitioning scheme (Steffe & Olive, 2010, p. 75ff). For example, when the 
number concept five is used in partitioning a candy bar, say, an estimate can be made of where to 
mark off one of five equal parts. Once a mark is made, the child can disembed the marked part 
(mentally or physically), use it in iterating to make five equal parts, and mentally compare the five 
parts to the original bar to test if the five parts together are equivalent to the original bar.  If a child 
considers that the disembedded part is one out of five equal parts, or a fifth of the candy bar, this 
produces the first genuine fraction scheme that is referred to as the partitive fraction scheme (PFS; 
Tzur, 1999).   

The iterative fraction scheme and fractional numbers.  For children who have constructed the 
ENS and the PFS, it would seem that the CCSSM Standard 4.a under Number and Operations—
Fractions would be appropriate for these children. 

Understand a fraction a/b as a multiple of 1/b.  For example, use a visual fraction model to 
represent 5/4 as the product 5×(1/4), recording the conclusion by the equation 5/4 = 5×(1/4).  

This standard was meant to illustrate how multiplying a fraction by a whole number might be 
modeled by a mathematics teacher in a straightforward way.  But it doesn’t explain the operations 
that are involved in children constructing fractions as fractional numbers.  There is a scheme in the 
fractional knowledge of children, the iterative fraction scheme (IFS), where the fraction 5/4 is 
constituted as a fractional number; as five times one fourth of the candy bar (Steffe, & Olive, 2010, 
p. 333ff).  The structure of the “candy bar” produced consists of a unit of units of units.  That is, as a 
composite unit containing a composite unit comprised by 4/4 of the candy bar and one more partitive 
unit fraction.  Once constructed, children can use the scheme to produce fractional connected number 
sequences {1/4, 2/4, 3/4, 4/4, 5/4, 6/4, …} that are constructive generalizations of their explicitly 
nested number sequence (Steffe, & Olive, 2010, p. 333ff) .  This is the first fraction scheme that can 
be judged as an extensive quantitative scheme.  The PFS constructed using the ENS is still 
constrained to the fractional whole.  The construction of fractional numbers is not in the zone of 
potential construction of the children who have constructed the PFS in any short-term sense because 
it involves a stage shift from two to three levels of units coordination.   

The splitting scheme.  The splitting scheme, which is a reorganization of the equi-
partitioning scheme, is used in the construction of fractional numbers.  The splitting scheme is 
indicated when children can mentally produce a hypothetical stick that can be iterated seven times 
when given a stick and told that the given stick is seven times longer than their stick and are asked to 
make their stick.  After the splitting scheme is constructed, if a child mentally splits a stick into, say, 
48 parts, the child knows that one of the parts would be one forty-eighth of the whole stick because 
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the whole stick is 48 times as long as the part.  The result of the scheme is an inverse multiplicative 
relation between the part and the partitioned whole in the sense that Gauss specified extensive 
quantitative relations (cf. also Thompson, & Saldana, 2003).   

Assessments of fifth through eighth grade children.  With this brief introduction to the PFS 
and the IFS, I now turn to assessments of fifth, sixth, seventh, and eighth grade children concerning 
these schemes.  Norton & Wilkins (2009) found that only 34% of the fifth graders and 35% of the 
sixth graders in their sample could engage in splitting, which is an indication of the presence of the 
operations that produce three levels of unitsxxviii.  Of those same children, only 14% and 20%, 
respectively, provided some indication of having constructed the iterative fraction scheme.xxix  In 
other assessments, Norton & Wilkins (2010) found that only 13% of their seventh grade sample and 
19% of their eighth grade sample could produce the fractional whole when given, say, a stick 
partitioned into three parts and told that it was three sevenths of a candy bar and asked to draw the 
whole candy bar, which I consider as an assessment of fractional numbers.xxx  In their earlier study 
Norton & Wilkins (2009) reported similar percentages for their fifth and sixth grade samples (14% 
and 18%).  These data are consistent with an analysis of the percentages of children at one, two, and 
three levels of units that I present in Table 2 in which Norton’s and Wilkins’ data are included.   

Table 2: Estimated Percent of Children at Each Level of Units by Grade 
Grade/Level One Level Two Levels Three Levels IFS 

 Third 45 45 10  

 Fifth 35 40 25   (34%)NW (14%) NW 

 Sixth 30 30 40   (35%) NW (18%) NW 

Seventh    (13%) NW 

Eighth    (18%) NW 

 
It is especially disconcerting that only approximately 15.5% of Norton & Wilkins’ seventh and 

eighth grade sample indicated that they had constructed a fraction as a multiplicative concept.  It’s 
disconcerting because, based on my own estimates, at least 40% of this sample should be able to 
construct a fraction as a multiplicative concept; that is, they should have been able to construct the 
IFS.  But this expectation is tempered by the realization that the children in the fractions project 
constructed the iterative fraction scheme by working with us in teaching experiments.  The fraction 
standards of the CCSSM are stated by grade level and as such underestimate what children who have 
constructed three levels of units can accomplish.  On the other hand, children who have constructed 
two levels of units are constrained to constructing the PFS, a scheme that children use to construct 
proper fractions.  What this means is that approximately 45% of the third-grade population, 40% of 
the fourth grade population, and 30% of the sixth grade population are able to construct partitive 
fractions, but not fractional numbers.  When combined with the children who have constructed only 
one level of units throughout these three grade levels, we see that approximately only 15% of the 
third graders, 25% of the fourth graders, and 40 percent of the sixth graders will be able to construct 
the IFS and engage in producing fractional numbers.   

Recommendations of the NMAP.  Children’s construction of fractions as well as the teaching 
of fractions must be changed.  In the report of the National Mathematics Advisory Panel (2008), the 
following comment was made. 
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Difficulty with learning fractions is pervasive, and is an obstacle to further progress in 
mathematics and other domains dependent on mathematics including algebra. … Conceptual and 
procedural knowledge about fractions with magnitudes less than 1 do not necessarily transfer to 
fractions with magnitudes greater than 1.  Therefore, understanding of fractions with magnitudes 
in each range needs to be taught directly and the relation between them discussed. (p. 28) 

Apparently, the authors of this report believed that fractions (proper and improper) can be taught 
directly to children regardless of the levels of units the children have constructed.  The report of the 
panel, as I interpret it, exemplifies an empiricist as well as a neo-behavioristic agenda in the teaching 
of mathematics in precollege education that harks back to Thorndike’s influence on the teaching of 
mathematics during the first one-half of the last century.  Still, I do agree with the writers of the 
report concerning the pervasive difficulty that the learning of fractions presents to schoolboys and 
schoolgirls and also to the pervasive difficulty that the teaching of fractions presents to their 
mathematics teachers. Resorting to direct teaching in an attempt, for example, to raise children who 
have constructed only the PFS to the IFS could be interpreted as a more or less empirical enterprise 
and as generating a whole industry of empirical research on mathematical learning, to paraphrase 
Michael Cole’s (2004) comments concerning the training studies of the 1960’s that were conducted 
to prove Piaget wrong. In contrast, for the children who have constructed at least the partitive 
fraction scheme, my hypothesis is that quantitative measuring schemes can emerge as reorganizations 
of children’s fraction schemes.  

This hypothesis is similar to the hypotheses in the second and third research programs that 
additive measuring schemes can be constructed as reorganizations of children’s number sequences.  
It is quite different, however, in that partitioning is a fundamental operation in the construction of the 
measuring schemes, which opens the way for children to construct measuring schemes involving two 
levels of units; for example, meters and centimeters, minutes and seconds, pounds and ounces, weeks 
and days, etc.  Measuring systems in multiple levels of units might still be problematic.  It is 
especially crucial to investigate possible changes that indicate fundamental transitions between 
reasoning with two levels of units and three levels of units induced in the construction of quantitative 
measuring schemes and their use in the construction of multiplicative and additive measuring 
schemes.   

The Fifth Research Program 

The fifth research program is to construct quantitative mathematics curricula for children in 
their construction of the rational numbers of arithmetic and the rational numbers, and the 
schemes and operations entailed in and by these constructions.  

Fractional numbers are a major achievement of children who can use three levels of units as 
assimilating operations, but fractional numbers are not equivalent to the Rational Numbers of 
Arithmetic nor to the Rational Numbers.  Constructing the rational numbers of arithmetic involves 
the operations that generate the generalized number sequence (cf. Ulrich, 2014, p. 256).  To 
exemplify those operations, an eight-year old child, Nathan, was presented with copies of a string of 
three toys and a string of four toys and asked to make 24 toys.  Nathan reasoned out loud as follows,   

Three and four is seven; three sevens is 21, so three more to make 24.  That’s four threes and 
three fours! (Steffe & Olive, 2010, p. 278) 

In solving the task, Nathan integrated a unit of three and a unit of four into a unit of seven, iterated 
the unit of seven three times to produce 21, increased 21 by three to produce 24, disunited 21 into 
three threes and three fours, integrated the additional three with the three threes, and produced four 
threes and three fours.  These operations are operations of a GNS.  In a GNS, any composite unit can 
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be taken as the basic unit of the sequence in such a way that the composite unit implies the sequence 
just as the unit of one implies the ENS.  Similar to the ENS, in the GNS a child can establish two 
number sequences “side by side”, a sequence of units of three and a sequence of units of four and 
combine the basic units of each sequence together to produce another sequence of units of seven.  
What this amounts to is the coordination of two three-levels of unit structures.   

The rational numbers of arithmetic can be regarded as those operations that can be used to 
transform a given fraction into another given fraction; that is, the operations that are involved in 
quotitive fraction division.  Quotitive fraction division involves the coordination of two three-levels 
of units structures; units within units within units.  For example, consider a case where a child is 
given a segment that is said to be 1/5 of a unit segment and another segment that is said to be 1/3 of 
the same unit segment, and asked to use the 1/3-segment to produce the 1/5-segment.  If the child 
partitions the 1/3-segment into five parts, takes one of these parts as a 1/15-segment and iterates this 
segment three times to produce the 1/5-segment, and if the child abstracts the operations as 3/5 of 
1/3, then 3/5 is referred to as a rational number of arithmetic.  After operating, I would also want to 
know if the child knows that 3/5 of the 1/3-segment is the 1/5 segment without actually taking 3/5 of 
the 1/3-segment.  I would also want to know if the child can engage in reciprocal reasoning and 
understand that 5/3 of the 1/5-segment is the 1/3-segment (Hackenberg, 2010, 2014; Thompson & 
Saldanha, 2003; Thomson, et. al., 2014).xxxi  The child is aware of the operations needed, not only to 
reconstruct the unit whole from any one of its parts, as in the case of fractional numbers, but also to 
produce any fraction of the unit whole starting with any other fraction, which are the operations 
involved in quotitive fraction division. (cf. Olive, 1999, for an interpretation of the schemes and 
operations involved in the production of the rational numbers of arithmetic).  My hypothesis is that 
construction of the rational numbers of arithmetic entails a metamorphic accommodation relative to 
fractional numbers, and learning how to engender this accommodation and the constructive 
possibilities it entails is included in the first part of the fifth research program.   

One might think that the distinction between the rational numbers of arithmetic and the rational 
numbers is “simply” that the latter involve negative as well as positive rational numbers of 
arithmetic.  But that is not the case at all.  My hypothesis is that a scheme of recursive distributive 
partitioning operations is involved in constructing rational numbers.  In general, distributive 
partitioning operations are those operations that allow a student to share n units among m people and 
interpret one share as n/m of one unit and as 1/m of all n units (Liss, 2015; Steffe, Liss, & Lee, 2014; 
Lamon, 1996).  Distributive partition operations are involved in what Thompson et al. (2014) 
referred to as “Wildi Magnitudes”.  The power of Wildi’s definition of magnitude is that it makes 
explicit the fact that, “the magnitude of a quantity is invariant with respect to a change of unit” 
(Thompson, et. al., 2014, p. 4).  So, if a quantity measures 22 inches, and if there are 12 inches/foot, 
then the quantity also measures 22inches/(12 inches/foot), whose transformation into 22*(1/12 foot) 
or 22/12 feet involves rational number of arithmetic operations.  It also involves use of a scheme of 
recursive distributive partitioning operations because, according to Thompson (2014), “When a 
person anticipates that any measurement of Qxxxii with respect to an appropriate unit can be expressed 
in any other (emphases added) appropriate unit by some conversion without changing Q’s 
magnitude, she possesses Wilde’s meaning of magnitude” (p. 4) 

When the scheme of recursive distributive partitioning operations can be used to produce what I 
would consider an equivalence class of fractional numbers, I would judge that the child has 
constructed a rational number.xxxiii   I hypothesize that the construction of the rational numbers 
constitutes a stage shift relative to the rational numbers of arithmetic, and learning how to engender 
this stage shift and the constructive possibilities it entails is included in the second part of the fifth 
research program. The scheme of recursive distributive partitioning operations that is involved in the 
construction of rational numbers is also involved in the construction of intensive quantity (Liss, 
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2015; Steffe, et al., 2014).  The main difference is that intensive quantity involves relative 
magnitude, which means that a quantity is measured using a quantity of a different nature 
(Thompson, et al., 2014).  In the case of rational numbers, a quantity is measured using a unit 
quantity of the same nature as the quantity to be measured.   

The Sixth Research Program 

The sixth research program is to construct quantitative mathematics curricula for children in 
their construction of integers and rational numbers as measures of change in an unsigned 
quantity, where “unsigned” refers to the magnitude of the quantity, and operations with them.   

Based on work by Thompson & Dreyfus (1988), Ulrich (2014) defined an integer as a measure of 
change in an unsigned quantity, where “unsigned” refers to the magnitude of the quantity.  
Concerning integer addition, Ulrich (2014) commented that, 

Unlike in unsigned addition, in which the second addend can have a different quality than the 
first addend, the addends in this case need to be of the same type in the mind of the student.  
Depending on the relative magnitudes, the sum could be a subsequence of either addend. … I 
hypothesize that a student will need to have constructed the GNS in order to conceptualize 
addition in this way, precisely because both addends need to be reified composite units (which 
seems to correspond to iterability and the ability to disembed while maintaining a nested 
relationship) so that the sum can be disembedded from either addend (p. 256). 

Ulrich’s hypothesis concerning the operations that are needed to construct integer addition leaves 
open the question of the operations that are needed to construct the concept of an integer other than 
her comment concerning “reified composite units.”  I interpret the meaning of a “reified composite 
unit” in terms of Thompson’s (1994) hypothesis that, “an integer is a reflectively abstracted constant 
numerical difference” (p. 192).  So, Ulrich’s hypothesis concerning the operations needed to 
construct integer addition also pertains to the construction of the concept of integers.  Although it 
might seem unusual that the operations needed to construct integers are two steps beyond the 
operations that are needed to construct the natural numbers of the ENS as extensive quantities, all of 
the operations of the ENS have to be reorganized and extended to produce an integer as a difference 
of two such natural numbers.  That is, as a reflectively abstracted concept, an integer is the difference 
of any two signed quantities a and b, denoted by a – b, such that a – b is a constant number of units 
between a and b in the direction from b to a.  This concept of an integer is crucial in algebraic 
reasoning and should not be finessed by using the sum of a and the additive inverse of b as the 
definition of a difference a – b like it is done in CCSSM.   

I extend this way of regarding integers to the construction of signed rational numbers, where 
rational numbers are regarded as magnitudes in the way that I regard them in the above text. Based 
on my experience teaching middle school children in teaching experiments as well as teaching 
prospective middle school mathematics teachers, finding sums and differences of signed quantities 
whose magnitudes are rational numbers will require at least a constructive generalization of integer 
operations.  Furthermore, although the product and quotients of signed quantities are rarely 
considered in studies of children’s mathematics, they are fundamental as preparation for more 
general algebraic reasoning and involve constructive generalizations of rational number of arithmetic 
operations.  Constructive trajectories also need to be established in which students establish the laws 
of signs for products as a logical necessity as well as patterns of reasoning that might be recognized 
as distributive, associative, and commutative reasoning.   

Finally, because of the preponderance of children who are yet to construct the rational numbers 
of arithmetic or even fractional numbers in the middle school and beyond, it is essential to explore 
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what a quantitative mathematics curricula involving signed quantities might look like for children 
who have constructed only three levels of units.  This problem is especially acute for children who 
have constructed only two levels of units.   

The Seventh Research Program 

The seventh research program is to construct quantitative algebraic curricula for children in the 
construction of basic algebraic knowing.  

The first aspect of the program is to learn the operations that are involved in children’s 
construction of combinatorial reasoning.  My hypothesis is that the concept of natural number 
variable is essential.  Even children who can reason with three levels of units make extensive lists 
when finding the possible outcomes of two or more events that occur together rather than reason with 
compositions of natural number variables (Panapoi, 2013).  Further, my hypothesis is that the 
multiplicative principal of combinatoiral reasoning and the dimensionality involved in spatial 
coordinate systems (Lee, 2017) both involve recursively coordinating two three levels of units 
structures.  Lockwood ( 2015), in her work with college students, and Panapoi (2013) and Tillema 
(2007, 2013, 2014), in their work with middle grade students of differing levels of units, have made 
substantial progress in this program. But extensions of their work are needed to establish 
mathematics curricula for children involving combinatorial reasoning across differing levels of units.   

The second part of this research program is to extend the fifth and sixth research programs to 
working with operations on quantities of unknown measurements, which could be considered as 
“generalized arithmetic.”  An extensive quantitative unknown refers to the potential result of 
measuring a fixed but unknown extensive quantity before actually measuring it (Liss, 2015, p.30).  
An intensive quantitative unknown refers to the potential result of enacting the operations that 
produce a fixed but unknown equivalent ratio. The production of such a ratio implies the availability 
of the operations needed to produce an equivalent ratio and, thus, a proportional relationship (Liss, 
2015, pp. 31-32). Hackenberg (2005, 2010, 2013, 2014), Hackenberg & Tillema (2009), Hackenberg 
& Lee (2015), and Liss (2015) have made substantial progress in this program by working with 
students of differening levels of units.  An extension of this work is needed so that quantitative 
algebraic curricula for children are established across differing levels of units.   

The third part of this research program is highly related to the second part.  It is to construct 
quantitative algebraic curricula for children concerning the construction of the basic rate scheme and 
its use in the construction of linear functions.  Given two co-varying quantities, I consider a rate as 
the result of enacting the operations that produce a ratio equivalent to a unit ratio at any but no 
particular time (Steffe, et al., 2014, p. 52).  The basic rate scheme can be considered as a 
metamorphosis of intensive quantitative unknowns and proportional reasoning.  One might consider 
the result of enacting a rate formally as an equivalence class of ratios, but that doesn’t say anything 
about the involved metamorphic accommodation that produces rate.  Toward that end, Thompson’s 
(1994) commented that, “A rate is a reflectively abstracted constant ratio, in the same sense that an 
integer is a reflectively abstracted constant numerical difference” (p. 192).  Although I agree with 
this way of thinking about a rate, it too doesn’t specify the operations that children use to produce the 
reflective abstraction. There are various studies that contribute to understanding such mental 
operations (Ellis, Özgüra, Kulowa, Williams, & Amidonba, 2015; Hackenberg, 2010; Hackenberg & 
Lee, 2014; Johnson, 2012, 2014; Liss, 2015; Moore, 2014, Thompson, 1994; Tillema, 2013).  But 
how teacher/researchers might provoke such a reflective abstraction is a fundamental problem in 
establishing quantitative algebraic curricula for children across differing levels of units. 
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Endnotes 
i I surmise that, in part, it was because of what was considered as sufficient to falsify a theory 

during that period of time.  According to Lakatos (1970) all justificationists, “whether the 
intellectualists and empiricists, agreed that a ‘hard fact’ may disprove a universal theory” (p. 94).   

ii Thorndike considered himself a connectionist, which I regard as a form of behaviorism, but not 
radical behaviorism. 

iii There was also an emphasis on social interaction, active citizen participation in all spheres of 
life, and democratization of public education. 

iv Comment in brackets is added to the quotation. 
v (http://www.eds-resources.com/facultytheory.htm) 
vi (http://schugurensky.faculty.asu.edu/moments/1938rugg.html) 
vii (http://www.uvm.edu/~dewey/articles/proged.htm) 
viii Wertheimer was one of the three founders of Gestalt psychology along with Kurt Koffka and 

Wolfgang Köhler. 
ix I attended a sequential summer institute for secondary school mathematics teachers during the 

summers of 1961, 62, and 63 at Kansas State Teachers College, Emporia, Kansas. There were no 
courses on teaching via problem solving that emphasized discovery learning by students although we 
did solve a lot of mathematical problems! 

x James W. Wilson offered a course on problem solving for MEd and Ph.D. students at the 
University of Georgia for many years. 

xi There were modern programs that did emphasize experiential learning of mathematics (Davis, 
1990).  

xii Piaget’s grouping structures served as an abstracted model of the reasoning of children in what 
Piaget called the concrete operational stage.   

xiii Piaget thought that the construction of the length unit was more advanced than the 
construction of the arithmetical unit.   

xiv I am indebted to Dr. Larry Hatfield for his colleagueship and insight that led us to teach 1st and 
2nd grade children in order to learn children’s thinking.   

xv A mathematician writer of the content standards told me that the standards are designed so that 
students can take college mathematics courses. 

xvi In some cases, students can opt out of taking these tests.  
xvii In constructivist research, Maturana’s concept of the observer is essential.  According to 

Maturana (1978), “Everything said is said by an observer to another observer who can be himself or 
herself” (p. 31).   

xviii “Students” can be substituted for “children”.  I use “children” throughout the paper to be 
consistent.   

xix Self-reflexivity involves applying one’s epistemological tenets first and foremost to oneself. 
xx Cf. Student-Adaptive Pedagogy for Elementary Teachers: Promoting Multiplicative and 

Fractional Reasoning to Improve Students’ Preparedness for Middle School Mathematics, Dr. Ron 
Tzur, Principal Investigator.   

xxi Cf. AIMS Center for Math and Science Education 
xxii Cf. the work of Dr. Robert Wright’s US Math Recovery Council.   
xxiii Twenty-nine, say, can be disembedded from fifty while leaving it “in” fifty.   
xxiv In stating this hypothesis, I assume that in the case of continuous quantity, children will 

primarily use units like inches, pounds, etc., in segmenting.   
xxv This research program is not restricted to six-year-old children.    
xxvi Cf. Hackenberg, Norton, & Wright (2016) for an excellent start on this problem.  
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xxvii A number concept such as five is a composite unit containing five arithmetical unit items 
containing records of counting “1, 2, 3, 4, 5.” 

xxviii Hackenberg (2007) found that some children who constructed only two levels of units could 
engage in splitting.   

xxix These authors referred to this scheme as the generalized measurement scheme for fractions 
(GMSF). 

xxx These authors referred to this scheme as the measurement scheme for proper fractions 
(MSPF).  

xxxi Reciprocal reasoning of the kind Thompson, et al. (2014) identified involves coordinating two 
three-levels of units structures. 

xxxii Q is taken as 22 inches in length.   
xxxiii I did not observe a child construct what might be called an equivalence class of fractions 

even in the case of the GNS children (Steffe, & Olive, p. 337ff) 
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THREE FACETS OF EQUITY IN STEFFE’S RESEARCH PROGRAMS  
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The NCTM research committee made a recent, urgent call for mathematics education researchers to 
“examine and deeply reflect on our research practices through an equity lens.” With this in mind, we 
use this paper to reflect on the ways in which Steffe’s work has contributed to three facets of equity. 
We also suggest opportunities for researchers working within this framework to deepen their 
commitments to issues of equity. 

Keywords: Equity and Diversity, Cognition, Learning Theory 

The percentages that Steffe (2017) gives in his plenary paper are alarming because they indicate 
that current standards, and curricular materials based on these standards, are insufficient for a large 
percentage of students in grades K-8. For example, a majority of students entering 6th grade are not 
structuring number and quantity in ways that are required for the significant multiplicative reasoning 
that is the target of most middle school mathematics standards and curricular materials (e.g., 
developing proportional reasoning, an understanding of rates, etc.). For us, this phenomenon is 
fundamentally an issue of equity: As it stands, current standards and curricular materials are 
inequitable if they do not meet the learning needs of a significant number of elementary and middle 
school students.i  

So, we take this opportunity to discuss Steffe’s research in relation to the NCTM Research 
Committee’s recent, urgent call for mathematics education researchers to “examine and deeply 
reflect on our research practices with an equity lens” (Aguirre et al., 2017, p. 125). We start with the 
important caveat that Steffe has not explicitly analyzed the ways in which race, culture, ethnicity, 
gender, and socio-economic status impact learning opportunities for students in school mathematics 
either at a broad level or in his specific interactions with students. This caveat may lead some 
mathematics education researchers to simply dismiss Steffe’s work; after all, isn’t this omission 
simply another way of saying that Steffe has studied mathematics teaching and learning using a 
colorblind framing that does not account for contextual or cultural factors in the teaching and 
learning process? We think that this conclusion is far too dismissive given Steffe’s: a) profound 
commitment to unpacking what he terms students’ mathematics; b) his drive to work with 
cognitively diverse students over long periods of time to learn this mathematics; and c) his repeated 
pushes to interrupt dominant discourses about what mathematicians, mathematics education 
researchers, and curriculum writers think should constitute school mathematics (e.g., Steffe, 1992, 
1994; Steffe & Olive, 2010). We see this paper, then, as an opportunity to reflect on the ways that 
Steffe’s research addresses facets of equity, as well as a space to call for researchers using similar 
frameworks to deepen their commitment to issues of equity in the context of critiques of de-
contextualized and/or colorblind framings of mathematics teaching and learning (e.g., Martin, 
Gholsson, & Leonard, 2010; Martin, 2009). 

In our view, Steffe’s research addresses at least three critical facets of equity: positionality and 
power relations, what counts as mathematics, and access and achievement. We start with an overview 
of how Steffe’s research addresses these facets of equity. Then we provide data excerpts to illustrate 
each facet of equity. The excerpts are of middle school students who have interiorized one level of 
unit because their mathematical ways of operating are rarely reflected in current curricula and 
standards.  
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Three Facets of Equity 

Positionality and Power Relations 
In sociology, positionality refers to the “occupation or adoption of a particular position in relation 

to others, usually with reference to issues of culture, [race], ethnicity, or gender” (Oxford Dictionary 
on-line). Those who articulate their positionality are articulating their stance or viewpoint on 
themselves, others, and interaction between people, often with respect to societal identifiers. In his 
research, Steffe articulates his stance on himself as a teacher/researcher and on those with whom he 
interacts (students). This stance starts with self-reflexivity, which is a version of Gutiérrez’s mirror 
test (2016): “The principle of self-reflexivity compels teacher/researchers to consider their own 
knowledge of children’s mathematics, including accommodations in it, as constantly being 
constructed as they interact with children as the children construct mathematical knowledge,” where 
“Self-reflexivity involves applying one’s epistemological tenets first and foremost to oneself” (2017). 

Although this positionality does not address culture, race, ethnicity, or gender, we argue that it 
does address relations of power between a teacher and students. As Cobb (2007) points out, Steffe’s 
research paradigm is an actor-oriented perspective, concerned with “small scale” human interactions 
that are useful (although not sufficient) for instructional design at the classroom level, not an 
observer-oriented “large scale” view of societal structures that focuses on how people participate (or 
are barred from participating) in cultural practices. So, the power that Steffe addresses has to do with 
power relations in student-teacher relationships. Although some may see that as a limited view of 
power from the perspective of social science more broadly (e.g., Foucault), it nevertheless bears 
directly on the idea that power is intertwined with knowledge and that those in power (including 
mathematics education researchers) are those who determine what we count as knowledge.  

Steffe’s orientation is that his own mathematics (his own first-order knowledge) is insufficient to 
understand children’s mathematics (their first-order knowledge). For example, Steffe states: “I 
usually find it inappropriate to attribute even my most fundamental mathematical concepts and 
operations to children” (2010b, p. 17). Instead of doing that, he positions students as rational 
mathematical thinkers who have mathematical knowledge to which he does not have direct access. 
Steffe positions himself, as a teacher/researcher, as someone who must learn from children “how and 
in what ways they operate mathematically” (2017) and who must “create operations that if a child 
had those operations, the child would operate as observed” (2017). This statement is a statement 
about making a second-order model of a student’s thinking (the mathematics of students), which he 
views as mathematical knowledge—as legitimate mathematics. Indeed, for Steffe, second-order 
knowledge is social knowledge co-constructed by him and children (2010b). Thus, the students with 
whom he interacts have power to determine what we count as knowledge—in fact, students are 
primary in his student-teacher relationships because he could not learn students’ mathematics (i.e., 
create the mathematics of students) without interacting with them. This stance positions students as 
the generators of knowledge. 

What Counts as Mathematics 
There are numerous examples of the creation of second-order knowledge in Steffe’s research, 

starting with the five counting sequences that model how children undergo significant 
reorganizations in creating and structuring units and quantity in their construction of what we call 
whole numbers (e.g., Steffe & Cobb, 1988; Steffe, von Glasersfeld, Richards, & Cobb, 1983). In this 
paper we give an example of fractional knowledge that Steffe learned from students: the partitive 
fraction scheme (Steffe, 2002, 2010a). Often standards documents and curricular materials define 
fractions as parts out of wholes (e.g., 4/5 is four parts out of five parts) or as multiples of unit 
fractions (e.g., 4/5 is 4 × 1/5) (CCSSM, 2010). These definitions do not reflect students’ ways and 
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means of operating as they construct fractional knowledge because they omit a lot and, as Steffe 
(2017) points out, they may ask students to conceive of fractions in ways that are not within their 
current possibilities in the near term (cf. Norton & Boyce, 2013).  

Students who have interiorized only two levels of units have the potential to construct partitive 
fraction schemes (Steffe, 2010a). Students who construct this scheme create fractions from iterating 
(repeating) a unit fraction some number of times. So, for example, if asked to draw 4/5 of a granola 
bar they partition the bar into five equal parts and then take one of those parts four times. This 
activity looks like these students see 4/5 as 4 × 1/5—they are repeating 1/5 four times, after all. 
However, the 4-part bar that is the result of their activity is, for them, four parts out of five parts—it 
has a part-whole meaning. So, when these students are asked to draw 7/5 of a granola bar, they will 
often object that doing so does not make sense because you can’t take seven parts out of five (Olive 
& Steffe, 2001). Constructing partitive fractions is an advance over fractions conceived of only as 
parts in relation to wholes. However, students who have constructed only partitive fraction schemes 
do not yet see fractions as consisting of sequences of fractional numbers (e.g., 1/5, 2/5, 3/5, 4/5, 5/5, 
6/5, 7/5, etc.), as Steffe (2017) points out. In addition, students who have constructed partitive 
fraction schemes have just begun to think of fractions as measurable extents—they have not 
completed this process (Steffe & Olive, 2010). 

Yet rather than position students who have constructed partitive fraction schemes as deficient or 
behind, Steffe argues that these students’ mathematics is a legitimate mathematics that should be the 
basis for developing curricula and instruction in schools. That is, he states: “rather than assume a 
God-like stance regarding ‘school mathematics,’ I assume that I must intensively interact with my 
students to learn what their mathematics might be before I can begin to think about what ‘school 
mathematics’ might be” (1992, p. 261). He critiques school mathematics texts—even reform texts—
as being based on the writers’ first-order knowledge of school mathematics. This phenomenon 

“places the mathematics of schooling outside of the minds of the students who are to learn it 
and is manifest in the univocal expression of concepts like multiplication and division. One 
searches the school mathematics books in vain for a mathematics of children, and school 
mathematics is taken to be the way it is rather than the way students make it to be” (1992, p. 
260).  
So, Steffe views school mathematics—mathematical knowledge—as something that should be 

squarely based on students’ mathematical ideas.  

Access and Achievement 
In our view, developing curricular tasks and instructional materials for students who have 

constructed partitive fraction schemes is about the issue of access. Gutiérrez (2009) characterizes 
access to be about  

the resources that students have available to them to participate in mathematics, including such 
things as: quality mathematics teachers, adequate technology and supplies in the classroom, a 
rigorous curriculum, a classroom environment that invites participation, and infrastructure for 
learning outside of class hours (p. 5).  

She characterizes achievement as about student outcomes, including “participation in a given 
class, course taking patterns, standardized test scores, and participation in the math pipeline (e.g., 
majoring in mathematics in college, having a math-based career)” (p. 5). She positions access and 
achievement at the ends of the “dominant” axis, and power and identity at the ends of the “critical” 
axis in her framework on equity. 

Steffe’s research does not directly address some items in Gutiérrez’s (2009) list of resources for 
access, such as adequate technology and supplies in the classroom, or infrastructure for learning 
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outside of class hours. However, Steffe’s research is about increasing access to mathematical ideas 
and participation because it redefines what is being accessed. Rather than position mathematics as 
something outside of the minds of students to be accessed, he positions mathematics as being created 
by students, and so it is something that they have access to already, in a sense. Thus, his job as a 
teacher/researcher to facilitate this access is to create second-order models of students’ ways of 
operating that allow him (and others who work in a similar vein) to interact with students so that their 
mathematics can surface and so that they can build on their ways of thinking from wherever they are. 
And, further, his job is to create learning trajectories, which he refers to as third-order models (2017), 
as curricula that would constitute school mathematics. Steffe’s call to base school mathematics on the 
mathematics of students means students’ achievement is defined as making progress from where they 
are—as learning. 

Three Examples 
In this section we illustrate each aspect of equity with data of student-teacher interactions. We 

aim to paint a picture of what student-teacher interactions based on models of students looks like, 
because we argue that, done well, these interactions open significant opportunities for participation 
and learning. Although this statement is true for all students, it is striking for those who have 
interiorized only one level of unit in middle school, because these students’ ways of thinking are 
typically not reflected in or addressed by school mathematics (e.g., Hackenberg, 2013). So, all three 
examples in this section are of students who have interiorized one level of unit.  

Here we present a few aspects of our second-order models of these students to help readers 
interpret the data: Students who have interiorized one level of unit view numbers as composite units 
(units of units)—e.g., 5 is five 1s and also one 5. However, for these students there is not a 
multiplicative relationship between the units of 1 and composite units. In addition, these students 
have yet to construct disembedding operations, whereby they can lift part of a number out of the 
number and not destroy the number, e.g., take 10 out of 14 while keeping 14 intact. Since these 
students cannot yet disembed, they don’t reason strategically when combining numbers additively. 
For example, to determine 14 + 18, they typically count on by 1s from one of the numbers. In 
contrast, students who have constructed disembedding operations can separate 14 into 10 and 2 and 
2, combine one 2 with the 18 to make 20, and then add on the 10 and 2 to get 32. This strategic 
additive reasoning is not in the province of students who have interiorized one level of unit. To make 
assessments of students’ levels of units, we often use problems that involve embedded units, as we 
demonstrate next. 

Power and Positionality: Hal Coordinating one Level of Unit 
We examine Hal’s response to the Candy Factory Problem to show what it looks like when a 7th 

grade student has interiorized only one level of unit. We then analyze how the teacher positioned 
himself in relation to Hal and the impact of this positionality on power dynamics in a student-teacher 
relationship.  

 

Candy Factory Problem: A candy factory puts 6 candies in each package, puts 8 packages in 
each box, and puts 4 boxes in each crate. Make a picture to show the number of candies in one 
crate. 

 
Data Excerpt 1: Hal solves the Candy Factory Problem.ii 
[The teacher reads the problem to Hal. Hal draws Figure 1a.] 
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(a) (b) (c) (d) 
 

Figure 1. Hal’s response to the Candy Factory Problem. 
 

T: Okay. What do you got there? 
H: A crate. 
T: And can you, like, the candies…so it says 6 candies in each package, puts 8 packages in each 

box, and puts 4 boxes in each crate. So can you draw what would be inside the crate? [Hal 
draws Figure 1b.] So these are your six candies, eight packages, and four crates [points to 
each part of Figure 1b]? [Hal nods.] 

…. 
[The teacher asks Hal to re-read the question. The teacher then asks Hal to draw a single package 

containing six candies. The teacher asks Hal to draw a second package, and then a third 
package (Figure 1c).] 

T: How many packages does it say would be in one box? 
H: Eight. 
T: Yeah. So could you draw everything that would be in one box? 
H: Six candies and eight packages [draws Figure 1d.] 
…. 
[The teacher returns to asking Hal to draw a fourth package with six candies in it, adding on to 

Figure 1c. He then asks Hal how many total candies there would be if he had a fifth package.] 
H: Thirty. 
T: Thirty? Okay. How did you know it was 30? 
H: Because 5 times 6 is 30.  

 
This excerpt illustrates that Hal initially did not consider candies, packages, or boxes to be 

contained in a crate—he drew a single crate (Figure 1a). He subsequently drew the candies and 
packages outside of the original crate, re-interpreted the one crate as a box, and drew three more 
boxes (Figure 1b). These drawings provide indication that he assimilated the situation using a single 
level of unit (e.g., a crate or a box or a package or a candy). With support from the 
teacher/researcher, Hal established a drawing where candies were contained within packages (Figure 
1c). However, this structure seemed ephemeral for him because when the teacher asked him to use it 
to show “everything that would be in one box,” he drew six candies and eight packages, separately, 
inside of the box (Figure 1d). Doing so indicates that he did not use a two-levels-of-units structure, a 
package containing six candies, when he created his box.  

Interestingly, the last part of the excerpt demonstrates that Hal could use multiplication facts to 
solve problems—in fact, later in the interview it was evident that he knew and could use many 
multiplication facts, which is not atypical for middle grades students, even those that are coordinating 
solely one level of unit (Norton & Boyce, 2015). However, this phenomenon does not mean that 
“knowing multiplication facts” for students like Hal results from the structure and imagery that is 
typically assumed when students use such facts.  



Plenary Papers 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

62 

We contend that middle grades students like Hal are often silenced or invisible in the classroom; 
they are often positioned as deficient and behind. In fact, even for the teacher/researcher (who was an 
experienced middle school teacher), Hal’s response to this problem was surprising, and it took 
significant adjustment on his part in order to be responsive to Hal in the moment. Ultimately the 
teacher/researcher abandoned the original problem as it was stated in favor of presenting problems 
that were related but did not involve all of the levels of units as the original problem. The 
teacher/researcher did so because he interpreted his primary goal of interacting with Hal to be to 
learn Hal’s mathematics. This goal, when taken seriously, can be quite humbling, because even an 
experienced teacher can quickly realize the insufficiency of his or her own mathematical thinking in 
bringing forth productive mathematical reasoning on the part of the student. So, positioning oneself 
as Steffe (2017) does is not at all a simple challenge for mathematics education researchers. 

Indeed, we think such an orientation needs to be learned anew in each student-teacher interaction 
in order for mathematics education researchers and teachers to avoid positioning themselves in a 
“God-like” role. When a teacher ceases to position themselves as learner (for example, by assuming 
they know what a student should learn prior to interacting with a student), they reify their prior 
knowledge as the knowledge to be learned rather than entering interactions openly. Notably, 
however, this does not mean that teachers or researchers should enter interactions with students 
unprepared, but rather with a genuine openness to students’ contributions to these interactions. In the 
interaction with Hal, it would have been possible to simply “coach” him through creating a 
representation for solving the problem where the teacher would have learned very little about the 
structure Hal attributed to the situation. We have witnessed many middle school students who have 
interiorized one level of unit experience this kind of coaching in schools. 

Expanding What Counts as Mathematics: Kianna solves the Coordinate Points Problem 
We turn now to a second 7th grade student who was part of the same study, and who had also 

interiorized one level of unit, to examine how she worked through and solved the Coordinate Points 
Problem.  

Coordinate Points Problem. You have number cards that have the numbers 1 through 8 on them. 
You draw a card, replace it, and draw a second card to create a coordinate point (e.g., 1, 2).  

a. How many coordinate points could you make? Represent these points as an array. 
b. Suppose you added one additional number card that has the number 9 on it. How many 

new coordinate points could you make? 
 

In typical curricula this problem could be considered to be about “finding the difference of two 
squares”—the difference between 82 and 92. Successive iterations of this problem (e.g., starting at 9 
and adding the 10 card) could open the possibility for students to consider that the difference 
between two squares is non-constant, and that the difference of these differences is constant (it is 2). 
We suggest that seeing the task as univocally about “finding the difference of squares” elides 
students’ mathematics. We use data from Kianna to illustrate what a different characterization 
affords in terms of seeing what the challenges and successes were for a student who has interiorized 
one level of unit, and how in turn this characterization serves to expand what counts as mathematics.  

We anticipated that, for Kianna, creating pairs and taking them as countable items would be a 
challenge. Therefore, we asked her to list aloud the new pairs as she was creating them and to keep 
track of how many pairs she had created. Kianna started the problem by listing aloud the new 
coordinate points, putting up a finger of her left hand each time she said a new coordinate point and 
reusing the fingers of her left hand once she had used all five of them. Then the teacher/researcher 
asked her how many she had created. Kianna seemed uncertain. She listed several calculations that 
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she appeared to think were relevant (e.g., 9 + 9 and 9 × 9). Instead of asking her to compute, the 
teacher/researcher responded as follows.   

 
Data Excerpt 2: Kianna solves the Coordinate Points Problem. 
T: You want to just say them out loud again? You had a pretty cool method before. You want to 

just keep using that? 
K [smiles]: Yeah. Okay. So, one nine, two nine, three nine, four nine, five nine [puts up a finger 

of her left hand each time she says a coordinate point until all five fingers on her left hand are 
raised], six nine [she begins to reuse the fingers of her left hand each time she says a 
coordinate point], seven nine, eight nine, nine...[is about to say nine-nine, but stops herself]. I 
mean, one nine [re-states one-nine instead of saying nine-one], two nine [finishes using the 
fingers on her left hand a second time], three nine, four nine, five nine, six nine, seven nine 
[finishes using the fingers on her left had a third time], eight nine, nine nine [puts up the 
thumb and index finger of her left hand]. That’s twelve new ones. Yeah, that’s twelve. 

T: Twelve? Let’s try one more time. 
K: Ah. Okay. [Smiles broadly]. 
T: Do you want to try one more time? 
K [emphatically]: Yeah. 
T: Okay. You’re so close. 
K: Okay. One nine, two nine, three nine, four nine, five nine, six nine, seven nine, eight nine, one 

nine, two nine, three nine, four nine, five nine, six nine [is keeping track on her left hand in a 
similar manner as the previous attempt]... I said that wrong [realizing she has said one nine, 
two nine, instead of nine one, nine two, etc.]. Okay. One nine, two nine, three nine, four nine, 
five nine, six nine, seven nine, eight nine, nine one, nine two, nine three, nine four, nine five, 
nine six, nine seven, nine eight, nine nine [keeps track in a similar manner on her left hand as 
previously]. It would be eighteen? 

T: Eighteen. You’re so close. 
W: How’d you get eighteen? 
K: I was trying to count them on my fingers. I have a problem when I go past fifteen. 
T: You’re doing great. 
W: Can I ask a quick question? 
K: Yeah. 
W: How many past fifteen did you get? 
K: I think I got two more. 
W: Okay. So, what’s two more than fifteen? 
K: Seventeen. 
W: Yeah. 

 
For Kianna, solving the problem appeared to be both challenging and satisfying. Kianna often 

said she did not like mathematics because she could not “see” herself in her mathematics classes. Her 
attitude about the interview, however, differed significantly from that: She smiled throughout, 
acknowledged and accepted the challenges presented to her, and successfully solved problems that 
were hard for her. We argue that this was possible because the teacher/researcher planned activity for 
her based on the mathematics of students who have interiorized one level of unit and can make two 
levels of units in activity, and he used this model as a basis for being responsive to her in the 
moment. For example, he asked Kianna to verbally list the pairs, which meant he supported her to 
produce pairs in her activity. He planned this activity for her because creating a pair (coordinate 
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point) in activity is similar to creating a two-levels-of-units structure in activity: Both involve 
counting two units as a single unit (Tillema, 2013).  

After watching Kianna make two attempts at enumerating the pairs, and arriving at 12 and then 
18 pairs, the witness-researcher suspected that she was having difficulty coordinating the number of 
times she had counted by five on her left hand (three) with the number of left over fingers she had 
(two). Her response of 12 likely stemmed from a lack of differentiation of the number of times she 
had used all the fingers on her left hand and the two remaining fingers she used—when she reviewed 
her activity, she equated the two remaining fingers with the number of times she had used all of the 
fingers on her hand (two): Two hands and two leftover fingers would give 12. Her response of 18 
likely stemmed from a similar lack of differentiation, except that in this response she seemed to 
substitute the three times she used her hand for the number of leftover fingers; three hands and three 
leftover fingers would give 18. The witness-researcher interacted responsively with her, assuming 
that this might be the conflation that she was making and so supported her to review the number of 
leftover fingers she had beyond 15 to determine she had counted 17 coordinate points.  

Kianna’s response of 17 coordinate points is numerically equivalent to the difference between 92 

and 82. However, we think that claiming that she found the difference of two squares does not match 
well with Kianna’s mathematics. In fact, we think it conflates the mathematics of the observer with 
the mathematics of a student by failing to differentiate between the two.  

Instead, we think that Kianna’s problem entailed creating and counting pairs that contained nine 
in either the first or second position, where her counting activity involved coordinating the number of 
times she used the five fingers on her left hand (three) with the number of leftover fingers she had on 
her left hand at the end of her count (two). There was not evidence that she established in a single 
structure the total number of pairs that could be created with nine number cards (92), the number of 
pairs that could be created with eight number cards (82), and the 17 newly created pairs that had the 
number nine in either the first or second position. Coordinating these three quantities in a single 
structure could be initial evidence for considering a students’ mathematics to be compatible with 
something that might be called “finding the difference of two squares.” Even though Kianna did not 
do this, her way of operating was fundamentally interesting to us and to her, involved challenging 
mathematics for her, and imbued her with a sense of mathematical power—she was a participant in 
producing the solution to what she considered a challenging problem.  

Access and Achievement: Alyssa’s Work on Symbolizing her Reasoning 
We now turn to an example from a different study within a 5-year project to investigate how to 

differentiate instruction for middle school mathematics students, as well as relationships between 
students’ rational number knowledge and algebraic reasoning. The current phase of the project 
involves the second author in co-teaching 25-30 day classroom units with a classroom teacher in 
which the teacher and project team design to differentiate instruction. In the first of these classroom 
design experiments, the 20-student 8th grade pre-algebra class consisted of five students who had 
interiorized one level of unit, 13 students who had interiorized two levels of units, and two students 
who had interiorized three levels of units. The focus of the instruction was equivalence in algebraic 
contexts, following the Say It With Symbols unit from the 3rd edition of the Connected Mathematics 
Project (Lappan et al., 2014). 

One of the students who had interiorized only one level of unit, Alyssa, struggled with most of 
the ideas in the unit. For example, in class on Day 7 students were learning to factor expressions 
based on “reversing” the Distributive Property. To factor 6 + 2x Alyssa wrote 3(2 + x). Even after 
two conversations between the second author and Alyssa’s group about what products they were 
aiming for, Alyssa still wrote 3(2 + x) while her groupmates had expressions like 2(3 + x). Later, on 
Day 14 students were solving an equation to find the break-even point in a situation that involved a 
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school group selling boxes of greeting cards. Because Alyssa and another group mate were struggling 
to solve the equation, the second author worked with them on understanding the situation—finding 
the profit when different amounts of boxes were sold: 1, 5, 10, and 20. After seeing that all of these 
amounts resulted in losing money, the group mate was ready to increase the number of boxes to find 
the break-even point, but Alyssa suggested that they try 3 boxes or 15 boxes. In general, keeping 
track of the multiple quantities involved in determining profit (number of boxes, revenue, expenses) 
was challenging for Alyssa. 

During a mid-unit interview, the second author posed to Alyssa a question similar to one worked 
on in class about developing an expression for the amount of money a swimmer raised in a swim-a-
thon, where each sponsor gave the swimmer $10 to start and $2 per lap. There were 15 sponsors. 
Alyssa wrote “10 + 2x + 15,” where x was the number of laps. Her rationale was that the swimmer 
was getting more, so “then you’re adding, is what I thought.” When asked how much money one 
sponsor gave the swimmer, Alyssa suggested “10 × 15 + 2x”, She explained as follows: “the 15 is 
how many sponsors and then they start with $10 so I did 10 times 15 to give the amount of money 
that she’s getting.” She added the 2x because “for every lap they’re giving her more money.” But 
then she was concerned about the $150 because it seemed like too much money from one sponsor. 
So, although she had just identified the 150 as coming from 15 sponsors, she then thought it was 
from just one. 

With questioning support similar to what we have shown in the prior two data excerpts, Alyssa 
developed correct numerical responses for the swimmer swimming 4 laps with 1 sponsor and then 2 
sponsors. However, she appeared to be “in” the activity of reasoning through these specific outcomes 
and did not stand above them in order to abstract a structure that she could represent algebraically. 
The second author expected this phenomenon, to some degree, based on her second-order model of 
students like Alyssa working on algebraic problems (Hackenberg, 2013). So, the second author drew 
from evolving second-order knowledge of Alyssa’s ways of thinking that opened possibilities for 
Alyssa to be mathematically active—i.e., to access her mathematical ways of thinking in the context 
of the problem, and thereby to participate mathematically. In contrast, in math class Alyssa often 
followed along with the responses of group mates and did not seem mathematically active. In other 
words, she often did not seem to access her mathematical ways of thinking. 

Interestingly, like Kianna, Alyssa appeared to find the interview pleasing in that in the school 
days that followed she asked the second author why her math class couldn’t be like the interview 
because what they were doing in math class did not make sense to her, implying that the interview 
was sensible and even enjoyable. So, in the interaction during the interview, Alyssa appeared to 
experience herself as capable of doing mathematics in a way that she did not regularly experience in 
mathematics classrooms. Her comments and demeanor further support the claim that in the interview 
she had access to mathematical activity in a way that was pleasing and unusual for her. 

If the second author had had more time with Alyssa on the swim-a-thon problem (e.g., if the 
problem were a classroom task), she would have continued to work with numerical examples for the 
amount of money earned in swimming 4 laps with different numbers of sponsors to learn whether 
Alyssa could abstract a pattern from her activity that she could represent algebraically. Exploring 
these possibilities with Alyssa would have promoted Alyssa’s achievement in the sense of learning. 
If Alyssa’s classroom tasks were designed similarly to this task, how would her access to 
mathematical activity and her mathematical achievement, or learning, change? We can’t say for sure, 
of course. However, students who tend to feel like mathematics makes sense and who feel that their 
ideas are valued are certainly more likely to participate regularly and actively, in comparison with 
students who generally feel that they don’t understand in mathematics classrooms, which was the 
case for Alyssa. Being active mathematically is certainly necessary for learning and achievement 
more generally, although it does not guarantee any particular learning or achievement.  
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Concluding Remarks 
We have aimed to show how Steffe’s research programs address three aspects of equity: 

positionality and power relations in student-teacher relationships, what counts as mathematics, and 
access and achievement. In doing so, we have seen how intertwined these three aspects are—it is 
hard to draw a boundary between them, because each mutually influences the other. For example, by 
positioning students as the generators of mathematical knowledge, Steffe expands what counts as 
mathematical knowledge: Students’ mathematics counts as mathematics, or rather, the mathematics 
of students, since that is what he creates based on his interactions with students. Steffe advocates that 
this mathematics become the basis for curricular design, which has implications for access in the 
sense of how mathematically active a student might be in their classroom interactions with a teacher, 
and achievement in the sense that this helps to re-define what success might look like in mathematics 
classrooms.  

We do note that, throughout his work, Steffe focuses on cognitive diversity. Over the course of 
his career he has worked with students from diverse backgrounds including different racial, cultural, 
ethnic, gender, and socio-economic backgrounds. Thus the participants in his studies have been 
diverse in these ways, but this has not been the focus of his analyses. We see this observation as an 
opportunity for researchers working within this tradition to continue to expand their analytic lens. We 
see at least three promising possibilities for such an expansion: a) explicit analyses of student-teacher 
interactions that account for how race, culture, ethnicity, gender, or socio-economic status impact the 
mathematics that a teacher-researcher is able to bring forth in interactions with students; b) design or 
teaching experiments that embed the goal of making second order models of students mathematics in 
situations that address a substantial social issue; and c) explicit attempts, based on second order 
models of students’ mathematics, to influence policy discussions.   

To examine what letter b might look like, we highlight one of our current graduate students who 
has used Steffe’s framework as a basis for selecting students into a design experiment in which he 
created mathematical problems that opened the way for students to consider racial bias in jury 
selection (Gatza, in press). Gatza is working to unpack how, for example, different students’ 
understanding of randomness or a limiting process (including differences based on level of units 
coordination) impact how they reason about issues of racial bias, and in turn how their understanding 
of issues of racial bias impact their understanding of randomness or a limiting process (in ways that 
may not strictly be accounted for based on differences in units coordination). We see unpacking these 
complex relationships as one avenue for researchers working in this tradition to deepen their 
commitments to issues of equity.  

Endnotes 
i Steffe (2017) might say that this statement is true for all students because standards and 

curricular materials under-challenge students who have interiorized three levels of units. 
ii In the data excerpts, T stands for teacher/researcher, H for Hal, K for Kianna, and W for 

witness-researcher. Comments enclosed in brackets describe students’ nonverbal action or interaction 
from the teacher/researcher’s perspective. Ellipses (…) indicate a sentence or idea that seems to trail 
off. Four periods (….) denote omitted dialogue. 
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This paper provides a historical overview of the role and impact of elementary mathematics 
specialists as well as current implications and opportunities for the field. Furthermore, suggestions 
are offered for the mathematics education field for ensuring the intersection of practice and 
research. 
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Historical Background 
Over the years, many groups and leaders have seen the need for supporting teachers of 

elementary mathematics. In 1981, the National Council of Teachers of Mathematics (NCTM) Board 
of Directors recommended that state certification agencies offer teaching credentials for elementary 
school teachers that included mathematics specialist endorsements. The intent of this 
recommendation was to prepare elementary teachers to assume the primary responsibility of teaching 
mathematics, typically in the intermediate grades. At that time, certification boards across the 
country did not positively respond to this suggestion by creating mathematics specialist 
endorsements (Dossey, 1984). Since that time, a number of recommendations for the use of 
elementary mathematics specialists (EMSs) have emerged (see Figure 1). 

 
 
 
 

Year Recommendation 
1981 The National Council of Teachers of Mathematics (NCTM) Board of 

Directors recommends that state certification agencies offer teaching 
credentials for elementary school teachers that include mathematics 
specialist endorsements. 

1983 The National Science Board Commission on Precollege Education in 
Mathematics, Science and Technology recommends mathematics 
specialists in grades 4-6 in Educating Americans for the 21st Century. 

1984 An article in The Arithmetic Teacher by John Dossey, entitled Elementary 
School Mathematics Specialists: Where Are They? discusses the 
importance of mathematics specialists in the elementary school.  

1989 The National Research Council in Everybody Counts recommends that 
states alter certification requirements to encourage the use of mathematics 
specialists in elementary schools. 

2000 The Principles and Standards for School Mathematics (NCTM) discusses 
the importance for mathematics teacher-leaders and specialists especially 
in grades 3-5. 

2001 The National Research Council in Adding It Up recommends that 
mathematics specialists should be available in every elementary school. 

2001 The Mathematical Education of Teachers (CBMS) calls for mathematics 
specialists starting at the fifth grade. 
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Figure 1. Recommendations for Mathematics Specialists and Coaches. Adapted from Fennell, F. S. 
(2017). We need elementary mathematics specialists now: A historical perspective and next steps. In 
M. B. McGatha & N. R. Rigelman, (Eds.). Elementary mathematics specialists: Developing, refining, 

and examining programs that support mathematics teaching and learning. Charlotte, NC: 
Information Age Publishing. Reprinted with permission. Copyright IAP. All rights reserved. 

 
Although these recommendations use the term mathematics specialist, they describe models that 

include working with students, teachers, or both. Some of the recommendations distinguish between 
the models by using different titles and others do not. In fact, the title of these teacher leaders varies 
from state to state and even from district to district. In an effort to provide some clarity on these 
titles, my colleague and I (McGatha & Rigelman, 2017) offered a general overview of the work in 

2003 Johnny Lott’s Presidential Message entitled The Time Has Come for Pre-
K-5 Mathematics Specialists advocates for mathematics specialists at the 
elementary level. 

2003 An article in Teaching Children Mathematics by Reys and Fennel, entitled 
Who Should Lead Mathematics Instruction at the Elementary Level? A 
Case for Mathematics Specialists makes the case for mathematics 
specialists using both models. 

2003 NCTM and the National Council for Accreditation of Teacher Education 
(NCATE) release standards for Elementary Mathematics Specialists 
programs. 

2006 Francis (Skip) Fennell’s Presidential Message entitled We Need 
Elementary Mathematics Specialists NOW outlines the need for 
mathematics specialists/leaders. 

2008 The National Mathematics Advisory Panel (NMAP) releases their report 
in which they call for research to be conducted on the use of mathematics 
specialists in elementary schools. 

2009 NCTM Research Brief describes 9 research studies focused on 
mathematics specialists and coaches and calls for additional research. 

2010 Association of Mathematics Teachers Educators (AMTE) releases 
Standards for Elementary Mathematics Specialists which outlines program 
standards for teacher credentialing and degree programs. Revised in 2013. 

2010 AMTE, Association of State Supervisors of Mathematics (ASSM), 
National Council of Supervisors of Mathematics (NCSM), NCTM joint 
position statement recommends that every elementary school should have 
access to an EMS. 

2012 Conference Board of Mathematical Sciences (CBMS) The Mathematical 
Education of Teachers II outlines the increased use of EMSs. 

2012  NCTM/CAEP Standards for Elementary Mathematics Specialists 
(Advanced Preparation) are released. 

2013  Linda Gojak’s Presidential Message entitled, It’s Elementary: Rethinking 
the Role of the Elementary Classroom Teacher, advocates for mathematics 
coaches and specialists at the elementary level. 

2015 Updated NCTM Research Brief describes 24 research studies focused on 
mathematics coaches and calls for additional research. 

2017 AMTE releases the 2nd book in their Professional Development Series, 
Elementary Mathematics Specialists: Developing, Refining, and 
Examining Programs that Support Mathematics Teaching and Learning  
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which these teacher leaders engage and suggested some common language that could be used in 
referring to these positions (see Figure 2).  

 

 

Figure 2. Mathematics Specialists’ Titles. Source: McGatha, M. B. & Rigelman, N. R. (2017). 
Introduction. In M. B. McGatha & N. R. Rigelman (Eds.). Elementary mathematics specialists: 
Developing, refining, and examining programs that support mathematics teaching and learning. 

Charlotte, NC: Information Age Publishing. Reprinted with permission. Copyright IAP. All rights 
reserved. 

 
The titles under EMS and Secondary Mathematics Specialist (SMS) describe the major roles in 

which these teacher leaders engage: (a) mathematics teacher, a professional who teaches mathematics 
to students; (b) mathematics intervention specialist, a professional who works with students in “pull 
out” or “push in” intervention programs; and (c) mathematics coach, a professional who works 
primarily with teachers (McGatha & Rigelman, 2017).  

Regardless of the title used to describe these teacher leaders as indicated in Figures 1 and 2, the 
mathematics education community has recognized a need for mathematics specialists at the 
elementary level for over 35 years. These recommendations stimulated several initiatives in schools 
and districts across the country.  

Practice: What is Happening in the Field? 
In 1988, ExxonMobil launched the K-5 Mathematics Specialist Program in which grants were 

given to 120 districts across the country to train and place mathematics specialists in elementary 
schools. However, the model in this program was actually the mathematics coach model since 
teachers were trained to be “proactive resources for other teachers, administrators, and parents” 
(ExxonMobile, n.d.). This corporate-based program was one of the first large-scale mathematics 
coaching initiatives in the United States. The state of Virginia took advantage of the ExxonMobile 
grants and became an early leader in supporting the work of EMSs. Various stakeholders and 
organizations in that state began work as early as 1992 and that work still continues today 
(http://www.vacms.org). More recently, the Elementary Mathematics Specialists & Teacher Leaders 
project (ems&tl), supported by the Brookhill Institute of Mathematics, was created in 2009 to support 
a core group of EMSs in Maryland. The project studies the impact of mathematics specialists and 
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also hosts a nationally recognized clearinghouse (www.mathspecialists.org). Other large scale 
projects (e.g., Mathematics Coaching Project, Examining Mathematics Coaching Project) have, and 
continue to, support EMSs. This is in addition to the many district-based programs that exist across 
the US. 

Another important aspect of work in the field, focuses on the ongoing support of the three 
national mathematics education professional organizations (AMTE, NCSM, NCTM). Arbaugh, 
Mills, and Briars (2017) outlined this important work and presented a representative list of activities 
from each organization (see Figure 3).  

With the increased attention on EMSs and projects to support their work, AMTE felt it was 
important to address credentialing and degree programs for these mathematics professionals. In 2010, 
AMTE released Standards for Elementary Mathematics Specialists: A Reference for Teacher 
Credentialing and Degree Programs. When the standards were published, there were only nine states 
that had a credential for EMSs while nearly every state has a credential for reading specialists. 
Currently, 20 states have some sort of credential for EMSs. While this growth is impressive in just 
seven years, we need every state to support the credentialing of EMSs. 

Unfortunately, the number of schools or districts that have implemented mathematics coaching or 
specialist programs is unknown because a comprehensive national survey of such programs does not 
exist (National Mathematics Advisory Panel, 2008). However, the number of large-scale projects and 
the work of professional organizations as described above clearly indicate a growing focus on EMSs. 
Since 2000 the number of sessions on mathematics coaching and specialists at the annual 
conferences for AMTE, NCSM, and NCTM has steadily increased. In addition, other anecdotal 
evidence provides insights into the growing popularity of mathematics coaches and specialists. For 
example, a search on the Internet for “mathematics coach” produced 21,900 hits in 2008 and 
26,600,000 in 2017 and “mathematics specialist” produced 17,000 hits in 2008 and 615,000 in 2017. 
While the exact number of schools and districts using mathematics specialists or coaches is 
unknown, it is clear that these programs have become a preferred professional development strategy 
to improve the teaching and learning of mathematics. It is critically important that we research what 
is happening in the field to verify the impact of EMSs. 

Research: What is Happening in the Field? 
When the first NCTM research brief on mathematics specialists was published in 2009, there 

were only nine studies included in the report. Research in this area quickly gained prominence and 
there were 24 research studies included in the 2015 research brief. And, the research continues. The 
research included in this brief overview (2002-2017) has either been published in an educational 
journal, edited book, or presented at a research conference so it has undergone some sort of peer-
review process.  Additional research has been conducted and can be found in evaluation reports, 
program review documents, and dissertations.  
 

 AMTE 
AMTE.net 

NCSM 
MathEdLeadership.org 

NCTM 
NCTM.org 

Peer 
Reviewed 
Journals  

• Mathematics Teacher 
Educator (MTE) (with 
NCTM) 

• NCSM Journal of 
Mathematical 
Leadership 

• Mathematics Teacher 
Educator (MTE) (with 
AMTE) 

• Teaching Children 
Mathematics (TCM)  

• Coaches Corner 
• Reflect and Discuss 
• Journal for Research 
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in Mathematics 
Education (JRME) 

Facilitated 
Learning 
Opportunities  

• Annual Meeting 
• EMS State 

Certification 
Conferences 

• EMS Research 
Conference 

• Webinars 

• Annual Meeting 
• Summer Academies 
• Fall Leadership 
Seminars 
• Webinars 

• Annual Meeting and 
Exposition 

• Regional Conferences 
and Expositions 

• Research Conference 
• PreConference 

workshops  
• Institutes provide a 

deep-dive into grade 
and/or topic-specific 
content  

• Innov8 Conferences 
focus on a particular 
problem of practice 

• Webinars and 
webcasts 

Sample Print 
and 
Electronic 
Resources  

• Standards for 
Elementary 
Mathematics 
Specialists:  A 
reference for Teacher 
Credentialing and 
Degree Programs 

• AMTE Professional 
Book Series 

• Jump Start -Formative 
Assessment (w/NCSM) 

• Connections 
newsletter 

• Contemporary Issues 
in Technology and 
Teacher Education 
(CITE) journal 

• The PRIME 
Leadership 
Framework: 
Principles and 
Indicators for 
Mathematics 
Education Leaders 

• It’s TIME: Themes and 
Imperatives for 
Mathematics 
Education 

• Professional Learning 
Module Resources 

• Illustrating the 
Standards for 
Mathematical Practice 

• Jump Start -Formative 
Assessment (with 
AMTE) 

• NCSM PLC: The 
Digital Mathematics 
Education PLC 

• Coaches Corner 
• Curriculum Materials 

Evaluation Toolkit 
(with NCTM) 

• Principles to Actions:  
Ensuring 
Mathematical Success 
for All 

• Principles to Actions 
Professional 
Development Toolkit 

• The Elementary 
Mathematics 
Specialist’s Handbook 

• A Guide to 
Mathematics 
Coaching:  Processes 
for Increasing Student 
Achievement 

• Professional 
Development Guides 
and More4U that 
provide suggestions 
for using NCTM 
publications in 
professional learning. 

• 5 Practices for 
Orchestrating 
Productive 
Mathematics 
Discussions 
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• Position/White Papers 
on teaching/learning 
topics 

• NCSM Newsletter and 
eNews  

• Online classroom 
resources 

• Research Briefs 
summarize research 
on mathematics 
teaching and learning 

• Position Statements 
address policy issues 
relevant to 
mathematics education 

• Curriculum Materials 
Evaluation Toolkit 
(Joint with NCSM) 

Scholarships 
and Grants 

• EMS Scholarship 
Program 

• Iris Carl Travel 
Grants 

• Mathematics 
Education Trust 
(MET) grants 

Figure 3. Representative AMTE, NCSM, & NCTM Support for Elementary Mathematics 
Specialists. Source: Arbaugh, F., Mills, V. L., Briars, D. J. (2017). The role of professional 

organizations: Advocacy, development and research. In M. McGatha & N. Rigelman (Eds.). 
Elementary mathematics specialists: Developing, refining, and examining programs that support 
mathematics teaching and learning. Charlotte, NC: Information Age Publishing. Reprinted with 

permission. Copyright IAP. All rights reserved. 

Specialists as Mathematics Teachers 
There are currently very few studies on EMSs working as MTs. McGrath and Rust (2002) 

studied the effectiveness of departmentalized mathematics at the elementary level. The study 
compared gain scores in achievement test data from students in self-contained classrooms and 
departmentalized classrooms in grades 5 and 6. For the mathematics subtest of the achievement data, 
there were no significant differences in student achievement data gain scores between 
departmentalized and self-contained classes. However, Gerretson, Bosnick, and Schofield (2008) 
found that using MTs at the elementary school level allowed teachers more time to effectively plan 
lessons and focus their professional development (PD). In addition, teachers in this study reported 
gains in student achievement as a result of using MTs. Nickerson (2010) also noted that achievement 
gains were greater in treatment schools with MTs as compared to control schools without MTs. The 
MTs in this study noted significant changes to students’ persistence in solving mathematics tasks and 
increased interest in mathematics. Nickerson noted changes in MTs’ instructional practice towards an 
inquiry-based approach, but pointed out that this took time. 

More recently, Markworth (2017), examined the various content specialization models of MTs 
involved in team teaching within seven school districts. Similar to the Gerretson, Bosnick, and 
Schofield study (2008), the MTs acknowledged affordances to the content specialization models such 
as having more time to focus on fewer content areas, which allowed for more in-depth study and 
focused PD. The MTs believed this supported them in providing higher quality instruction. MTs also 
pointed out that sharing the responsibility for teaching was beneficial to students. Constraints to the 
model are also described including (a) scheduling issues not present when teaching in a self-
contained class and (b) isolation can occur if there is only one content area teacher per grade level. 
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Specialists as Mathematics Coaches 
The majority of the research on EMSs focuses on MCs. These studies answer three main 

questions: (a) How do coaches interact with teachers? (b) What knowledge do coaches need? and (c) 
What is the impact of mathematics coaching? 

How Do Coaches Interact with Teachers? The answer to this question varies greatly because 
districts and schools are still trying to figure this out. Several studies have focused on this question in 
order to support schools in understanding the most beneficial coaching practices. The research 
focuses on coaching practice in one-on-one settings (one coach and one teacher) and group settings 
(one coach and multiple teachers).  

Studies that reported on coaching in one-on-one settings, in general, have identified similar ways 
of interacting with teachers that fell along a continuum from more-directive to less-directive. While 
each study used different language to describe the ways of interacting, they all focused on similar 
ideas. On the more-directive end of the continuum, the coach shared knowledge by (a) modeling 
lessons, (b) telling teachers what to do, or (c) providing resources for teachers (Becker, 2001; Chavl 
et al. 2010; Polly, 2012). Toward the middle of the continuum, coaching interactions focused on 
collaborative activities such as co-teaching, co-planning, and providing support during teaching 
(Becker, 2001; Chavl et al. 2010; Gibbons & Cobb, 2017; McGatha, 2008; Polly, 2012; Race, Ho, & 
Bower, 2002). At the less-directive end of the continuum, the coach supported teachers in becoming 
reflective practitioners. Activities on this end of the continuum included collecting data from 
observed lessons, providing feedback, and engaging teachers in thoughtful reflections (Becker, 2001; 
Bruce & Ross, 2008; Chavl et al., 2010; Gibbons & Cobb, 2017; Harrison, Higgins, Zollinger, 
Brosnan, & Erchick, 2011; McGatha, 2008; Olson & Barrett, 2004; Olson, 2005; Polly, 2012; Race, 
Ho, & Bower, 2002). While all of these coaching interactions serve useful purposes, activities on the 
less-directive end of the continuum seem to be more powerful in supporting teachers in changing 
their instructional practice.  

A second aspect of coaching practice is coaching in group settings, such as a coach working with 
grade-level teams or professional learning communities. Gibbons and Cobb (2017) identified 
potential group coaching practices from the research on professional development and teacher 
learning that included (a) doing mathematics, (b) analyzing student work, (c) analyzing classroom 
video, and (d) rehearsing high-leverage practices. They point out that these practices can serve as a 
beginning framework, but additional research is needed to understand the usefulness of these 
practices in group settings. Baker, Bailey, Larsen and Galanti (2017) used the potential coaching 
activities identified by Gibbons and Cobb (2017) as a framework to identify high-leverage coaching 
practices across other coaching studies. Baker et al. (2017) suggested that even though the practices 
were not identified in many of the coaching studies, it did not invalidate the list. They agreed with 
Gibbons and Cobb (2017) that more research is needed in this area.  

A few studies have focused on group coaching situations. In these settings, it is important to have 
regularly scheduled meetings in order to build continuity and maintain momentum (Gibbons, 
Garrison, & Cobb, 2011). In addition, it is critical to focus group meetings on issues of practice such 
as student learning and best teaching practices. (Alloway & Jilk, 2010; Obara & Sloan, 2009; 
Gibbons, Garrison, & Cobb, 2011). Beyond regularly scheduled meetings, Gibbons (2017) reported 
on the use of math labs (similar to lesson study) as a coaching structure to support the collective 
learning of a group of teachers.  

What Knowledge Do Coaches Need? The Standards for Elementary Mathematics Specialists 
(AMTE, 2010, 2013) offer detailed descriptions of three broad areas of knowledge necessary for 
mathematics coaches and specialists: (a) content knowledge for teaching mathematics, (b) 
pedagogical content knowledge for teaching mathematics, and (c) leadership knowledge and skills 
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(p. 4). Researchers generally agree that these three areas of knowledge are important. However, the 
research focuses more explicitly on the third category of leadership knowledge and skills. 

Sutton, Burroughs, and Yopp (2011) outlined eight domains of mathematics coaching 
knowledge: “Assessment, Communication, Leadership, Relationships, Student Learning, Teacher 
Development, Teacher Learning, and Teacher Practice” (p. 16). At first glance, many of these 
domains seem aligned with the AMTE categories; however, the detailed descriptions reveal more 
focused attention on supporting teacher learning, which falls into the AMTE category of leadership 
knowledge and skills. Several research studies help to further define specific ways coaches can 
support teachers. For example, it is important for coaches to understand trajectories of teachers’ 
development so they can offer differentiated experiences for teachers (Baldinger, 2014; Gibbons & 
Cobb, 2016; Sutton, Burroughs & Yopp, 2011) and create long-term goals for teachers’ development 
(Gibbons & Cobb, 2016). Coaches should have a deep knowledge of instructional practice and theory 
so they can support teachers in (a) assessing their own practice (Gibbons & Cobb, 2016) and (b) 
making connections between theory and practice (Alloway & Jilk, 2010; Sutton, Burroughs, & Yopp, 
2011). Campbell and Malkus (2013) reiterated the importance of adequate preparation for coaches to 
make sure they possess the knowledge necessary to be effective coaches.  

What Is the Impact of Mathematics Coaching? Two major areas are discussed in the research 
concerning the impact of mathematics coaching: improving teacher instructional practice and 
improving student achievement. Teacher instructional practice is defined broadly to focus on best 
practices in teaching as described in NCTM documents (1991, 2007). Of course, each study reports 
on particular aspects of teacher instructional practice.  

Across all the instructional practice studies, researchers saw improvements (in varying degrees) 
in teacher instructional practice including increases in teacher questioning (Polly, 2012; Race, Ho, & 
Bower, 2002); student engagement (Balfanz, MacIver, & Byrnes, 2006; Race, Ho, & Bower, 2002); 
and teaching for understanding (Becker & Pence, 2003; Bruce & Ross, 2008; Burroughs, E., Yopp, 
D., Sutton, J., & Greenwood, M, 2017; Neuberger, 2012). Increases were also noted in particular 
instructional formats such as cooperative learning (Balfanz, MacIver, & Byrnes, 2006; Becker & 
Pence, 2003); classroom discourse (Balfanz, MacIver, & Byrnes, 2006; Neuberger, 2012; Race, Ho, 
& Bower, 2002); and technology (Becker & Pence, 2003). Two studies in this category differed from 
the others in that their findings did not fall into the categories described above but were more focused 
on specific instructional practices. Rudd, Lambert, Satterwhite, and Smith (2009) focused on one 
particular instructional practice, teacher’s use of math-mediated language in their lessons. After the 
professional development and coaching sessions, researchers saw an increase in teacher’s use of 
math-mediated language. Krupa and Confrey (2010) noted increases in (a) effective use of class 
time, (b) accurate delivery of content, and (c) frequent use of formative assessment as a result of 
teachers working with coaches. 

Seven studies looked at the impact of mathematics coaching on student achievement. In varying 
degrees and with a variety of methods, all the studies reported increases in student achievement. At 
the elementary and middle school levels, studies show that coaching positively impacted student 
achievement on state-level assessments during the first and second years of a coaching program 
(Conaim, 2010; Zolligner, Brosnan, Erchick, & Bao, 2010). Additional studies at the elementary and 
middle school levels focused on student achievement impact after four years of a coaching program 
and showed even stronger results (Balfanz, MacIver, & Byrnes, 2006; Brosnan & Erchick, 2010; 
Campbell, Griffin, & Malkus, 2017; Campbell & Malkus, 2011). Findings from these longer studies 
indicate that, in order to significantly impact student achievement, coaches needed both experience 
and sufficient time to interact with teachers. There is only one study conducted at the high school 
level (Alloway & Jilk, 2010) and it was not specifically designed to study student achievement; 
however, its authors noted that pass rates in algebra and geometry classes increased from 40% to 
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70% after the implementation of coaching. As we move forward in the field, it is imperative to 
ensure the intersection of practice and research. 

Ensuring the Intersection of Practice and Research 
Probably the most important way to ensure the intersection of EMS practice and research is to 

collaborate, collaborate, collaborate! We must emphasize the importance of ongoing research to 
identify best practices in the field that are making a difference in teacher practice and student 
achievement. We really can’t describe research-based practices in the field quite yet. We need more 
research! 

I propose four suggestions to support the field in ensuring the intersection of EMS practice and 
research: 

1. Identify districts using EMSs. As noted above, the number of districts using EMSs is 
unknown because a comprehensive national survey of such programs does not exist. Such a 
survey needs to happen! Once we know where programs exist, we can encourage districts to 
share their successes and challenges to support other EMSs through conference presentations 
and articles in practitioner journals. In addition, we can support districts in conducting 
research on their EMS programs to inform the field.   

2. Provide adequate preparation and ongoing support for EMSs. As noted throughout this 
paper, there are many initiatives focused on supporting EMSs in the field. These efforts need 
to continue and new initiatives need to emerge. There is an abundance of anecdotal evidence 
of districts utilizing EMSs without providing them any professional development or ongoing 
support. Research has shown that adequate preparation and ongoing professional 
development can positively impact student achievement (Campbell & Malkus, 2013). 

3. Increase the number of states with EMS certifications/endorsements. As noted previously, 
there are currently only 20 states that offer an EMS certification/endorsement. As the number 
of states offering an EMS credential increases, we will see more EMSs in the field supporting 
the teaching and learning of mathematics. Receiving a credential should require some level of 
preparation which aligns with suggestion #2. And, of course, more well-prepared EMSs in 
the field will increase the research possibilities. 

4. Establish working groups focused on EMS research. There are relatively few researchers 
focused on EMSs. They need opportunities to collaborate with other like-minded researchers 
to reflect on their practice and explore future research opportunities. A few such groups have 
emerged but we need more attention on focusing the EMS research agenda. Relatedly, two 
EMS research conferences have occurred recently (AMTE in 2015 and the Virginia 
Mathematics Specialist Initiative in 2016). Such conferences are another opportunity for 
researchers to share their work and form collaborations. Because the audience is relatively 
small, these conferences are not that expensive and funding is available to support these 
efforts. The research that emerges from these collaborations will provide insights for EMSs 
in the field. 

It is exciting to be involved in an area of practice and research that is still emerging and growing! 
We have opportunities to influence the field in multiple ways. We also still have many challenges 
facing us. As we continue to find ways to ensure the intersection of practice and research, we will 
move the field forward in positive ways. 
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Endnotes 
i Parts of this manuscript are adapted from The Impact of Mathematics Coaching on Students and 

Teachers published by NCTM (2015), http://www.nctm.org/Research-and-Advocacy/Research-
Brief-and-Clips/Impact-of-Mathematics-Coaching-on-Teachers-and-Students/. 
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Mathematics teacher educators face a challenge of preparing teachers to use technology that is 
rapidly changing and easily available. Teachers have access to thousands of digital tools to use with 
students and need guidance about how to critically choose and use tools to support students’ 
mathematics learning. Research provides guidance to teachers about what features to look for in a 
technology tool and suggestions are offered about how mathematics teacher educators and 
researchers can support teachers in using technology to teach mathematics.   

Keywords: Technology, Teacher Education-Preservice, Teacher Education-Inservice/Professional 
Development 

Introduction 
Technology is an essential component of today’s workplace and a ubiquitous part of our society. 

82% of high school students and 68% of middle school students have access to smart phones. 75% of 
these students would like to use their devices to support learning (Speak Up, 2014). Students report 
that using technology better engages them in learning. Parents state that the use of technology will 
better prepare their children for the workforce of tomorrow. While researchers have evidence to show 
the positive impacts the use of technology can have in classrooms, and while there are increasing 
numbers of freely accessible digital tools available to use, teachers’ incorporation of technology has 
been slow.  

We know technology, like any tool, must be selected and used carefully. Mathematics teachers 
have access to more open-access digital resources than ever before. While ten or twenty years ago, 
teachers were creators of activities, today, teachers search, find, select, and often modify activities 
they find using Google, Pinterest, or the Blogosphere. In addition, many teachers have access to 
digital resources that accompany their curricula. With so many activities easily available, many 
teachers have become curators rather than creators of digital resources. As teachers gather materials 
together to present to students, they need guidance to assure that what they have selected will meet 
the needs of their students and will achieve their learning goals. Teacher educators face a tremendous 
challenge in preparing teachers to use digital technology that is rapidly changing to support students’ 
mathematics learning. For example, the resources available today may be different tomorrow. 
Research can provide guidance and advice to assist teachers in using technology in the mathematics 
classroom.  

In this paper, a framework developed to guide the design of a Teaching Mathematics with 
Technology massive open online course for educators (MOOC-Ed) will be shared along with 
questions that teachers can consider when making decisions about using technology to teach 
mathematics. 

Guiding Framework 

The Didactic Triangle.  
A framework was created to guide the development of a MOOC to support teachers in using 

technology to teach mathematics. The foundation of this framework is the didactic triangle. The 
didactic triangle is a representation that has been used by several researchers (e.g., Brousseau, 1997; 



Plenary Papers 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

81 

Freudenthal, 1991; Steinbring, 2005) to describe interactions that occur among a teacher, his or her 
students, and the content that is being taught. These interactions can be described in terms of 
pedagogical activities the teacher uses to engage students in learning content − in this case, 
mathematics. It is important to note that mathematics refers to mathematical topics like algebra, 
geometry, measurement, statistics, probability, and number, and also the mathematical processes 
students use when engaging with mathematics. These mathematical processes and practices include 
using representations, making connections, communicating reasoning, creating and critiquing 
arguments, attending to precision, solving problems, and mathematical modeling (NCTM, 2000, 
2014; National Governors Association Center for Best Practices, Council of Chief State School 
Officers, 2010) 

Within the didactic triangle many interactions take place. For the purpose of designing our 
MOOC, we focus on those interactions that are planned and used by the teacher. These include (but 
are not limited to) pedagogical activities related to 1) the selection and implementation of 
mathematical tasks, 2) questions teachers pose to push student thinking or probe their understanding, 
3) the facilitation of mathematical discussions, and 4) assessment of student learning. We depict 
these four pedagogical activities at the center of our didactic triangle (See Figure 1).  

 

Figure 1. A sample of activities that take place among students, teachers, and mathematics.  
 
Although not explicitly mentioned, we acknowledge that there are many factors that influence 

classroom interactions such as classroom culture, norms, attitudes, and beliefs. These all influence 
the enactment of the pedagogical activities we have placed at the center of the triangle. We depict the 
addition of technology to the classroom by adding a vertex to expand the didactic triangle and create 
the didactic tetrahedron. 

The Didactic Tetrahedron 
To make explicit how one considers the role of technology among interactions with students, a 

teacher, and mathematics, the didactic triangle was extended by Tall (1986), and more recently by 
Olive et al. (2010) and Ruthven (2012). We can depict this influence by expanding our didactic 
triangle to create a didactic tetrahedron with technology as the fourth vertex (See Figure 2). Olive et 
al. state "the introduction of technology into the didactic situation could have a transforming effect 
on the didactical situation that is better represented by a didactic tetrahedron, the four vertices 
indicating interactions among Teacher, Student and Mathematical Knowledge, mediated by 
Technology" (p. 168). 

It is important to define what we mean by technology. For some, technology is any object or tool 
that allows a user to accomplish a task. Others restrict the use of the term technology to refer to 
electronic or digital technology. Some researchers make distinctions between artifacts, tools, and 
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instruments. According to Monaghan “an artefact is a material object, usually something that is made 
by humans for a specific purpose, e.g. a pencil. An artefact becomes a tool when it is used by an 
agent, usually a person, to do something” (Monaghan, Trouche, & Borwein, 2016, p.6). On the other 
hand, Trouche discusses the process that is involved in an artefact becoming an instrument. He states, 
“when an artefact has been appropriated by a user, I will name instrument the mixed entity composed 
of the artefact and the associated knowledge… a tool is a thing somewhere on the way from artefact 
to instrument” (ibid, p.8). In this paper technology will be used synonymously with tools as defined 
by Monaghan.  

 

Figure 2. The didactic tetrahedron which includes technology. 
 

When adding technology to mathematical pedagogical activities it is important for teachers to 
think about how the use of technology influences representations of mathematics and how the use of 
technology influences pedagogy. 

The Influence of Technology on Representations of Mathematics  
Mathematics is abstract and it is only through its representations to which we have access to it. 

Technology offers new and different representations for students and teachers to interact with and 
use. For teachers, we emphasize that when evaluating technology there are three important factors to 
consider (See Figure 3). In particular, it is important to determine if the representations technology 
offers, determine whether it has mathematical fidelity, and consider if technology will be used with 
students as an amplifier or as a reorganizer (Pea, 1985, 1987). 

 
Figure 3. Three factors for teachers to consider when evaluating technology. 
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Mathematical Fidelity. When choosing technology to use in the classroom, teachers need to 
make sure that what is represented in the tools are accurate representations of the mathematics. Dick 
refers to this as, “mathematical fidelity” (Zbiek, Heid, Blume, & Dick, 2007). To illustrate, consider 
the sketch shown below that was created to show how to compute the slope of a line. 

    
 

 

 Figure 4. An example of a technology-based activity without fidelity. 
 
Notice that the length of segment BC and segment AC are used to calculate the ratio of the “rise” 

to the “run.” Segment lengths are always positive and this becomes problematic when the line has 
negative slope. In this case, the technology calculated the ratio, but cannot account for the negative 
slope – thus, the calculated ratio is not mathematically correct. The sketch is not faithful to the 
mathematics and thus lacks mathematical fidelity. It is important for teachers to select tools to use 
with students that have mathematical fidelity. In addition, teachers should also consider how students 
will interact with the technology. 

Amplifier/Reorganizer. Pea (1985, 1987) used the metaphors of amplifier and reorganizer to 
describe how technology might be used.  As an amplifier, technology performs many of the same 
actions that could be completed by hand, just more precisely, quickly, and efficiently. The question 
that is answered using by-hand methods or using technology is relatively unchanged. For example, 
students might be asked to create a table of values for the function with rule f(x) = 3x+5. This could 
be produced by hand or by using a spreadsheet.  The results would be generated more quickly and 
accurately with the spreadsheet. As a reorganizer, technology changes the way students think about a 
question or mathematical idea. For example, a student may be provided with the graph of the 
function with rule f(x) = 3x+5 that is linked with a table of values and sliders that dynamically change 
the values of the slope and y-intercept parameters. By allowing the technology to quickly produce the 
graph and table, questions can be posed to shift a student’s focus from producing the representations 
to conjecturing and reasoning about how changes in the parameters are related to changes in the 
graph and table.  

When technology is used as a reorganizer, questions can be posed that align with and take 
advantage of the representations and actions afforded by the tools. Many technology tools that 
support mathematics learning provide multiple representations of mathematical objects (e.g., 
numeric, graphic, symbolic, pictorial) and allow the user to interact with the technology to 
dynamically adjust one representation and see the changes in other representations. This dynamic 
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linking can influence how students reason with and make connections among different 
representations of mathematics (Kaput, 1987).  

Representations. The use of multiple representations to support students’ mathematical thinking 
has long been recognized as an important pedagogical activity (e.g., Kaput, 1992; NCTM 2000, 
2014).  Research suggests that the use of multiple representations can assist students in developing 
deeper understandings of mathematics and become more flexible problem solvers (Ainsworth, 1999). 
NCTM (2014) claims, “Effective teaching of mathematics engages students in making connections 
among mathematical representations to deepen understanding of mathematics concepts and 
procedures and as tools for problem solving” (p. 24). When one thinks about representations of 
mathematics, symbols, graphs, and tables often come to mind. Mathematical representations can also 
include pictures, diagrams, contexts, verbal descriptions, and physical objects. There are many ways 
to represent mathematical ideas.  

Technology tools provide students with easy access to representations and these technology-
based representations are often linked. That is, a change in one representation results in a change in 
other representations. For example, changing the function rule f(x)=2x+1 to f(x)=3x+1 can result in a 
corresponding change in its graph. From these interactions, students can better understand 
slope.  However, it is important that the production of multiple representations is not the sole focus of 
an activity. Rather, multiple representations can be the centerpiece of productive mathematics 
discussions and making connections within and among different representations an important 
cognitive activity (NCTM, 2014). 

With these important features of technology described, we created questions that teachers might 
consider when selecting tools to use in the mathematics classroom that are shown in Figure 5.   

 
Technology-
Mathematics 

Mathematical Fidelity. Is the technology tool a faithful and true representation of 
the mathematics students are to learn? (Dick, 2008) 
 
Amplifier/Reorganizer. Does the technology allow the teacher and/or student to do 
the same work more effectively, efficiently, and quickly (amplifier)? Does the 
technology change the way the student and/or teacher thinks about mathematical 
ideas (reorganizer)? (Pea, 1985) 
 
Representations. How does the technology represent the mathematics? Does it 
provide linked representations for students to use? (Goldin & Kaput, 1996) 

Figure 5. Questions teachers may consider when evaluating interactions between mathematics and 
technology. 

The Influence of Technology on Pedagogy 
Just as technology can influence the mathematical representations students interact with, it can 

also impact pedagogy. It is important for the teacher to be aware of the opportunities technology 
allows and consider how it influences the four pedagogical activities involved in 1) designing tasks, 
2) posing questions, 3) facilitating discourse, and 4) assessing student learning.  

Researchers have described tasks in terms of their cognitive demand (Henningsen & Stein, 1997) 
and mathematical richness. Technology can have an influence on both the richness of a task and its 
cognitive demand. A mathematically-rich task in a paper-and-pencil environment may be a 
completely different activity when students have access to technology tools. Consider the task of 
constructing an equilateral triangle. Doing so on paper with compass and straight-edge requires 
different thinking than doing so with a dynamic geometry program. Similarly solving a question such 
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as the following requires different thinking if solved using paper and pencil or solved using a 
dynamic geometry program. 

 

Figure 6. A technology inactive question from  
https://parcc.pearson.com/resources/Practice-Tests/TBAD/Geo/PC1105806_GeoTB_PT.pdf 

 
If the question is answered using paper and pencil, a student may plot f(x)=8x+5. They may then 

plot the point (0,3). They may determine the distance between (0,5) and (0,3) to be two and then 
multiply this distance by three to determine that (0,9) is the image of (0,5) under the dilation. This 
may be repeated for another point to find line r or a student may recall that the slope is invariant 
under dilation. Using a dynamic geometry program, students need to enact technological procedures, 
plotting a line, plotting a point, and performing dilation. The thinking needed is different given the 
different tools students have available for them to use. Thus, when teachers have access to 
technology, they need to think carefully about the tasks and questions they will pose and the thinking 
required of students when technology is used. Dick and Hollebrands (2011) stress the importance of 
questions in the context of technology by stating: “The value of technology to the teacher lies not so 
much in the answers technology provides but rather in the questions it affords. Indeed, “what 
questions could I ask that I could not ask before?” is the ruler by which we should judge what 
technology buys us as teachers of mathematics” (p. xvi).  

Technology also allows teachers new tools to use when leading mathematical discussions. 
Collaborative tools such as Google Docs, Sheets, or Slides allow multiple students to share and 
discuss their work with the whole class. Mathematics specific technology tools like the TI-Navigator 
and Desmos allow the teacher to monitor and share student work. Orchestrating discussions using 
these types of tools requires teachers to focus on their mathematical goals and consider ways that 
they can reach them by selecting and sequencing students’ work to assist them in making connections 
(Smith & Stein, 2011).  

Finally, assessment in mathematics classrooms can look very different when teachers are using 
technology. Game-like assessment tools like Kahoot! Quizlet and Quizzies can be motivating for 
students and can provide feedback to teachers about what students know. Diagnostic assessments tied 
to learning trajectories can provide teachers with information about what students know or do not 
know and make informed decisions about what to do next to advance students’ learning. 

We present these as questions a teacher may consider when using technology in the mathematics 
classroom (See Figure 7). 

In addition to considering how technology can influence mathematics and pedagogy there are 
ways in which technology interacts with the teachers and students that we highlight in our MOOC. 
These are described in the following sections.  
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Technology -Teacher Edge. Technology is used by teachers and students in the classroom in a 
variety of ways. Walk into any classroom and you may find teachers using a document camera, 
interactive white board, and a laptop equipped with a wide array of software applications. Dick and 
Hollebrands (2011) use the constructs of conveyance and mathematical action technology to assist 
teachers in making distinctions among the different technology they have available to use in the 
classroom.  

Type of Technology. Conveyance technologies are used to “transmit and/or receive information” 
and are not math specific. These include presentation technology (PowerPoint, document cameras, 
interactive boards, projectors), communication technology (social media), collaboration technology 
(Google Docs), and assessment technology (clickers, educational games). Even though these 
technologies are not mathematics specific they can still have a significant impact on a mathematics 
classroom by providing opportunities for students to consider and critique each other’s solutions and 
justifications.  
 
Pedagogical 
Activities 

Questions to Consider  

Designing Tasks What is the cognitive demand of this technology-based task? (Stein & Smith, 
1998) 
How will the student interact with the task and technology? 
How does technology enhance student learning?  
What learning goals would be best served by this task? 
How might I prepare students to engage productively in this task? 

Questions What new questions does this technology allow me to ask?  
In what ways can I ask questions that will advance student thinking and probe 
what students are learning? 
What opportunities does the technology allow for students to pose their own 
mathematical questions?  
How might a structure my classes to help students feel comfortable generating 
and posing their own questions and responding to questions that other students 
generate? 

Discourse Does the technology allow for different solutions and/or different solution 
strategies?  
What would make a discussion of technology-based tasks productive? 
How can I use technology to facilitate a productive mathematics discussion?  

Assessment What type of feedback does the technology provide to the student?  
How can I build self-assessment into the tasks? 
How can I leverage the technology to determine what students are learning?  
How can I use the technology to assess what the students have learned? 

Figure 7. Questions a teacher can consider when examining the effects of technology on pedagogy. 
 
Mathematical action technologies are tools, software, and applets that can “perform mathematical 

tasks and/or respond to the user’s actions in mathematically defined ways” (Dick & Hollebrands, 
2011, p. xii).  These technologies include: graphing calculators, computer algebra systems, and 
dynamic mathematical environments (GeoGebra, the Geometer’s Sketchpad, Fathom, TinkerPlots). 
Often these technologies are used to perform computations, graph functions, plot data, and construct 
geometric figures. However, mathematical action technologies can also be used to allow students 
access to approaches and tasks that would not be possible without technology. Here technology can 
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be used to develop students’ mathematical understanding and support students as they explore 
patterns. Mathematical action technologies can also offer opportunities for teachers to pose questions 
and tasks that could not be asked in non-technological environment (Zbiek, Heid, Blume, & Dick, 
2007). For example, in a dynamic geometry environment, a teacher can ask students to explore how a 
particular quadrilateral behaves when one of its vertices is dragged. This question is one that cannot 
be posed in a paper-pencil environment. Guiding questions a teacher can consider when selecting and 
evaluating technology tools are included in Figure 8.  

 
Technology 
Consideration 

Issues to Consider and Questions to Pose 

Technology-
Teacher 

Conveyance/Mathematical Action Technology. Will the technology be used for 
the teacher to convey information to students (e.g., power point, internet)? Will 
the technology be used to allow students to perform mathematical actions? (Dick 
& Hollebrands, 2011) 
 
Is the technology readily available for the teacher? Is the learning curve minimal 
for the teacher?  

Figure 8. Questions a teacher can consider when selecting technology tools.  
 

Technology-Student Edge. When making a decision about whether to use a particular technology 
tool, thinking about how students interact with the technology is especially important (See Figure 9).  

 

 

Figure 9. The edges of the tetrahedron.  
 
Mathematical action technology often include mathematical representations students can directly 

manipulate. Direct manipulation allows users to use a mouse or their finger to interact directly with 
the representation of the mathematical object. The way that the object moves is continuous. There is 
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no lag between the user’s own movement and that of the object in the environment.  The way that the 
objects respond is determined by mathematical rules. Thus, through direct interactions the student 
can observe and infer mathematical properties and theorems. This is one important feature that makes 
technology tools different from non-technology tools such as base-10 blocks or a ruler. By 
interacting with technology, students can learn mathematical rules and properties. Conveyance 
technology tools, on the other hand, typically do not offer mathematics representations and can 
sometimes be challenging for students to enter mathematics notation. However, these conveyance 
technologies can be designed by the teacher to provide students with feedback that they can use to 
gauge their learning and mathematical understanding. Some questions teachers may want to consider 
when thinking about students’ interactions with technology are included in Figure 10. 

 
Technology-
Student 

Interaction. How does the student interact with the technology? Is the technology 
available? Is the technology learning curve minimal or steep? 
 
Feedback. What types of feedback does the technology provide to students when 
they are interacting with it? 

Figure 10. Questions teachers can consider related to the ways students interact with technology and 
the feedback it provides. 

Conclusion 
While technology is rapidly changing and evolving, there are general questions teachers can 

contemplate when making decisions about whether to select and use a particular technology tool. 
Teachers should consider whether the technology they are selecting to use is a conveyance or 
mathematical action technology. They should evaluate the types of representations the technology 
offers and determine whether those representations are faithful to the mathematics students are 
learning. They should also assess whether the technology is used to amplify or reorganize students’ 
thinking. How technology effects the design of tasks, questions that can be posed, facilitation of 
discourse, and assessment of student learning should also be considered. Finally the ways students 
can interact with the technology and the feedback it provides to support students’ mathematics 
learning should be taken into consideration.  
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BARRIERS, LESSONS AND FOCUS ON TEACHERS 
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In this paper, drawing from data from several experiences and studies in which I have been involved 
in Mexico, I reflect on the constraints and inertia of classroom cultures, and the barriers to 
successful, meaningful and transformative technology integration in mathematics classroom. I focus 
on teachers as key players for this integration, calling for more teacher involvement in both 
professional development, and as co-constructors and collaborators in the design of technological 
implementations and resources. 

Keywords: Technology, Teacher Education-In Service/Professional Development 

Classroom Cultures, Teachers and Technologies 
Throughout his career, Seymour Papert, a pioneer advocate of digital technologies for changing 

learning, criticized the way in which school systems constrain knowledge and learning. At the ICMI 
Study 17 study conference in 2006, in the final talk of his life (Papert, 2006), Papert denounced that 
educational systems ration every aspect by dividing learning into school grades, “cutting up the 
knowledge into the subjects” and ordering it; with schools being dictated by graphocentrism—i.e. by 
paper-and-pencil technology—and new technologies being used only to implement what was there 
before the newer technologies. He ridiculed that situation by saying: “We’d never have had 
airplanes...if we had constrained the new transportation to follow the schedules of the sailboats and 
the horse-drawn carriages; but that’s what we are doing in our schools” (Papert, 2006).   

Before delving into the issues of the constraints—or what I call the inertia—of educational 
systems, let us look at some evidence on how digital technologies and tools (DT) have been used and 
are being used in schools, using data from several studies carried out in Mexico over a decade, and 
from the research literature. 

Uses of Digital Technologies in Classrooms in Mexico and Elsewhere  
In a survey carried out in Latin-America in 2006 and reported in Julie et al. (2010), it was found 

that the most predominantly-used software in mathematics classrooms were software for word 
processing (Word, LaTex, PDF) and presentation (PowerPoint) – not mathematical tools, but 
communication ones. Other studies in Mexico at middle-school (Rodríguez-Vidal & Sacristán, 2011) 
and high-school levels (Miranda & Sacristán, 2012, 2016) showed similar results, with few teachers 
using technology in classrooms, and of those who did, for simply presenting information, projecting 
videos, plotting graphs or checking results produced in paper-and-pencil, with very rare use of 
technology by students. In those studies, the access to technology in classrooms was scarce.  

Despite technology becoming more accessible in some schools, this year (2017), Luc Trouche 
and I visited a high-school in Mexico where we again observed a teacher using technology in a 
similar way: to simply project static function graphs using GeoGebra, completely omitting any of the 
dynamic and experimental possibilities (and main purposes) of such a “Dynamic” Geometry 
environments (DGEs). (In Sacristán, 2011, we also reported on a case where the teacher failed to 
transmit the dynamic function of a DGE, and students simply used the software for drawing static 
figures.) Furthermore, the 2017 teacher did not encourage—in fact, discouraged—students from 
using technological tools in the classroom (interestingly, however, a couple of students ignored the 
teacher’s recommendations, and did use a tablet to reproduce some of the functions demonstrated by 
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the teacher).  
Although in more developed countries, technological tools in the classrooms are becoming 

increasingly ubiquitous, the use of DT is not so different.  For example, in the UK, a report edited by 
Clark-Wilson, Oldknow and Sutherland (2011), cites other reports that conclude that, despite 
considerable investment in DT in schools, these are underused within in secondary mathematics 
classrooms and, if used, their potential is generally underexploited. The report also points to 
classroom evidence suggesting that the use of DT has had emphasis  

on teacher-led use, using mainly presentational software such as PowerPoint and interactive 
whiteboard software. Revision software and online content services are also used, with the focus 
being on the computer teaching mathematics alongside practice exercises. Where digital 
mathematical tools such as graphing calculators, dynamic geometry, and spreadsheets are used, 
these are conceived primarily as presentational, visual and computational aids rather than as 
instruments to facilitate mathematical thinking and reasoning. (Clark-Wilson, Oldknow and 
Sutherland, 2011, p. 19) 

On his part, Trouche (2016), while pointing to a lack of research at a large-scale for analyzing the 
real integration of technology in mathematics classrooms, reports that, in general, integration remains 
local with a huge difference between schools and teachers. It is also mostly teacher-centered (at least 
in the cases of England and France), with sometimes teachers showing students the use of the 
technology, or being unable to analyze the effects of the technology being used. Monaghan 
hypothesizes that, in the case of England, the increased teacher-centered use of DT in class in 
classrooms could be due to the increase of interactive whiteboards (IWBs) with “a very large 
proportion of the use of IWBs is teacher use of IWBs with PowerPoint (rather than interactive 
mathematics software) and the result is ‘teacher demonstration,’” perhaps pointing to students “not 
being granted wide access to tools to explore mathematical relationships” (Monaghan, Trouche & 
Borwein, 2016, p. 388). I argue that teacher demonstration is due also to the inertia of old school 
practices and cultures that are teacher-centered, particularly in countries where this model is still 
prevalent, such as Mexico. 

I summarized these observed predominant uses in classrooms of technology in Sacristán (2011; 
in press), as being for: 

• Presentation or demonstration (e.g. PowerPoint, projecting graphs, videos, etc.) 
• Easier visualization  
• Easier, faster computation and accuracy 
• Saving time (time optimization) 
• Checking paper-and-pencil task results 
• Information  
• Student’s revision, exercises or “drill and practice” through interactive, or online 

resources (such as pointed by Clark-Wilson, Oldknow & Sutherland, 2011, above) 
• Communication (e.g. using email or Internet for sending homework) 

With many times: 

• Little innovation (doing, as Papert criticized, the same or similar tasks as with paper-and-
pencil) 

• A lack a sense or understanding of didactical and mathematical purposes for the use of 
digital tools in their classrooms; leading to technocentrism (showing or teaching about 
the tool itself—see Brennan, 2015—rather than using the tool for mathematical purposes)  
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• Ignoring the purpose or potential of the tools (e.g. no dragging or dynamism using DGE, 
as narrated above), indicating, again, the influence of graphocentrism  

• Unlinked to other resources (Monaghan & Trouche, 2017) 

Thus, when we look at the evidence of how digital technologies are used in schools, we see that 
in fact they are used in the direction that Papert (2006) claimed: to teach and serve the old (e.g. serve 
existing curricula), with much of their potential ignored.  

On the other hand, the research literature is full of successful innovative practices with 
technology at experimental scale. But many authors, and at different education levels (see also, 
Clark-Wilson, Oldknow & Sutherland, 2011; Artigue, 2012), point to how  

despite over 20 years of research and curriculum development concerning the use of technology 
in mathematics classrooms, there has been relatively little impact on students’ experiences of 
learning mathematics in the transformative way that was initially anticipated. (Clark-Wilson, 
Robutti & Sinclair, 2014, p.1)  

In Sacristán (in press), I reflected on the gap between research results and what happens in 
classroom practices. Clark-Wilson, Robutti & Sinclair (2014) indicate that a response to this has been 
increasing research on the role of the teacher; and that will be the theme of the last section of this 
paper. But I will focus now on the reasons, such as different types of obstacles and barriers, impeding 
more meaningful technology integration in schools and practice. 

Difficulties and Challenges for the Integration of DT for Math Learning in Classrooms  
Between 1997 and 2006, a government-sponsored national program in Mexico called EMAT 

(Teaching Mathematics with Technology) was put into practice for gradual implementation of 
expressive computational tools, together with a pedagogical model, in the middle-school 
mathematics classrooms (see Sacristán & Rojano, 2009). We learned a lot from that program in terms 
of issues that emerge when attempting large-scale massive implementation of technologies in schools 
(even when carefully designed and planned through the expertise of an international team of 
mathematics education researchers, as was EMAT). Difficulties and obstacles were encountered at 
different levels: (a) the teacher, student and classroom level; (b) the school level; (c) the local 
authorities level; and (d) the national government level; and of different kinds related to:  

• changes in classrooms practices and cultures: both teachers and students were 
unaccustomed to working in a more exploratory, student-centered, setting, and teachers 
had difficulties in adapting to the proposed pedagogical model 

• integration of technological tasks with the established curriculum 
• time issues: time (or lack of) for preparing the technology-based tasks, and for their 

implementation 
• (teachers’) content knowledge of mathematics: the use of technology made teachers 

aware of their deficiencies of their mathematical content knowledge, leading to two types 
of consequences: (i) some teachers did not want to continue working with technology; or 
(ii) in other cases, it motivated and helped teachers improve their content knowledge. 

• professional development and support in terms of the tools – which was usually 
insufficient and without continuity 

• teachers and students’ attitudes, beliefs and confidence with regards to the use of the 
technological tools and programs: these have been shown to have an impact on students’ 
learning with the tools (Sacristán, 2005). As we put it in Sacristán and Rojano (2009, 
p.213): “Putting it bluntly, ‘good teachers’ achieve good results: they are able to take 
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advantage of the technological tools and their students benefit from those experiences; 
but less experienced, poorly trained teachers, or simply teachers who dislike the 
technological tools, do not do so well.”  

• technical difficulties 
• administrative and bureaucratic issues, policies and political issues, including lack of 

communication between the different levels of authorities. It is also worth noting that the 
program was discontinued in 2006 due simply to a change in government (change in 
policy). It did survive at some local levels, mainly in places where there would be some 
form of local support, such as a self-appointed regional coordinator. 

In other studies (e.g. Sacristán, Sandoval & Gil, 2011; Miranda & Sacristán, 2016), there were 
similar findings pointing to reasons that impede the integration by teachers of DT. Among these: 
difficulties in accepting changes (even when they recognize possible benefits of DT) with many of 
them continuing doing the same as before; fears (e.g. of losing control of the class, of showing 
mathematical and technical deficiencies); difficulties in understanding how to integrate technologies 
in terms of the mathematical aims; lack of adequate infrastructure; and lack of time.   

These difficulties are similar to those mentioned in the BECTA (2004) review on barriers to the 
uptake of information and communication technologies (ICT) by teachers. That report categorizes 
barriers (e.g. lack of access to resources—including lack of hardware, inappropriate organization, 
poor quality software—lack of time, lack of effective training, technical problems, lack of 
confidence, resistance to change and negative attitudes, no perception of benefits) into school-level 
barriers and teacher-level barriers, which can be external and internal barriers. Likewise, Clark-
Wilson, Oldknow and Sutherland (2011, p. 20), cite a report from the UK’s National Centre for 
Excellence in Teaching Mathematics where mathematics teachers‘ concerns about the use of DT are 
listed as related to:  

• a lack of confidence with digital technologies; 
• fears about resolving problems with the technology; 
• fears about knowing less than their learners; 
• access to digital technologies; 
• inappropriate training; 
• lack of time for preparation; 
• a lack of awareness of how technology might support learning; 
• not having technology use clearly embedded into schemes of work, 

and include among the barriers to the more student-centered use of DT: 

• an inadequate guidance concerning the use of technological tools in curriculum 
documentation;  

• assessment practices;  
• and “a perception that digital technologies are an add-on to doing and learning 

mathematics”. 

To these we can add the current overload of information and availability of resources of varying 
quality that are available to teachers through the Internet. 

From Challenges to Trends and Lessons 
The NMC Horizon Reports (www.nmc.org) takes a look every year (since 2012) at technology 

adoption, at both K-12 and higher education, enlisting (six for each) (i) key trends accelerating 
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technology adoption, (ii) significant challenges impeding technology adoption, and 
(iii) developments in technology, poised to impact teaching, learning, and creative inquiry.  

Among the trends that are identified in several of the reports (Johnson et al., 2015; Adams 
Becker et al., 2017; NMC/CoSN, 2017) that will be having an impact—in the short, mid and long 
terms—on technology adoption, are: an increasing use of collaborative learning approaches and of 
blended learning; a shift from students as consumers to creators and the recent push for coding 
literacy; the rise of STEAM learning, which seeks to engage students in interdisciplinary learning 
breaking down traditional barriers between different classes and subjects—one of the criticisms 
raised by Papert (2006), cited at the beginning of this paper; a rethinking of how schools work, 
shifting to deeper learning approaches (e.g. project-based learning, etc.) and a redesigning of learning 
spaces.  

At the same time, one of the challenges that the NMC Horizon Reports consider difficult (even 
“wicked” at higher education level), is the changing role of teachers and educators, whose  

primary responsibilities are shifting from providing expert-level knowledge to constructing 
learning environments that help students gain 21st century skills including creative inquiry … 
acting as guides and mentors, … providing opportunities for students to direct their own learning 
trajectories.  (NMC/CoSN, 2017, p. 7) 

The nine years of EMAT led us to identify some of the key factors for success and for 
transforming school practices and teacher’s roles, such as: adequate planning, gradual 
implementation, continuous professional development and support, and enough time (years) for 
assimilation and integration (Sacristán & Rojano, 2009). In relation to the latter, we found that even 
the most enthusiastic, committed towards the program, and supported teachers, needed at least three 
years in order to appropriate themselves of the tools and pedagogical ideas. But those who did 
became very successful in the future, continuing using the resources from the program for many 
years on their own, even until even this day. In fact, during the writing of this paper, I received an 
out-of-the-blue call from one of the teachers with whom I worked during the EMAT program. She 
told me of the limited resources in the school where she now works, in a very low-income area, but 
how, by implementing the EMAT materials in the last few years (more than a decade after they were 
developed), student achievement and assessments had improved dramatically, and she had even won 
two prizes for her work (one of them for her students’ explorations with Logo of the four-color 
theorem).  This case shows an appropriation by the teacher of the resources, tools and pedagogical 
ideas. 

It is thus clear that the key player for successful implementations of technology-centered 
educational innovations is the teacher.  

the role of the teacher is very important, and his/her beliefs, insecurities and lack of mathematical 
and technical preparation affect the possible impact that the use in the classroom of these 
technologies can have on students’ learning and even attitudes. The need for careful, considered 
and continuous work with teachers is thus extremely important. A priority in this kind of work 
should be the integration of digital technologies with the work that teachers are required to do, to 
take them into account at all steps of the implementation process, and to assist them in 
developing pedagogical strategies. (Julie et al., 2010, p.380) 

With respect to the latter, I would like to reflect briefly on policy aspects and the changing role of 
teachers in the design of technological implementations.  

A Reflection on Policies for Technology Integration, Societal Changes and Teachers 
The EMAT program was a top-down design: a policy-driven decision that attempted to achieve 
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technology integration in mathematics teaching and learning, and teachers were not involved in its 
design. It may have succeeded in small scales, but for an innovative educational program to catch on, 
it cannot be only about policy-driven implementations, no matter how carefully and well designed it 
is. For appropriation by teachers of new resources and pedagogical ideas, it may be a prerequisite to 
involve teachers in the design from the beginning, not just as participants, but as co-creators. In fact, 
rather than a technologically-driven model of technology integration, Hennessy, Ruthven, and 
Brindley (2005) point to the importance of teacher involvement, although also influenced by the 
teachers’ working contexts, for effecting classroom change. Furthermore,  

approaches with the most potential to bring about genuine improvement in learning mathematics 
are those that resonate with teachers—with their interests, beliefs, emotions, knowledge, and 
practice. (Kieran, Krainer, & Shaughnessy, 2013, p. 364) 

But involving and engaging teachers in the design of technological implementations is only one 
part of what is needed. There are dialectical forces at play here. On the one-hand, top-down policies 
do generate part of the change: they can initiate it and sow seeds of transformation (as in the case of 
teachers from EMAT, who 15 years later, continue working and transforming classrooms with what 
they learned); even if, as an imposition, it is unlikely it will resonate with the majority of teachers. 
On the other hand, changes that take place in society due, for instance, to technological advances—
such as the trends mentioned in the NMC reports above—also influence policies. In any case, 
professional development and support is needed. In Trouche, Drijvers, Gueudet, and Sacristán 
(2013), we discussed the above and said: 

Merely providing access to technology is not enough for promoting educational change; support 
for teachers’ professional development is a necessary precondition for a thoughtful and fruitful 
integration of technology.  […] Policy shifts do not fall out of the blue, but reflect or intend to 
support underlying views on learning, and are mediated by new paradigms of teaching and 
learning. (Trouche et al., 2013, p. 756) 

The issue of professional development was also touched upon in the NMC reports, in relation to 
the changing role of teachers: 

The evolving expectations also change the ways teachers engage in their own continuing 
professional development, much of which involves social media, collaboration with other 
educators both inside and outside their schools, and online tools and resources. Pre-service 
teacher training programs are also challenged to equip educators with digital competencies amid 
other professional requirements (NMC/CoSN, 2017, p. 7) 

I will now focus on teachers as the core of the efforts for improving meaningful technology-
integration and promoting changes in classroom cultures. 

Improving Technology Integration in Math Classrooms: Focus on Teachers 
Based on what was said in the previous sections, this focus on teachers has two aspects: 

(i) professional development, and (ii) enhancing teachers’ involvement in generating changes, 
resources and decision-making.  

I will begin by drawing from two experiences of in-service professional development programs 
of which I was part of, both of which emphasized self-reflection by teachers.  

Two Experiences of Reflective Professional Development Programs for In-Service Teachers 
As the EMAT experience taught us, there is a need to strengthen the mathematical content 

knowledge of teachers in our country, so the training and self-reflection processes in both programs 
addressed three aspects: the technological, mathematical and pedagogical. 



Plenary Papers 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

96 

Experience 1. From 2005-2010, I participated in a long-term professional development program 
for a small group of six in-service teachers in Mexico. As described in Sacristán, Sandoval and Gil 
(2011), our approach was for teachers to reflect on the changes in their practice through both training 
and classroom implementation of DT, document their findings and present them in seminar sessions 
to their fellow participants and the tutors. For this, we developed a professional development model 
(Fig. 1), based on works (e.g. Artzt and Armour-Thomas, 1999) that provide models in which 
teachers reflect on their instructional practice. In the pedagogical design of our model, we considered 
teaching as a constructive process that requires reorganizing and reinterpreting the subject matter and 
the practice as a result of experience (Thompson, 1992); and that the knowledge that is derived from 
social interactions in a (real-life) context is more valuable and significant for the teacher (Liu & 
Huang, 2005).  

 

 Figure 1. The professional development model described by Sacristán, Sandoval & Gil (2011).  
 
In our program, teachers were involved in: (a) training and development of abilities, for the use 

of DT in the classroom (mainly Spreadsheets, Dynamic Geometry, CAS and Logo, as well as some 
applets); (b) the design and planning of teaching strategies and activities that integrate DT; and (c) 
engaging in observation and reflection-on-action (Bjuland, 2004) of the changes in their own 
teaching practice with the new tools. The participants also studied and discussed theoretical 
frameworks and pedagogical models for a meaningful incorporation of DT into the (mathematics) 
classroom. In parallel, the participants attempted to incorporate DT, as well as the pedagogical 
models studied, into their real-life classroom activities, analyzing and reflecting upon the potentials, 
limitations and changes brought forth by this incorporation of DT into their own practice, and that of 
their colleagues, from various perspectives. These activities and model are schematized in Figure 1. 
This experience, even though it was a top-down initiative, gave the participants the opportunity to 
reflect upon and share their personal experiences with the other participants. We consider that the 
diverse elements of the development model—training, continuous support, processes of reflection, 
self-observation, and promoting equally the technological, mathematical and pedagogical aspects—
were significant for helping generate changes in the participants’ professional practices, and enabled 
them to construct didactic strategies for the use of DT, more in accordance with the specific needs of 
their students and/or of other teachers. Half of them even appropriated themselves of our model’s 
ideas, for peer training, designing and implementing a training program for other teachers and 
colleagues.  

All six participants considered the educational system as very rooted in traditional ways and 
difficult to change; but they perceived a change from a technical and presentation use of DT, to more 
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mathematically-centered uses, both in themselves, and in some of those they trained.  
Experience 2. In 2009-2011, as described in Parada, Sacristán & Pluvinage (2013), we used a 

theoretical and methodological model called the Reflection-and-Action (R-&-A) Model, for 
promoting reflective processes—as a complement to professional development, and for strengthening 
the teachers’ mathematical content knowledge—in two communities of practice (CoP) of 
mathematics educators (in-service teachers and researchers) in Mexico: one with 46 members; 
another with 125 members, which met through internet forums and periodically in person. The 
R-&-A model centered on a mathematical activity that was reflected upon before, during and after a 
teaching experience, i.e., through three reflective processes: (a) reflection-for-action; (b) reflection-
in-action; and (c) reflection-on-the-action. The reflections that emerged enhanced teachers’ 
mathematical content knowledge related to the specific activities, and also helped them recognize the 
need to adapt methodological and didactic resources, such as DT, to the purposes and characteristics 
of each student group. 

Teachers as Active Collaborators in Meaningful Technology Integration 
In the above section, I presented professional development experiences that promote teacher 

reflections and collaborations. The first one, though successful, was not a teacher initiative. The 
second one, included a researcher as mediator who proposed and coordinated the mathematical 
reflective processes. I believe that in order to generate change, teacher involvement and collaboration 
with researchers needs to take place in a way that makes teachers feel they are decision-makers. I 
consider this crucial in terms of motivation, beliefs, and overcoming affective apprehensions – which 
we have seen are areas that can be important barriers to integration and sustainability. Sustainable 
CoPs or networks involving both researchers and teachers are important and ICT makes it possible to 
share, discuss and remix resources online. A useful example from which we can draw lessons, is that 
of Sésamath (http://www.sesamath.net/) in France (see Trouche et al., 2013), which emerged as a 
bottom-up approach where mathematics teachers started to share and design resources and software. 
A bit over ten years ago Sésamath started to collaborate with researchers (Trouche et al., 2013). The 
quality of the resources at the beginning may not have been so good but through the sharing between 
teachers, and collaboration with researchers, these were greatly improved (Monaghan & Trouche, 
2017).  

Explaining the reasons for the success of Sesamath requires specific research. The existence in 
France of the IREMs (Institutes for Research on Mathematics Education), a national network that 
involves many mathematics teachers, has played an important role. A similar project could 
perhaps not succeed in countries were such a network, linked with mathematics education, did 
not exist.  (Trouche et al., 2013, p.772) 

Concluding Remarks  
In this paper I began by quoting Papert (2006) and his criticism of educational systems as a way 

of introducing the issue of the difficulties of creating meaningful change and technology-integration 
in classrooms, and the inertia of the classroom and the paper-and-pencil cultures that limit change. 
This was then expanded in listing some of the barriers identified from decades of research, to that 
change and integration. After a brief excursion into some of the lessons learned from technological 
and educational trends, I focused on the teacher as the key player for successful and transformative 
technology-integration and argued in favor of promoting models of collaboration (such as CoPs and 
networks) between teachers, researchers and policy-makers that both enhance teachers’ professional 
development, empower them and provide a means for sharing, discussing and improving resources 
and their implementations, as well as overcoming some of the detected barriers. But one of those 
barriers is time: educational systems need also change (perhaps pushed by the trends of society) in a 
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way that makes them more flexible for allowing teachers more time to engage in collaboration and 
innovation. 

There are some other aspects that I did not cover in this paper, and that are worth reflecting upon. 
For instance, what role do MOOCs have, or will have, both in terms of changing the role of teachers 
and of technology for teaching and learning mathematics; as well as for teachers’ professional 
development? Or are they a way of up-scaling current educational practices without truly innovating 
them?  
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CROSSROAD BLUES 
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In this paper I take up the questions posed by the conference organisers with respect to what we have 
learned and where we are going in technology-based research in mathematics education research. I 
begin by troubling the metaphors of crossroads and intersections and argue—through a wide range 
of considerations in relation to past research, to theory development, to teaching practices, to 
assessment and curriculum design and to concerns around access and equity—that there may be 
more fruitful metaphors for understanding our past and imagining our future.  

Keywords: Technology, Learning Theory, Equity and Diversity 

The metaphors of ‘crossroads’ and ‘intersections’ that were chosen for this conference are worth 
dwelling upon, in relation to research on the use of digital technologies. Crossroads are often used 
symbolically in literature, drawing on Sophocles’ work Oedipus, to indicate a crucial moment of 
choice. In Oedipus there were three possible roads to follow, perhaps evoking past, present and 
future. But Sophocles’ idea of choice may be less about making an independent decision, than about 
following the roads that have been carved by destiny: Oedipus was always going to end up killing his 
father. The invitation of the conference organisers to think in terms of crossroads provoked for me 
some questions about whether we really are at a decision point with numerous options available and 
whether one choice might be inevitable. The metaphor of intersections, which is similar in some 
ways, also has more mathematical connotations, ones that evoke significant ideas in geometry, 
especially around whether lines will intersect, how many times they will intersect and what it means 
to not intersect at all—all these questions being beautifully perturbed by moving to dimensions 
beyond the plane. But what could it be, in the context of research on technology in mathematics 
education, that could be seen as a crossroad or an intersection?  

In considering this question, I was reminded of the work of the anthropologist Tim Ingold 
(2007), whose book Lines: A brief history traces the way in which the very idea of line functions 
metaphorically in Western society. He argues that it is so deep and entrenched that we can often find 
ourselves using it to describe a wide range of phenomena—often using words such as trajectories, 
paths, roads, trails, courses, routes—that might not actually be so linear or straight or one-
dimensional. In his book, Ingold distinguishes two ways of thinking lines: as transporting and as 
wayfaring. In the former, we might think of getting from point A to point B and the line is the 
journey that gets us there. In the latter, the line is what one makes as one moves; there is no path 
independent of the travelling. Transposed to a theory of learning, the former would tend to conceive 
of learning as a sequence of journeys one might make from one concept to the next; the latter would 
focus on the act of tracing, on the direction that is taken and the new territory being explored. The 
former involves reaching successive destinations while the latter involves creating paths. Whereas 
crossroads and intersections, at least in my own imagery of them, have the past, the present and the 
future already laid out—you can go this way or that—I wonder whether it is possible to dwell in the 
present and so withhold the temptation to pre-determine a destination, let alone the journey that will 
take us there. Getting off the plane, we might even be able to think of creating paths that loop around 
like a Mobius strip or fan out into a surface or sprout into 17 dimensions, only four of which we 
might actually be able to see. As with most of our thinking around education, such an approach, 
which embraces multiplicity, indeterminacy and nonsense, may be the best way to handle the 
complexity of digital technology use in mathematics education.  
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In what follows, I have attempted to address the questions and prompts offered by the conference 
organisers, not in a way that is exhaustive, but that is opportunistic—drawing on my own research 
and research interests in technology. I will try to keep the provocation of anti-crosswords alive 
throughout, inviting readers to think less in terms of the image in Figure 1a and more in terms of the 
image in Figure 1b, which is a replica of the cover of Ingold’s book.  

 

Figure 1. From transporting (intersections and crossroads) to wayfaring.  

What we Have Learned from the Routes we Have Traversed 
One way of seeing research in mathematics education is as an activity that enables us to answer 

questions, question such as: Should digital technologies be used in mathematics classroom? When is 
one technology better than another? What does a given technology change the way students learn? 
Another way of seeing research in mathematics education is as a practice of posing new questions, 
perhaps transforming the questions we started with so that they better respond to the complexities of 
the mathematics classroom. In this second kind of practice, the questions shift: new paths are created. 
Researchers have realised that the first question listed above, for example, depends less on empirical 
evidence than on assumptions about the goals of mathematics education. The second question may 
shift if one realizes that each technology might produce a different mathematical conception, in 
which case deciding on which is the best depends on many factors, ranging from aesthetic choices in 
mathematics to considerations of what might be evaluated on standardised tests. The third question 
listed above will also morph as researchers begin to appreciate that the student-technology dyad is a 
reductive focus, and that the role of the teacher, of the curriculum and of the classroom environment 
are also significant factors in what is learned.  

To answer the question of what we have learned, it thus seems reasonable to consider how our 
questions have changed over the past few decades of research on the use of technology in 
mathematics education. I turn to the recently published Second Handbook of Research on the 
Psychology of Mathematics Education (Gutiérrez et al., 2016), which contains a chapter on 
technology (Sinclair & Yerushalmy, 2016) that considers the research published in the PME 
proceedings from 2006-2016. This is just one source—other Handbooks could also have been 
considered—but I have chosen it because it is international and because it explicitly compared 
research over the past decade with research conducted over the previous decade, which was reported 
in the first Handbook of Research on the Psychology of Mathematics Education, which was 
published in 2006.   

The authors of the technology chapter report that while the 2006 Handbook had been structured 
into different topic areas (geometry, arithmetic and algebra), the research over the past decade was 
less amenable to such a categorization, in part because the research was less explicitly concerned 
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with particular mathematical concepts. Instead, the primary concerns were theory, the role of the 
teacher, new technologies and the design of tasks and assessment. The authors found that while the 
majority of papers in PME proceedings were related to the use of well-known digital technologies 
such as dynamic geometry environments, computer algebra systems, graphing calculators and 
spreadsheets, these papers were less focused on the question of ‘do they work?’ than on questions 
such as: how do teachers integrate them? How might suitable tasks be designed for the use of a given 
technology? How might new theories help us understand the role that technologies play in teachers’ 
and students’ mathematical activity? Indeed, with respect to the first question, the authors remark on 
the attention not only to the teacher’s role in using a given technology in the classroom, but to the 
challenge of orchestrating several types of resources: “Technology has opened up new challenges for 
teaching, not only in terms of their knowledge and beliefs, but also in terms of the complexities of 
integrating different kinds of resources” (p. 236). The shifting emphasis from the learner to the 
teacher can also be seen in the recently published edited collection entitled The mathematics teacher 
in the digital age (Clark-Wilson et al., 2014). This book was heavily oriented towards theory and 
professional development, but marked by a near absence of focus on mathematics. These new strands 
of research become entangled with prior foci of interest. 

An entire section of the chapter is devoted to theorising. The authors cite Drijvers, Kieran and 
Mariotti’s (2009) “plea for the development of integrative theoretical frameworks that allow for the 
articulation of different theoretical perspectives” (p. 89), especially ones that can extend and refine 
the two dominant theories found in European research: instrumentation theory and the theory of 
semiotic mediation. Sinclair and Yerushalmy report that while these two theories, which attend 
explicitly to the use of digital tools, were predominant, several other theoretical perspectives were 
used in the PME proceedings over the last decade, many of them not specifically attending to digital 
tools. The authors write that,  

With respect to the papers that do draw on theories, there has been significant development over 
the past decade, which suggests that the field of mathematics education related to digital 
technology has certainly matured; it has evolved from being an “experimentation niche” and has 
become an established domain of research that now carries a more solid message for the future 
(p. 251).  

The authors go on to identify two issues related to theory use: first, they argue that theories related to 
the use of digital technologies need to be better coordinated with more general and established 
theories; second, while there has been a burgeoning of theory use and development, the concomitant 
development of associated methodologies has not kept pace. The idea of better coordination might 
imply some kind of intersections with other theories, but the simple crossing of one theory with 
another rarely does justice to the epistemological, ontological and axiological commitments of each.  

One thing that we can say about “what we have learned from the routes we have traversed” is 
that the use of new theories has enabled us to ask different, more refined questions about the use of 
technology mathematical teaching and learning. For example, instead of asking “did the students 
learn fractions better?” an instrumental genesis approach might focus more on the new schemes that 
the students developed in using a given technology to work with fractions; a semiotic mediation 
approach might focus on the particular gestures that students made while using a technology and how 
they were transformed into mathematical signs by the classroom teacher. In both cases, there is not a 
revisiting of the initial question, but a re-layering of it. These questions focus less on the determining 
whether digital technologies should be used or whether they work better than other resources; they 
instead take technology use as a given and investigate the complex and often unexpected effects on 
how learners move their bodies, how mathematical concepts seem to arise and crystallise in new 
ways and how aspects of classroom activity, such as language use, student agency and material 



Plenary Papers 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

103 

arrangements (of furniture, devices, bodies) change as well.  
One final note on what we have learned relates to the evolution of research identified by Sinclair 

and Yerushalmy from the study of the use of “second wave technologies” i, which are open in the 
sense that they do not contain embedded tasks, to an interest in task embedded digital technologies, 
“which direct the actions and uses to more specific purposes” and evaluative digital technologies, 
which “provide feedback on students’ responses and actions” (p. 252). The inclusion of tasks and 
evaluative features may improve accessibility for teachers in that it takes care of some of the 
decisions that teachers would have to make with more open technologies such as identify and 
choosing problems and assessing student learning. Of course, the streamlining of open digital 
technologies may also have an adverse effect on classroom use, inasmuch as openness has often been 
taken as crucial for encouraging curiosity, expressiveness and agency. Nonetheless, we see in this 
evolution a complexifying of technology in which it is not simply the hardware/software device with 
strict boundaries, but instead a more amorphous entity that includes its associated tasks and modes of 
use. The question is less about technology A then it is about technology A using task B in setting C. 

Addressing Issues of Access and Equity within Mathematics Education Today 
For the most part, at least according to reports in the literature, the long-standing challenge of 

access—that is, whether students and teachers have access to computers and to software—is no 
longer the main hurdle in digital technology integration. Not only have computers become more 
common in classrooms, but many schools have embraced tablets; furthermore, the trend towards free 
software (including free versions of software programs that were originally licensed) has removed 
some hurdles for teachers, especially teachers in developing countriesii.  

As intimated above, the greater hurdle for technology integration relates to teaching practices, to 
curriculum and to assessment—and, in a sense to access to professional development (see Clark-
Wilson et al., 2014). In terms of equity, there have been two main, different approaches to supporting 
diverse learners’ needs through the use of technology. These seem to entail quite different 
understandings of what certain learners need in order to have more mathematical success. The 
development of new digital technologies addressing equity has focused mainly on students diagnosed 
with learning disabilities (MLDs), as well as deaf and blind studentsiii. In the area of the MLDs, for 
example, there have been several software programs created to help struggling children improve their 
number sense. These tend to be focussed on particular aspects of number and designed as instructiveiv 
environment, which provide instant evaluative feedback and tend to target procedural skills. Such 
programmes aim primarily to address the deficits of the children; equity thus identifies the problem 
as belonging to the learner (rather than to the mathematics, the environment, etc.). Unfortunately, 
despite some promising results (Butterworth & Laurillard, 2010), researchers such as Goodwin and 
Highfield (2013) have shown that children working with the instructive digital technology were more 
focussed on receiving positive feedback than on discussing or reflecting on the embedded 
mathematical concept.  

A different approach has been taken up by researchers in Brazil (see Fernandes et al., 2011; 
2013; Santos, et al., 2013), who have studied the use of digital technologies in inclusive classrooms 
(that may include deaf, blind, seeing and hearing students), and have developed more manipulative 
technologies. Their design and research process seeks to identify different ways of interacting with 
mathematics that may help all learners, and not just those diagnosed with disabilities. Such work 
requires re-thinking mathematics (as something that can be heard, for example, instead of seen 
through symbols or graphs) instead of merely simplifying traditional mathematics or breaking it 
down into steps. Their approach to equity identifies the problem as belonging less to the learner than 
to the mathematics (or the ways it is taught). A similar approach was taken in the study reported by 
Cohen et al. (2017), which involved the use of the manipulative, mutitouch iPad app TouchCounts 
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with grade 1 children identified as low-achievers in the mathematics classroom. The app, which 
enables tangible, visual, aural and symbolic modes of interaction, was used both in the whole 
classroom situation, but also in a smaller group setting with the identified children. The use of 
fingers, which enabled these children to improve their subitising and awareness of place value, was 
also helpful for the other children in the classroom. 

Returning to the metaphors of crossroads, it seems that one image that drives the choice of 
technology used with MLDs is that the children cannot take one road, so they must take the other, 
thereby setting off a chain of entailments about two kinds of mathematics, two kinds of learners, two 
kinds of technology. Such an approach fails to consider the extent to which the traditional technology 
of mathematics (paper and pencil) is implicated in the very nature of school mathematics and the 
possibility that new technologies may change what school mathematics looks (and sounds and feels) 
like, and what mathematical actions might be valued in the classroom.  

Barriers within Research Traditions, Educational Policy, and Teaching Practice that Impede 
Researchers', Students' and Teachers' Success 

In the first section, I identified the recent burgeoning of theory that was evident in the last 10 
years of research published in the PME proceedings, as well as the current tendency for digital 
technology-specific theories to be isolated from other theories in mathematics education. A similar 
phenomenon—the segregating of technology and non-technology research—can also be seen in peer-
reviewed journal publication. This is evident when comparing articles published in JRME, FLM and 
ESM (three of the top-ranked, long-standing international journals in mathematics education). As 
Table 1 shows, there are relatively few articles that focus explicitly on the teaching and learning of 
mathematics using digital technology. The frequency of publication seems to be quite stable when 
comparing articles published in 1996, 2006 and 2016. 

One reason for this low frequency is the fact that there are several journals in which authors can 
choose to publish their work, journals where technology is an explicit focus (for example, IJCML 
(now TKL), DEME, IJMTL, CJMSTE). Publications in these ‘technology journals’ may not be in 
conversation with publications in journals such as JRME, FLM and ESM, thus leading to a group of 
theories that specialise in the use of technology and another group of theories that more or less ignore 
issues relating to technologyv. This has been partially true for the influential learning trajectory 
research, which though tending to a more Vygotskian perspective, which recognises the central 
importance of language and tools in learning, continues to identify and disseminate trajectories that 
do not specify the use of digital technologies. If technologies were used in any of the tasks studied by 
researchers, it is assumed that the stepping stones from one concept to another could be made no 
matter what technology is used—but the default technology is almost always paper and pencil. This 
point of view contradicts the Vygotskian premise, but also reifies a certain vision of mathematics 
teaching and learning that makes it more difficult for digital technologies to be taken up more 
widely—and thus contributing to the continued debate around “the basics” (see Roth, 2008).  

 

Table 1: Comparison of Articles Focused on the Use of Digital Technology Across Journals 
 JRME FLM ESM 
 Technology  Total Technology Total Technology  Total 
2016 1 12 1 29 3 61 
2006 0 13 2 31 0 50 
1996 0 23 1 23 2 32 
Total 1 48 4 83 5 143 
 2% 5% 3% 
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The ignoring of technology has also tended to occur in the areas of curriculum design and 
assessment (some of which is based on learning trajectory research). While standards in most 
countries may have language that includes reference to the importance of technology, the actual 
concepts that are listed, and the order in which they are listed, are determined in a way that is 
absolutely independent of any particular digital technology. For example, in the area of geometry, 
which is my research focus, a curriculum or textbook that asks students to engage in geometric 
construction by drawing shapes that have numerically determined side lengths and angle measures is 
anti-dynamicvi. This after two decades of research showing the pedagogical benefits of using 
dynamic geometry environments in the teacher and learning of geometry.  

Lines can be dangerous. Lines can begin as imaginary paths to be followed, but once carved, they 
can become troughs that are hard to escape. Research in the use of digital technologies can 
sometimes reinforce troughs, when it focuses more on how technologies make concepts more 
efficient or quick to learn, rather than underscoring the sometimes unexpected conceptual shifts that 
innovative digital technologies can occasion. 

The issue of assessment may be particularly important in high school and undergraduate 
contexts, where the use of digital technology on tests is often disallowed, meaning that students may 
be learning with a given technology but are being assessed as if that technology was a disposable 
scaffold to learning. Sangwin et al. (2010) argue, “if a teacher encourages students to make extensive 
use of tools in a course but does not allow their use on the end-of-course test, are students being 
given the opportunity to show what they learned with the use of such tools?” (p. 229). The issue is 
complex, however: in a study of secondary school teachers in Canada, Venturini (2015) found that 
teachers were reluctant to use digital technology assessment tasks because they were concerned that 
the students would learn as they used the digital technology, which was seen to contradict the 
purpose of assessment. 

In terms of teaching practices and teachers’ success, there has certainly been a dearth of research 
in this area. As Sinclair and Yerushalmy write, “Compared with research on student learning with 
technology, research on the teacher has not been as well developed” (p. 260). Nascent theory 
development began with the framework of TPACK, which describes the different types of 
knowledge that teachers may use in their teaching practices, adding technology to the well-known 
pedagogical and content knowledge aspects. As a theory, it is rather limited. More recently, theories 
that provide a more analytic lens on the role of the teacher in teaching with digital technology have 
been developed, based on theories of instrumental genesis (such as instrumental orchestration). 
Ruthven (2014) has also proposed a framework for analysing the teaching expertise that underpins 
successful use of digital technology in the mathematics classroom. His framework highlights the 
tensions that arise for teachers when trying to integrate technology, that relate to the lack of 
articulation between digital technologies and other resources such as textbooks, curricula and 
assessment. Worth studying would be situations in which this articulation has been attempted 
(perhaps with a high-quality e-textbook (see Pepin et al, 2015) or with trajectories that have been 
elaborated using digital technologies).  

Laying the Groundwork for Future Crossroads or Intersections Among Theory, Research, and 
Practice 

When thinking about future crossroads or intersections, two recent, related developments in 
educational research come to mind, both of which are highly relevant to technology. One is the 
association of mathematics with computational thinking (CT) and the other is the emergence of the 
idea of STEM. Both developments have received substantial funding over the past decade (and have 
given rise to specialized conferences, journals and special issues) and will likely shape future 
discussions around the role of technology in mathematics education. In both cases, the role of 
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technology shifts quite significantly from the way it has been conceived in research over the past two 
decades. Before commenting on whether or not we are at a crossroads, I would like to look more 
closely at each new development in turn. 

In the case of CT, the research initiatives most closely associated with mathematics education 
have involved studying the use of computer programming as a means to support mathematical 
learning, much in the tradition of Papert (1980). For example, Benton et al. (2017) as well as 
Gadanidis et al. (2016) explore the use of Scratch programming in relation to concepts that are 
recognizably mathematical (e.g., angle, binomial theorem). In these two cases, the digital technology 
in question is one that was not designed specifically for the teaching and learning of mathematics, 
and that entails practices and values that are specific to the domain of computer science.  

In the case of STEM, the nature of the “T” seems to be less precise than in CT, involving not so 
much the use of programming (or coding), but instead the use of digital tools. For example, in the 
STEM videos published by the Teaching Channelvii, students use scientific tools such as digital 
thermometers or calculators as well as simulations (a programme for building and testing 
rollercoaster). In these cases, the technology is not vectored towards the learning of mathematics, but 
rather to the completion of what is essentially a science or engineering project. Whereas the CT 
connection privileges computer programming as the primary mode of engagement with digital 
technology, the STEM agglomeration features the use of digital technologies that are oriented 
towards their pragmatic value rather than their epistemic value (see Artigue, 2002 for a discussion of 
the distinction between these two values). 

I bring up these two examples because of the stress they will likely place on the way digital 
technologies are used and researched in mathematics education. They displace technology from 
being constitutive of mathematics (à la Rotman, 2008), which may result either in the displacement 
of technology to something you do in your CT lesson, not in mathematics, or in the isolating of 
technology as one element in a STEM fruit salad of disciplines that shares little disciplinary value 
with mathematics. Again, a crossroads view of things encourages us to think about choices, about 
going this way or that. But, at this moment in time, what we may need more of is attending to the 
multiple threads in which mathematics education is entangled and how the choices that seem on offer 
are already the consequence of a set of assumptions and commitments—and to think, what could 
things look like before the crossroads?  
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Endnotes 
i Sinclair and Jackiw (2005) describe three ways of technology evolution in mathematics 

education. The first wave focused on learners’ interactions with technology (such as Papert’s 
research with Logo); the second wave shifted from programming languages to technologies that were 
more transparently related to the school mathematics curriculum, such as graphing calculators, 
computer algebra systems and dynamic geometry environments; the third wave was concerned with 
technologies that attended to the social context of the mathematics classroom. 

ii But this should not necessarily be seen as a positive development for mathematics education. 
Paying software programmes were maintained and came along with teacher support and, frequently, 
curriculum materials; they could be expected to be developed by professional software designers, and 
to last for long periods of time.   

iii As far as I am aware, there are very few examples of digital technologies that have been 
designed for other groups of students who have been identified as under-achieving, based on gender, 
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race or socio-economic status. One exception, which dates back to the 1990s, was Klawe’s E-GEMS 
project (see Inkpen et al., 1995), which was targeted specifically for girls. A small number of 
researchers have also explored the use of digital technologies with bilingual learners, who also face 
particular challenges in the mathematics classroom (see Ng, 2016). 

iv Goodwin and Highfield (2013) distinguish three types of digital technologies: instructive, 
manipulable and constructive. Sinclair and Baccaglini-Frank (2014) describe each as follows:  

Instructive digital technologies tend to promote procedural learning, relying on evaluative 
feedback and repetitive interactions with imposed representations. Manipulable digital 
technologies enable the imposed representations to be manipulated so as to engage students in 
discovery and experimentation. […] Finally, constructive digital technologies are ones in which 
learners create their own representations, which are often the goal of the activity, thereby 
promoting mathematical modeling and what Noss and Hoyles (1996) characterize as expressive 
uses of technology. Goodwin and Highfield argue that while instructive technologies may be 
well-suited for procedural learning, manipulable and constructive technologies better support 
conceptual learning. 
v That is it possible to do this strikes me as quite interesting, but coherent with the view that 

mathematics—and thus the learning of mathematics—can be separated from its technologies. 
vi And example of this can be found in the New York State Common Core Mathematics 

Curriculum. 
vii See, for example: https://www.teachingchannel.org/videos/teaching-stem-strategies and 

https://www.teachingchannel.org/videos/stem-lesson-ideas-heat-loss-project. An analysis of these 
STEM videos is currently in preparation (Bakos et al, in preparation). 
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WORKING COLLECTIVELY TO DESIGN ONLINE TEACHER EDUCATION 
CURRICULUM: HOW DO TEACHER EDUCATORS MANAGE TO DO IT? 

 Amanda Milewskii Umut Gürsel Patricio Herbst 
 University of Michigan University of Michigan University of Michigan 
 amilewsk@umich.edu ugursel@umich.edu pgherbst@umich.edu 

This paper is part of a three-year inquiry that supports and investigates the work of groups of 
mathematics teacher educators using technological tools to design and implement multimedia 
practice-based teacher education curriculum materials. This paper describes the kinds of activities, 
interactions, and tools used by mathematics teacher educators to engage in such work. Using 
Engeström’s Activity Theory as a framework, we organize our observations of the groups’ work 
sessions, noting differences across the groups’ objectives and ways of organizing the division of 
labor and tools for engaging in the work. Our results suggest the activity of collective curriculum 
development amongst teacher educators can take on at least three distinct types of interactions. We 
present these types of interactions as “caricatures” (Lambdin & Preston, 1995), using data from all 
of the groups to represent composite descriptions.  

Keywords: Curriculum, Instructional Activities and Practices, Teacher Education-Preservice, 
Teacher Education-Inservice/Professional Development, Technology  

Introduction 
We share data from an ongoing NSF project that engages groups of mathematics teacher 

educators in collective work using technological tools to design and implement online practice-based 
teacher education curriculum materials. The work within that project can be broadly framed as part 
of the larger efforts to reimagine mathematics teacher education through the development of a 
common curriculum (Ball and Forzani, 2011) centered on practice-based experiences for enabling 
novices to learn to teach in, from, and for practice (Lampert, 2010). The efforts to reimagine 
mathematics teacher education may tread some of the same terrain as the well-studied efforts to 
reform K-12 mathematics through the design of better curriculum (e.g. Lappan & Phillips, 2009) and 
professional development for supporting teachers to use those materials (Remillard, Herbel-
Eisenmann, & Lloyd, 2009). Both efforts attempt to address deficiencies in the current systems by 
reimagining, in some measure, what happens in instructional settings (whether in K-12 or higher 
education); and both treat curriculum as a lever to do that. 

To understand how teacher educators may use the curriculum of teacher education to make 
teacher education practice-based, it is useful to consider the different ways in which teachers use 
curriculum in K-12 settings: While there is a tradition in which curriculum developers create 
materials, teach them to teachers, and then teachers implement them with fidelity as a goal, that is by 
no means the only use. Reviewing the literature of curriculum use studies, Remillard (2005) 
describes three kinds curriculum use studies and their corresponding perspectives. The first set of 
studies takes the perspective of curriculum as a “fixed entity” and takes for granted that the teacher 
serves as a “conduit for the curriculum”. The second set of studies takes the perspective of the 
curriculum as a more or less stable starting point from to which the teacher makes adaptations in 
ways that may be more or less faithful to the curriculum design. The third set of studies takes the 
perspective that the teacher is positioned as an active interpreter of the written curriculum and 
“author” of the enacted curriculum (Doyle,1992). Ball and Cohen (1996) suggests a 
reconceptualization of curriculum as a site first for teacher learning and then a resource for student 
learning. This suggestion fits well into this third perspective as such an approach gives teachers an 
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opportunity to work collaboratively with curricula materials in order to decide how they will use 
them to solve the problems of improvement.  

In this paper, we aim to describe and explain how groups of teacher educators organize their 
collective work around the task of designing and implementing technology-mediated practice-based 
curricular materials for teacher education. Research on curriculum use suggests that there could be a 
host of ways that the field addresses the larger problems of developing common practice-based 
curricular materials for teacher education; and each of these approaches comes with different kinds 
of affordances and constraints for the work at hand. We wonder about the various ways in which 
mathematics teacher educators might elect to organize themselves around the task of developing 
technology-mediated practice-based teacher education materials and what sort of affordances and 
constraints can be found across the variety of organizational choices. In this paper, we describe and 
explain three ways in which 12 groups of mathematics teacher educators engaged in the activity of 
collectively developing and using technology-mediated practice-based materials for teacher 
education. To do this, we use methods from activity theory, noting differences across the groups’ 
objectives, division of labor, and tool usage. To illustrate these differences, we borrow a practice 
from Lambdin and Preston (1995, p. 130) and create “caricatures” of groups to describe these 
differences, where a caricature represents a composite description by combining information from all 
12 groups.  

Methods 

Setting 
In this paper, we present our findings regarding the types of interactions between 12 Fellows and 

their Inquiry Group Members (IGMs) across a two-and-a-half year timeframe from May, 2014 to 
November, 2016. The Fellows come from research institutions (Doctoral institutions with the 
moderate, higher, and highest levels of research activity) and serve in a variety of positions 
(Assistant, Associate Professor, and Full Professor as well as Lecturers). Next, each Fellow formed 
their own inquiry group that included one to seven members from a variety of institutions and 
geographic locations. The Fellows assembled inquiry groups for the purposes of developing 
technology-mediated mathematics teacher education curriculum materials.  

To develop these materials, the Fellows and their Inquiry Group Members had access to the tools 
and capabilities within the LessonSketch platform (www.lessonsketch.org). LessonSketch provides 
teacher educators with a suite of online tools for composing and interacting with multimedia 
representations of practice. Depict offers users a drag-and-drop environment allowing users to easily 
represent scenes from a classroom in the form of a storyboard. Annotate allows users to make time-
stamped comments on a variety of media files, such as video, audio, or storyboards. Plan offers users 
a drag-and-drop environment for authoring agendas for interactive experiences for clients, integrating 
multimedia tools for both producing and interacting with representations of practice with more 
traditional course planning tools such as multiple choice and open-ended question generators. In 
addition to those tools, LessonSketch also has accompanying capabilities for enabling users to 
manage and study client interactions with the experiences. One such capability is the Experience 
Manager that allows users to distribute online experiences to clients by either assigning the 
experience directly to clients in LessonSketch or by providing them with an access code or an email 
link. The second capability, Reports, allows users to collect data about clients’ activities within such 
experiences, including both user contributions (such as responses to questions or pins on a video) and 
behaviors (such as time spent on an activity). 

For the first year of the project, the Fellows worked on drafting an instructional module(s) for 
one of their own courses. The Fellows’ modules (like the Fellows’ teaching assignments) were 
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varied, with some designed for pure mathematics coursework, others for mathematics methods 
coursework, and still others for general education coursework. During the first year, the Fellows met 
together with the project group for two face-to-face meetings and participated in monthly online 
meetings across the year to check in with one another. During the second year of the project, the 
Fellows recruited Inquiry Group Members to help implement and/or construct modules. During this 
time the Inquiry Group Members met together with their Fellow and with the project team for face-
to-face for work sessions on three occasions and held their own meetings throughout the year (either 
virtually or face-to-face on their own schedule). The Fellows continued to meet virtually, with one 
another, every month.  

Data Collection 
We collected a variety of data to document the ways inquiry groups organized themselves to 

collectively develop and/or enact curricular materials. For this research, we documented each group’s 
work in several ways. During the year one face-to-face meetings, we observed the Fellows’ 
interactions with one another and the project staff, collecting audio recordings of whole group 
discussions and taking field notes during their work sessions. During the year two face-to-face 
meetings, we observed the Fellow’s interactions with the Inquiry Group Members and with project 
staff, taking field notes about the ideas exchanged and the roles various group members were taking 
on. Across both years, we conducted and recorded monthly interviews with Fellows using video 
conferencing software, to support their progress. In the Fall of 2016, we surveyed Inquiry Group 
Members using adapted versions of the Concerns Based Adoption Model (George, Hall, & 
Stiegelbauer, 2006) and Team Climate (Anderson & West, 1998) Surveys. We used this survey to 
investigate the group distinctions as well as some of our observations about differences in possible 
group characteristics (state of the modules when the IGM joined the group, agency, similarity of 
professional goals) more thoroughly. We used Inquiry Group Members’ responses to the survey to 
verify the nature of each group’s activity (e.g., whether or not the primary activity and ways of 
working—implementation, collective construction, or independent construction—we had observed 
were compatible with the primary activity and ways of working the group members identified) as 
well as to confirm some key characteristics that were difficult to fully perceive from observation 
alone. Lastly, we collected system-use data to understand whether and how different groups used the 
various tools and capabilities within the LessonSketch platform. 

Data Analysis 
To begin describing the inquiry group interactions in a systematic way, we analyzed the data 

using Engeström’s (1987) activity theory, and its related mediational triangle (Figure 1). Activity 
theory was developed to model goal- (or object-) oriented behavior as activity systems, accounting 
for the collective nature of human activities as interactions between distinct elements.  

While all the inquiry groups could be described as comprising the same type of subjects 
(mathematics teacher educators) working on behalf of the same type of community (fellow 
mathematics teacher educators) for the same outcome (namely educating future or current 
mathematics teachers), our observations of their activities suggested several important differences 
across groups within the object, division of labor, rules, and tool components of the mediational 
triangle. First, we noticed differences in “what” the inquiry groups were collectively focused on 
doing together, that is a difference in the groups’ objects (or goals). Avowedly what they all had to 
do related to an instructional module. Groups seemed to primarily be focused either on constructing 
modules (either collectively or individually) or implementing a module created by the Fellow or 
some other group member. Based on these differences, we categorized the groups’ activity systems 
according to one of two objects: construction or implementation. 
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Figure 1. Engeström’s mediational triangle (Engeström, 1987). 

 
Second, while all of the groups with an implementation objective seemed to use the same division 

of labor, namely the Fellow played the role of “curriculum writer” while the Inquiry Group Members 
implemented that curriculum in their own settings, we noticed differences in how those groups with 
construction objectives divided the labor. Some of those groups took on the task of constructing a 
module(s) in such as way that the Fellow and the Inquiry Group Members worked together to 
develop a single set of materials; other groups took on the work so that the Fellow played the role of 
“lead innovator”—developing his or her materials first—and the Inquiry Group Members each 
followed suit by patterning their own materials after the Fellow’s work, but not necessarily in ways 
that would allow for the materials to be implemented together. Based on these differences in the 
division of labor we categorized the construction groups into two different types: collective 
construction or independent construction. 

Third, we noticed some important broad similarities in the ways the tools mediated the work of 
the Fellows and Inquiry Group Members. To begin, the Depict, Annotate, and Plan tools were 
primarily used for their authoring capabilities. While the Plan tool was created for authoring 
experiences, there are many other ways in which Depict and Annotate could be used. While the 
Depict tool can be used to author content for experiences (e.g., develop storyboards for students to 
interact with), it can also be used to provide feedback to students’ contributions (e.g., to provide a 
visual interpretation of a student’s vague narrative account of a classroom event and ask whether it 
happened in that way). Similarly, while the Annotate tool can be used to author content for 
experiences (e.g., identify moments of a video for students to comment on), it can also be used to 
provide feedback to students about their contributions within an experience. For the most part, 
however, we observed the Fellows and their Inquiry Group Members using Depict and Annotate to 
author module content. Thus, for the purposes of this work, we classified the use of Depict, 
Annotate, and Plan as mediating primarily the authoring of modules; while the capabilities within 
Experience Manager mediating the distribution of modules for review prior to implementation as 
well as distribution of modules for implementation with students; and the capabilities of Report for 
analyzing aspects of the module use.  

Finally we noticed some important differences across groups in terms of the ways in which they 
used the different capabilities (Authoring Modules, Review and Distribution Modules for 
Implementation, and Analyzing Module Use) in the LessonSketch system to mediate their collective 
work. We suspected that there would be meaningful differences in the ways in which these groups 
used the tools and capabilities to mediate their collective work, but since much of their tool usage 
happened when we were not directly observing them we could not be certain which tools and 
capabilities they were accessing without a closer examination of system data.  
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Results and Discussion 
In this section, we present our overall findings by developing caricatures or composites of the 

Inquiry Groups’ work based on their group structure, the conditions that seemed to characterize the 
group’s activity system, and the ways in which the tools and capabilities afforded by the 
LessonSketch platform seemed to mediate that activity. By taking the inquiry group to represent the 
unit of analysis, we emphasize that the caricatures do not reflect the work of individuals but the 
larger activity system. The caricatures were created during the data analysis process as opposed to 
being a priori to the analysis.  

The categorization of the groups or subgroups as engaged in implementation, collective 
construction, or independent construction activities came fairly easily from the observations as 
described above. Our observations were confirmed in the survey responses from the Inquiry Group 
Members. Those working in implementation groups describing their work primarily in terms of 
using, piloting, or suggesting revisions to the module created by the Fellow and those in the 
construction groups describing their work primarily in terms of building, designing, or creating 
module(s). Inquiry Group Members engaged in independent construction activities indicated 
relatively more concern about the personal consequences of the project including logistics and the 
time involved in the activities of the project than those engaged in collective construction activities. 
To represent these composites in more memorable ways, we use the metaphor of different ways of 
having a dinner party: (1) Hosting; (2) Potluck; (3) Cooking Club. 

Hosting. One way to organize a dinner party is for the host to prepare a single meal for the 
guests. While customs may differ, this kind of organization usually calls for the bulk of the meal 
preparation to take place prior to guests’ arrival. Similarly, those groups with an implementation 
objective commenced after the Fellow had drafted a version of the module that was ready for 
distribution and the primary focus of the group was to implement a common set of teacher education 
modules. These groups tended to be large (~5 members) and the members held similar professional 
goals, usually in the form of a common course or a common approach to teacher education. Coming 
back to the metaphor of a host preparing a meal for guests, the host needs to consider ahead of time 
the match between the dish prepared and the kinds of foods the guests are accustomed to eating. The 
host could ensure this match by preparing a dish common enough to be palatable to all of the guests 
or by selecting guests amenable to the kind of dish that will be served. We see evidence of the 
Fellows in these groups using both strategies, both designing the module around common themes in 
the field as well as identifying Inquiry Group Members according to similar perspectives on teacher 
education. Once these groups gathered, their activities were highly structured, with the Fellow 
providing the module, the Inquiry Group Members enacting it with their students and providing data 
back to the group to inform the Fellow’s revision of the module. These clearly defined roles seemed 
to come with fairly hierarchical structures that positioned the Inquiry Group Members to enact the 
module without revisions, as to provide the cleanest data back to the Fellow. While some exceptions 
were made, these negotiations happened privately between the Fellow and the individual Inquiry 
Group Member. This kind of hierarchical structure guiding the division of labor is somewhat 
unsurprising if one considers the metaphor of a host preparing a single meal for many guests. 
Modifications to the meal just prior to the serving could be quite difficult for a host to accommodate 
and such modifications could jeopardize the more primary activities of the evening, such as sharing a 
meal together or gathering feedback about a dish. The kinds of comments Inquiry Group Members 
made following implementation of a module were summative—focused tweaking small elements of 
the module. Again, in light of the metaphor, this is perhaps unsurprising given the kinds of access 
guests at a dinner party have to the actual production of the meal. The structure of this type of Group 
could be observed in the use of the technological tools, the Fellows in these groups (compared with 
Fellows from the other two groups), were the heaviest users of the review, distribution, and analysis 
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tools; while their Inquiry Group Members (compared with Inquiry Group Members from the other 
two composites), tended not to use many tools.  

Potluck. A second way to organize a dinner party is for everyone to bring a single dish to share 
with others at the host’s home and collectively the individual contributions make up the meal, 
sometimes called a potluck. Those groups engaged in an independent construction activity, 
commenced after the Fellow had drafted a version of the module and the focus of these groups’ 
activity was on both providing feedback on the Fellow’s modules and using the Fellow’s module as 
inspiration for each member to make their own. These groups also tended to be large (~5 members) 
and its members held different professional goals; some joining because the work might offer 
research opportunities while other members joining to learn how to use technology to construct 
materials for their own courses. Like the Potluck model for dinner parties, these groups handled their 
collective work by dividing and conquering, with members carrying out their roles in fairly 
disconnected ways, working parallel to or in tandem to one another’s efforts sometimes unaware of 
the various work of other members. Unlike the Hosting model for organizing dinner parties, Potluck 
models do not require a host to ensure that the prepared dishes match the kind of foods guests might 
be interested in consuming.  For one, a guest’s own dish can provide some assurance for such a 
match, but also the wide variety of dishes to choose from ensures that guests will find something they 
are amenable to eating. Similarly, the Fellows in these groups were not observed needing to make 
any sort of accommodations or negotiations regarding implementation of modules, nor did the group 
make any sort of official bid that any materials would be implemented, leaving it mostly up to the 
Inquiry Group Members to decide what, if anything, they would like to try out in their own contexts.  
That said, like the participants at a potluck who sometimes seek out recipes for particular dishes 
brought by guests, Inquiry Group Members’ knowledge was seen to be a resource for offering ideas 
for their own module and revisions for the Fellow’s module. Both the Fellows and their Inquiry 
Group Members were the heaviest users of the authoring capabilities (when compared with their 
counterparts across the other two groups).  

Cooking Club. A third way to organize a dinner party is for guests and host to plan and cook a 
meal together as with cooking clubs or progressive dinners. Distinct from the Hosting or Potluck 
models for organizing a dinner party, the Cooking Club model for dinner party organization does not 
require for the bulk of meal preparation to happen prior to commencing the activity.  Instead, the host 
takes on the responsibility to send invitations or perhaps make provisions for supplies for the meal; 
and the guests for such events arrive with anticipation for taking part in the cooking. Similarly, 
groups engaged in collective construction activities commenced at a time when the module was still 
in the form of a vision and not yet drafted in any concrete way and the primary focus of the group 
was to create a common set of teacher education modules. These groups tended to be smaller (1 to 3 
members) and members held similar professional goals usually in the form of a common course or a 
common approach to teacher education. Unlike the Hosting model for organizing dinner parties, 
Cooking Club models do not place exclusive responsibility on the host for ensuring that the prepared 
meal matches the kind of foods guests might be interested in consuming, because the decision on the 
meal to be prepared is shared by the group. Similarly, the Fellows in these groups were not observed 
needing to make any sort of accommodations or negotiations regarding the eventual implementation 
of the collectively developed module. Perhaps like a Cooking Club that has been gathering for some 
time, these groups’ exchanges were characterized by an insider language, where group members 
seemed to have a shared understanding for the meaning and value of particular constructs (making it 
sometimes difficult for an outsider, such as the researchers, to follow the conversations). This way of 
using language seemed to, at least in some ways, make the Inquiry Group Members’ knowledge 
readily accessible for use by the group to design and revise the materials. The activity of collectively 
constructing modules seemed to promote the sharing of practical knowledge within these groups that 
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would often times move fluidly between bursts of creation followed by more theoretical 
conversations. We liken this kind of sharing of knowledge through collective action to the gathering 
of individuals around a counter to collectively dice a meal’s ingredients and who may learn simply 
by carrying out the practice of dicing near others who are also dicing, but might also stop to clarify 
the distinctions between the practices of chopping, dicing, and mincing. The Fellows in these groups, 
while not the highest users in any of the categories of authoring, reviewing, distributing, or 
analyzing, these Fellows maintain fairly high uses across all capabilities; while their Inquiry Group 
Members were the only frequent users of the reviewing capabilities (compared with Inquiry Group 
Members from the other two composites), they were also users of all capabilities. 

Significance of the Research 
In the above findings, we presented three different caricatures representing the ways in which we 

observed teacher educators organize themselves around the activity of constructing mathematics 
teacher education curriculum materials. In the presentation of these three caricatures, we see two 
important differences between the larger body of literature on curriculum use and this work. The first 
difference stems from the fact that these groups were designing digital materials that can be easily 
edited which is distinct from the more canonical use of curriculum in which materials are less 
amenable to such edits.  Related to this difference, we take as critical the finding regarding the ways 
in which the digital tools seemed to mediate various kinds of activities related to the design and use 
of online curriculum material.  The second difference stems from the fact that these groups were 
comprised of teacher educators, rather than K-12 teachers.  Distinct from K-12 curriculum use, we 
note that the “status” of curricular materials in this project is far from “fixed”. The mathematics 
teacher educators featured worked closely (or perhaps they were themselves) with curriculum 
writers. Related to this difference, we take as critical the finding that teacher educators not officially 
“charged” with the writing of the materials (as was the case for the Inquiry Group Members) can be 
positioned in very different ways within the work of developing and implementing curricular 
materials for teacher education. Perhaps most importantly, we see this work as laying the 
groundwork to begin asking questions about what each of these various models of activity affords to 
the work of designing and implementing teacher education with digital curricular materials.  

Endnote 
i The work presented in this paper was supported by NSF grant DRL- 1316241 to D. Chazan. All opinions are 

those of the authors and do not necessarily represent the views of the Foundation. 
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This study examines the perceptions of the Standards for Mathematical Practice (SMPs) held by 34 
middle school mathematics teachers (MSMTs) as evidenced by their interactions with seven lessons 
drawn from thinking device (TD) and delivery mechanism (DM) curriculum types. MSMTs’ 
perceptions of the SMPs consistent with their wording in the Common Core State Standards for 
Mathematics (CCSSM) included a flexible definition of precision beyond calculation. However, 
MSMTs also possessed a number of perceptions of the SMPs that were at odds with the wording of 
these standards in the CCSSM. For instance, they considered a curriculum resource’s imperative for 
students to use a tool to be an indication of SMP 5. MSMTs whose district-adopted curriculum was 
categorized as TD had significantly less invalid SMP justifications than teachers using DM curricula 
t(34) = 2.41, p = .022.  

Keywords: Curriculum, Standards, Middle School Education, Instructional Activities and Practices 

The majority of students in the US are situated within educational systems linked to the Common 
Core State Standards for Mathematics (CCSSM). As we enter the seventh year of CCSSM 
implementation we find ourselves at an educational crossroads. These crossroads consist of reflecting 
on what we have learned thus far with regard to CCSSM implementation and determining where we 
need to go from here to realize these ambitious standards. CCSSM research has investigated the 
standards themselves (Schmidt & Houang, 2012), examined elementary level mathematics 
textbooks’ alignment to the CCSSM, ascertained teachers’ perceptions of the CCSSM (Davis et al., 
2014), and described ways that teachers make the Standards for Mathematical Practice (SMPs) 
explicit to students during classroom instruction (Selling, 2016).  

Opfer, Kaufman, and Thomas (2016) investigated the perceptions of a nationally representative 
sample of K-12 public school teachers in the US and found that teachers reported spending less time 
on SMP 7 (structure) or SMP 3 (constructing arguments) than other SMPs. In contrast, other research 
(Davis et al., under review) suggests that teachers consider the SMPs to be components of each 
lesson that they construct. Opfer and colleagues also found that teachers at the elementary level were 
more likely to misunderstand SMP 4 (modeling) than secondary teachers. Heck and colleagues 
(2011) noted that a group of mathematics educators and policy researchers they surveyed were 
concerned about the separation of the SMPs from content in the CCSSM as well as a lack of clear 
descriptions of what a trajectory in learning SMPs might look like across grades.  An important 
component that is missing from this research involving teachers’ perceptions of the CCSSM is the 
mediating presence of their district-adopted curricular resources. Mathematics teachers frequently 
use textbooks (Banilower et al., 2013) and other research that we have completed as part of our larger 
study suggests that teachers interpret textbook materials vis-à-vis the CCSSM (Roth McDuffie et al., 
2017). Given this setting, we were especially interested in the perceptions of teachers using different 
types of curricula as textbooks that have been referred to as standards-based were created from 
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documents that contained processes similar to the SMP. Hence, this study was designed to answer 
two research questions. 

1. What perceptions do a group of middle school mathematics teachers (MSMTs) hold with 
regard to the SMPs as revealed through their work with two types of curricular resources? 

2. How do the SMP perceptions of a group of MSMTs differ by district-adopted curriculum 
type? 

Frameworks 

Teachers’ Interactions with Curricular Resources 
We take the perspective that teachers’ curriculum use involves what Remillard (2005) describes 

as participation with the textbook. That is, we consider teachers to be active interpreters of their 
curricular resources. Moreover, we consider these interpretations to be governed by teachers’ 
personal resources (e.g., beliefs), the contexts in which they work, orientation, professional identity, 
students, and curriculum (Stein, Remillard, & Smith, 2007). Additionally, teachers themselves are 
transformed by their work with curricular resources (Remillard). We situate teachers’ work with their 
curricular resources within Stein and colleagues temporal phases of curriculum use. In particular we 
use their terminology intended curriculum to denote the lesson plans that teachers create from their 
curricular resources or written curriculum. We consider curricular resources to encompass all of the 
materials associated with a program (e.g., assessment resources) in print or digital forms. 

Types of Curriculum Programs 
In earlier work (Choppin, McDuffie, Drake, & Davis, 2015) we conceptualized curricular 

resources based upon monologic and dialogic communication functions. Curricula were categorized 
as following a delivery mechanism (DM) if they serve a monologic function where content is viewed 
from the perspective of an expert and delivered to novices. Curricula were categorized as thinking 
device (TD) if they serve a dialogic function where the goal involves soliciting the thinking of 
novices and using this knowledge to move novices towards more complex thinking levels. We use 
the terminology TD teachers and DM teachers to denote teachers whose districts have adopted TD 
curricula types and DM curricula types, respectively, and we place the curriculum type after the 
teacher’s pseudonym in the results section.  

Methods 
This study is a component of a larger study examining how MSMTs interact with their curricular 

resources in the context of the CCSSM. This component of the larger study used staged lesson plans 
(SLPs) to reveal MSMTs’ interactions with their curricular resources vis-à-vis the CCSSM. In an 
SLP, teachers who have used one type of curricular resource for at least one year were given one 
week to create an intended curriculum from a different type of curricular resource. The SLP was 
designed to reveal how MSMTs used their district-adopted curricular resources by asking them to 
plan from a different type of curriculum resource. During the SLPs MSMTs were asked a series of 
questions involving the CCSSM content standards and SMPs, the SLP curricular resources as well as 
the district-adopted curricular resources, and the intended curriculum. Participants were purposefully 
drawn from school districts that had adopted both TD and DM curricula in print and digital forms 
from both rural and urban middle school settings. A total of 62 different MSMTs working in four 
different CCSSM states completed 75 SLPs in two waves during the 2013-2014 and 2014-2015 
school years. In the initial wave of SLPs, MSMTs were asked to create an intended curriculum from 
a SLP curriculum resource that was of a different type than the district-adopted curricular resource. 
In the second wave of SLPs, a selection of MSMTs was asked to create an intended curriculum from 
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three different lessons from a TD curriculum (described in more detail below). All teachers were 
asked which SMPs were addressed in the respective intended curricula that they created from these 
curricular resources. However, only 34 of these teachers were asked specifically to point out in their 
intended or written curricula where SMPs occurred. The 37 SLPs completed by these teachers form 
the data set at the center of this study. A total of 21 and 13 MSMTs had been using a DM and TD 
curriculum for at least one year, respectively.  

SLP Curricular Resources 
The curricular resources used in the SLPs were drawn from three different curriculum resources, 

two of which were considered to be TD, and one DM. The two categorized as TD were Connected 
Mathematics 3 (CM) (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2014) and College Preparatory 
Mathematics (CPM) (Kysh, Dietiker, Sallee, Hamada, & Hoey, 2013). The DM curriculum was 
Glencoe Mathematics (Glencoe) (Carter, Cuevas, Day, & Malloy, 2013). MSMTs who taught grades 
6 were provided with a lesson involving proportional reasoning:  (Glencoe – P) (Carter et al., 2013, 
pgs. 14-27); (CM – P) (Lappan et al., 2014, pgs. 18-23); Core Connections: Course 1 (CPM1) (Kysh, 
Dietiker, Sallee, Hamada, & Hoey, 2013a, pgs. 224-227); or Connections Course 2 (CPM2) (Kysh, 
Dietiker, Sallee, Hamada, & Hoey, 2013b, pgs. 743-745). MSMT who taught grade 8 were provided 
with a lesson involving linear functions (Glencoe – LF) (Carter et al., 2013, pgs. 267-277); (CM – 
LF) (Lappan et al., 2014, pgs. 5-11); or Core Connections Course 3 (CPM3) (Kysh, Dietiker, Sallee, 
Hamada, & Hoey, 2013c, pgs. 308-311). We chose roughly equal numbers of grade 7 teachers to 
work with proportional reasoning and linear functions lessons. For each SLP curricular resource, 
MSMTs were provided with the student textbook, lesson planning resources, unit planning resources, 
assessment resources, and a copy of the CCSSM. The number of MSMTs working with each SLP 
curriculum resource by district-adopted curriculum type appears in Table 1. 

Table 1: Participants by Curriculum Type and SLP Curriculum Resource 
 District-Adopted Curriculum Resource 

SLP Curriculum Resource DM TD 
Glencoe – P  – 3 

Glencoe – LF  – 5 
CM – P  9 – 

CM – LF  11 – 
CPM1 2 – 
CPM2 – 4 
CPM3 1 2 

Analysis 
The data in this study were analyzed through iterative cycles (Miles, Huberman, & Saldaña, 

2014). In an initial cycle of analysis we coded data with a variety of broad codes connected to a 
larger project. In this study, we focused on data coded as 01-MP (mathematical practices), 0-Curric 
(descriptions of intended curricula or written curricula), and 04-Adapting (adaptations made to the 
written curricula). Data coded as 01-MP were subsequently coded for each of the SMPs based upon a 
word or words associated with that SMP. For example, the word persevere led us to categorize these 
data as SMP 1. Interview excerpts including language that was ambiguous (e.g., explore) or 
potentially could pertain to more than one of the SMPs (e.g., explain) was excluded from analysis. 
Next, a combination of in-vivo and descriptive coding was used on data associated with each SMP. 
Last, we examined the codes within each SMP for themes shedding light on MSMTs’ perceptions. 
We determined the validity of each MSMT’s justification for the presence of a SMP in the curricular 
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resources or intended curriculum by comparing the teacher’s justification to the written description 
for each of the SMPs in the CCSSM using techniques similar to Opfer and colleagues (2016) as well 
as our own previous work (Davis et al., under review) in excerpts coded as 0-Curric. Data coded as 
04-Adapting were used to better understand the adaptations made with respect to the SMPs. Our 
analyses of the written description of the SMPs in the CCSSM led to the identification of SMP 1 and 
SMP 3 in both the CM – P and CM – LF SLP materials and we calculated the percentage of DM 
teachers who identified these SMPs in these materials. As the number of invalid SMP justifications 
made by the 34 teachers in our study met the assumptions of an independent samples t-test we used a 
two-tailed test to examine the significance of the differences in invalid justifications between TD and 
DM teachers with an alpha level of .05. Additionally, we calculated the percentage of valid SMPs out 
of the total SMPs noted for DM and TD teachers.  

Results 

SMP Perceptions of MSMTs Regardless of Curriculum Type 
A common theme running through the majority of MSMTs’ responses in the first SMP was 

multiple approaches. MSMTs perceived that both perseverance and sense making required multiple 
approaches. Additionally, the majority of teachers noted that problems that required students to make 
sense of them and preserve in solving them were complex in some way. As Davidson (TD) put it in 
her SLP, “If they’re going to persevere in solving something, it better be something that is going to 
challenge their thinking in some way.” 

Only six teachers (all DM) mentioned that their SLP curricular resources contained components 
of SMP 2. A common theme among responses with regard to this SMP was real-world contexts. That 
is, some teachers stated that for this SMP to be present students needed to consider the mathematics 
embedded in a real-world situation. Contextualization and decontextualization were both mentioned 
by MSMTs in reference to SMP 2. 

For many MSMTs, SMP 3 embodied the development of arguments and the careful examination 
of the arguments produced by others. Instead of arguments, however, MSMTs often stated that 
students would “discuss,” “share,” or come to a “consensus” about different ways to solve a problem 
such as determining which mixture was “most orangey” in the CM – P lesson.  

Three of the SLP curricular resources (Glencoe – LF, CM – LF, and CPM3) specifically directed 
students to create tables, graphs, and equations for a variety of real-world contexts involving linear 
functions. An example of one set of questions from CM – LF appears below.  

 

 
 

A. 1. Make a table showing the distance walked by each student for the first ten seconds. 
How does the walking rate affect the data? 
2. Graph the time and distance on the same coordinate axes. Use a different color for 
each student’s data. How does the walking rate affect the graph? 
3. Write an equation that gives the relationship between the time t and the distance d 
walked for each student. How is the walking rate represented in the equation? 
(Lappan et al., 2014, pgs. 6-7). 
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MSMTs considered questions in the textbook lessons such as the one above to be instances of 
SMP 4. Christiansen (DM) justified the presence of mathematical modeling in the set of questions 
above in the following way: “They’re making a table as a model. They’re making a graph to model 
the situation. They’re also going to be asked to write an equation for each situation. That would be a 
type of model.”  

None of the MSMT discussed other aspects of modeling such as moving from the mathematical 
model back to the real-world context or the assumptions that needed to be made in creating the 
mathematical model for some real-world situation. For Dietrich (DM) and other MSMTs the 
presence of what they deemed to be a real-world situation was a necessary and sufficient condition 
for SMP 4 to occur in the lesson.  

Consider the problem appearing in the CPM1 (p. 226) curricular resource.  
 
With your team, you will use the percent ruler  

shown at right to examine a sample of 40 raisins  
and peanuts. 

 
Copy the percent ruler onto your paper.  
Then use it to determine how many raisins 
would make 50% of the sample. How many  
raisins are in 10% of the sample? (Kysh et al., 2013a, p. 226).  
 
MSMTs in our study felt that imperatives asking students to use such tools in the curricular 

resources was evidence that students were gaining proficiency with SMP 5 as seen in Tyler’s (DM) 
statement: “You have to use appropriate tools strategically in this one because you’re working with a 
percent ruler.” Other teachers pointed to the use of tools such as graphing calculators to check their 
work in creating the graph by hand. Thus, for these teachers they considered such tools as being used 
strategically by students. Other teachers considered the open-ended use of tools to be a prerequisite 
for the presence of SMP 5 in curricular resources.  

Despite previous research suggesting that many teachers feel that SMP 6 appears in each 
mathematics lesson they prepare (Davis et al., under review) only 15 out of 34 MSMTs listed SMP 6 
as appearing in the SLP curricular resources they were given or their intended curricula. Altogether 
MSMTs’ mentioned precision with regard to communication, accuracy, measurements, labels, 
reading/creating graphs, calculations, and gathering data.  

Several MSMTs described the presence of SMP 7 in their SLP curricular resources. For instance, 
Dietrich (DM) wanted to draw students’ attentions to the structure of percent being compared to 100 
in the CPM1 lesson. Similar to the CCSSM architects, MSMTs connected structure with pattern 
identification (SMP 8). This is perhaps best seen in Christiansen’s (DM) examination of the CM – LF 
curricular resource where she perceived the curricular resources as providing opportunities for 
students to identify the structure of constant slope within a linear function as embodied in tables, 
graphs, and equations.  

SMP 8 expects students to look for and express regularity in repeated reasoning. MSMTs noted 
that students would have opportunities to identify the y-intercept and slope of linear functions 
appearing in tables, graphs, and equations either in the written or intended curriculum.  

SMPs Perceptions by MSMTs’ District-Adopted Curriculum 
We found that 63% of SMP justifications made by teachers using a DM curriculum type and 85% 

of SMP justifications made by teachers using a TD curriculum type were valid. There was a 
statistically significant difference in the number of invalid SMP justifications for TD and DM 
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curriculum types t(34) = 2.41, p = .022. Regardless of curriculum type MSMTs struggled with 
correctly justifying SMP 4 and SMP 5. For TD teachers these were the only two SMPs in which they 
had incorrect justifications. In SMP 1, DM teachers only drew attention to making sense of problems 
and not to perseverance. Several DM teachers confused complexity with abstraction in SMP 2. For 
instance, one of the lessons (CM – P) asked students to determine which of four different orange 
juice mixtures was most orangey and least orangey. Martin (DM) stated that this problem involved 
SMP 2 and justified the practice in this way, “For number two, with reasoning abstractly and 
quantitatively, now we’re getting into, are they going to think outside the box on certain things as far 
as ‘How am I going to get to what’s most orangey or least orangey?’” Interestingly, none of the TD 
teachers identified SMP 2 in the SLP curricular resources. In SMP 3, DM teachers described 
checking answers for correctness as an engagement in the development of an argument. Both TD and 
DM teachers incorrectly justified SMP 4. TD teachers focused on the presence of multiple 
representations of a function (e.g., graph), but did not connect these to real-world contexts. DM 
teachers’ incorrect justifications in SMP 4 involve the presence of multiple representations or a real-
world context. DM and TD teachers both incorrectly asserted that the presence of tools such as a 
table was evidence of SMP 5. In SMP 6, one DM teacher (Shaw) stated that when students were 
learning a new method for solving a problem, students did not need to be precise in their work. In 
SMP 7 and 8 there was not sufficient detail to determine the validity of the justifications of the same 
two DM teachers (Cartwright and Tyler). Additionally, only 45% of the DM teachers identified SMP 
1 and only 35% of DM teachers identified SMP 3 across the CM – P and CM – LF lessons.  

A total of eight TD MSMTs were engaged in an SLP for the Glencoe – P or Glencoe – LF 
lessons. In all of these cases, the teachers saw no indication of the SMPs in the lessons. Granville 
(TD) summed up her evaluation of the Glencoe – P materials in the following way, “I mean what 
they say is that the aspects of mathematical thinking, practices 1, 3, and 4 are emphasized in every 
lesson. I just had a really hard time imagining the way this seemed to play out that they were doing 
any kind of engaging in any of the practices.” Consequently, all eight of the teachers made 
significant adaptations to their DM curricular resources. The eight TD teachers began their intended 
curricula by taking problems from the DM curricular resource that were presented as being solved in 
one way (e.g., table) and providing them to students without an expected solution method. They felt 
that without presenting a particular method, these problems better embodied SMP 1 as they were less 
leading, more investigative and would be complex for students to solve. These TD teachers also 
provided students with a variety of different tools for students to use to solve these problems, which 
they felt was better connected to SMP 5 due to the fact that students had to choose which tool they 
would use to solve the problem. Another common theme in the intended curricula among these 
teachers was the use of cooperative groups whereby students would be expected to solve the 
problems together and engage in argumentation as they justified their solution methods, thereby 
engaging in SMP 3.  

Discussion and Implications 
This study examined a group of MSMTs’ perceptions of the eight SMPs as well as how those 

perceptions differ by MSMTs’ district-adopted curriculum type. On the one hand, our findings 
suggest that the MSMTs we sampled are able to correctly identify SMPs 1, 2, 3, 6, 7, and 8 in a 
variety of curricular resources or their intended curricula. On the other hand, MSMTs’ perceptions 
about SMPs 4 and 5 were problematic. Teachers using both DM and TD curriculum types did not 
identify the connection between a real-world context and the mathematical representation or the need 
to translate from the mathematical representation back to the real-world context. They also did not 
mention other aspects of modeling such as determining what aspects of the real-world situation 
should be included in the model and which should be discarded. The MSMTs we interviewed tended 
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to focus on just one action associated with modeling. In SMP 5, MSMTs considered the mere 
presence of a tool such as a percent ruler to be sufficient for students to gain proficiency with this 
practice. That is, they were concerned less about what tools were appropriate for a given situation 
and what it meant to use those tools strategically.  

We assert that MSMTs’ difficulties with SMP 4 and 5 are connected to the issue of learning 
trajectories involving these practices. It is not only important to determine what a particular SMP 
looks like at a particular grade level (Heck et al., 2011), it is important to understand what types of 
knowledge and skills comprise an SMP, when those should best be taught, how those skills are 
sequenced, and what curricular resources embodying these activities look like. For example, we 
would expect that an initial step in developing competency in SMP 5 would involve understanding 
how to use particular tools. However, as several MSMTs in our study noted in their intended 
curricula, students need to be asked to complete tasks where they must choose which tool is best 
suited for the task and justify that use of tools. As we stand at these CCSSM educational crossroads, 
an important next step in supporting teachers in bringing these standards to life involves providing 
professional development for teachers in these two SMPs, articulating a set of competencies 
associated with these skills, and developing curricular resources that embody these skills set within a 
reasoned trajectory. 

We found that the DM teachers in our sample were less successful in identifying SMPs in their 
curricular resources or their intended curricula than the TD teachers we interviewed. This suggests 
that the understanding of SMPs exhibited by the DM teachers in our sample is different from the 
understanding of the SMPs held by TD teachers we interviewed. Consequently, we would expect that 
DM teachers’ classrooms would provide fewer opportunities for students to engage in the SMPs for 
two reasons. First, DM teachers may experience difficulty in ascertaining when these practices occur 
in their curricular resources. Second, as the TD teachers demonstrated when they engaged with DM 
curricular resources, these materials may simply not provide students with many opportunities to 
engage in the SMPs. 

TD teachers engaged in SLPs involving DM curricular resources demonstrated that invigorating 
these materials with SMPs is not an easy task. In the eight cases where TD teachers were engaged in 
this work, their intended curricula bore only a slight resemblance to the DM curricular resources 
from which they were drawn. If educational policy advocates wish to take the development of 
students’ SMP proficiency seriously or as the CCSSM implores, connect content to the SMPs, our 
study suggests that not all types of curricular resources are created equal. Indeed, bringing the SMPs 
to life in the classroom may require that we seriously consider the adoption of TD curriculum 
resources and the concomitant professional development they require as we reflect on our location at 
the CCSSM crossroads and where we go from here. 
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As part of a larger study, we report findings on teachers’ use of the Common Core State Standards 
for Mathematics (CCSSM) and teacher resources (TR) that were included with teachers’ published 
curriculum programs. We analyzed 147 lesson planning interviews with 20 middle school teachers to 
understand how teachers interpreted and enacted the CCSSM while working with their curriculum 
materials. We investigated teachers’ noticing of CCSSM and features of TR in planning lessons. 
Regardless of curriculum, teachers perceived that the lessons were designed to address the CCSSM. 
Findings for patterns among curriculum type, teacher orientation, and teachers’ noticing are 
presented. Implications for curricular policy and design are discussed. 

Keywords: Curriculum, Curriculum Analysis, Instructional Activities and Practices, Middle School 
Education.  

The purpose of this study was to explore patterns related to teachers’ orientations to instruction 
(Remillard & Bryans, 2004), teachers’ uses of district-adopted curriculum programs (i.e., the 
designated curriculum [Remillard & Heck, 2014]), and specific curricular features teachers noticed 
(Jacobs et al. 2010, 2011) as they used teacher resources to plan lessons (i.e., the intended 
curriculum). These lessons – and the designated curriculum – were ostensibly aligned with the 
Common Core State Standards for Mathematics (CCSSM) (i.e., the official curriculum) (Remillard & 
Heck, 2014). The CCSSM (CCSSI, 2010) were initially adopted by 45 states plus the District of 
Columbia, and, despite a rollback in some states, the CCSSM or CCSSM-based standards are still in 
place in most states. Thus, the CCSSM-adopting states share a relatively common articulation of 
content and the progression of content across the grades. This provides researchers an opportunity to 
consider how districts and teachers interpret standards and to understand the role of curriculum 
materials in the process of enacting those standards. 

When asked to compare the CCSSM with prior standards, teachers interpreted the CCSSM as 
requiring a greater emphasis on problem solving, discovery, communication, and conceptually-driven 
instruction (Roth McDuffie et al., 2015). Although teachers expressed a relatively strong view of 
these CCSSM features, prior research on teachers’ enactments of similar recommendations in the 
National Council of Teachers of Mathematics Standards documents (NCTM 1989) showed that even 
reform-minded teachers did not tend to implement the recommendations beyond superficial features 
(Coburn et al., 2016; Spillane & Zeuli, 1999).  

Framework 
Our framework draws on three complementary perspectives: orientations toward teaching and 

learning mathematics, teachers’ professional noticing, and types of curriculum programs. Each 
perspective is described briefly below (also see Roth McDuffie et al., 2017). 
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Orientations toward Teaching and Learning Mathematics 
We see teachers as designers as they work with and enact curriculum across a range of 

classrooms contexts (Brown, 2009; Remillard & Heck, 2014). Productive enactments and adaptations 
of curriculum materials, desired outcomes of the design process, are responsive to local contexts and 
involve teachers noticing students’ mathematical thinking in relation to curriculum resources 
(Choppin, 2011). However, most adaptations of high cognitive demand tasks cause the cognitive 
demand to decline to procedural routines (Stein et al., 1996). Thus, how teachers use materials can 
limit learning opportunities for students; however, others have pointed as well to curriculum 
materials as limiting factors (Stein et al., 1996). Thus, which curriculum materials are designated for 
use and how teachers enact materials can both affect student learning and achievement (Stein et al., 
2007; Tarr et al., 2008). In regard to teachers’ use of materials, teachers’ orientations toward 
curriculum materials influence how the materials are enacted (Remillard & Bryans, 2004). Remillard 
and Bryans describe teachers’ orientation toward curriculum materials and its relationship to 
learning as,  

A set of perspectives and dispositions about mathematics, teaching, learning, and curriculum that 
together influence how a teacher engages and interacts with a particular set of curriculum 
materials and consequently the curriculum enacted in the classroom and the subsequent 
opportunities for student and teacher learning. (p. 364) 

To classify teachers’ orientations, we turned to Munter, Stein, and Smith’s (2015) two 
instructional models of instruction, dialogic and direct. Munter and colleagues’ characterizations of 
primary instructional patterns in US mathematics classrooms represent a consensus view from a 
group of expert stakeholders, and they describe nine characteristics associated with each model. 
Dialogic instruction entails teachers providing students with opportunities to: wrestle with big ideas, 
assert and justify claims, and engage in carefully designed, high cognitive demand tasks (cf., Stein et 
al. 1996). Teachers engage in practices including orchestrating rich class discussions, introducing 
representations that can be used repeatedly in different situations, and sequencing activities in ways 
that position students as autonomous learners (Munter et al., 2015). Dialogic instruction is consistent 
with visions for effective teaching and learning espoused by NCTM (NCTM, 2014) and seminal 
research in mathematics education (e.g., NRC, 2005; Stein et al., 2007). Although both dialogic and 
direct instruction reflect a commitment to students’ understanding of mathematics, direct instruction 
aligns with an acquisition approach (Sfard, 1998). Teachers maintain primary intellectual authority 
(along with the textbook) by: presenting an objective for a lesson, demonstrating how to complete 
problems, scaffolding students’ practice, and evaluating to correct students. To engage students, 
teachers maintain a brisk pace, invite unison responses, and praise correct responses (Munter et al., 
2015). 

Given that meaningful and authentic problem solving, sense-making, and explaining and 
justifying solutions are emphasized in the CCSSM’s Standards for Mathematical Practice (MPs), 
then it seems that the CCSSM align with a dialogic model. Yet, the CCSSM are ambivalent on 
pedagogical approaches (McCallum, 2012). On one hand, the MPs align with the characteristics and 
goals of dialogic instruction; on the other hand, due to the major gaps in empirically developed 
learning trajectories in key middle grade topics (Daro, Mosher, & Corcoran, 2011), the middle grade 
content standards are based on the logic of the discipline as much as they are framed by 
developmental and reasoning-focused approaches. Thus, the CCSSM leave room for teachers to 
attend to, interpret, and enact the content standards and MPs in various ways.    

In contextualizing research on teaching in a broader system, we turned to Remillard and Heck’s 
(2014) model describing a system for curriculum policy, design, and enactment, as described above, 
with a focus on: official curriculum (e.g., CCSSM and/or other policy documents); the designated 
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curriculum (plans and curriculum materials authorized by local educational authorities) and teacher-
intended curriculum (interpretations and decisions in planning). We considered how teachers used 
and worked between the CCSSM as an official curriculum and their designated curriculum to 
develop teacher-intended curriculum.  

Teacher Noticing in Teaching and Learning Mathematics 
An emerging body of research on mathematics teachers’ noticing supported us in studying how 

teachers construct an intended curriculum and then enact curriculum (Jacobs et al., 2010, 2011; 
Mason, 2011). Although researchers have framed noticing in slightly different ways, a commonality 
is that noticing involves not only the attention that teachers give to classroom actions and 
interactions, but also teachers’ reflections, reasoning, decisions and actions. Jacobs and colleagues 
defined professional noticing of children’s mathematics thinking as consisting of a set of three 
interrelated skills: attending, interpreting, and deciding how to respond (Jacobs et al., 2010, 2011). 
Jacobs and colleagues argued that deciding to respond should be included as part of noticing because 
it is linked to the other skills of professional noticing (attending and interpreting) “during teachers’ 
in-the-moment decision making.” Jacobs and colleagues (2011) view the three skills of attending, 
interpreting, and deciding to respond as “inextricably intertwined” (p. 99), and we share this view. In 
forming our analytical framework to investigate teachers’ work with curriculum, we adapted research 
on teacher noticing (Jacobs et al., 2010, 2011) to include curriculum as an object of noticing. Other 
researchers independently have begun to use a framing of curricular noticing in studying prospective 
teachers as they learn to work with curriculum materials (c.f., Males et al., 2015).  

Types of Curricular Programs  
We conceptualize curricula according to monologic and dialogic communication functions 

(Wertsch & Toma, 1995). We characterize curriculum programs as delivery mechanism (DM), if they 
are designed from the monologic function, in that the content is developed from the perspective of 
expert performance, to be delivered to novices. In contrast, Thinking Device (TD) curriculum 
programs emphasize the dialogic function so that the primary goal is to elicit student thinking and to 
provoke interactions that generate understanding. In previous work for the larger study, the 
curriculum programs used by the participating teachers were analyzed and classified according to 
these two types (Choppin et al., 2016). The above perspectives framed the study and served as the 
foundation for our analytic frameworks, as described in the next section.  

Methods 
From our larger data set, we purposefully selected 20 teachers using four different curriculum 

programs, with two TD programs and two DM programs. We applied qualitative methods of analytic 
induction and constant comparison (Bogdan & Biklen, 2007; Miles, Huberman, & Saldaña, 2014) to 
identify patterns and themes regarding teachers’ use of the CCSSM and the teacher resources (TR) 
that are provided in teachers’ designated curriculum materials in planning lessons. The research 
questions driving the study were: (1) In planning lessons, what do teachers notice in CCSSM and in 
TR?; and (2) How do types of curriculum materials and teachers’ orientations relate to teachers’ 
noticing during planning? 

Data Sources 
From our larger project data, we selected four districts with curriculum programs of different 

types. From these districts, we selected 20 teachers who participated for at least one year, so that we 
had a representation of each of the middle grades (grades 6 to 8) and teaching experience (from first-
year to over 20 years). All participating districts and teachers stated that they were implementing the 
CCSSM in their instruction. Data sources included 147 interviews: pre- and post-lesson interviews 
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that focused on teachers’ planning with their designated TR, and interviews as teachers planned a 
lesson with materials that were different from their designated curriculum (using contrasting 
resources). We collected data over three academic years from Fall 2012 (start of Year 1) to Spring 
2015 (end of Year 3), and districts participated in either two or three years of the project, with three 
to four interviews conducted each year with each teacher participant (see Table 1). The classification 
shown for each curriculum is based on prior analysis (Choppin et al., 2016).  

Table 1: Teachers, Designated Curricula, and Curriculum Type 
District Teachers (with # of Interviews per 

Teacher) 
Designated Curriculum Program 

(by Year of Study) 
Curriculum 

Type 
Anna Anderson (6), Cartwright (3), 

Dietrich (7), Martin (3), Shaw (6) 
Digits (Fennell, 2010) (Y2, Y3) DM 

Chester Allen (9), Granville (6), Menard (7), 
Pless (11) 

Connect Mathematics Project 
(CMP, Lappan et al., 2014), 
CMP2 (Y1), CMP3 (Y2,Y3) 

TD 

Denton Amedon (4), Blackburn (12), 
Gagnon (10), Gates (9), Hastings 
(7), Leonard (12), Sprague (6) 

Glencoe (Carter et al., 2013) (Y1, 
Y2), CMP3 (Y3) 

DM (Y1, 
Y2) 

TD (Y3) 
Sanders Boris (8), Gryder (6), Pearle (8), 

Ross (7) 
CPM Mathematics (Kysh et al., 
2013), (Y2, Y3) 

TD 

Data Analysis 
We analyzed data through iterative cycles (Miles, Huberman, & Saldaña, 2014). Initially, using 

qualitative data analysis software, we coded data with a set of broad codes related to the larger 
project. For this study, we focused on data coded as “teacher resources” and “planning.” We then ran 
reports to gather all data with these codes for the 20 teachers. We conducted finer level coding of 
these reports for instances of: (1) evidence of dialogic or direct orientations, applying Munter et al.’s 
(2014) nine characteristics; and (2) curricular noticing of the CCSSM (e.g., content standards, 
mathematical practices) and features of the TR (e.g., lesson structure, suggested questions, example 
problems, student approaches). We generated analytic memos for the participants to describe patterns 
and conjectures and compile data associated with these patterns. To examine patterns across 
participants, we created a matrix with rows for each participant and columns for foci of noticing and 
orientations, as described in the codes above. Within each cell we recorded findings for each teacher 
and then examined patterns and differences by curriculum program and by curriculum type. 

Results 

We categorized teachers into one of four categories based on teachers’ designated materials and 
orientations evidenced in planning (see Table 2). For a few teachers, identifying orientation was not 
as clear as for most. For example, Pearle predominately demonstrated a dialogic orientation when she 
explained that she focused on “big problems and not just your memorization or your simple 
computation, like the math that I grew up [doing]” and on writing to support thinking. However, 
Pearle planned to introduce new vocabulary by presenting it to students at the beginning of the lesson 
(a direct orientation). In these cases, we classified based on the predominant orientation, with no 
more than one characteristic aligning with the other orientation. Teachers’ orientations were 
consistent in planning with both their designated materials and with the contrasting materials 
provided in the interview. We identified two primary patterns for orientation and type of designated 
materials: TD materials paired with dialogic orientations and DM materials paired with direct 
orientations. That is, for 17 of the 20 teachers, their orientations aligned with the design of their 
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designated curriculum materials. For the remaining three teachers (who demonstrated a direct 
orientation and were using TD materials), they had previously used Glencoe (DM) and were in the 
first year of using CMP3 (TD). Their comments and planning indicated that they noticed ways CMP3 
was different from Glencoe, but they continued to remain at the center of the lesson, hold authority 
for content, and prioritize procedures. For example, Gates stated, “I’m …struggling with [CMP 
because] kids do not get to the standard algorithm…As I say to [my students], I need you to do 145 
divided by 7 and just do it with the old standard [algorithm.]” 

Table 2: Teachers Categorized by Orientation and Their Designated Curriculum   
District Thinking Device Materials (TD) Delivery Mechanism Materials (DM) 

Dialogic Allen, Amedon, Boris, Granville, 
Gryder, Leonard*, Menard, Pearle, 
Pless, Sprague* (10 Teachers) 

(0 Teachers) 

Direct Gagnon*, Gates*, Hastings*  
(3 Teachers) 

Anderson, Blackburn, Cartwright, Dietrich, 
Gagnon*, Gates*, Hastings*, Leonard*, 
Martin, Shaw, Sprague*  
(11 Teachers) 

*Note: Denton teachers changed from Glencoe to CMP during the study. Teachers marked with 
an * appear in two categories, based on the materials they used that year. 

 
Next, we analyzed patterns for curricular noticing in teachers’ planning with their designated TR 

and with contrasting materials (see Table 3). Within each cell, italicized phrases are the topics of 
noticing, and text that follows represents the primary and consistent themes for each form of 
curricular noticing (i.e., how teachers attended, interpreted, and decided to respond) within that 
category. As much as possible, we incorporated teachers’ phrasing and terms to represent the theme 
(e.g., “big ideas”, “key questions”, “investigations”, “inquiry-based”, “talk through”, “key steps”). In 
three of the four categories, teachers interpreted the TR as aligning with CCSSM; however, teachers 
with a dialogic orientation interpreted DM materials as not addressing the CCSSM. These teachers 
were planning with contrasting TR (Glencoe), rather than their designated TR (CMP3). Thus, all 
teachers viewed their designated TR as aligned with CCSSM, and yet their interpretations and 
decisions with the CCSSM and TR in lesson planning varied, as shown in the other cells.  

As an example, Allen (dialogic orientation) evidenced her noticing of CMP3’s TR features and 
planned to provide an initial, informal exposure to ratio as a way to develop understanding: 

[I want students to] understand what the numbers are, what they’re there for, what they’re 
being used as.…Do they know [what each part of the ratio refers to]?….I always feel like the 
[first] investigation, it’s really just that informal exposure….I think being able to recognize 
different types of comparisons, what they might look like, how you might get them, I’m just 
kind of starting to set the stage for [understanding that] isn’t [just one] type of comparison. 
In contrast, Gates (direct orientation) noticed Glencoe’s TR features by focusing on the steps she 

planned to demonstrate and how students will practice these steps.  

For example, 2+y=3, we all use the strategy of bringing down a railroad track and then doing 
whatever you do to the side…. So I have a process where I usually have them do a few 
problems with me,…and if I feel like they’re okay, I have them do a few problems with a 
partner, and then if they’re doing well, … I let [students work] independent[ly]. 
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Table 3: Noticing Patterns in Planning with Designated vs. Contrasting Curriculum  
Teacher 
Orientation 

Curriculum Type 
Thinking Device Materials (TD) Delivery Mechanism Materials (DM) 

Dialogic 
Teachers 
 

CCSSM and TR Alignment: Interpreted 
materials as aligned with CCSSM 

CCSSM and TR alignment: Interpreted 
materials as not aligned with CCSSM 

MPs: Attended to MPs in CCSSM and 
decided to feature these through open 
problems and investigations.  
 

MPs: Attended to lack of focus on MPs, 
interpreted as limiting students’ 
opportunity to learn, and decided not to 
not use or substantially adapt TR. 

TR Feature, Problems and Homework: 
Attended to and worked problems as 
students might to anticipate their 
thinking, strategies, and confusions 
(interpreting and deciding). Selected 
problems to align with big and with MPs 
(interpreting and responding). 

TR Feature, Problems and Homework: 
Attended to problems and homework, 
interpreted as focused on skills and as 
not deep enough to induce reasoning, 
conjectures, and explaining. Decided to 
adapt or replace or only use in limited 
ways for practice. 

TR Feature, Lesson and Participation 
Structures: 
Attended to Launch-Explore-Summary 
(L-E-S) structure. For each phase 
considered key questions and approaches 
to engage students in productive 
struggle, communicating, and justifying 
(interpreted). Decided to launch the 
lesson with key questions and contexts, 
how to use cooperative groups, and how 
to facilitate a summary discussion. 

TR Feature, Lesson and Participation 
Structures: 
Attended to the role the curriculum 
materials and the teacher played in 
presenting (“telling”) students what 
steps to use to solve problems, with 
time for students to practice similar 
problems. Interpreted the heavy focus 
on whole group and practice as limiting 
students’ development of 
understandings and engagement in MPs. 
Decided to substantially adapt or 
replace approaches from TR. 

Direct 
Teachers 

CCSSM and TR alignment: Interpreted 
materials as aligned with CCSSM 

CCSSM and TR alignment: Interpreted 
materials as aligned with CCSSM 

MPs: Attended to MPs, interpreted as 
different from designated materials, 
decided not to use the TR approaches 
related to mathematical practices due to 
perceived time needed and/or needing to 
cover “basics” first. 

MPs: If attended to CCSSM, attended to 
content standards (not MPs), interpreted 
as topics to be covered, and decided to 
cover standards by following TR 
(showing procedures and providing time 
for practice). 

TR Features Problems and Homework: 
Attended to inquiry-based approaches, 
interpreted as “overwhelming” for 
planning and students, and decided 
problems were beyond their students’ 
capabilities. Decided to adapt or replace 
with practice problems. 
 

TR Feature, Problems and Homework: 
Attended to problem sets as a first-step 
in planning, selected problems based to 
match students’ current skills and to 
practice new content (interpreting and 
deciding).  
 

TR Features, Lesson and Participation 
Structures: Attended to the L-E-S 

TR Features, Lesson and Participation 
Structures: Attended to examples to 
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structure. Interpreted that students need 
more direct instruction and practice, 
viewed investigations as too challenging 
for students and requiring too much time. 
Decided to scaffold and model problems 
first and supplement to ensure that 
students had skills, procedures, and 
practice needed before attempting 
investigations.  

model and problems to assign for 
individual seatwork and/or homework. 
Decided on examples, what to model, 
how to talk through the problem solving 
process, key steps to emphasize, and key 
cautions to share. Decided on errors to 
look for when students were practicing 
problems and ways to correct or prevent 
these errors. 

Discussion and Implications 
A growing body of evidence indicates that characteristics of curriculum impact teaching and 

learning (e.g., Stein, Remillard, & Smith, 2007; Tarr et al., 2008). Indeed, we found that teachers’ 
orientations matched the type of curriculum they were using in most cases. For the three teachers 
whose direct orientation was different from the approach of their TD materials, they attended to 
differences in the curriculum approaches, but then discussed how they were “struggling” to plan 
lessons as TR suggested, and often supplemented with practice problems from past DM resources. 
This pattern and other findings above indicate that a TD curriculum can support teachers’ dialogic 
orientations in planning and incorporating CCSSM (and especially the MPs). However, similar to 
past reform efforts, the CCSSM and curriculum materials can be interpreted and enacted in multiple 
ways (Coburn, Hill, & Spillane, 2016; Remillard, 2005; Spillane & Zueli, 1999). Teachers also might 
attend to differences and then decide to plan based on their past practices or past materials. Teachers 
need support (e.g., professional development, coaching) and time to enact TD lessons in ways that 
are consistent with goals for dialogic instruction. This study is a next step in understanding specific 
ways teachers notice and interact with different types of TR and with CCSSM. This can inform both 
curriculum developers in designing curriculum and teacher educators in preparing teachers to enact 
ambitious practices.  
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Students studying geometry at the secondary level are expected to read diagrams in different ways 
than those in elementary school. In this paper, we present an analysis of the changes in 
diagrammatic expectations by comparing the geometric diagrams found in Grade 1 U.S. textbooks 
with those in U.S. high school geometry textbooks. This work included developing and using a coding 
scheme that recognizes dimensions of reading a diagram geometrically, including the type of object 
represented, use of deduction, use of mental redrawing, interpretation of markings, and the necessity 
of the diagram. The way in which elementary and secondary students are expected to interpret 
diagrams was shown to change along several of these dimensions, posing potential learning barriers 
for students. We end our paper with a discussion of what our results mean for the learning of 
geometry. 

Keywords: Curriculum, Geometry and Geometrical and Spatial Thinking, Elementary School 
Education, High School Education 

An identical task with the same geometric diagram can be found at different grade levels with 
different expectations for interpreting the diagram (Dietiker & Brakoniecki, 2014). For example, in 
elementary school, a diagram of a quadrilateral with 4 apparent right angles is supposed to be 
identified as a rectangle, whereas in high school, the same diagram is expected to be interpreted as a 
quadrilateral that is not necessarily a rectangle. How are students expected to read information from 
geometric diagrams in mathematical tasks, specifically those found in textbooks? And how might 
these expectations change? In a study of the expectations of textbooks with respect to how students 
read geometric diagrams, Dietiker and Brakoniecki (2014) expand on Pimm’s (1995) notion of 
reading geometrically and propose multiple dimensions of reading geometric diagrams. These 
dimensions, gleaned from analyzing the geometric tasks in multiple elementary and secondary 
textbooks (including traditional and reform curricula from multiple countries), represent distinct 
aspects of geometric diagrams that students are expected to pay attention to and interpret as they 
negotiate the meanings of mathematical tasks.  

In this present paper, we report on our continuing analysis of textbooks to reveal how the 
expectation of diagrammatic reading changes as students progress through school. In particular, we 
compared the geometric diagrams found in Grade 1 U.S. textbooks with the diagrams of U.S. high 
school geometry textbooks in order to learn how different the expectations are. This work included 
developing and using a coding scheme that recognizes the dimensions of reading geometrically, 
which are described in detail in this paper. 

We end our paper with a discussion of what our results mean for the mathematical learning of 
geometry. With evidence that students are expected to develop sophisticated ways to negotiate 
meaning from diagrams, we argue that within each of these dimensions, educators can craft 
opportunities for students to develop strategies for reading geometric diagrams to ease the transition 
from elementary to secondary school. 
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Framework 
This study examines the mathematical content with regard to geometric diagrams within the 

textbook curriculum. The textbook curriculum is specifically limited to comprehensive written 
curricular materials that are published for use by teachers and students. Although the textbook 
curriculum has an impact on curriculum as enacted in classrooms, this analysis is limited to the 
content as it is interpreted by readers (i.e., the researchers) of the texts. For this study, problems 
include all textbook prompts (whether interrogatives or not), such as tasks, activities, and questions 
for which an expected response from a student is provided in the teacher edition, although withheld 
from students. Thus, worked examples (i.e., tasks that are completely solved within the student text 
materials) are not framed as problems.  

An expectation of a problem is framed as a limiting condition with regard to a student’s response 
of a question or task. For example, if an assumption from a diagram is necessary (such as interpreting 
an unmarked angle in a geometric diagram as a right angle) to get the expected answer provided in 
the textbook, then we argue that this assumption is a diagrammatic expectation. In any geometric 
diagram, there are many potential assumptions that could be made. We limit our definition of 
expectations to those that are required based on the given answers in the teacher textbook. 

Methods 
In order to learn how the expectations for reading geometric diagrams differ from elementary to 

high school, the teacher and student materials from four U.S. textbook series were selected for 
analysis, including two from first grade and two from high school. These grade levels were selected 
in order to demonstrate the change in expectations of diagram interpretation that students experience. 
The two elementary textbooks include the University of Illinois at Chicago’s Math Trailblazers 
(2008, “MT”) and the University of Chicago’s Everyday Mathematics (2007, “EM”). Within these 
textbooks, we considered diagrams in the problems in all chapters focused on geometry, including 
topics such as shapes, volume, and symmetry. The two high school textbooks include the CME 
Project Geometry (2009, “CME”) and Prentice Hall Mathematics Geometry (2004, “PH”). In these 
textbooks, we analyzed all diagrams for problems and questions in Chapter 1 in order to learn about 
the assumed expectations of geometric reading at the start of a formal geometry course in high 
school. In all textbook portions that were analyzed, we eliminated from analysis any problems for 
which the teacher edition listed an incorrect answer. 

Due to the fact that the purpose of this work is to establish the expectations for how students 
interact with diagrams, only the diagrams that are part of a student task were analyzed. This does not 
include diagrams included in exposition or in worked examples, as students do not have to interpret 
or make decisions about these diagrams. Additionally, because we did not have the assessment 
materials for all four curricula, we restricted our analysis to lesson materials focused on learning new 
content. 

Methods of Analysis 
To describe the reading expectations of the geometric diagrams, we developed five overarching 

codes. The first describes how the reader is expected to interpret the diagram as something (e.g., a 
real life object or a representation of a set of objects). When analyzing our interpretation of geometric 
diagrams as something, we recognized multiple distinguishable characteristics that became sub-
codes. Some tasks included geometric diagrams that were meant to be interpreted as drawn (as 
indicated in the task statement and answer). For example, a task that asks a reader to measure the 
diagram to make statements about the geometric object is expecting this reader to interact with the 
diagram as the geometric object under study. Another example is a task in which a student is 
expected to indicate (by drawing) a line of symmetry for a geometric object depicted in a diagram. 
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In analyzing those tasks that require a reader to interpret the geometric diagram as drawn, we 
recognized that some require an assumption of either a metrical or topological relationship condition 
by the reader. For these tasks, there is a positive consequence for making assumptions based on the 
diagram, and having skepticism toward the diagram is disadvantageous. For example, in the task 
shown in Figure 1, a reader needs to assume that points E, C, and B are collinear in order to get these 
answers (displayed in pink) correct. 

 

 

Figure 1. An example of As Drawn With Necessary Assumption from PH (2004, P. 31). 
 

However, not all geometric diagrams are positioned by the text to be taken as drawn. Others are 
positioned in such a way that they are representations of an abstract geometric object (or a set of 
objects) and thus, a student is expected to not make assumptions of the geometric object based on the 
diagram. In these cases, a reader may be expected to read the diagram as a representation of a 
particular geometric abstraction when given a diagram that is not necessarily accurate. For example, 
for the diagram in Figure 2, which accompanies a prompt for students to determine the largest 
rectangle in the image, a reader would have a negative consequence if they assumed the angles of the 
rectangular characters were as depicted (which are not drawn as right angles because of the 3D 
orientation).  

 

 

Figure 2. Example of Representing with Assumptions from MT (2008, p. 187). 
  
Reading as representing also includes geometric diagrams that represent multiple geometric 

objects (read as a generality). That is, in some tasks, a reader is expected to recognize that a 
geometric diagram is a single representation of a multiplicity. Along with these, we note that some of 
these require a reader to make at least one additional assumption. The geometric diagram in the task 
in Figure 3 is an example of a diagram representing a multiplicity since a reader is expected to 
interpret the diagram as one of many. 
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Figure 3. Example of Representing as Multiple from CME (2009, p. 54). 

 
Other tasks do not explicitly include what we commonly consider to be geometric diagrams, but 

instead include an image of a real world object (such as the soda can in Figure 4) with the 
expectation that it will be interpreted as a geometric object (i.e., a cylinder).  

 

 
Figure 4. Example of Real World Object from EM (2007, p. 147). 

 
Beyond the representations of geometric objects, we identified some geometric diagrams that are 

not representations of geometric objects. Some of these contain information that renders a geometric 
object as impossible or contradictory. For example, if a diagram of a triangle were marked with angle 
measures that do not sum to 180°, we interpreted that diagram as a misrepresentation. In addition, we 
coded geometric diagrams for which there is no expectation that a reader interprets the objects as 
geometric as non-geometric. For example, in a pattern problem with a string of triangles and squares, 
the students are not expected to interpret the objects as geometric. In fact, the use of the geometric 
shapes could easily be replaced with diagrams of flowers and firetrucks with no effect on the task. 

The sub-codes for distinguishing how an object in a problem is to be interpreted and their 
interrelationships are represented in Figure 5.  
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Figure 5. Diagram of sub-codes and their interrelationships for Interpreting as. 
 

In addition to coding for the interpretation of the diagram, we coded four other dimensions of 
reading geometrically: whether deductive reasoning from the diagram is required to solve the task, 
whether the reader needs to mentally redraw the diagram to answer the task, whether the reader 
needs to interpret conventional mathematical markings to solve the task (e.g., reading the labels for 
the points in Figure 1), and whether reading the diagram is necessary to answer the task (e.g., the 
diagram in Figure 3 is supplementary while that in Figure 1 is necessary to solve the task).  

Using this coding scheme, the three researchers analyzed each diagram from the selected portions 
of textbooks for the expectations of reading geometrically. These researchers include two 
mathematics educators and one doctoral student, of which two have high school teaching experience 
and one has extensive textbook design experience. Each code represents a consensus of all three 
researchers. 

We suspected that there was a relationship between the intended grade of the textbook 
(elementary or secondary) and the various categories described above (the expected interpretation of 
the geometric object, whether deduction was necessary, whether mental redrawing was necessary, 
whether markings needed to be interpreted, and whether the diagram was necessary to the problem at 
all). To test the grade level’s independence on each of these categories, we performed a Fisher’s 
Exact Test (Fisher, 1922) between each grade level category and each of the above listed task 
categories to test the hypothesis that each of these categories was independent of the grade level of 
the textbook. Observed differences were statistically significant for p < 0.01. 

Findings 
The frequency of each type of diagrammatic expectation for textbooks of each grade level is 

reflected in Table 1.  
When comparing how the textbooks expect students to interpret as, there was a statistically 

significant difference between the distribution of categories for elementary and high school texts 
(p<0.001). This enables us to assume that there is some dependence between the grade level of the 
textbook and the method of interpreting the diagram as an object. While the Fisher Exactness Tests 
indicates a likely dependence between categories, it does not identify specifically where the 
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dependence exists. Thus, what follows is a summary of the more striking differences found in our 
coding results, highlighting where these differences likely exist.  

Table 1: Frequency of Geometric Diagram Expectations 
Task 
Expectation Sub-Code 

Elementary 
(n=61) 

Secondary 
(n=156) 

Fisher 
Exact P 

Interpreting as  Real world as geometric object 5 (8.2%) 10 (6.4%) 0.000* 
Drawn 10 (16.4%) 51 (32.7%)  
Drawn with assumption 36 (59.0%) 35 (22.4%)  
Representation of single object 1 (1.7%) 4 (2.6%)  
Representation of multiple 0 (0.0%) 45 (28.9%)  
Representation with 
assumption 

1 (1.7%) 6 (3.9%)  

Impossible/contradictory 0 (0.0%) 1 (0.6%)  
Non-geometric 8 (13.1%) 4 (2.6%)  

Using deduction  Required 0 (0.0%) 7 (4.5%) 0.195 
 Not required 61 (100.0%) 149 (95.5%)  
Mentally 
redrawing  

Required 0 (0.0%) 16 (10.3%) 0.007* 
Not required 61 (100.0%) 140 (89.7%)  

Interpreting 
conventional 
markings 

Necessary 0 (0.0%) 81 (51.9%) 0.000* 
Supplementary 0 (0.0%) 26 (16.7%)  
No markings 61 (100.0%) 49 (31.4%)  

Reading the 
diagram 

Necessary 59 (96.7%) 123 (78.9%)  
Supplementary 2 (3.3%) 33 (21.2%) 0.001* 

Note. *Significant to p < .01. 
 
Among the 61 diagrams of the elementary school textbooks and the 156 diagrams in the 

secondary textbooks, the most commonly expected interpretation of elementary textbook diagrams 
was as drawn with assumptions, with 59% of the diagrams in elementary. This means that a majority 
of the diagrams in elementary textbooks require students to interact with the diagram as the 
geometric object and that the student needs to make assumptions about measurements (such as a 
perceived right angle or a relationship between lengths) or properties (such as whether sides are 
parallel) based on how the diagram looks. Interestingly, high school textbooks also contain diagrams 
with this expectation, although they occur less frequently (22.4%). Instead, the most common 
expectation in the secondary diagrams is to interpret a diagram as drawn but without assumptions, 
which occurs in 32.7% of that grade level’s diagrams, in contrast to 16.4%, as found in elementary 
textbooks.  

Another noticeable difference between the grade levels’ expected interpretations of diagrams was 
found for diagrams that represent multiple objects. No elementary school problems required students 
to interpret a diagram as a representation of multiple objects. In contrast, this was the second most 
frequently expected interpretation of the secondary diagrams, required for 45 (28.9%) of them. This 
suggests that high school texts expect students to know how to interpret a geometric object in a 
diagram as a general (rather than particular) representation at the start of a formal geometry course. 

The geometric diagrams that did not require the interpretation as a geometric object were more 
found more often in elementary textbooks (13%) than secondary textbooks (3%). In addition, 
although there were relatively few instances of interpreting a diagram as a single representation 
overall, with only 5 diagrams in total, this occurred more often in the secondary textbooks (4). 
Although we expected to find more instances of diagrams depicting real world objects as geometric 
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objects in elementary textbooks, the frequency of these diagrams was surprisingly similar in both 
grade levels (8.2% in elementary, compared to 6.4% in secondary). 

Among the other categories of analysis, several also showed significant differences between 
elementary and secondary problems. A statistically significant difference was found when 
considering whether or not the diagrams needed to be mentally redrawn to solve the task (p<0.01). In 
the elementary textbooks, this expectation was not found. However, of the diagrams in the secondary 
textbooks, approximately 10% required a reader to visually manipulate a geometric object in order to 
solve the problem. Examples of these problems included tasks that require students to visualize what 
would happen to a geometry object if a vertex were dragged or how a diagram might change if a 
particular edge varied in length.  

Another statistically significant difference was found when we compared the need to interpret 
markings of elementary diagrams versus those in high school diagrams (p<0.001). In the two 
elementary school textbooks, not a single diagram included any markings (right angle, congruent 
segment length, point name marking, etc.). This is in contrast to the high school textbooks’ diagrams, 
of which almost two-thirds (68.6%) contain conventional markings. Of these, the majority required 
the interpretation of markings to solve the task (75.7% of those with markings, or 51.9% of all 
secondary diagrams). The remaining 16.7% of the secondary diagrams that contained conventional 
markings included a text prompt that supplied the information conveyed by these markings, 
rendering the markings in the diagram supplementary.  

Lastly, we found a statistically significant difference (p<0.001) between the grade levels as to 
whether a student is expected to read a diagram. The diagrams in the elementary textbooks were 
almost always necessary to solve the task (96.7% of the time), in contrast to the high school texts 
which more frequently included diagrams that were supplementary to the task (21.2% of the time).  

In contrast to the statistical differences described above, there was not a significant difference 
between the elementary and secondary diagrams regarding using deduction to solve a problem based 
on a diagram. None of the diagrams in the elementary textbooks require deduction and less than 5% 
of the diagrams in the high school tasks do so. In the elementary texts and opening chapters of the 
high school texts, it is almost never necessary for students to deduce a piece of information about a 
diagram which then needs to be used to learn additional information about that same geometric 
object.  

Discussion and Implications 
In this paper, we provide evidence that at some point in the transition from elementary school to 

the beginning of high school, there is a shift in expectations of how students are expected to read 
diagrams. As they start school, students are typically expected to make geometric assumptions based 
on how a diagram appears without being explicitly told about relationships that are necessary to solve 
a problem. By the time these students enter high school, they are expected to be able to reason about 
an object using only the information they are explicitly told and to not make assumptions based on 
how a diagram appears. This change in geometric interpretation of a diagram is consistent with van 
Hiele’s (1959) description of sophistication of geometric understanding; younger children are 
expected to interpret geometric diagrams as a whole and only later begin to recognize the properties 
of geometric objects and their interrelationships. If a student does not recognize that a right angle is a 
property of a square, for instance, then marking right angles of diagrams of squares is pointless. 
Thus, it is sensible that textbooks for young children would contain the expectation that geometric 
diagrams be interpreted based on features as drawn (i.e., it looks like a square, therefore it must be a 
square). 

However, we found it surprising that high school students are still expected to interpret geometric 
diagrams as drawn. Since high school geometry includes formal proofs, for which students are 
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typically expected to reason only from given statements, it appears that students are expected to 
recognize and distinguish when they are able to make assumptions based on a diagram and when 
they are not. Even when students are not expected to assume metrical properties (e.g., an angle is a 
right angle just because it looks like a right angle), the students are expected to assume topological 
properties (e.g., if it looks like the figure is closed, it is). We wonder how students learn to 
distinguish when it is “okay” to make assumptions from diagrams and when it is not. 

Interestingly, there was one aspect of reasoning with geometric diagrams that was not shown to 
be statistically significantly different from elementary to high school, which was whether diagrams 
required deductive reasoning. We expect that had we analyzed subsequent chapters in the high school 
textbooks, especially chapters in which students are asked to prove properties of geometric figures, 
that there would be more diagrams that require students to deduce new information about a geometric 
object from a diagram. Thus, based on this analysis, this shift may occur within the geometry course 
in high school. 

Among all these dimensions in which reasoning about diagrams is expected to change, we 
wonder how aware curriculum authors and teachers are of these changes, and in what ways (if at all) 
these changes are communicated to students. We suspect that some of students’ difficulty with 
geometry may be at least partly due to an inability to successfully navigate the implicit expectations 
of reading of geometric diagrams and we believe that helping students recognize the multiple roles 
that diagrams can play in geometry and mathematics is critical for their success. 
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Research on learning trajectories in mathematics has grown considerably over the past decade. In 
this paper, we contribute to this body of research and present a curriculum-based hypothetical 
learning trajectory for middle school algebra. In doing so, we make the visible the process by which 
we developed this initial hypothetical learning trajectory, highlighting the considerations, decisions, 
and challenges we faced as part of this work. 

Keywords: Learning Trajectories, Algebra, Curriculum Analysis 

Background 

Learning Trajectories in School Mathematics 
A variety of definitions of the LT construct exist in the research literature, with substantial 

differences in focus and intent (see e.g., Clements & Sarama, 2004; Corcoran, Mosher, & Rogat, 
2009; Confrey, 2008; Simon, 1995). According to the Consortium for Policy Research in Education 
(CPRE) Report on Learning Progressions for Mathematics (Daro et al., 2011), LTs are empirically 
grounded and testable hypotheses about how, with appropriate instruction, students’ understanding 
of, and ability to use, core concepts and explanations and related practices grow and become more 
sophisticated over time (National Research Council, 2009). These hypotheses describe the pathways 
students are likely to follow to develop mastery of core concepts. Specifically, in our work we 
ascribe to the definition of LT proposed by Confrey et al. (2008): A researcher-conjectured, 
empirically-supported description of the ordered network of experiences a student encounters 
through instruction (i.e., activities, tasks, tools, forms of interaction and methods of evaluation), in 
order to move from informal ideas, through successive refinements of representations, articulation, 
and reflection, towards increasingly complex concepts over time. We further ascribe to the idea of a 
conceptual corridor (Confrey et al., 2009), which incorporates the possibility of multiple pathways 
toward learning, as well as attention to the landmarks and obstacles that students typically encounter 
along those pathways. 

Approaches to Learning Trajectory Development in Mathematics 
In the mathematics education community, LT researchers differ in how they conceptualize LTs, 

including the grain size of descriptions of levels of student thinking, how students move among the 
levels, and ways in which LTs are validated (Confrey, Maloney, Nguyen & Rupp, 2014). Such 
conceptual differences also include different approaches to LT development. For example, Clements 
and Sarama (2014) begin with mathematical goals or big ideas that are derived from both empirical 
research and expertise from mathematicians. From the mathematical goals, they develop cognitive 
models of student thinking based on theoretical and empirical models, and then move to developing 
tasks that are designed to promote student learning at different levels. Similarly, Lehrer, Kim, Ayers 
and Wilson (2014) begin with descriptions of student thinking that are based on empirical studies, 
extant research and mathematical expertise, which are coordinated into different levels of knowledge. 
From these descriptions, Lehrer et al. (2014) develop means of supporting changes among 
knowledge levels, to support student thinking, including instructional activities. Still, Confrey et al. 
(2014) begin with a synthesis of relevant research together with clinical interviews with students and 
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teaching experiments in classrooms. While such approaches offer different insights into pathways of 
student thinking, such approaches often do not include the tools and resources teachers use everyday 
to plan for and enact instruction, such as curriculum materials, as a central component of the LT 
conceptualization. Indeed, teachers regularly use curriculum materials to determine the mathematics 
they are going to teach, which has considerable implications for pathways of student thinking.  

An Alternative Approach to Learning Trajectory Development 
In our work as part of the iFAST Project, we use mathematics curriculum materials as the starting 

point for articulating a hypothetical LT. Briefly, the iFAST Project is a multi-year project focused on 
articulating LTs in middle school algebra to inform the design of LT-based professional development 
for teachers. Thus, two main components of our work on the project involves understanding students’ 
learning pathways within middle school algebra, and enhancing teachers’ understanding of LTs to 
inform their use of effective assessment practices in the classroom. A central premise underlying our 
work is that high quality formative assessment practices depend on teachers having a clear sense of 
learning goals, student LTs, criteria for locating students along the trajectories, sharing this 
information with students, and using it to inform instructional decisions.  

The development of proficiency in algebra holds a unique role in students’ success in 
mathematics, serving as a gatekeeper to more advanced mathematics and affecting mathematics 
achievement in high school and beyond. The Common Core State Standards for Mathematics has 
reconfigured the sequencing of algebra content across grade levels, introducing it in Grades 6 and 7 
with a major focus in Grade 8, and calls for students to learn algebra earlier and to more advanced 
levels than has traditionally been the case. As a result, whether or not middle school mathematics 
teachers are teaching a course designated as Algebra 1, they are being held accountable for all 
students’ learning of rigorous content related to strands in algebraic functions and equation-solving. 
In the iFAST Project, our learning trajectory work is centered on linear functions and linear 
equations topics in middle school algebra. 

We focus on the Connected Mathematics Project 3 (CMP3) curriculum as it is widely used and 
the treatment of linear functions and equations topics is consistent with other functions-based 
curricula in the U.S. As our main focus is understanding students’ learning pathways within CMP3, 
we needed first to generate a map tracing the hypothetical learning opportunities of algebra concepts 
embedded in the curriculum. Of course, this is only a hypothetical description as the actual learning 
opportunities students encounter are mediated by multiple other factors (e.g., school, teacher, 
implementation, etc.). Thus, our approach stands in contrast with other approaches in least two ways: 
it is specific to CMP3 and we generated a hypothetical learning map first. In the sections that follow, 
we describe the process we developed to generate such a map and make visible the process by which 
we developed a curriculum-based hypothetical LT for middle school algebra.  

Articulating a Hypothetical Learning Trajectory 

Initial Considerations 
As we embarked on understanding what students seem to learn and what are the remaining 

obstacles, the need to understand what learning pathway was intended for students to follow in the 
curriculum became evident. In order to map the opportunities provided by the curriculum to learn 
about specific algebra concepts we had to devise a process to understand and represent them. We 
wanted to produce a map of such opportunities as presented in the curriculum, thus we decided to 
start working with the unit goals provided by the curriculum materials. 

Our initial intent was to map all linear functions and equations related topics within CMP3. This 
task proved to be too ambitious. As such, we narrowed our focus to what we considered to be a high 
leverage topic within the linear functions and equations domain. We focus on the transition from 
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proportional to non-proportional linear functions, with a particular emphasis on rule writing. Thus, 
we selected units (i.e., focus units) that focus on proportionality, functions, proportional functions 
and linear functions. Within CMP3, we selected the following units: Grade 6 – Comparing Bits and 
Pieces, Grade 6 – Variables and Patterns, Grade 7 – Comparing and Scaling, Grade 7, Moving 
Straight Ahead, Grade 8 – Thinking with Mathematical Models, and Grade 8 – Say It With Symbols. 

The first challenge we faced in creating this map was to come up with a useful grain size to 
describe the new content that students were offered an opportunity to learn about. We first 
considered working directly with the goals corresponding to focus units, but a map spanning across 
Grades 6-8 turned out to be too busy and difficult to be used by other researchers and teachers. 
Therefore, we decided to group unit goals that could be linked by a common mathematical theme.  

Generating a Curricular Map 
This following process is presented in a distilled way but it took several attempts for it to emerge 

to address limitations and implement desired improvements. We will try to note some of these back 
and forth in the process of coming up with the final process of clustering. The first challenge we 
faced in creating this map was to come up with a useful grain size to describe the new content that 
students were offered an opportunity to learn about. We first considered working directly with the 
goals corresponding to focus units but a map spanning throughout the three years grades 6-8 turned 
out to be too busy and difficult to be used by other researchers and teachers. Therefore, we decided to 
group unit goals that could be linked by a common theme. We referred to this process as 
“clustering”. A preceding crucial step was to assign to each lesson problem unit goals. 

Clustering process. One focus unit at a time, three researchers first independently clustered goals 
into clusters; second, researchers identified discrepancies and discussed the clusters by looking both 
at the representative lesson problems and the goals as stated in the curriculum until an agreement was 
reached. We iterated this process throughout all focus units.  

External validation of clustering process. Once the researchers had completed the clustering 
process for all focus units, we convened a group of external reviewers (comprised of mathematics 
education researchers with familiarity with algebra and CMP) who conducted an external validation 
of the clustering process. This work entailed: (1) assessing the relationship between lesson problems 
and assigned goals, (2) assessing how the goals were group together forming a cluster, and (3) 
assessing whether the lesson problems selected were considered representative. External reviewers 
agreed with most of our work, they provided some minor suggestions for us to consider. One of the 
main contributions of this round of feedback pushed our team to think about the representative 
problems in two different lights. One as an exemplary lesson problem where students have the 
opportunity to learn and laser in a concept vs. lesson problems that would afford the most learning 
opportunities in the limited time an after-school professional development workshop affords, for 
example. 

Connecting Clusters Across Grade Levels 
Thus far in the process, we had goals, clusters and representative lesson problems at the unit level 

without an explicit connection across units and grades. In connecting the clusters among themselves 
two unforeseen processes unfolded: (1) in order to be able to express successive refinement in a 
trajectory we found it necessary to refine the language of the cluster, and (2) we revised some of the 
clusters and re-grouped them. Several elements were used in coming up with the curricular map 
across grades. The main organizing element is time, clusters are organized in columns according to a 
specific grade moving from 6th grade on the left to 8th grade on the right. Within a specific column 
(grade), we followed the order of the units chronologically according to the curriculum. To organize 
clusters and decide how they relate to each other we made decisions by looking at the representative 
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problems, the goals and clusters; we pay specific attention to successive refinement of a same 
concept.  

Discussion & Conclusion 
Generating a curriculum based hypothetical trajectories map was a necessary step in our 

approach, as we set out to describe students’ levels of understanding on proportional and linear 
functions taking into account what learning opportunities were provided by the curriculum chosen by 
the district. We think that this might provide a more nuanced picture as it not only takes into account 
the common core standards and extant research but also the opportunities students had to learn from 
the chosen curriculum. The ultimate goal of the project is to generate a CMP3 curricular map with 
levels of understanding (i.e., ranging for most proficient to incorrect) for each cluster. We have 
designed a set of three instruments to do this: end of unit assessments, end of year assessment, and a 
pre and post-assessment. These instruments differ on multiple aspects from each other (e.g., 
constructed response/multiple choice, content specific/non-specific to a unit/grade, etc.) but a 
detailed description of those exceeds the scope of this paper. By putting in relation the CMP3 HLT 
Map together with the multiple data sources we will be able to identify, describe and illustrate both 
levels of understanding as expected by the layout of the curriculum as well as “out of trajectory” 
levels of learning. The “out of the trajectory” learning might occur given the spiral nature of cmp3 
where concepts are revisited at several later instances across those three years. In putting forward this 
process, we hope other researchers can replicate it by researchers to generate a map for other 
curriculums. 
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In this research report, we examine the perceptions that parents have regarding the use of multiple 
strategies in their children’s classrooms, and then align their perspectives with the research 
literature. The themes of adaptivity and flexibility of strategies, conceptual and procedural 
knowledge, disposition and identity, implementation of multiple strategies, and the lack of 
effectiveness for all students were found in the literature as well as within the parent comments. 
Some of the parents produced counter-examples from the literature based on their experiences with 
their own children. By understanding the varying notions that parents (and the literature) have about 
the use of multiple strategies in mathematics, we can begin to create a way to have productive 
conversations with parents about curriculum reform. 

Keywords: Curriculum, Elementary School Education, Number Concepts and Operations, Problem 
Solving 

Introduction 

But the fact is there isn’t great research behind it. And the other fact is that … students who are 
coming out of learning these strategies—the math scores have weakened. Because I’m all for 
doing a different strategy if you have proof that that strategy is even better than what we’ve been 
doing all along. However, at the end of the day the scores indicate that, no, it hasn’t been the best 
approach to teaching math. 

The comment above describes a tension expressed by many parents regarding current 
pedagogical practices that emphasize multiple strategies for problem solving and computation. The 
general curriculum expectations are for students to have opportunities to develop procedural 
flexibility and conceptual understanding through the process of selecting and using appropriate 
strategies in novel situations (e.g., National Council of Teachers of Mathematics, 2000). 

The benefits of a multiple strategy approach have often not been accessible to or understood by 
parents. While parents, such as the mother quoted above, may reject that this pedagogical approach is 
best, the literature itself is not universally supportive of multiple strategies. In this paper, we 
investigate parents’ perceptions of the value of alternative strategies in supporting children’s learning 
of mathematics and how these perceptions are aligned with research. Our ultimate goal in doing this 
analysis is to identify fruitful ways to engage in productive conversations about mathematics 
curriculum reform with parents. 

This report relates to the conference theme of research “as an intersection” by creating a path for 
researchers, teachers, and parents to be on the same road or conversation. It also addresses the 
conference theme of research “as a barrier” by examining the discourse used by parents surrounding 
the use of multiple strategies in mathematics classrooms and the impacts that these perceptions have 
on the parents’ thoughts and feelings about how their children are learning.  
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Theoretical Framework 
Within the literature, the rationale for teaching students multiple strategies is multifold. First, it 

has long been believed that such an approach supports the development of strategy adaptivity; that is, 
the ability to flexibly and creatively apply or generate an appropriate solution strategy to solve a 
given mathematics problem (Hatano, 1982). Second, teaching students multiple strategies is intended 
to enhance conceptual and procedural knowledge of number (Rittle-Johnson & Schneider, 2014). An 
awareness of various solution strategies is often associated with deeper conceptual understanding of 
how these strategies are used (e.g., Verschaffel et al., 2009). Also, students who develop and use 
procedures flexibly are more capable of using and adapting existing procedures when faced with 
unfamiliar problems (e.g., Blote et al., 2001). A third rationale in the literature is that multiple 
strategies cultivate appropriate attitudes towards math. This potential influence on disposition has, 
for example, been documented in Boaler and Selling’s (2017) longitudinal study of two contrasting 
mathematics teaching practices (project-based vs. traditional) and their impact on students’ identity 
and expertise in mathematics during their adulthood.  

Is teaching multiple strategies feasible and valuable for all students? First, some research studies 
suggest that a multiple strategies approach may exacerbate the difficulties of low achieving students. 
Poorer working memory or other learning difficulties suggest that the goal of developing student 
adaptivity might be of limited value. Auer, Hickendorff, and Putten (2016) found that “lower ability 
students made counter-adaptive choices between the two strategies” by choosing a strategy that led to 
inaccuracies (p. 52). Second, exposing students to multiple strategies early may promote positive 
dispositions, but delaying exposure to multiple strategies may lead to greater adaptivity (Rittle-
Johnson & Schneider, 2014). Their study indicated that flexibility in use of procedures was higher 
than the students in the delayed-exposure condition. Third, as Silver et al. (2005) note, although it is 
well accepted that students need experiences solving problems in more than one way, it is difficult to 
operationalize. The possible obstacles math teachers face include the actual and perceived limitations 
in teachers’ mathematical knowledge, limited instructional time, restrictive conceptions of student 
ability, and a lack of opportunity to develop instructional routines related to teaching multiple 
solutions. 

The parents in our study expressed a range of benefits and also disadvantages of their own and 
their children’s experiences with a multiple strategies pedagogy. Parent perspectives are important 
because their involvement in children’s educational experiences has far-reaching benefits such as 
improving achievement, increasing motivation, and reducing anxiety (Pattall, Cooper, & Robinson, 
2008). Understanding parent perspectives and how they are or are not aligned to research allow 
researchers and teacher educators to refrain from dismissing criticisms as obstacles, and reconsider 
the validity of parent perspectives—even if they are based on a sample size of 1: their child. 

Mode of Inquiry 
Forty parents from urban and rural communities participated in our study. They completed a 

demographic questionnaire and participated in one of ten focus groups taking place in their 
respective communities. Focus groups, each approximately two hours long, were used as generative 
sites of data collection with the knowledge that differing parent perspectives required participants to 
explain their perspective to others, thus allowing us to notice differences in their experiences. The 
focus groups were structured to prompt parents to address their observations of their child’s learning 
and the curriculum; compare their own mathematics schooling with their children’s; describe their 
interactions when helping their child with mathematics at home; provide expectations about their 
child’s mathematics learning; and describe communication received with the school and teacher 
about mathematics curriculum. Follow-up interviews were conducted with a subset of the parents 
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(15) in the focus groups to allow them to expand on and further clarify their comments from the 
focus group. 

A common topic of discussion identified in the focus groups were parents’ perceptions related to 
multiple strategies and alternative algorithms (see McGarvey & McFeetors, 2016). In the focus 
groups and interviews, the parent participants referred to a multiple strategies approach over 400 
times. In this paper, we focus specifically on this large sample of comments using a thematic analysis 
(Braun & Clarke, 2006) of the focus group data using individual utterances as a unit of analysis. 
Through a constant comparative approach in sorting statements made by the parents in the focus 
groups, we identified key assertions in relation to the participants’ perceptions of the role of multiple 
strategies in their children’s learning of problem solving and computation. In the results, we explicate 
the ways in which parents make sense of alternative algorithms in their children’s learning. 

Findings 
In Table 1, we highlight the range of themes we identified related to parents’ perspectives of 

multiple strategies along with sample comments.  

Table 1: Parent Perspectives on Multiple Strategies 

Theme Assertions from Parents  

Adaptivity and 
flexibility of strategies 

The answer is because once problems get more complicated, you might 
not know them at first sight. So you have to learn all the different 
strategies, that’s why I think they teach all the different strategies because 
once it’s more complex, it’s like algebra and things like that. You need to 
know different ways to get the answers, ways that makes sense to you. 

 
Wouldn’t you rather be really good at one than kind of mediocre at five? 

Conceptual and 
procedural knowledge 

They wanted them to understand the concept of all of the strategies and 
then pick the ones that worked better for them. 

Disposition and 
identity 

My middle son with ADHD has his problems. He would never be able to 
memorize …. It takes him a little while because he's slower and needs to 
focus, but he can use the strategies that he likes, which is not the standard 
algorithm, but he can figure it out.  

 
If she has to use the 15 different methods, then she sort of spirals out [of 
control]. 

Implementation of 
multiple strategies 

There’s this disconnect that they [teachers] think that they have to teach 
all of those ways and they [children] have to do them all of those ways. 
And we have to give it to them over and over and over again. Even if it 
doesn’t work for them.  

 
I wish the teacher had had a better answer to that question. And I wish the 
teacher had known why she was teaching it those ways. I don’t know if 
she knows.  

Not effective for all You have all of these strategies and you know having your child draw 90 
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students (both low and 
high achieving) 

ticks on, you know paper, that’s where you’re wasting your children’s 
time … in four or five different strategies you never allow them to master 
a particular method. 

 
She's not a drawer, she hates art. We were focusing more time on drawing 
pizza cones and all these things that had to do for these worksheets that 
were coming home, and coming up with a strategy name, that we weren't 
actually doing math. 

 
If there’s, you know, 75% of children learn the best how we learned it 
growing up, why change it? And if those 25% or 20% or 15 or 10% are 
having troubles, then let’s implement those strategies for those children 
instead of for broad all. 

Conclusion 
We note that parents did not necessarily view a multiple strategies approach from only one 

perspective. Instead, they often included multiple perspectives within one statement. In addition, 
although we provided here both the benefits and challenges to a multiple strategies approach as 
described in the literature, parents often provided counter-examples based on their perspectives that 
are important not to ignore. 
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This brief research report outlines a study of College Preparatory Mathematics (CPM) student 
curriculum materials to determine how language features of mathematical tasks position students to 
develop aspects of agency, autonomy and identity as learners of mathematics. I make a case for why 
I think these three attributes are important for mathematics learning, and I use analytic tools from 
Systemic Functional Linguistics to explore opportunities students have to develop agency, autonomy 
and identity when working on mathematical tasks in CPM textbooks. 

Keywords: Curriculum Analysis, Middle School Education 

Purpose of Study 
The study investigates ways that language used in selected College Preparatory Mathematics 

(hereafter, CPM) mathematical tasks positions students to experience aspects of autonomy, agency 
and a sense of identity as learners and doers of mathematics. Agency, autonomy and identity are 
important because research (e.g. Lester & Cai, 2016) seems to indicate that students should be given 
more opportunities to rely more on themselves as they work on challenging mathematical tasks. 
Challenging mathematical tasks often have a high level of cognitive demand (Stein et al., 2000) and 
are often non-routine. Whether students of mathematics operate individually or with other learners in 
groups as they work to solve non-routine problems during lessons, it can be argued that they are 
required to assume greater control of the problem-solving process, independent of their teacher. By 
taking greater control of their learning, students are in essence being autonomous and engaging in 
agentic learning. I am interested in the CPM curriculum because it is an instance of problem-based or 
problem-centered learning. This form of learning often involves learning mathematics by working on 
complex and open-ended problems which are typically ill-structured so as to allow for several 
possible approaches and answers (Hmelo-Silver, 2004). Problem-based learning can provide learners 
of mathematics with opportunities to develop agency, autonomy and identity as doers of 
mathematics. Studying language used in mathematical tasks in CPM textbooks can inform research 
on how students are positioned to develop agency, autonomy and identity as learners of mathematics 
when engaged in problem-based or problem-centered learning. 

The following research question guides my analysis of CPM curriculum materials:  

In what ways are language features of mathematical tasks in CPM student textbooks likely to 
support the development of aspects of students’ agency, autonomy and identity?  

Theoretical Framework 
Agency is the first component of my theoretical framework. Lipponen and Kumplainen (2011) 

state that “agency can be defined as the capacity to initiate purposeful action that implies will, 
autonomy, freedom, and choice” (p. 812). There is an action component to agency, which may be 
afforded or constrained by conditions determining an individual’s ability to act. Cobb et al. (2009) 
further distinguish agency into conceptual and disciplinary varieties. Learners experience conceptual 
agency when they are allowed to come up with their own methods and understandings during 
learning while they experience disciplinary agency when they are able to engage in mathematical 
work that involves known procedures.  
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Autonomy is the second component of my theoretical framework. It can be thought of as “a 
capacity to take control of one’s own learning” (Benson, 2011, p.58). For Benson, control refers to 
control of cognitive processes, of learning content and of learning management. In my analysis of 
mathematical tasks from CPM curriculum materials, my focus is primarily on the capacity for 
students to take control of cognitive processes either as they work individually or collaboratively in 
groups. Taking control of cognitive processes depends on affordances and constraints determined by 
language choices used to guide students’ to work on mathematical tasks. As these affordances and 
constraints also determine the capacity to act, the notions of agency and autonomy are intimately 
intertwined. The difference between these two concepts is quite subtle as to make the two terms have 
practically one and the same meaning. According to Benson (2007), “…agency can perhaps be 
viewed as a point of origin for the development of autonomy, while identity may be viewed as one of 
its more important outcomes.” (p. 30).  

The third component of my theoretical framework is the notion of identity. Cobb et al. (2009) 
differentiate between students’ normative identity and students’ personal identities. They define 
normative identity as “both the general and the specifically mathematical obligations that delineate 
the role of an effective student in a particular classroom” (p. 43). The normative identity can be 
shared across students with different personal identities. For my conceptual framework, I am 
primarily interested in opportunities indicated in mathematics texts for students to develop normative 
identity as doers of mathematics. 

Methods 
Data consists of selected mathematical tasks for classwork from the most recent versions of 

student texts for the Core Connections (CC) Integrated I, II, & III CPM curriculum materials that 
address the subject of functions and graphs. Functions and graphs are a ubiquitous topic in 
mathematics, encountered by students over multiple years. Learners of mathematics see functions 
and graphs in numerous ways across the mathematics curriculum of high school, and this topic has 
importance in the future study of mathematics at the college level and beyond. As such, if functions 
and graphs are taught and learned in a way that can promote students’ agency and autonomy then as 
students encounter functions and graphs again in the study of higher mathematics, they could activate 
and draw on their developed ability to be agentic and autonomous. The CC Integrated textbooks are 
designed to have each chapter include a number of sections. Each section encompasses several 
lessons. For instance, chapter one of CC Integrated I, ‘Functions’, is organized into three sections, all 
of which deal with the topic of functions.         

This brief research report analyzes instances of communication and interaction between textbook 
authors and readers. These communications and interactions can be seen as forms of guidance 
transferred from the textbook writers to students when directing students on how to work on 
mathematical tasks. The guidance takes the form of textbook writers giving some information or 
demanding some action of readers. Information given may be in the form of mathematics theorems, 
definitions or some other form of theory. Information given may also be in the form of statements of 
particular affordances or constraints of a mathematics task. Information demanded may be in the 
form of answer responses required of students.  

These forms of exchange (giving or demanding) are represented grammatically by three kinds of 
clause moods: declaratives (usually statements), interrogatives (usually questions) and imperatives 
(usually commands) made on the part of the textbook writers. Zolkower & Shreyar (2007) define a 
clause as “the smallest possible group of words within a text that has meaning” (p. 182). Clauses as 
instances of communication serve as the unit of analysis for this study. In particular, I am interested 
in analyzing imperative clauses appearing in mathematical tasks. They are an aspect of the 
interpersonal meta-function, an aspect of Systemic Functional Linguistics which involves 
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interactions (Thompson, 2013). In this case, the interactions are between textbook authors and 
students. Imperative clauses task students to take various actions. In these actions, there can be 
opportunities for students to experience agency and autonomy in their learning. I analyze two kinds 
of imperative clauses: inclusive and exclusive (Herbel-Eisenmann, 2007). Inclusive imperatives can 
position students as thinkers and demand that students’ responses reflect their thinking. These 
imperatives feature verbs such as “explain”, “describe”, “justify”, and “predict”. They can be found 
in the following typical example clauses taken directly from CPM textbook data “explain how you 
found your answer”, “describe additional features in your own words”, and “be ready to justify your 
statements”. Exclusive imperatives on the other hand direct students to carry out actions that tend to 
be less about what students think and more about executing actions related to established 
mathematics procedures. Examples of verbs found in exclusive imperative clauses are “calculate”, 
“draw”, “make”, “use”, “plot”, and “write”. Some example clauses from CPM textbook data are “use 
your calculator”, “draw a slope triangle”, “sketch the graph of h(x) = (x + 3)2 + 4”, “make a table” 
and “write an equation”. 

Through the study of imperative clauses, it is possible to point out opportunities for agency and 
autonomy students are given to rely on their own thinking and creative resources as doers of 
mathematics. The degree to which students are directed through inclusive imperatives versus 
exclusive ones can also shed light on how textbooks position students to develop identities as 
mathematics thinkers. 

Results 
The following results are based on analysis of clauses in 245 mathematical tasks from 57 lessons 

on functions across the three textbooks. 

Table 1: Verbs in Inclusive and Exclusive Imperatives 
Inclusive imperatives Frequency Exclusive imperatives Frequency 
Explain 
Describe 
Justify 
Predict 
 

56 
23 
19 
6 
 

Write 
Use 
Sketch 
Draw 
Graph/Plot 
Label 
Solve 
Calculate 
Make 

47 
33 
29 
23 
17 
15 
10 
9 
9 

Totals 104  192 

Discussion 
The results in Table 1 generally align with those obtained for inclusive and exclusive imperatives 

in Herbel-Eisenmann (2007). The results show that the CPM texts feature both inclusive and 
exclusive imperatives. Table 1 shows a wider spread and more instances of exclusive imperatives 
than of the inclusive kind. For the analyzed CPM mathematical tasks, it may be inferred from these 
results that students are being positioned by the text in these mathematical tasks to carry out a greater 
variety of actions that pertain to established procedures in mathematics. On the other hand, the 
relatively high incidence of the verb “explain” shown in Table 1 draws attention to inclusive 
imperatives. “Explain”, and other verbs such as “describe”, “justify” and “predict”, all of which 
featured in analyzed inclusive imperatives can give opportunities for students to develop conceptual 
agency, autonomy and their normative identity as they engage in thinking about and doing 
mathematics while working on mathematical tasks during lesson time. As such, this finding emerging 
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from analyzed inclusive clauses can be seen as a language feature of mathematical tasks on functions 
in CPM student textbooks that positions students to express their conceptual agency, autonomy in 
their thinking and which can subsequently influence students’ development of normative identity as a 
doer of mathematics.  
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This paper presents evidence that the U.S. curricular introduction to multiplication, and more 
broadly, “multiplicative relationships,” is fundamentally additive and therefore conceptually 
deficient. Conceptualizing multiplication as the replication of equal-size groups of discrete objects 
and repeated addition provides insufficient support for understanding the full range of multiplicative 
relationships, numerically and quantitatively. The additive approach fails to extend sensibly to (a) 
many multiplicative situations (e.g., Cartesian product, area and volume measure, and scaling) and 
(b) the multiplication and division of fractions, decimals, and integers. The paper summarizes 
evidence from three levels of curriculum: The Common Core, elementary mathematics curricula, and 
mathematics texts for elementary teachers. The analysis points to the need for innovative curriculum 
development to support multiplicative thinking. 

Keywords: Curriculum Analysis, Number Concepts and Operations, Elementary School Education 

Research Objective 
This analysis was undertaken to carefully examine how U.S. mathematics curricula introduce the 

operation of multiplication in the elementary grades. Specifically, it examined how elementary 
mathematics curricula—at three different levels of articulation—align with or depart from additive 
conceptions of multiplication. Quantitatively, additive conceptions focus on situations with equal-
sized groups of discrete (countable) objects. Numerically, multiplication is presented as repeated 
addition. Such introductions create challenges for teachers and students when later work in 
mathematics and science presents situations and multiplication and division in non-whole number 
systems that are difficult to understand in additive terms (Davis & Simmt, 2006). If additive 
conceptions are currently dominant, new curricular approaches will be needed to provide more 
flexible and extendable foundations for teaching and learning multiplicative relationships. This study 
was motivated by a prior study of U.S. curricular presentations of area measurement that revealed a 
gap between additive, array-based conceptions and the multiplicative combination of length and 
width (Smith, Males, & Gonulates, 2016). 

Theoretical Perspective 
The analysis was guided by three perspectives: (1) the conceptual analysis of multiplicative 

situations, (2) Thompson’s theory of quantitative reasoning, and (3) a general orientation toward 
learning as a constructive process. Following Vergnaud’s (1983) analysis of the “multiplicative 
conceptual field,” researchers have offered different typologies of multiplicative situations that are 
conceptually distinct and not easily reduced one to another. Greer’s (1992) influential analysis 
identifies four: equal groups, area, multiplicative comparison, and Cartesian product. Understanding 
multiplication requires seeing how the operation applies differently to each type. 

Situations, typically presented in curricula as “word problems,” are structured by quantities and 
quantitative relationships (Thompson, 1994). Quantities are measurable attributes of objects or 
relationships. The theory of quantitative reasoning (QR) distinguishes discrete from continuous 
quantities, additive from multiplicative relationships, and operations of comparison from 
combination. For example, rectangular area can be seen either in additive terms as a discrete 
collection of squares and in continuous terms as the multiplicative combination of length and width. 
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QR emphasizes that mathematical thinking depends as much on the quantitative understanding of 
situations as on the numerical procedures used to compute numerical values.  

If understanding multiplication involves both quantitative and numerical insights and if different 
types of situations relate discrete and continuous quantities in different multiplicative ways, then 
learning necessarily involves significant conceptual growth and change. If learning is a constructive 
process, students’ initial understandings of multiplication must eventually adapt to and accommodate 
the wider range of situations, quantities, and multiplicative relationships. Initial conceptual 
foundations must be rich and flexible enough to accommodate that growth. 

Method 
The analysis examined three nested levels of elementary mathematics curricula. First, all content 

standards that referred to multiplication in the Common Core State Standards for Mathematics 
(CCSSM) (NGA & CCSSO, 2010) were located and analyzed, with special attention to grades 2 to 5. 
The analysis also examined the relevant passages of three CCSSM progressions documents. Second, 
grade 2 through 5 student and teacher materials in three elementary textbook series were analyzed: 
Everyday Mathematics, 4th edition (The University of Chicago School Mathematics Project, 2016) 
(“EM4”); Engage New York (New York State Department of Education, n.d.) (“ENY”) and 
enVisionMATH Common Core (2012) (“enVision”). Each was written or revised after the publication 
of the CCSSM. Third, four mathematics textbooks written for pre-service teachers and selected based 
on colleagues’ recommendations were analyzed; the lead authors were Bassarear (2012), Beckmann 
(2014), Billstein (2013), and Sowder (2012). All parts of each text that dealt with multiplication and 
division and multiplicative situations were analyzed. At each curricular level, the analysis focused 
on: (a) the first multiplicative situation (or meaning) presented, (b) the presence or absence of an 
explicit definition of multiplication, (c) the relative frequency of discrete and continuous quantities in 
problems, and (d) the treatment of other types of multiplicative situations (after the first). The author 
carried the analysis. 

Results 

Multiplication in the CCSSM 
The CCSSM presents three types of multiplicative situations in grades 3 through 5 (equal-groups, 

area, and comparison), with strong emphasis on equal-sized groups and discrete quantity. 
Rectangular area is presented as a type of discrete array (where the objects are squares). 
Multiplicative comparison is presented and then extended to scaling, in both cases as a numerical 
operation. Cartesian products are never mentioned. Overall, the meaning of multiplication is 
anchored in equal-sized groups of discrete objects. Area and volume measures are counts of squares 
and cubes, not the multiplicative combinations of lengths. 

The CCSSM does not explicitly define multiplication but does explicit tie the meaning of 
multiplication to groups of discrete quantities, “Interpret products of whole numbers, e.g., interpret 5 
x 7 as the total number of objects in 5 groups of 7 objects each” (Standard 1 3.OA). Area measure is 
linked to discrete arrays; “area involves arrays that have been pushed together” (CCSSM, Table 2, p. 
89). The CCSSM does not describe area as a continuous quantity—the amount of space enclosed in a 
boundary. Multiplicative comparison is introduced in Grade 4 in numerical terms, “Interpret a 
multiplication equation as a comparison, e.g., interpret 35 = 5 x 7 as a statement that 35 is 5 times as 
many as 7 and 7 times as many as 5” (Standard 1, 4.OA). Numerical multiplication is extended to 
fractions and decimals in grade 5.  
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Multiplication in Three Elementary Curricula 
All three textbook series follow the CCSSM’s presentation of multiplication relatively closely. 

But ENY’s treatment of multiplicative content is extremely close to the CCSSM, so the analysis 
above applies equally and directly to that series. Counts of ENY word problems show much greater 
attention to discrete than continuous quantities.  

enVision’s presentation also emphasizes equal groups and illustrates numerical products as 
repeated sums of the same addend. Topic 4 in grade 3 concerns “Meanings for multiplication.” 
Lesson 1, “Multiplication as repeated addition,” states that multiplication “is an operation that gives 
you the total number when you join equal groups” (p. 101). Lesson 2 adds that “multiplication can 
also be used to find the total in an array” (p. 103). Lesson 4 introduces multiplicative comparison, but 
only for discrete quantities (“times as many”). Word problems in Topic 4 exclusively involve 
discrete quantities. In Topic 6, Cartesian products of two small sets of objects are represented as 
arrays. Topic 14 (“Area”) defines area measure as “the number of square units needed to cover a 
region” (p. 342)—explicitly a discrete meaning. Grade 4 continues the focus on repeated addition of 
equal groups of discrete objects, reminding students to use their addition knowledge, “You have 
learned addition facts. Now you will use them to help you learn to multiply” (p. 6).  

EM4 lays the foundation for multiplication in grade 2. Unit 8, “Geometry and Arrays,” focuses 
on equal group situations and arrays, which are closely linked. After students partition rectangles into 
squares, teachers are directed to explain multiplication as an operation that involves “finding the 
number of objects in equal groups or rows” and that “an array is one way to represent equal groups” 
(Teacher Lesson Guide [TLG], p. 739). The text also states to teachers that “[u]sing equal groups 
language helps children build the conceptual foundation for multiplication (TLG, p. 746). All 
quantities in Unit 8 are discrete. In grade 3, Unit 1 focuses on numerical methods for finding 
products in equal groups situations and emphasizes skip counting and repeated addition. Unit 4 on 
area measure moves quickly from counting individual squares in rectangles to multiplying the 
number of squares in each row by the number of rows. Despite some efforts to move beyond 
rectangular area as pushed-together arrays, EM4’s focus in grades 2 and 3 is on equal groups, arrays, 
and discrete quantity. The series introduces multiplicative comparison in grade 4 and scaling in grade 
5, but never presents Cartesian products. 

Multiplication in Elementary Pre-Service Texts 
Three of the four texts explicitly define multiplication. Billstein and Bassarear define 

multiplication in numerical terms as repeated addition; Beckmann does so as the replication of equal 
groups. Sowder does not provide a definition but initially “views” multiplication as repeated 
addition. Beckmann presents all of Greer’s four types of situations and adds arrays of discrete 
quantities. Her text interprets all five types as equal groups of discrete quantities. For example, the 
elements of Cartesian products are presented in an ordered list and then arranged into equal groups. 
Billstein presents three of Greer’s types, excluding only comparison. Sowder excludes equal groups 
and adds an “operator view”—the only text to do so. Bassarear presents only Cartesian product and 
comparison.  

All four texts explicitly acknowledge some concern with repeated addition. Beckmann admits 
that groups are not always salient in multiplicative situations; Bassarear states that pre-service 
teachers should look for other models when situations don’t fit repeated addition well. Billstein states 
that repeated addition can lead to “misunderstanding,” so other models should be introduced. Sowder 
indicates that the sole focus on repeated addition will limit children’s thinking and could lead to the 
misconception that multiplication makes numbers bigger.  

All texts extend multiplication to non-whole numbers in different ways. Billstein and Beckmann 
extend their definitions to integers and fractions (via repeated addition and equal groups respectively) 
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but abandon them for decimals. Sowder and Bassarear use repeated addition for most cases of 
integers but shift to “area models” for fractions and decimals (Bassarear) or fractions alone (Sowder). 
Sowder treats decimals as whole numbers. In each text, the authors’ additive conceptions fail to 
extend to decimal multiplication or to some cases of integer multiplication, but these limitations are 
not addressed. Overall, despite variation and stated concerns, three of the four texts explicitly define 
multiplication as repeated addition or the replication of equal groups. Only one (Sowder) moves 
away from an additive conception. 

Discussion 
These results show remarkable consistency in how multiplication is introduced and developed in 

U.S. elementary mathematics curricula. The clear focus is on equal groups of discrete objects and 
repeated addition as the means of computing numerical products. But the foundation of equal groups 
does not generally extend to the multiplication of non-whole numbers and is a poor fit to important 
types of multiplicative situations. Introducing multiplication via equal-sized groups of discrete 
objects eases the task of initial teaching and learning, but it does so at substantial cost to later 
learning. We need innovative curriculum development work to articulate essentially multiplicative 
approaches to the operation of multiplication and the nature of multiplicative relationships beginning 
in the elementary years. 
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South African curriculum reform efforts have focused on making education more equitable. One way 
to measure this goal is to examine the voice of a curriculum. Thus, I use a discourse analytic 
framework to evaluate selected chapters from the textbook Everything Maths for Grade 12. The 
textbook provides access into the standard language of academic mathematics, but is not entirely 
consistent with the ontology of mathematics described in South African national curriculum 
documents. The role of the reader is more often that of a scribbler than a thinker. The textbook could 
be improved by adopting a more personal tone and requiring a deeper level of thought.   

Keywords: Curriculum Analysis, High School Education, Equity and Diversity, Classroom Discourse 

Mathematics curricula may not be sufficient to ensure equitable education without trained 
teachers to enact that curriculum, but it is a good place to start (Boaler, 2002). Mary Schleppegrell 
(2012) discusses how discourse analysis can help us to understand equity issues in mathematics 
classrooms. Of particular focus is how participants are positioned with respect to authority. For 
instance, when the author(s) tell the reader what they found in a previous exploration, this can be 
read as an attempt to control the reader’s thinking (Herbel-Eisenmann, 2007). By presenting results 
from a discourse analysis of a South African textbook, I show how it contributes to and detracts from 
an equitable classroom, and the extent to which it is aligned with statements about mathematics and 
equity in national curriculum documents.   

Social Justice and National Curriculum Documents 
The Curriculum and Assessment Policy (CAPS; DoBE, 2011) is the national curriculum 

document that governs the textbook under review in this study. It contains explicit discussions of 
social justice issues. CAPS (DoBE, 2011) states one of its goals as “to promote accessibility of 
Mathematical content to all learners” (p. 8) and that students should “participate as responsible 
citizens in the life of local, national and global communities” (p. 9). 

CAPS (DoBE, 2011) describes mathematics as follows: 

Mathematics is a language that makes use of symbols and notations for describing numerical, 
geometric and graphical relationships. It is a human activity that involves observing, representing 
and investigating patterns and qualitative relationships in physical and social phenomena and 
between mathematical objects themselves. 

The description of mathematics as a human activity makes it appropriate to deploy a discourse 
analysis to analyze how well the textbook developed to suit these goals meets these aims and 
promotes the ideals of equity and social justice found throughout this document. In particular, the 
textbook should represent mathematics as an evolving human endeavor, position students as capable 
of mathematical reasoning, and not position itself as an infallible authority. 

Discourse Analytic Framework 
The discourse analytic framework used for this study was developed by Morgan (1996) and 

based on the linguistic work of Halliday (1978). The framework was operationalized by Herbel-
Eisenmann (2007). This framework considers three functions of the text: the interpersonal, 
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ideational, and textual features (Halliday, 1978). The interpersonal function is the focus of this 
analysis. It involves looking at how personal relationships are established in a text and where power 
is situated in those relationships (Morgan, 1996).  

One way this framework is operationalized is by looking at any personal (first- or second-person) 
pronouns in the text (Herbel-Eisenmann, 2007). Using first-person pronouns acknowledges the 
existence of the authors (although the use of we can serve several functions; see Pimm, 1987), while 
using second-person pronouns acknowledges the existence of the readers. Another way the 
interpersonal function is analyzed is by looking at the questions and imperatives used in addressing 
the reader (Herbel-Eisenmann, 2007). The imperatives are classified as either inclusive or exclusive. 
Rotman (1988) defines the inclusive imperatives (“‘consider’, ‘define’, ‘prove’ and their synonyms”, 
p. 9) as those which draw the speaker into the text and demand cognitive engagement. Exclusive 
imperatives, which Rotman (1988) classifies as all other mathematical verbs, are those that ask the 
reader to perform actions that are already meaningful in the shared world of the text. This would 
include situations such as asking the reader to solve an equation for an unknown variable.  

Methods 

Background of the Textbooks 
For this study, the material for analysis was the South African Grade 12 Everything Maths 

(Siyavula, 2014) textbook from the Everything Maths & Science series, which grew out of a prior 
openly licensed textbook series called Free High School Science Texts (FHSST; 2008). Siyavula is a 
technology company focused on “building an integrated learning experience, drawing on the benefits 
of open content and adaptive practice for mastery in Maths and Science” (Siyavula, 2015).  

Textbook Selection 
This textbook series was chosen because it provides a much needed resource – free science and 

mathematics textbooks – to many schools that would otherwise lack this resource. It is available in 
both English and Afrikaans. The English texts are the ones analyzed here. The chapters analyzed are 
those on Finance, Trigonometry, and Euclidean Geometry. Finance was chosen because of its focus 
on applications, particularly applications that may well be relevant to students’ lives. Trigonometry 
was chosen because of its flexibility – it can be used for rote calculations, for proofs, and for 
applications. Euclidean Geometry was chosen as the most likely chapter where students would be 
expected to write proofs and/or explain their answers. These were chosen because proofs and 
applications contain the most words, and thus the most material for discourse analysis. Additionally, 
since the type of imperatives is included in the analysis, those chapters with proofs should contain the 
largest sample of inclusive imperatives.  

Analysis 
The Finance, Trigonometry, and Euclidean Geometry chapters of the Grade 12 Everything Maths 

text (Siyavula, 2014) were analyzed using the framework developed by Herbel-Eisenmann (2007). 
This involved examining the voice of the texts using personal pronouns (e.g., I, we, you), and 
questions and imperatives. Specifically, the analysis included identifying personal pronoun usage 
(first and second person, singular and plural) and the number of questions and inclusive and 
exclusive imperatives. Inclusive imperatives are those that ask a reader to think more deeply about a 
concept and construct their own meaning, while exclusive imperatives ask a reader to execute a 
specific task in a well-defined manner.  
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Results 
Counting by sentences, the Finance chapter comprised 37% of the text analyzed, the Euclidean 

Geometry chapter 31%, and the Trigonometry chapter 32%. The exercises constitute the largest 
portion, with 43.3%. The exposition and worked examples are then similar in size, with 26.9% and 
29.8% of the text, respectively. These proportions should be kept in mind when reviewing the rest of 
the results, as these unequal proportions mean that not every section is weighted evenly.  

Pronouns 

Table 1: Personal Pronoun Usage in Everything Maths Grade 12 
Section of Text 1st person singular 1st person plural 2nd person 
Exposition 4 65 29 
Worked Examples 0 64 0 
Exercises 0 2 2 
Total 4 131 31 

 
The Everything Maths chapters chosen for analysis contain 168 total personal pronouns (see 

Table 1). Of these, 74 are in the Finance chapter and 70 are from the Trigonometry chapter, with only 
22 (all first-person plural) from the Euclidean Geometry chapter. All of the first-person singular 
pronouns are in the Finance chapter. The majority (59%) of the personal pronouns are concentrated 
in the exposition, but the exposition only represents 30% of the text, making this tendency more 
pronounced. The exercises contain a scant 2% of the personal pronouns.  

Imperatives  

Table 2: Questions and Imperatives in Everything Maths Grade 12 
Section of Text Questions Exclusive Imperatives Inclusive Imperatives 
Exposition 9 28 3 
Worked Examples 7 165 30 
Exercises 54 171 61 
Total 70 364 94 

 
The Everything Maths selections contain about six and a half times as many imperatives as 

questions (see Table 2). There are not quite four times as many exclusive imperatives as inclusive 
imperatives. The majority of the questions are from the Finance chapter, while the majority of the 
inclusive imperatives are from the Trigonometry and Euclidean Geometry chapters. The 
Trigonometry chapter has almost as many exclusive imperatives as the other two chapters combined. 
The questions and imperatives are concentrated in the worked examples and exercises, with 38% of 
them in the worked examples (30% of the total sentences) and 54% in the exercises (43% of the total 
sentences). Only 8% of the questions and imperatives are found in the exposition (27% of the total 
sentences).  

Discussion 

Pronouns 
The most consistent personal pronoun used in this text is the first person plural (e.g., we, our, 

ourselves). Pimm (1987) commented on the ambiguous use of the term we in mathematical 
discourses, noting that it can be used to denote the author(s), the authors together with the reader, or 
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the mathematical community. Ultimately, however, this convention is characterized by the vagueness 
of its referent. Pimm noted that the effect on him of reading such a text was as follows: 

[C]hoices had been made, ostensibly on my behalf, without me being involved. The least that is 
required is my passive acquiescence in what follows. In accepting the provided goals and 
methods, I am persuaded to agree to the author’s attempts to absorb me into the action. (p. 72-3) 

Thus, while the use of this personal pronoun could be interpreted as emphasizing the human 
nature of mathematics, it may actually be a way to exert authority.  

In this textbook, the use of we certainly seems to indicate some use of formality, at least when it 
is the only personal pronoun present. In the Finance chapter, the use of we was balanced by other 
personal pronouns, particularly you. This contributes a tone that feels more personal. On the other 
hand, in the chapters on Trigonometry and Euclidean Geometry, we drastically outnumbers the 
instances of you, the only other personal pronoun. When not balanced by other personal pronouns, 
we denotes a much more formal tone. Thus, Everything Maths has a consistently formal tone. This is 
not particularly consistent with the statements in the national curriculum document characterizing 
mathematics as a human, social endeavor.  

Questions and Imperatives 
Everything Maths contained many more imperatives than questions, with the imperatives 

sometimes labelled as questions. This gives the text a more authoritative voice (Herbel-Eisenmann, 
2007), especially when combined with the exclusive use of we as a personal pronoun (Pimm, 1987). 
It also contains many more exclusive imperatives than inclusive imperatives. This means that the 
student/reader is positioned primarily as a scribbler, rather than a thinker (Rotman, 1988). While 
both roles are necessary to become a mathematician, a better balance between the two should be 
achieved. The Finance chapters in particular positioned the reader almost exclusively as a scribbler.  
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Despite of the significance of inverse relations in elementary mathematics, how student might be 
supported to learn the relations remains largely unknown. By examining the presentation of the 
inverse relations in a representative Korean elementary mathematics textbook series, this study 
explores how the Korean textbooks may facilitate the transition from concrete to abstract 
representations to promote student learning of the relations. A total of 138 instances of the inverse 
relations were identified. Findings revealed several important aspects of the Korean textbook series. 
First, inverse relations were contextualized in real-world situations through the method of 
storytelling within introductory problems. In addition, the use of multiple visual representations in 
concrete representations facilitated students’ sense-making of computational procedures in abstract 
representations, which aligns with the process of concreteness fading.  

Keywords: Algebra and Algebraic Thinking, Elementary School Education 

Introduction  
Inverse relations among fundamental mathematical ideas have been recognized as a critical 

foundation for school mathematics. However, students consistently have difficulties in understanding 
the inverse relations for two reasons: its abstract nature, and its irrelevance to their lives. Given the 
key role of textbooks as the primary resource of learning, this study aims to narrow such research gap 
by exploring representational transition in textbooks through an examination of the inverse relation 
between addition and subtraction in a representative Korean textbook series. From curriculum 
perspectives, the purpose of study is to examine learning opportunities that are presented in Korean 
textbooks. Since international textbook analysis examines how curriculums in high-achieving 
countries provide students with opportunities to learn, investigating Korean math textbook is 
expected to contribute to the development of students’ understanding of the relations (Son & Senk, 
2010; Son, Watanabe, & Lo, 2017). The study is centered on the following questions: (1) How are 
introductory, guided, and practice problems interweaved to support the learning of inverse relations 
in Korean textbooks?; (2) How are concrete and abstract representations connected to present inverse 
relations?; and (3) How is the learning of inverse relations spaced over time? 

Theoretical Perspectives 
Inverse relations are one of the most important relationships in elementary mathematics because 

reasoning with inverse relations plays a key role in the development of mathematical thinking and 
computational effectiveness. With such importance, the Common Core State Standards for 
Mathematics (CCSSM) (National Governors Association Center for Best Practices & Council of 
Chief State School Officers [NGA & CCSSO], 2010) have emphasized that elementary students are 
expected to learn about relationships between the four operations. An understanding of inverse 
relations is necessary to comprehend the four basic arithmetic operations and to develop early 
algebraic thinking (Nunes, Bryant, & Watson, 2009). The knowledge of inverse relations can help to 
simplify students’ computational difficulties. Inverse relations are useful to flexibly compute [e.g., 
81–79 = (  ) can be thought of 79 + ( ) = 81 (Ding, 2016; Torbeyns, De Smedt, Stassens, Ghesquière, 
& Verschaffel, 2009), check computations (e.g., verifying that 27–12 = 15 by computing 15 + 12 = 
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27; Baroody, 1987), and solve difficult word problems such as initial unknown change problems in 
which a quantity may increase but the solution may involve subtraction.  

Despite of its significance to all aspects of early mathematics, previous research has shown that 
many students tend to fail to gain a formal understanding of inverse relations (Torbeyns et al., 2009; 
Ding, 2016). According to prior research (e.g., De Smedt et al., 2010; Torbeyns et al, 2009), formal 
instruction on inverse relations is lack of the learning of abstract knowledge in concrete contexts. The 
previous research has been proved the concreteness fading, “the process of successively decreasing 
the concreteness of a simulation with the intent of eventually attaining a relatively idealized and 
decontextualized representation that is still clearly connected to the physical situation that it models” 
(as cited in Ding & Li, 2014, p. 105), to be an effective method for learning scientific principles and 
mathematical rules (Goldston & Son, 2005).   

Methods 
We chose to examine Korean textbook series published by the Ministry of Education, Science, 

and Technology (MEST). The MEST textbook series held the teaching of each topic in one chapter 
containing several interrelated lessons. In each lesson, there are three steps: introductory, guided, and 
practice problem. All introductory, guided, and practice problems in the textbook series were 
examined as an instance of inverse relations. We also consider each identified instance as either a 
concrete or an abstract representation based on its overall nature. Furthermore, since we consider that 
concreteness and abstractness are viewed as relative in this study, for each instance, we coded the 
levels of concreteness and abstraction. For concrete representations, we differentiated several types 
of problem formats including (a) word problem with visual representation, (b) visual representation 
and (c) word problem. From (a) to (c), there was a decreasing level of concreteness because the 
visual information became less involved. For abstract representations such as computation problems, 
we differentiated the types of numbers. We viewed one-digit computation as relatively less abstract 
than two- and three-digit computation because the former might be more familiar to students and 
multidigit computation might require regrouping, which could involve more cognitive loads. After 
coding, we first counted the frequency of all the problem types. Then, we counted the frequency of 
instances for the inverse relation between addition and subtraction under the three contexts: 
introductory, guided, and practice problems, respectively. We conducted the detailed analyses at 
three tiers: (1) only introductory problems, (2) the total problems across chapters over grades, and (3) 
only the problems related to inverse relation. We examined the common patterns emerged from 
introductory problems. We also examined the representational changes from introductory to practice 
problems across chapters over grades. Furthermore, we examined only the problems that formally 
and informally instruct the inverse relation between addition and subtraction.  

Summary of Selected Findings 
A closer examination of the Korean textbooks along three dimensions revealed several noticeable 

pedagogical techniques that seemed to facilitate the transition from concrete to abstract 
representations.  

The Method of Storytelling  
The Korean textbooks presented 462 problems across chapters from grade 1 to 2 (see Table 1). 

Among 462 problems, there were a total of 72 introductory, 53 guided, and 337 practice problems. 
Among 72 introductory problems that were situated in word problem with visual representation, 
there were common patterns in presenting each problem: (1) presenting a word problem with 
accompanying pictures; (2) involving the manipulation of concrete objects (e.g., counting by using 
actual stickers, drawing shapes); (3) presenting number sentences that embody the relation between 



Curriculum and Related Factors 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

166 

addition and subtraction. All the introductory problems (n = 72) were presented in word problems 
with pictorial representation (see Figure 1).  

 

 

Figure 1. Examples of pictures used for storytelling. 
 
The situation in each word problem was interrelated with each other under the same theme. For 

example, the situations in the word problems in lesson 11, 12, and 13 of chapter 3 in grade 2 were 
connected to each other: playing the game of go, baking cookies, and earning reward stickers. These 
three situations could be traced back to the real-life situation described in lesson 1 where a second 
grader were writing what happened today at his school in his journal. With using a total 6-page of 
pictures, the method of storytelling is usually implemented. The method of storytelling can be 
categorized into three parts: a) discussion before storytelling; b) teacher’s reading-aloud; c) making 
connections between the situation in the story and students’ real-life situation. Through storytelling 
in lesson 1, the introductory problems across other lessons are intertwined and seem to be able to 
facilitate making connections between students’ informal knowledge (and the formal knowledge of 
addition and subtraction. Therefore, the method of storytelling may promote the specificity of the 
concreteness of introductory problems. 

Table 1: The Frequency of Total Problems Across Chapters from Grade 1 to 2 in KM 
Grade 
(volume) 

Chapter 

Introductory 
Problem  Guided Problem  Practice Problem Totals per 

row Concrete Abstract  Concrete Abstract  Concrete Abstract 
1 (v. 1) 3 18 0  3 0  48 20 89 
1 (v. 2) 3 14 0  8 4  28 36 90 
1 (v. 2) 5 13 0  12 1  20 32 78 
2 (v. 1) 3 14 0  7 5  32 72 130 
2 (v. 2) 2 11 2  12 1  34 15 75 
Totals per column 70 2  42 11  162 175 462 
 

The Use of Multiple Representations  
The Korean textbooks presented 459 problems including the problems directly related to inverse 

relation between addition and subtraction from grade 1 to 2. Among 459 problems, there were a total 
of 277 concrete and 182 abstract representations. Among 277 concrete representations, there were a 
total of 67 word problems with visual representation, 100 visual representation problems, and 23 
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word problems. In each grade, similar patterns were found: a) concrete representations outnumbered 
abstract representations; b) the proportion of the problems with visual representations was bigger 
than the ones without visual representations, which indicates a trend of fading concreteness within 
concrete representations.  

The Connection Between Informal and Formal Learning of Inverse Relations 
The Korean textbooks presented 138 instances of the inverse relation between addition and 

subtraction from grade 1 to 2. The formal instruction of the relation occurred in grade 1 (n =107). 
Among 138 instances, there were a total of 21 introductory problems, 14 guided problems, and 103 
practice problems. Several patterns of representation uses were revealed. First, all the introductory 
problems were presented in concrete contexts, which were word problem with visual representation. 
Second, the majority of guided problems (13 out of 14) were presented in concrete contexts, which 
were pictorial representation. Third, practice problems involved both concrete (n = 41) and abstract 
(n = 62) representations.  

Discussion and Implications 
This study contributes to the current literature because it illustrates how formal instructional 

resources such as textbooks may support students’ learning of inverse relations. The underlying 
assumption of this research is that improved curriculum quality improves student learning and 
teacher learning, directly and indirectly. Given Korean’s students’ high achievement in international 
assessment, the Korean approaches may suggest pedagogical supports for students’ meaningful and 
explicit learning of the inverse relations in elementary school. We found that, inverse relations were 
contextualized in real-world situations through the method of storytelling. In addition, the use of 
multiple visual representations in concrete representations facilitated students’ sense-making of 
computational procedures in abstract representations, which aligns with the process of concreteness 
fading. The findings about Korean textbooks’ insights and pedagogical techniques may provide rich 
information for textbook designers and classroom teachers to refer back to.  
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Project-based learning (PBL) is a method of instruction that can be harnessed to address issues of 
social (in)justice in mathematics classrooms. Using a descriptive and exploratory case study, I 
investigated how one teacher (re)develops the curriculum for a PBL project with a focus on social 
justice and the dilemma she encountered in the process. Using Remillard’s (1999) framework, results 
indicated that PBL with a social justice lens requires careful time to plan and there are multiple 
dilemmas that this teacher encountered in the process.  

Keywords: Curriculum, Instructional activities and practices, Equity and Diversity 

Project-based learning (PBL) is a powerful pedagogical approach to use when incorporating 
issues of (in)equity and social justice in one’s teaching. Project-based learning (PBL) is an 
innovative form of instruction that can provide students with the necessary and vital skills needed for 
the 21st century (Bell, 2010; Buck Institute for Education, 2003; Meyer, Turner, & Spencer, 1997). 
The Buck Institute for Education (BIE), an organization dedicated to helping teachers enact PBL, 
define PBL as “a systematic teaching method that engages students in learning knowledge and skills 
through an extended inquiry process structured around complex, authentic questions and carefully 
designed products and tasks” (BIE, 2003, p. 4). Some of the challenges noted by researchers are time 
to plan and design the project, alignment to standards, support for student learning, and assessment of 
students’ learning (Krajcik, 1998; Marx, Blumenfeld, Krajcik, & Soloway, 1997; Mchugh, 2015). 

Although researchers have argued for the importance of teachers planning projects that attend to 
important facets of PBL such as the driving question, content aligned to standards, and authenticity 
of the project (Markham, Larmer, & Ravitz, 2003; Marx, Blumenfeld, Krajcik, & Soloway, 1997), 
research has not examined in detail how teachers anticipate and achieve these goals. Research has 
focused on teachers’ implementation of PBL (Blumenfeld et al., 1991; Krajcik, 1998), but few have 
focused on the planning and design stage of PBL with an emphasis on social justice and alignment to 
standards. A focus on the design and planning of projects in PBL is analogous to curriculum 
development, thus, research is needed in documenting how teachers develop curriculum for projects. 

With regard to the types of projects students should tackle in PBL, the BIE, stated: “projects 
provide students with empowering opportunities to make a difference, by solving real problems and 
addressing real issues” (Buck Institute for Education, 2003). Yet, few studies of PBL have shown 
examples of students in PBL classrooms working on projects that address real issues of social 
significance (see Mchugh, 2015). Thus, as Thomas (2000) stated, “PBL practitioners are in a position 
of having to construct a unique instructional model almost completely on their own without 
guidance, texts, resource materials, or support” (p. 35). Research on teaching mathematics for social 
justice (TMfSJ) thus far has shown a need for teachers to become curriculum developers because 
supplementary materials are needed to address the help them achieve the goals of TMfSJ 
(Brantlinger, 2013; Gutstein, 2003). However, thus far, these projects have been an addendum to the 
classes which is different from PBL. To that end, the purpose of this study was to explore how a 
mathematics teacher developed the curriculum in one PBL project focused on social justice along 
with any dilemmas experienced in the process.  
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Conceptual Framework 
Remillard (1999) presented a framework for examining two teachers’ curriculum development. 

In this study, Remillard presented three stages of curriculum development which are the design 
arena, the construction arena, and the mapping arena. The design arena “involves selecting and 
designing tasks for students” (Remillard, 1999, p. 322). The construction arena involves “enacting 
these tasks in the classroom and responding to students’ encounters with them” (Remillard, 1999, p. 
322). The mapping arena “involves making choices that determine the organization and content of 
the curriculum” (Remillard, 1999, p. 322). According to Remillard, these arenas are not linear or 
isolated but are instead interrelated (see Figure 1). Although Remillard’s study focused exclusively 
on the teachers’ curriculum development with respect to a specific textbook, I found an adaptation of 
the framework worthwhile for this study.  

 

 

Figure 1. Remillard’s (1999) Overview of the Three Arenas. 
 
Using Remillard’s (1999) three arenas (design arena, the construction arena, and the mapping 

arena) to frame this project, the two research questions that guided this study were:  

1. Across the three arenas, how does a teacher develop the curriculum for a project in PBL 
while incorporating social justice and attending to the mathematics standards?  

2. What dilemmas does the teacher encounter during the project development? 

Data Collection and Analysis 
I used a qualitative, descriptive and explanatory single case study method (Stake, 1995; Yin, 

2003). Miles and Huberman (1994) define a case as “a phenomenon of some sort occurring in a 
bounded context” (p. 25). The bounded context in this case is this specific teacher’s process across 
all three arenas which focuses not only on teaching mathematics using PBL, but also incorporating 
social justice goals and mathematics standards into her teaching. I used purposeful sampling in 
identifying a teacher who has taught PBL Geometry, and who has social justice goals in her teaching. 
A component of case study method is the use of multiple data sources to increase credibility (Yin, 
2003). Therefore, I collected data from multiple sources – interviews, observations, field notes, 
physical artifacts – to allow triangulation in the analysis process to make the results of the study 
trustworthy. 
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Participant 
Ms. Tara is a white woman in her late twenties who teaches both in Prosper High School (PHS) 

and Prosper New Tech High (PNTH) – “a school within a school.” PHS is a visual performing arts 
high school located in a small urban school district in a Midwestern city. PNTH is a magnet school 
located inside PHS. It is a part of the national New Tech Network of schools whose focus is to 
“transform schools into innovative learning environments” (New Tech Network, n.d.). PNTH 
launched in the fall of 2014 with seventh and eighth grades and expanded to ninth and tenth grades in 
the 2015-2016 school year. During the study, there were about 400 students in PNTH and these 
students all took core classes using an integrated PBL approach. Although demographics information 
was not available for PNTH, I share information for PHS to provide some additional context. PHS 
student population was about 43% African American, 24% White, 18% Hispanic, 10% Asian, and 
5% identified with races. In addition, over 60% of the students at PHS qualified for free and reduced 
lunch. 

Ms. Tara was in her fifth year of teaching and her third year of teaching using PBL exclusively. 
At the time of this study, Ms. Tara taught ninth grade geometry in PHS and co-taught algebra and 
physics in PNTH. Given that my focus is exclusively on the mathematics, I decided to work with her 
on the Geometry course, as it was not co-taught with a teacher in a different discipline.  

Data Collection 
I worked with Ms. Tara from conception to completion of a PBL project (lasting three weeks) 

with an intentional social justice component. I collected data for this study in February 2017 using 
three types of data: interviews, physical artifacts, and field notes from classroom observations. Data 
collection was split into two phases: planning phase (design and mapping arena) and enactment 
phase (construction arena). In each of the data collection sources, I ensured that I focused on the 
specific project and asked Ms. Tara to zoom out to capture elements of the mapping arena.  

Data Analysis 
In answering the first research question aimed I organized my findings in the planning phase and 

the enactment phase. In the design and mapping arena, I used data from the initial interview and the 
planning observation and interview to inform my description and in the construction arena, my 
observation, field notes and trigger interviews formed the corpus of this data. I copied the 
transcriptions from these data sources from the InqScribe software into a word document and read 
every line while coding using DA (design arena), MA (design arena), and CA (construction arena) to 
designate the three arenas. For the second question, I sought to examine the dilemmas I observed in 
the planning phase and in the enactment phase of the project. I define dilemma to represent difficult 
choices Ms. Tara had to make given two alternatives. One way I achieved this was comparing what 
Ms. Tara said in the initial interview to what she stated in the trigger or final interview. I also 
compared what she stated in the planning interview with what I observed in the class and in my field 
notes. In other instances, Ms. Tara’s statements indicated clear instances of dilemmas. I transcribed 
the data verbatim and read through the initial interview first and coded key themes that appeared 
salient based on my literature review and in the data. After arriving at my codes, I split the dilemmas 
in the planning phase and the enactment phase. Furthermore, some dilemmas were subsumed into 
another given their close overlap. The labeling of the dilemmas were paraphrased from Ms. Tara’s 
own words. 

Findings and Discussion 
Students worked on the wheelchair ramp project that required them to determine whether the four 

wheelchair ramps in their school were compliant with the Americans with Disabilities Act (ADA). 
Ms. Tara’s curriculum development for a project mostly comprised looking at the big picture. That 
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is, she determined the project students would embark on, the mathematics content standards required, 
and wrote the entry letter. From my understanding at this point, I felt that the engagement between 
Ms. Tara and her students in the construction arena would determine the next stages of curriculum 
development. In the construction arena, the anticipated co-development of the project did not occur 
because Ms. Tara used a more teacher-centered approach resulting from dilemma she experienced.  

In the planning phase, some of the dilemmas she encountered were project authenticity, project 
ownership, and project scaling. In the enactment phase, she faced dilemmas in the type of teaching 
style she employed, comparing students’ ability in PNTH with those in PHS, access to technology, 
and not centering her social justice goal. My findings showed that the construction arena did not 
elicit curriculum development from the interaction between Ms. Tara and her students because her 
students were not given the freedom to drive their learning as is required in PBL and TMfSJ. The 
extensive dilemmas give rise to a need for PBL scholars to examine in more detail and perhaps over 
multiple projects, how teachers navigate the PBL design process especially with a focus on social 
justice. In conclusion, PBL is a complex endeavor that requires careful planning to enable students to 
engage in rich, meaningful, and complex questions. Moreover, given that authenticity is of 
paramount importance, teachers may not be able to develop the curriculum for projects ahead of 
consulting with their students. More research is needed in understanding teachers’ curriculum 
development for PBL and to support them by assuaging the dilemmas they encounter in this process. 
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In Canada, parents’ growing concerns about the “new math” are drawing public attention. Rather 
than dismiss such concerns, understanding parents’ perspectives and garnering their support is 
essential to ongoing curriculum reform and children’s success. In this paper, we present results of a 
phenomenographic study examining parents’ conceptualization of the current mathematics 
curriculum. We focus specifically on parents’ responses to school-to-home communication regarding 
mathematics curriculum reform: (a) seeking out further information, (b) accepting communication as 
given, and (c) resisting information disseminated. We examine parents’ perceived communication 
through a postmodernist framework, that is to consider communication as (im)possible, inevitably 
political, and subjectless. 

Keywords: Elementary School Education, Curriculum, Policy Matters 

The new math curriculum that my kids are learning? Honestly, I don’t quite know what is all 
about. There has been little communication why they changed something that had worked 
perfectly fine into something that vague. (Parent participant) 

The comment above describes the tension expressed by many parents regarding the recent 
mathematics curriculum change and the lack of communication throughout the reform process. In 
Canada, the tug-of-war between “new math” and “back to the basics” has gathered tremendous 
societal attention. Frustrated parents have joined coalitions (e.g., WISE Math) and launched petitions 
(e.g., Tran-Davies, 2013) in an effort to oppose curriculum reforms and to advocate returning to basic 
skills, standard algorithms, and mastery through memorization. 

To identify the challenges of mathematics curriculum reform, we built on our previous work of 
reframing public opposition into collective concerns (McGarvey & McFeetors, 2015) to investigate 
parents’ perceptions of curriculum change. Parent focus groups revealed that parents’ opposition to 
curriculum reform stems from a lack of information about the curriculum and questionable student 
progress. This phenomenon urged us to examine communication as a condition of parents’ 
curriculum perceptions. We previously illustrated perceived sources of mathematics curriculum-
related communication described by parents (McFeetors, McGarvey, Yin, & Pinnegar, 2016). In this 
paper, we ask: How can we understand the range of ways parents respond to communication about 
mathematics curriculum reform? Our goal is to identify fruitful ways to engage in productive 
conversation about mathematics curriculum reform with parents. 

Perspective: Related Literature & Theoretical Framework 
Home-school communication is commonly viewed as a verbal or written interaction between 

parents and teachers through various channels or shared activities (Dyson, 2001). Researchers 
recognize home-school communication as a key form of parent involvement (Epstein, 1987) with 
benefits for students’ learning and motivation (Civil & Bernier, 2006; Pattall, Cooper & Robinson, 
2008). However, current practices are criticized for their “school centric” orientation (Jackson & 
Remillard, 2005, p. 59). Especially in the context of curriculum reform, the school-led one-way 
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communication cannot address parents’ questions about aspects of the current mathematics 
curriculum that are inconsistent with their own schooling experience (Bartlo & Sitomer, 2008). Even 
researchers tend to narrowly define the scope of communication as a planned event initiated by the 
school institution. For instance, Epstein (1996) specifies communicating as the process where 
schools are “sending home report cards” (p. 215). 

We problematize this one-dimensional understanding of school-parent communication by 
following a postmodernist framework (Mumby, 1997) and consider communication as a fluid process 
where information leaks through predetermined channels. Moreover, the fluidity also reflects in the 
agents of communication: differentiation may not be made between sender and receiver of 
information. Rather, communicative processes mobilize the institutionalized subjectivity and the 
participants have agency to construct information and form new identities (Mumby, 1997). In other 
words, parents may perceive communication in ways that are not intended by schools and form their 
identities accordingly. The postmodernist framework requires a methodology open to the facets of 
parents’ perspectives about communication. 

Mode of Inquiry 
We used phenomenography (Marton, 1986) to inquire into the range of parents’ perspectives on 

how mathematics curriculum reform has been explained to them. Phenomenography aids in 
exploring “the qualitatively different ways in which people experience or think about various 
phenomena” (Marton, 1986, p. 31). Researchers draw phenomena into participants’ awareness 
(Gurwitsch, 1964) to characterize and understand their perspectives. The variation in participants’ 
perceptions aids researchers in generating categories which emerge from the data, emphasizing the 
meaning of participants’ perspectives through related categories to provide a mapping of the field of 
inquiry. 

Data Collection 
Forty parents from urban and rural communities in a Western Canadian province participated. 

They were recruited through school council groups and parent networks. Using a volunteer process 
enabled us to listen to parents who are active in their school communities, reflective of vocal parents 
in the media. All participants completed a demographic questionnaire and participated in a focus 
group. Two-hour focus groups generated data of differing parent perspectives because participants 
were required to explain their perspective to others. We focused on their children’s and their own 
experiences of learning mathematics, mathematical interactions at home, and communication 
received from teachers and schools about curriculum. Individual follow-up interviews were 
conducted with fifteen parents to elicit further specific examples and to seek clarification in 
understanding perspectives shared in the focus group. 

Data Analysis 
We used a constant comparative approach to identify parents’ statements which were 

qualitatively different perceptions expressed about communicating mathematics curriculum reform. 
Phenomenographically, perception of experience can be analyzed through structural and referential 
aspects of participants’ awareness. Two phases of analysis proceeded with individual coding, group 
comparison, and some re-coding. Our first sorting phase focused on structural aspects and yielded 
four categories of school-to-home communication forms parents received. Our second sorting phase 
focused on referential aspects and examined the messages parents determined within the 
communication forms. From these ascertained messages, we developed three categories of parents’ 
responses to school-to-home communication which we report below. 
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Results: Presenting & Interpreting Categories of Description 
While our previously-reported categories of communication forms (McFeetors et al., 2016) 

helped identify what parents counted as communication channels, our subsequent interpretation of 
parents’ data indicated this understanding would be insufficient in developing more effective ways of 
communicating with parents about curriculum reform. In fact, the assumption that school-to-home 
communication (Epstein, 1996) is effective as a one-directional process has been brought into 
question by our participants’ perspectives. Our results offer an understanding of the ways in which 
parents respond to the variety of communications, giving us insight into the meaning of curriculum 
reform parents were determining from available information. 

Overall, parents’ responses to communication about curriculum reform can be organized into 
three categories which include eight subcategories summarized in Table 1. These categories capture 
the broad range of parents’ stances and actions resulting from the communication flowing from 
schools to home. Parents demonstrated through articulating their previous and current perspectives 
that they would freely move among subcategories depending on the context and sometimes inhabit 
two different subcategories simultaneously. Below we explain each category with an illuminating 
example from data of one subcategory. In the presentation, all subcategories will be explicated with 
multiple data excerpts. 

 

Table 1: Parents’ Responses to Communication about Mathematics Curriculum Reform 
Seeking out further 
understanding 

Accepting communication as 
given 

Resisting information 
disseminated 

• Cobbling together messages 
• Constructing rationales 
• Gathering more information 
• Interacting with children 

• Satisfied 
• Concerned 

• Discrediting information and 
sources 

• Dismissing information as 
meaningless 

 
Seeking Out Further Understanding. Many parents wanted to support their children, and so they 

actively sought to develop an understanding of approaches to teaching and learning mathematics as 
well as mathematics content in reform-based curriculum by connecting more information. For 
example, Lindsey illustrates gathering more information when she reported, “I went to different math 
seminars for parents … explained some of the different things that teachers are doing in class and 
how to make things fun for our kids when you’re doing math. And that has helped a lot for my son.” 
She interacted with her son to examine new approaches and also shared these ideas with friends who 
in turn used her information in conjunction with formal messages from school to cobble together 
messages of how children are currently learning. 

Accepting Communication as Given. A smaller proportion of parents were located in this 
category, perhaps because parents willing to participate in research tended toward a more active 
stance. However, parents who perceived satisfaction in amount and quality of communication 
attended focus groups to, in one parent’s words, “make sure there’s a different perspective … than 
the media plays things out.” Maggie demonstrates confidence in her understanding of reform-based 
curriculum. Sarah demonstrated similar confidence, but was displeased with changes because 
multiple methods caused “a lot of confusion.” Parents who were static in their response demonstrate 
an important feature of categories, that differing opinions on curriculum reform could lead to similar 
responses toward communication.  

Resisting Information Disseminated. Parents in this category were active in their response to 
communication. As they received school-to-home information, they pushed back against the 
messages they did not see as relevant to their children’s mathematics learning. Strident parents in this 
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category discredited information and sources. For instance, Olga generalized without specific 
examples that “a lot of evidence shows...that inquiry, discovery-based learning is not the most 
effective way to teach” and disparaged “some educational consultants thought that this would be the 
best way to go.” Even though the curriculum states, “students investigate a variety of strategies” 
(Alberta Education, 2007/2016) the parent convinced a teacher, “the new curriculum says that you 
can choose one method to teach my daughter.” Communication that was assumed to be direct 
information was interpreted by an agentic parent in ways not intended. 

Discussion 
Curriculum reforms are crossroads where schools, teachers, parents, policy makers, and other 

education stakeholders at once face promising opportunities and unpredictable challenges in 
determining the future of education. A reconfiguration of home-school communication can offer 
parents a stance grounded in deeper understandings of curriculum reform and realize their agency to 
engage with their children’s school education. The research findings, therefore, can open up further 
possibilities of dialogue with parents and engender their support for curriculum reforms addressing 
the diversity of children learning mathematics. 
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Research in mathematics education has shown the promise of teachers’ examination of student 
work for improving teachers’ understanding of students’ thinking (Silver & Suh, 2014) and for 
assessing and improving teaching (Boston, 2014). Less research has focused on students’ 
examination of student work as a way for students to make sense of the mathematics (Rittle-Johnson, 
Star, & Durkin, 2012). However, recent work (Gilbertson et al., 2016), has explored different sources 
of student work (student-generated, teacher-generated, and curriculum-generated) and specifically 
considered student work embedded in curriculum materials as a context for student learning.  

Our research is guided by the question: What types of mathematical learning opportunities are 
provided for students in tasks that require the reader to compare multiple instances of student work? 
Based on an existing analytic framework (Gilbertson et al., 2016) for the criteria and nature of 
student work, this poster will present findings from a document analysis of curriculum-generated 
student work in CCSSM-aligned curricula with a specific focus on student work tasks that require the 
student reader to make comparisons among multiple examples of students’ conjectures and/or 
strategies. Even within the same type of problem, specifically in this case, comparing student 
strategies, different mathematical learning opportunities are present that would require different types 
of engagement from the student.  

In our work, we consider students’ analysis of curriculum-generated student work as a “potential 
change in route” for research on the role of student work from the typical positioning as a 
professional development or professional learning tool for teachers to a learning tool for students that 
promotes student understanding. Our findings report on the features of the problem tasks (e.g. 
location in text, types of representations, whether correctness is known) and how these features relate 
to intended mathematical understanding (e.g. conceptual, procedural, levels of cognitive demand). 
This work has implications for the current learning opportunities afforded by student work in 
curriculum materials and possibilities for enrichment of existing tasks, informing future curriculum 
and assessment research and development work.  
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Curriculum materials are integral to the teaching and learning of mathematics and have a direct 
influence on what teachers actually plan for and enact in their classrooms (Brown & Edelson, 2003). 
Through a semi-structured think aloud interview, we study teachers’ use of curriculum through the 
Curricular Noticing Framework (Males, Earnest, Amador, & Dietiker, 2015) which describes what 
teachers attend to, how they interpret what they attend to, and how they decide to respond to the 
curriculum materials. We discuss how each teacher moves through these three phases in an 
interrelated fashion and ultimately use this framework to gain deeper insight into the teacher 
planning process for a hypothetical lesson on slope.  

The four teachers in this study were part of a cohort of Noyce Fellows (two master teachers and 
two novice teachers) funded by the National Science Foundation, which targets the needs of 
recruiting and retaining high-quality teachers to teach in high-need schools. All had experience 
teaching slope, but had never used the curriculum materials provided in the interview.  

Findings suggest teachers engaged in all three curricular noticing phases when planning. 
However, each teacher shifted among phases in varying ways, as illustrated by Figure 1. 

 

 
Figure 1. Phases of curricular noticing engaged in by teachers during planning session. 

Even when teachers decided to respond in the same way, their interactions with the curriculum 
materials differed in the attending and interpreting phases. Further, we found teachers’ attention to 
the materials was influenced by their initial interpretations, particularly when these were negative. 
This resulted in some teachers not engaging with a substantial portion of the materials and potentially 
missing opportunities afforded by the materials. 

This study provides insight into how different teachers approach the same curriculum materials 
and produce a plan to enact in the classroom. Understanding the process of how teachers plan using 
curriculum materials has implications for teacher education programs, collaborative lesson planning, 
and curriculum development. 
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As young adults in the United States transition from secondary to postsecondary educations, they 
traverse a high stakes crossroad in terms of access, preparation, and enduring financial risk. Students 
from non-dominant racial groups and from low income backgrounds tend to enter less-prestigious 
universities and they tend to take—frequently using student loans—more remedial classes that do not 
earn credits towards graduation compared to White and higher income students (Complete College 
America, 2012; Venezia & Jaeger, 2013). University algebra classes are among the most highly 
enrolled undergraduate courses and many students fail, withdraw or receive poor grades in these 
classes, requiring re-enrolment (Haver, et al, 2007). University algebra present significant barriers to 
students as they access and pay for a university degree.  

At our university, secondary students can enroll concurrently in our university’s algebraic math 
modeling course through a program called the Entry-Point College in the Schools (CIS) program. 
The program is intended to serve primarily students from groups that are under-represented at 
universities in terms of race, ethnicity or language status; and students with middle-range academic 
performance. The prospect of reducing college costs and improving academic preparation means that 
CIS program has grown tremendously over the last five years, from two schools serving around 30 
students to over 30 schools serving 800 students. 

Despite the program’s popularity, its goals are only partly achieved. This poster uses several 
modes of reflection to report on this equity-focused CIS course in algebraic math modelling. We use 
Harouni’s 2015 commentary on the political economy of mathematics to highlight these dilemmas in 
terms of the interaction of secondary and tertiary educational institutions. Harouni suggests that the 
content and pedagogy of mathematics education at a particular time and place are highly influenced 
by the purposes mathematics serves for students and by the institutional structures in which it is 
taught. First, we describe the legal and institutional structures that allow concurrent enrollment in 
secondary and tertiary courses. Then we discuss the equity objective through program enrolment 
data. We also offer teachers’ perspectives to reveal the opportunities and tensions that they 
experience within the program. Tensions include whether students reduce their university course 
load, whether teachers are comfortable aligning their practices with university standards, and whether 
the program fulfils its equity goals (Pazich & Teranishi, 2014). 
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Assessment “is a process whose primary purpose is to gather data that support the teaching and 
learning of mathematics” (NCTM, 2014, p. 89). With a focus on assessment as process rather than 
product, Shepard (2000) calls for a reform in classroom assessment practices that mirrors the shifts in 
instructional practice and goals for education. In response, we explored the use of a performance 
assessment [PA] as an end-of-unit assessment which remains underutilized compared to traditional 
tests. The purpose of this project was to examine: What is the impact of designing and implementing 
a PA to assess students’ learning at the end of a unit?  

We used collaborative action research as the mode of inquiry. A grade 4/5 teacher and her 25 
students in a suburban school participated over 4 months. The teacher collaborated in designing a 
geometry unit integrating two commercial games (Equilibrio and Quartex) with a blend of activity 
and didactic instruction, culminating in a PA where students created new puzzles for Equilibrio and 
identified mathematical elements. Data included: bi-weekly student work products, photographs, 
field notes, completed PA with screencasts, and interviews with pairs of students and the teacher. 
Analysis produced coding for two categories: teacher and students’ perspectives on PA; and, 
characteristics of assessment practices that are generative. 

Results indicate that using a PA was an effective unit test replacement because it was a 
generative unit assessment sponsoring teacher- and student-growth. The teacher noted, “I have totally 
changed my approach to teaching math…to focus on thinking.” The students perceived higher 
cognitive demand as “it was bigger than just doing a unit test,” yet greatly valued “a chance to show 
what I was thinking” and “it’s better than just writing out a piece of paper your answers because you 
get to use your own imagination and create something.” We developed four features of generative 
unit assessment, with teacher data in italics: 1) teacher’s deepening awareness of students’ math 
thinking (lots of students shocked me at how much they knew and helped me understand their 
thinking); 2) students’ developing consolidated understanding (they had to use the word symmetry 
and applying that into their tower helped them understand better and even in the summative 
assessment they were still learning); 3) students’ emerging productive disposition (they were really 
excited to do math…anxiety was removed and they asked if I could always do it like this and it felt 
like they wanted to show their learning rather than get a [mark]); and, 4) students’ improving use of 
math processes (I could see from their first tower to their second…their problem solving was 
something I focused on). Student data will also be included. 

In discussion, our interpretation of the PA experienced surpassed summative evidence leveraged 
to inform future teaching and learning (Harlen, 2005) to a generative process of growth. While an 
important facet of the study is a synergy between assessment and instruction, we find ourselves at a 
crossroads where classroom practices need to critique a means-end view of data and recognize the 
human endeavor of learning—where generative assessment occasions growth for all involved as 
critically important purpose of attending to students’ learning. 
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Stereotypes of mathematical learners permeate society through storylines (or narratives) that 
maintain the status of whiteness (Nasir, 2016). Stereotypes typically reserved for emergent bilinguals 
(EBs) include an ill-preparedness for school mathematics instruction and a need of remediation and 
support. When these storylines manifest in the classroom they impact EBs’ access to high-quality 
mathematics instruction, the availability of mathematical identities, and reify a marginalized status 
(Battey & Leyva, 2016; de Araujo, Smith, & Sakow, 2016). To understand the storylines of EBs 
exhibited in curriculum resources, we used positioning theory (Harré & van Langenhove, 1999) to 
examine the instructional supports of three high school algebra textbook teacher’s guides. The 
decision to focus on algebra was due to its position as a “gatekeeper for [U.S.] citizenship” (Moses & 
Cobb, 2001, p. 14). The texts selected were from the three largest publishers and aligned with the 
Common Core State Standards.  

Preliminary findings indicate a storyline of EBs that predominately aligns with stereotypes that 
reproduce racial hierarchies in white ideology. Mathematically, the storyline situates EBs in need of 
remediation and “below level.” Specifically, the suggested accommodations center on the provision 
of students’ engagement in repetitious, skill-based exercises. Such positionings reinforce an 
inferiority status, perpetuates whiteness through racial hierarchies of ability by signifying who is 
“good” at mathematics, and restricts the development of a mathematical identity (Battey & Leyva, 
2016). Linguistically, the storylines focus on EBs’ status as English learners and, in some instances, 
assume fluency in a first language, however the benefits of bi/multilingualism are absent. EBs are 
also positioned as students who lack specific mathematical vocabulary in English and benefit from 
learning these terms devoid of context. Such instructional approaches run counter to research, which 
values language-in-use to develop fluency in mathematical discourse (Moschkovich, 2002).  

Although our findings may be unsurprising on the surface, they call attention to the ways 
teacher’s guides perpetuate stereotypes of EBs on a societal scale and restrict access to high-quality 
mathematics instruction. In this way, such curricula can reinforce white ideology in U.S. institutions 
through its maintenance of the status quo (Battey & Leyva, 2016).     
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 Engaging students in authentic learning experiences is widely heralded among mathematics 
education communities (NCTM, 2014) but designing curriculum that centers on authentic work, is 
meaningful for all students, and maintains the integrity of the subject matter is not a trivial task, 
particularly for teachers who may have limited curriculum design expertise. Despite the role that 
teachers play as vehicles between curriculum and student learning, only a few studies include 
teachers as integral participants in curriculum design (Skilbeck, 1984). While some teachers have 
embraced roles as co designers of curriculum, others have refrained from making any modifications 
out of “respect for the expertise of the textbook authors” and perceived external curriculum 
developers as “experts” regarding the instructional design for their classes (Even & Olsher, 2014, p. 
346). It seems that many teachers do not feel as though they have the autonomy and/or competency 
to develop meaningful, standards-based curriculum. 

 The purpose of this study was to explore the experiences of mathematics teachers as they 
designed authentic, interdisciplinary curriculum units and uncover teachers’ conceptions of the role 
of standards-based mathematics curriculum within this context. The study sought to answer the 
following two research questions: 1. In what ways is mathematics absent and present in teachers’ 
curriculum design work? 2. What are teachers’ experiences and conceptions of designing 
mathematics curriculum? 

 In this exploratory study, the researchers worked with seven teachers at a middle school in a 
southeastern state, where 74.3% of students are economically disadvantaged, on designing 
interdisciplinary curriculum. Data was collected between September 2015 and May 2016 and 
includes, audio-recorded pre- and post-interviews, video-recorded bi-weekly planning meetings, 
teacher and student artifacts, and video-recorded classroom observations and teacher workshop days. 
Using Actor Network Theory (Fenwick & Edwards, 2010) as our theoretical lens together with 
qualitative methods, we considered the networks associated with teachers’ perceptions of and choices 
about curriculum design. Findings indicate that teachers’ initial perceptions of mathematics and its fit 
within an interdisciplinary unit changed during the curriculum design, implementation and reflection 
cycle. Preliminary mathematical ideas dissipated during the design phase and were re-imagined 
following unit implementation. Teachers also reported positive experiences in designing curriculum 
noting the investment of their time and collaborative synergy manifested in student engagement and 
ownership of their learning. 
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Although research has shown that mathematics is at least as important as literacy to young 
children’s long-term academic success (Duncan et al, 2007), early mathematics continues to 
receive less attention than literacy in most prekindergarten programs (National Research 
Council, 2009). The goal of this study is to explore this lack of attention to early mathematics 
from a policy perspective. The research question framing the study was: How do states describe 
key content in literacy and mathematics for prekindergarten children and their teachers? Drawing 
on methods for content analysis, my research team and I examined the early learning standards 
for prekindergarten for all 50 states as well as any competency standards for prekindergarten 
teachers. These standards were organized in different ways for each state, with certification 
bands ranging from Birth to Age 5 to Prekindergarten to Grade 12. We engaged in both 
quantitative and qualitative analyses of these standards, although for the sake of space, only 
quantitative data are reported here. 

Overall, analysis showed that while a growing number of states attend to mathematics in 
their early learning standards for prekindergarten, most still give mathematics far less attention 
than literacy. For example, while only 3 states identified fewer than 20 subtopics that should be 
addressed with prekindergarteners in relation to literacy, 13 states specified fewer than 20 
subtopics related to mathematics. While simply having more standards is not necessarily better, 
these data suggest that many states provided more detailed portrayals of early literacy than early 
mathematics. A similar relationship was found in teacher competency standards with only 4 
states offering no subtopics in their literacy standards for teachers, but with 12 offering no 
subtopics in mathematics. Further, 13 states had no required coursework for prekindergarten 
teachers related to mathematics, while only 6 states had no requirements for coursework related 
to literacy. For both mathematics and literacy, attention to teachers’ content knowledge was 
highly related to the structure of the certification band, with bands that ended in the elementary 
years generally requiring more attention to content than bands that ended with prekindergarten or 
kindergarten. For example, in looking at certification bands across the 50 states (n=64 because 
some states had multiple certification bands that include prekindergarten), 7 of the certification 
bands that include elementary grade levels required teachers to take courses related to 
mathematics, while none of the bands that stopped at prekindergarten or kindergarten required 
such courses. This study suggests that the documented lack of attention to mathematics in 
prekindergarten is not simply the result of resistance or lack of interest by teachers, but is, at 
least in part, systemic, resulting from a lack of attention to mathematics in state standards.  
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Planning is one of the first out-of-classroom activities that prospective teachers (PSTs) engage in 
when learning to teach that is linked to improving teaching (Morris, Hiebert, & Spitzer, 2009). 
Furthermore, the task of planning can be difficult, particularly when using curriculum materials. 
Despite the complexities involved in understanding how to use curriculum materials to plan, this is 
an often-neglected topic in teacher education (Drake, Land, & Tyminski, 2014). We draw on the 
Curricular Noticing Framework (Males, Earnest, Dietiker, & Amador, 2015) to describe what 
elements PSTs attend to in CPM and PEI when planning a lesson. 

Across PSTs, results indicate attention across teacher and student materials was balanced with 
most PSTs attending only slightly more to student materials. However, notable differences existed in 
the ways in which PSTs attended to each set of materials. Figure 1 shows a representative sample of 
one PSTs attention for a portion of each text. What this indicates is that this PST, like others, 
attended in a more sporadic manner to the PEI text than to the CPM text. 

When interacting with an element of CPM, he seemed to gaze at that element and read it from 
start to finish. However, with PEI he moves from one element to the next, skimming the text. 

 

 
 

Figure 1. Attention across CPM and PEI materials. 
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A QUESTIONING FRAMEWORK FOR SUPPORTING  
FRACTION MULTIPLICATION UNDERSTANDING 
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This research examined the role of the teacher in supporting students to make sense of fraction 
multiplication when using a problem solving approach. Using a qualitative approach, the teaching of 
four skillful experienced sixth-grade teachers was examined as they implemented a problem-based 
unit on fraction multiplication. This paper will present a questioning framework used by teachers 
that supported students’ conceptualization in this domain and highlight resulting implications for 
teacher practice. 

Keywords: Number Concepts and Operations; Rational Numbers; Instructional Activities and 
Practices; Problem Solving 

This research is situated in the context of fraction operations with a specific focus on fraction 
multiplication. It is founded upon arguments that more attention and effort should be paid to 
unpacking the professional work that teachers do in classrooms (Grossman et al., 2009). The fraction 
operation research literature has documented that students can invent procedures for operating with 
fractions (Kamii & Warrington, 1999). In the domain of fraction multiplication, it has been 
established that students bring initial knowledge that can serve as a starting point for algorithm 
development (Mack, 2001). In an effort to better understand teacher practice in the area of fraction 
multiplication the following research questions were posed: What are key conceptual obstacles 
students encounter when engaged in a problem solving, rather than a procedural approach to 
understanding fraction × fraction multiplication? How do teachers use questioning and discursive 
practices to support students to make sense of what fraction × fraction multiplication is an enactment 
of? 

How to engage students in productive mathematical discussions is challenging (Stein, Engle, 
Smith & Hughes, 2008). One challenge a teacher faces when working to cultivate a teaching practice 
where mathematics is learned through problem solving, is how to support learners without taking 
over or reducing the level of mathematical work students should engage in. In my work with 
teachers, they have commented that they do not know how to guide students when they are 
struggling. They find themselves explaining what to do rather than redirecting students in a way that 
helps them think and reason. This research was conducted to inform the creation of professional 
development materials to use with teachers interested in developing a practice where students are 
engaged in mathematical reasoning and problem solving as part of learning about fraction operations. 
The questioning framework for fraction multiplication that is presented here was one tool developed 
to support practicing teachers. 

Theoretical Framework 
Gravemeijer and van Galen (2003) emphasize that instead of concretizing algorithms for 

students, teachers can use an emergent approach where students are positioned to invent algorithms. 
They describe this guided reinvention process as one that starts with carefully chosen contextual 
problems where students model a mathematical situation. With this approach, students solve 
problems through modeling that leads them to reason with numbers in particular ways. Ideas for 
operating with numbers can emerge from work that focuses on learning to reason with numbers and 
exploring what is involved when numbers are manipulated in particular ways. 
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According to Mack (2001), students bring informal knowledge related to partitioning fractions 
that can support making sense of fraction multiplication. Through modeling students can develop 
mental images and ideas that will support their understanding of what fraction multiplication is an 
enactment of. Important areas to develop include fractions as operators, developing meaning for 
finding parts of parts of a whole, and developing flexibility about what is the unit. Flexibility with 
the unit is especially important because the unit shifts when multiplication is enacted. In additive 
situations the numbers (ex: 1/2 + 3/4) represent actual quantities such as 3/4 of a pound and 1/2 of a 
pound. In a multiplication situation one of the numbers represents a quantity. The other number is an 
operator. For example, when 2/3 × 1/4 is enacted the goal is to determine what 2/3 of the quantity 1/4 
is. In a scenario where someone wants to plant 2/3 of 1/4 of a garden with beans there are multiple 
levels of partitioning taking place. Initially, a whole garden in partitioned so that 1/4 of the whole 
garden can be represented. Next, one must partition the 1/4 of a garden into thirds and identify 2/3 of 
the 1/4 in order to know what part of the part of the whole garden is planted with beans. Finally, in 
order to determine how much of the whole garden is used for planting beans, the part of the part of 
the whole identified for planting beans must be expressed as what fraction of the whole garden is 
used for beans. While it might be tempting to provide students with the shortcut that “of” means 
multiply, the actual enactment of multiplication with fractional numbers is much more complex. 

Armstrong and Bezuk (1995) offer that in order to make sense of fraction multiplication students 
need partitioning experiences that lead to the analysis of relationships between partitions and the 
whole. From an instructional point of view it is important for students to have the opportunity to 
encounter and make sense of “part of a part of a whole”. From a mathematical point of view, students 
need opportunities to explore through modeling what is happening when the operation of 
multiplication is enacted. This research aimed to understand the teacher’s role in supporting the 
development of this understanding by engaging students in a problem-solving approach to fraction × 
fraction multiplication rather than an approach focused on demonstration of a procedure. 

Methodology 
The setting used for this study were the classrooms of four sixth-grade teachers and their 

students. Each of the teachers used the Connected Mathematics Project (CMP) II instructional unit 
Bits and Pieces II: Using Fraction Operations (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2006a) as 
their primary curriculum. The unit uses a guided-reinvention approach to developing meaning for 
fraction operations. It allows algorithms to arise through student engagement with both contextual 
and number-based situations. In this setting assumptions can be made about the tasks used and about 
the fraction-related concepts that were developed prior to, and during the unit on fraction operations. 
In the timeline for the sixth graders who were part of this study, students came to the fraction 
operations unit with previous experiences that supported their understanding of fractions as quantities 
and their ability to model fractions. Prior to implementing the Bits and Pieces II unit, the Bits and 
Pieces I: Understanding Fractions, Decimals and Percents (Lappan, Fey, Fitzgerald, Friel & 
Phillips, 2006b) unit was also implemented.  

The four teachers were skillful experienced teachers. The teachers had between 6 and 16 years of 
experience teaching with CMP. The researcher had prior opportunities to interact with two of the 
teachers in their classrooms. These interactions provided information on how the teachers organized 
their learning environment and engaged students to reason with mathematical ideas. The teachers had 
a strong understanding of the mathematics they taught and their students as learners of that 
mathematics. These teachers engaged their students in conversations about their mathematical work 
as they engaged in problem solving and reasoning. The other two teachers were identified by 
contacting fellow mathematics educators, researchers, and district-level personnel known by the 
researcher to have a history of working with teachers in CMP classrooms. They were provided the 
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criteria described above and asked to recommend, if they could, a teacher who strongly met all of the 
criteria. The directions explained that a teacher must meet all criteria and to not make a nomination 
for the sake of nominating. 

This study used a qualitative design. During the teaching of the Bits and Pieces II unit, classroom 
lessons were videotaped each day during the five to six weeks it took to cover the unit. In addition, 
teachers wore an audio recorder during each lesson. The video recorder was used to record small 
group discussions. When visiting the classrooms of the teachers, the researcher engaged in 
participant observation. This included observing, taking field notes, interacting with students during 
small group work time, and meeting with the teacher after the lesson to seek their perspective on the 
lesson and students’ mathematical progress. During the part of the instructional unit that focused on 
fraction × fraction multiplication, the researcher visited each teacher’s class during at least one day of 
the three to four-day lesson sequence. When the unit concluded, the researcher brought all four 
teachers together to examine selected student work, videos of their teaching, and discuss patterns 
emerging in the data. 

Data analysis was guided by Erickson’s (1986) interpretive methods and participant 
observational fieldwork. The multiple data sources allowed for triangulation. The video and audio 
data were transcribed and analyzed for emerging themes in relation to the research question. 
Questions that framed the data analysis included “What approaches to solving problems emerged in 
discussions as students shared their reasoning?”, “How did teachers respond to students?”, “How 
did teachers direct the mathematical focus of these discussions?”, and “What approach did the 
teacher take when students struggled mathematically?” When the researcher met with the four 
teachers, emerging themes along with relevant classroom video clips from lessons were reviewed. It 
was during this process of data reduction and collaborating with the teachers that the researcher 
began to identify data that answered the research questions. From this analysis a questioning 
framework was developed that captured interactions teachers had with students when using an 
emergent approach to fraction × fraction multiplication. The questioning framework is presented in 
Figure 1. The questioning framework was linked with issues referred to as “sticky points”. The sticky 
points emerged and became articulated during the researcher’s discussions with teachers about their 
interactions with students. Sticky points are common areas where students struggle mathematically to 
make sense of the enactment of fraction × fraction multiplication. These are also documented in the 
literature (ex.: Mack, 2001; Armstrong & Bezuk, 1995). The sticky points are one’s that typically or 
expectedly emerge when instruction uses students’ ideas as the starting point. The questions that 
form the questioning framework were apparent in the classroom teachers’ dialogue with students as 
the teachers attempted to move students through these sticky points toward valid mathematical ideas 
and understandings. 

Results 
The CMP curriculum introduces students to fraction multiplication using the context of selling 

pans of brownies at a school event.  A typical problem might ask the following: What fraction of a 
pan of brownies will I have if I buy ¾ of a pan that is ½ full. This context leads to development of an 
area model. Student were given a labsheet with squares (brownie pans) that they used to model the 
problem by developing a drawn visual representation of what happens when buying ¾ of ½ of a pan 
of brownies. Through drawing the students begin to develop a mental image of what fraction 
multiplication is an enactment of and reason about what each fraction represents in the process. As 
students draw models to enact and solve the problem there are common sticky spots that arise. The 
teachers anticipated and used these as opportunities to build new ideas related to understanding 
fraction multiplication. Figure 1 contains the questioning framework that emerged from the analysis 
of classroom data described in the methodology section. It is reflective of the mathematical 
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interactions the teachers had with students while working to model and solve brownie pan problems 
as part of making sense of what fraction × fraction multiplication entailed. 

 
1.   What is the problem asking you to do? 
2.   Tell me about your picture. What does it show? 
3.   How much are you starting with? How can you show that? 
4.   What is the problem asking you to find? How can you show that? 
5.   How much of what you started with do you need? 
6.   How much of the whole pan do you need? 
7.   How many pieces are in a whole pan? 
8.   How many of those pieces do you end up needing? 
9.   Do you have more than you started with or less? Why does that make sense? 
10. What number sentence would write to show what the problem is asking you to  
       do mathematically? 

Figure 1. Questioning framework for fraction × fraction multiplication. 

As in most any class, students will need support based on where they are in their overall fraction 
understanding—some more than others. Rather than show students what to do, teachers posed 
questions to focus their attention on particular mathematical ideas while students worked to develop 
a picture that modeled what was happening in the brownie pan scenarios they were presented with. 
See figure 2 as one possible model that a student might develop. Asking students what they are 
starting with by posing question 3 (also see Fig. 2a), which in the ¾ of ½ scenario is the second 
fraction ½, and asking students why this makes sense, is used to establish which fraction is the 
starting quantity. In the problem context, ½ of a pan is an actual quantity. The fraction ¾, which is 
the operator, is focused on when asking question 4 (also see Fig. 2b). While a teacher could tell 
students what fraction they should draw first when making their model, the expectation of teachers 
observed was that students engage in reasoning and problem solving. They wanted students to figure 
out what they were being asked and work accordingly using what they knew about fractions and 
partitioning. This is why the teachers asked questions 1 through 4. These questions helped with one 
of the common sticky points—which fraction do I start with and which fraction am I operating with 
when modeling a fraction times fraction situation. Often, students want to start with the first fraction 
written in the problem statement. They want to begin by partitioning and shading the brownie pan to 
show ¾ of a pan of brownies. However, they need to begin by showing that there is half of a pan of 
brownies to start with. Questions 3 and 4 when used together draw out or direct reasoning toward 
what each of the fractions in the multiplication problem represents visually. Students need to 
understand what each fraction represents—one is a starting quantity and one is an operator. 
Questions that ask students to read (and reread) the problem context support their ability to process 
and reason about what the problem is describing as well as asking.  

A second sticky point was what represents the unit being partitioned and named. When the 
problem starts, the unit is the whole brownie pan. You start with half of a whole pan of brownies. 
When asked to find ¾ of ½ of the pan, the unit or whole that is partitioned is half of the pan. When 
asked to find ¾ of ½, students may not be aware that there is a shift to a new unit and they mark or 
partition the full brownie pan. In other words, they find ¾ of the whole pan rather than ¾ of ½ of the 
pan. Also, while a student may correctly partition the half pan into fourths, they may not be able to 
articulate why it makes sense to do this. Together questions 3 and 4 draw and focus student reasoning 
on what each of the fractions represent when the problem is enacted. Question 5 (also see fig. 2b) 
focuses on what part of the part of the whole do you need. With ¾ of ½ of the pan, question 5 leads 
students to articulate that they need ¾ of ½ of the whole pan. When students can articulate this, they 
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might then realize they need to shade ¾ of ½ of the pan. Or, perhaps a teacher might respond, “If you 
need ¾ of ½ of the pan, how could you show that in your picture?” At this point most student realize 
that they need to partition ½ of the pan into four equal parts and shade three of the parts. Question 6 
then aims to get students to articulate that they need ¾ of ½ of the whole pan. In some cases this led 
the teacher to prompt the student to write beside or under their picture “¾ of ½ of a pan”. In other 
words, students were prompted to express and record that the brownie pan scenario could be captured 
or expressed as “¾ of ½ of a whole pan”. This will eventually support question 10 (also fig. 2d) that 
asks what number sentence could you write to show what the problem is asking you to do 
mathematically.  

 
2a. 

 
 
 
 
 
 
 
 

 

2b.                                                                                                  
 
 
 

 

 
 

 
 

 Q3: How much are you starting with?  
[½ of a pan of brownies] 

Q4: What is the problem asking you to find? 
Q5: How much of what you started with do 

you need? 
[¾ of ½ of the pan of brownies] 

 
2c. 

 
 

 
 
 
 
 

 

2d. 
 
 

 

 

Q6: How much of a whole pan do you need? 
Q7: How many pieces are in a whole pan? 

Q8: How many of those pieces do you end up 
needing? 

[3/8 of the whole pan of brownies; 8; 3] 

Q10: What number sentence could you write? 
 

¾ of ½ of a full pan is 3/8 
or 

¾ ×  ½ = 3/8 
 

Figure 2. Possible model representing ¾ of ½ of a pan of brownies. 
 
A third sticky point involved expressing the solution based on what the problem is asking. 

Questions 7 and 8 (also see fig. 2c) are designed to direct attention to what the problem is asking—
what part of the part of a whole pan of brownies would get if you bought ¾ of ½ of a pan of 
brownies. Often students say the solution is ¾. While it is true that ¾ of ½ of the pan is shaded, the 
solution is expressed as the portion of the original unit or the part of one whole pan. This requires a 
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second shifting of units from finding part of ½ of a pan back to finding a part of one whole pan of 
brownies. The solution 3/8 is the part of the whole pan of brownies that are bought. Question 7 
directs students to determine how many 1/8 pieces are in the whole pan. Question 8 focuses on how 
many 1/8 pieces are being bought. In addition to these questions, teachers might also ask students to 
reread the problem and to determine what they were asked to find. In the CMP curriculum the 
brownie pan problems ask, “What fraction of a whole pan of brownies is bought?”  

As students experience the shifts across units, and because they are developing a visual model to 
reason with, the teachers focused on what was happening in relation to a fourth sticky point. Drawing 
from their work with whole numbers, students often think that multiplication leads to a product that 
is larger than the factors being multiplied together. Question 9 prompts students to look at their 
brownie pan picture, (or array model when they begin to use symbolic rather context-based 
problems) and consider that when they multiply by a faction that the solution is less than then what 
they started with. This sets up an opportunity to discuss what is happening when multiplying 
fractions and why fraction × fraction multiplication leads a solution where you have less than what 
you started with. 

Returning to question 10, which may not be posed until after modeling and discussion of multiple 
problems, students are prompted to attach symbolism to the situation and their models. In the data 
this question led to discussions about why, for example with ¾ of ½, that the solution is expressed in 
eighths, and why there would be “three” eighths. From discussion of the ideas related to their models 
and what fraction × fraction multiplication is an enactment of, the algorithm “multiply numerators, 
multiply denominators” began to emerge. While the initial problems posed used the brownie pan 
context, students also worked with non-contextual fraction × fraction multiplication problems. While 
the idea that students could think of multiplication as finding a fraction “of” a fraction was addressed, 
the teachers focused discussions on finding a “part of a part” and used the brownie context to give 
meaning to this when instructional tasks shifted from contextual to symbolic. As students responded 
to questions from the framework they engaged in the thought processes associated with the 
enactment of fraction × fraction multiplication. The concept of fraction × fraction multiplication as 
finding a part of a part was supported. 

Discussion and Significance 
NCTM (2014) argues the importance of letting students engage in productive struggle. Often 

teachers are concerned that by not demonstrating up front to student what to do to solve a problem it 
will lead to confusion among students. How to support students and not “tell” is challenging. 
Providing teachers with problem contexts such as the brownie pan scenario is important in 
supporting a change in practice. However, a good problem alone does not help teachers develop ways 
to help students when they are stuck or get students started solving problems without telling them 
how. Good problem contexts do not ensure a teacher will have a way to support student problem 
solving. The questioning framework in coordination with “part of a part” problem contexts like the 
brownie pan problems is a potential tool for helping teachers shift away from a practice based on 
telling. While it sits outside the scope of research reported here, this framework in conjunction with 
video case analysis was used with teachers in a professional development setting. These teachers 
were working to develop their practice to use an emergent approach to fraction operations. 
Preliminary data analysis suggests that the questioning framework was an important support for 
teachers working to engage students in fraction multiplication algorithm development based on a 
problem solving approach. 

Just as students benefit from learning to persist, teachers also need to learn to work through 
students’ moments of uncertainty. Making sense of student reasoning while at the same time making 
instructional decisions about how to reply or what to ask in discussions with students, and how to 
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guide without taking over student thinking is complex (Stein, Engle, Smith & Hughes, 2008). 
Facilitating discussions with students about what is happening as they work on problems such as 
those presented here may be daunting to teachers who are new to or working to develop a practice 
where students engage in problem solving and reasoning. The questioning framework described here, 
especially when paired with analysis of student work and classroom video cases in a professional 
development setting, can offer teachers a plan for listening to and responding to their students. It 
provides a pathway for supporting student reasoning so that teachers do not feel they have to resort to 
telling. 
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Algebra is an area of pressing national concern around issues of equity and access in education. 
Recent theories and research suggest that personalization of instruction can allow students to 
activate their funds of knowledge and can elicit interest in the content to be learned. This paper 
examines the results of a large-scale teaching experiment where 8th grade students posed, solved, 
and shared algebra problems related to their out of school interests in topics like sports, video 
games, and social networking. Results suggest that the teaching experiment improved both learning 
of and interest in algebra compared to “business as usual” instruction, particularly for those 
students who were struggling. Theoretical and practical implications are discussed. 
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Algebra is a gatekeeper to higher-level mathematics, with significant implications for both equity 
in education and students’ economic attainment (Moses & Cobb, 2001). Failure rates in algebra 
continue to be high, especially among low-income students and students of color (Allensworth, 
Nomi, Montgomery, & Lee, 2009). Students’ interest in learning math declines over adolescence 
generally (Frenzel, Gotez, Pekrun, & Watt, 2010), and during algebra courses specifically (McCoy, 
2005). Concepts from algebra are not seen as being connected to students’ worlds, including their 
home and community activities (Chazan, 1999). Math curricula are often not designed to be relevant 
to students from diverse backgrounds (Ladsen-Billings, 1995).  

Exploring ways to connect math to students’ lives, experiences, and funds of knowledge is 
critical to making algebra both accessible and captivating. All students bring to the classroom 
mathematical funds of knowledge (Civil, 2007; Moll & Gonzalez, 1994), ways of reasoning 
quantitatively from their home and community. Students draw upon rich algebraic ways of reasoning 
when pursuing their out-of-school interests in areas like sports and video games (Walkington, 
Sherman, & Howell, 2014). If these funds of knowledge can be brought into the classroom, they may 
allow students to better access and understand mathematical ideas (Boaler, 1994; Walkington, 2013). 

This paper reports a study where 8th grade students pose their own personalized “algebra 
stories.” Personalization refers to the instructional approach of making connections between 
students’ interests in topics like shopping, music, and social networking, and instructional content 
they will be learning in school (Cordova & Lepper, 1996; Walkington, 2013).  

Theoretical Framework 
The theory behind personalization draws upon two major ideas – interest as a motivational 

variable, and mathematical funds of knowledge. Interest is the psychological state of engaging and 
the predisposition to re-engage with objects, events, or ideas (Hidi & Renninger, 2006). Higher levels 
of interest have been associated directly with improved performance and learning (Potvin & Hasni, 
2014). Higher interest is also connected to important mediators of learning like attention, 
engagement, persistence, perceived competence, and use of learning strategies (Kim, Jiang, & Song, 
2015; Linnenbrink-Garcia, Patall, & Messersmith, 2013), and with motivational variables like self-
efficacy, self-regulation, and achievement goals (Harackiewicz et al., 2008). Personalizing 
instruction by connecting it to students’ out-of-school interests may thus elicit their interest for the 
content to be learned, allowing for increased engagement and motivation. 
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Students also bring to the classroom funds of knowledge from their home and community lives 
that are historically-accumulated and culturally-developed (Civil, 2007); students’ out-of-school 
interests are one dimension of these funds of knowledge. Prior research has explored the creation of 
instructional school units around children’s experience with money and with home-based knowledge 
of gardening and construction (Civil, 2007). Interviews with families have revealed that they use 
mathematical practices while cooking, sewing, engaging in construction, and scheduling (Gonzalez, 
Andrade, Civil, and Moll, 2005). Using students’ funds of knowledge can increase their legitimate 
participation in the classroom (Barton & Tan, 2009). Thus personalizing instruction to students’ out-
of-school interests may allow students to draw upon their prior knowledge of using quantities and 
numbers in everyday life in useful ways, allowing them to better understand and access the 
mathematical content to be learned.  

Problem-posing – the activity of having students author mathematical tasks – “improves students' 
problem-solving skills, attitudes, and confidence in mathematics, and contributes to a broader 
understanding of mathematical concepts and the development of mathematical thinking” (Singer, 
Ellerton, & Cai, 2013, p. 2). Learning to pose a mathematically valid story problem is a challenge for 
students who must come to appreciate the importance of problem features. When posing a story 
problem, students must first avoid making common errors like posing non-mathematical, trivial, or 
unsolvable questions (Silver & Cai, 1996). They next must select units of measure and include 
realistic quantities that relate to one another in a known fashion (Silver & Cai, 2005). Research on 
personalization has thus far focused on problem-solving instead of problem-posing – the present 
study extends this research. 

Prior research on personalizing mathematics instruction to students’ out-of-school interests in 
topic like sports or movies has found that this approach elicits interest (Hogheim & Reber, 2015), 
and can promote learning (Cordova & Lepper, 1996; Walkington, 2013). However, effects are small, 
and producing banks of personalized problems is difficult for curriculum developers. In the present 
study, we enlist the students as the authors of their own algebra stories. In this way, learning becomes 
“personalized” as the students themselves write and solve problems based on their out-of-school 
interests in topics like sports, social networking, and video games. We examine the effects a 4-day 
teaching experiment which implemented personalized problem posing, sharing, solving. The research 
questions are: (1) How does participation in the teaching experiment impact students’ understanding 
of algebraic concepts? and (2) How does participation in the teaching experiment impact students’ 
interest in and self-efficacy for algebra? 

Method 

Procedure and Participants 
This paper describes the fourth phase in a five-phase design-based research program (Brown, 

1992; Collins, Joseph, & Bielaczyc, 2004). In design research, educational researchers “engineer” 
learning interventions and theories, with continuous adjustment and experimentation, to allow 
evidence-based claims to be made. The initial phases of the design research involved interviews and 
a small-scale pull-out teaching experiment where students posed, solved, and shared personalized 
problems. We then applied a teaching experiment methodology to four intact classes of 8th grade 
students to further develop and refine hypotheses. We follow the definition of a teaching experiment 
in Steffe and Thompson (2000) where students’ mathematical development is tracked over time as 
emerging hypotheses about the “mathematics of students” arise and are tested. We set out to tackle a 
widely-acknowledged issue at our site – students’ struggle to solve algebra story problems - and 
coordinated pragmatic and theory-based concerns as we determined “in the moment” and after each 
session how to guide learning.  
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The procedure for the teaching experiment was as follows. During a pre-test, students indicated 
which topics they were interested in: sports, video games, social networking, shopping, 
food/cooking, cell phones, computers, part-time jobs, and reading/writing. For students in the 
experimental group, selections were used to place them into groups of 3-5 students who all shared 
one of these interests. During each class, groups would solve algebra problems about topics the group 
was interested in like sports or cell phones. The problems they solved were written by the 
researchers, but were almost always based on problems that students in the classes had previously 
written. After solving a personalized problem, groups would be asked to write their own problem 
with a similar type of linear function (e.g., no intercept, negative slope, system) that corresponded to 
their group’s shared interest. They would solve their own problem, and sometimes would trade 
problems with another group. The class would discuss both the problems students solved and the 
problems they posed. Learning was personalized in that students were writing and solving problems 
based on their out-of-school interests. 

We also employed a comparison group. The two teachers participating in the teaching 
experiment taught approximately half of their class sections using “business as usual” instruction, 
and pre- and post-assessments were distributed to both the 4 classes participating in the teaching 
experiment and the 3 classes receiving “business as usual” instruction. Although comparing a 
teaching experiment delivered by a research team to a single teacher implementing their normal 
instruction may not be balanced, our purpose was to simply explore what the possibilities and limits 
of this approach might be. The problem-posing intervention may actually be more effective when 
delivered primarily by the classroom teacher, as teachers have far greater familiarity with their 
students and the curriculum.  

Participants included 171 students (94 experimental and 77 control) in 7 classes of two teachers. 
Two of the classes (45 students; 1 class in experimental and 1 class in control) were 8th grade 
Algebra I classes where more advanced students were placed. The other 5 classes (126 students; 3 
classes in experimental and 2 classes in control) were regular 8th grade math classes. Students were 
enrolled in a middle school in a large metropolitan area. Participants were 56% female, 90% 
Hispanic, 4% African-American, 4% Caucasian, and 2% Other race/ethnicities, with 91% 
Economically Disadvantaged (ED) and 39% Limited English Proficient (LEP). Eight students (all in 
the experimental group) had a special classification where they were immigrants who had been in the 
country for less than a year and spoke only or mainly Spanish.  

Measures and Analysis 
All participants took a pre-test that measured their knowledge of linear functions. There were 2 

forms of the pre-test, which were randomly distributed within each class. Each form contained 3 
algebra story problems, and then an additional prompt where students were asked to pose their own 
story problem. This fourth item was included because we were wondering whether students’ 
willingness to pose a problem at pretest would interact with the degree of benefit they received from 
the teaching experiment. The post-test contained identical items, with one exception – for students 
not in Algebra I, instead of the prompt asking them to pose a problem, they were instead asked to 
solve a problem that involved direct variation (i.e., a directly proportional relationship with no 
intercept term). Because of how the teaching experiment unfolded, far more time than anticipated 
was spent on direct variation, so it seemed important at post to measure students’ understanding. Pre-
tests and post-test items were identical across the experimental group and the control group. Items 
were drawn from released items on algebra assessments like the state standardized test and the 
Smarter Balanced assessment.  

On the first page of their pre- and post-test, all students were given an 11-item questionnaire. The 
first 8 items were from the situational interest scale in Linnenbrink-Garcia et al. (2010) (example 
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item: “I enjoy the subject of algebra.”), and the final 3 items were self-efficacy items written based 
on Bandura (2006; example item: “I feel confident in my ability to do algebra.”). Cronbach’s alphas 
for each scale were between 0.88 and 0.90, suggesting good reliability.  

Gains from pre- to post-test were analyzed using mixed effects logistic regression models. The 
outcome variable was a 0/1 indicator of whether each student got each problem on their post-test 
correct. Random effects were added for student ID and problem ID. This analysis method was used 
because it could handle that different students got different forms of the test, and it allowed for there 
to be a different “difficulty level modifier” (modelled as a random effect) for each individual 
problem. Fixed effects included a 0/1 variable for condition (control or experimental group), pre-test 
score (with each part of each problem on the pre-test being counted as 1 point), and which course the 
student was enrolled in (8th grade math or Algebra I).  

Because random assignment was conducted at the level of a classroom, we knew that there could 
be significant pre-existing differences between students in different class periods. For example, in 
our sample, special education students tended to be in certain periods, as did students in our subgroup 
of recent immigrants to the U.S. For this reason, we sought to include as many additional predictors 
to compensate for pre-existing differences between class periods as possible – including gender, ED, 
LEP, Talented and Gifted (TAG), and Special Education (SPED) status, students’ score on the mid-
year standardized mathematics test administered by their district that took place shortly before the 
teaching experiment, students’ initial level of situational interest in and self-efficacy for mathematics, 
and whether the student was a recent immigrant. We only, however, retained fixed effects that were 
significantly predictive in the models. In addition, on the pre-test, the final question asked all 
students to try to pose an algebra problem about their interests. Scoring this problem as “correct” was 
problematic and therefore it was not included in the calculation of the pre-test score. Instead, we 
created a 0/1 indicator variable that simply showed whether the student had attempted to pose a 
problem. We were particularly interested in whether students’ willingness to pose a problem at pre-
test would moderate the effectiveness of the teaching experiment. Models were initially fit without 
interaction terms (Model 1) and then all two-way interactions with Condition were subsequently 
tested (Model 2). For the situational interest and self-efficacy measures, each student’s 1-5 ratings for 
each scale was averaged, and used as the outcome in a linear regression model. Similar fixed effect 
predictors were tested for inclusion, including Condition, average rating on the pre-questionnaire, 
and grade level. D-type effect sizes were calculated using the method outlined in Chinn (2000); in 
Cohen (1988), effect sizes of 0.2, 0.5, and 0.8 are considered small, medium, and large, respectively. 

Results 
Table 1 shows how the experimental and control groups compared on pre-measures and the post-

test. While they were very comparable in terms of the measures of interest and self-efficacy, the 
experimental group had directionally lower scores on both the pre-test and the mid-year district 
standardized assessment.  

Table 1: Comparison of Experimental and Control Group 
 Control Group Avg 

(SD) (N=77) 
Experimental Group Avg 
(SD) (N=94) 

Situational Interest 3.07 (0.87) 3.04 (0.85) 
Self-Efficacy 3.00 (0.94) 3.06 (0.98) 
Pre-test Score 22.84% (28.05) 20.46% (30.03) 
Mid-Year Standardized Test 49.10% (15.40) 44.83% (17.78%) 
Post Test 31.28% (29.59) 34.37% (29.31) 
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The latter difference neared significance in a one-tailed t-test (p = .053). As mentioned previously, 
these differences are not surprising given the clumsy nature of random assignment at the classroom 
level. For this reason, it is clear that post-test differences between groups should be interpreted using 
statistical methods that take into account relevant covariates, like our regression models. 

Performance on Algebra Post-Test 
Results for the regression analyses predicting performance on the post-test items are given in 

Table 2. Model 1, the main effects model, shows that being in the personalization condition 
significantly enhanced post-test performance, with a small-to-medium effect size calculated at 
d=0.35 (Odds=1.87). Other factors that enhanced post-test performance included higher scores on the 
pre-test and the district standardized test, being in Algebra I, not being a recent immigrant, and 
attempting to pose a problem on the pre-test. The latter main effect is somewhat surprising, given 
that it also had a small-to-medium effect size calculated at d=0.39. This variable might be indicating 
students’ level of proficiency with the English language, which may be important when solving 
algebra story problems. 

Model 2, the interactions model, revealed an interaction between condition and course, where 
personalization was most beneficial for students not in Algebra I with a medium effect size d=0.53 
(Odds = 2.60). There was not a significant effect of personalization on learning for students in 
Algebra I (B=0.954-1.025=-0.071). The effect of personalization on post-test performance is being 
driven by the subgroup of students who are most in need of assistance – those placed into the lowest 
mathematics track. These students were considerably more likely to solve post-test problems 
correctly if they participated in the teaching experiment, compared to business-as-usual. 

Table 2: Mixed Effects Logistic Regression Models Showing Post-Test Performance 
 Main Effects Model (Model 1) Interactions Model (Model 2) 
Random Effects: Variance    Variance    

Student ID 1.146    1.084    

Problem ID 2.580    2.583    

Fixed Effects: B(SE) Odds 95% CI Odds Sig. B(SE) Odds 95% CI Odds Sig. 
(Intercept) -4.885 (0.576) 0.008 (0.002, 0.024) *** -5.157 (0.595) 0.006 (0.002, 0.019) *** 
Mid-Year Test 0.046 (0.008) 1.047 (1.031, 1.063) *** 0.047 (0.008) 1.048 (1.032, 1.064) *** 
Linear Functions 
Pre-Test 0.018 (0.006) 1.018 (1.007, 1.03) ** 0.017 (0.006) 1.018 (1.007, 1.029) ** 
8th Grade Math  (ref.)  

  
(ref.) 

   Algebra 1 1.688 (0.325) 5.410 (2.847, 10.279) *** 2.184 (0.409) 8.880 (3.958, 19.923) *** 
Wrote Story Pre 0.699 (0.263) 2.013 (1.198, 3.382) ** 0.811 (0.266) 2.250 (1.332, 3.801) ** 
Recent Immigrant  -2.846 (0.952) 0.058 (0.009, 0.38) ** -2.959 (0.948) 0.052 (0.008, 0.337) ** 
Control Condition (ref.) 

   
(ref.) 

   Personalized 
Condition 0.628 (0.237) 1.873 (1.173, 2.992) ** 0.954 (0.289) 2.595 (1.466, 4.595) *** 
Personalized 
Condition x Algebra 1  

 
-1.025 (0.516) 0.359 (0.13, 0.993) * 

Note. * p<.05, ** p < .01, *** p < .001. (ref.) denotes the reference category to which effects are compared. 

Ratings on Interest and Self-Efficacy Post-Questionnaire 
Results for the regression analyses predicting interest ratings on the post-questionnaire are in 

Table 3. For the main effects model (Model 3), the only variables that predicted interest at post were 
interest rating on the pre-questionnaire and score on the district standardized test. However, in Model 
4 which tested for interactions with condition, there was a statistically significant interaction between 
condition and students’ tendency to write a story problem on the pre-test of algebra skill. For students 
who wrote a story problem at pre-test, there was no difference in interest between the experimental 
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and control groups on ratings of interest (B=0.307-.489=-0.182, p=0.165). However, for students 
who did not write a story problem at pre-test (62.6% of students), there was a significant positive 
difference in interest ratings at post of 0.307 points (95% CI [0.101,0.514]), p=.004), favoring the 
personalization group. Receiving personalized instruction does seem to be associated with an 
increase in interest, but this effect is limited to students who prior to the teaching experiment had 
potentially weaker problem-writing skills. This again suggests the personalized problem-posing 
activities are benefitting struggling students. Regression results for the self-efficacy items (not 
shown) showed no significant effects for Condition or for the interaction of Condition with any of the 
other predictors (ps > 0.1). 

Table 3: Linear Regression Models Showing Avg. Interest Ratings on the Post Questionnaire 
 Main Effects Model (Model 3) Interactions Model (Model 4) 

 Fixed Effects: B(SE) 95% CI  Sig. B(SE) 95% CI Sig. 
(Intercept) 0.231 (0.164) [0,0.643]  0.091 (0.178) [-0.256,0.440]  
Mid-Year Test 0.007 (0.003) [0.002,0.012] ** 0.009 (0.003) [0.004, 0.105] *** 
Avg. on Interest Pre-
Questionnaire 0.749 (0.050) [0.651,0.847] *** 0.723 (0.050) [0.625,0.820] *** 
Wrote Story Pre    0.332 (0.121) [0.096,0.569] ** 
Control Condition    (ref.)   
Personalized Condition    0.307 (0.105) [0.101,0.514] ** 
Personalized Condition x 
Wrote Story 

 
 -0.489 (0.171) [-0.824, -0.154] ** 

Note. * p<.05, ** p < .01, *** p < .001. (ref.) denotes the reference category to which effects are compared. 

Problems Posed by Students 
An analysis of what occurred during the 4 days of the teaching experiment, while important to 

this research as a whole, is beyond the scope of the current paper – here our research questions focus 
only on pre-/post- differences. However, we give some examples of problems written by students in 
Table 4 to provide some context for the quantitative results. 

Table 4: Problems Posed by Students 
Session of Teaching 
Experiment 

Example of Problem Students Posed 

Session 1 David is Instagram famous and every minute he gets 40 likes. Fill in the chart with the 
number of likes he will get in 4 minutes. 

Session 2 Lucas is playing GTA Band every time he dies, he loses $40.00. Write a linear equation 
that shows the relationship between money and every time he dies. 

Session 3 The Dallas Stars are destroying the Red Wings tonight. In the first period it was 11-2. If 
this keeps up for the next two periods, what will be the final score? Make a linear 
equation. 

Session 4 Melanie had 60% of battery on her phone. She lost 10% every hour. Write a linear 
equation that shows the relationship between % of battery and hours. 

Discussion and Significance 
We contrasted an approach where students posed, solved, and shared problems related to their 

out-of-school interests to business-as-usual instruction in 8th grade math classes. The control group 
experienced direct instruction where they solved problems on worksheets and discussed them as a 
class. An interesting facet of the comparison is that the control group tended to solve many more 
problems per class period (10-20 problems), while the experimental group focused in on posing and 
solving just a few. To an outside observer, the control group likely appeared to be more orderly and 
efficient. However, the experimental group learned more from the “messiness” involved with 
grappling with challenging mathematical ideas, and also in some cases saw increases in their interest 
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in learning algebra. This is consistent with other studies on researcher-delivered (rather than student-
generated) personalization (e.g., Walkington, 2013). However, compared to this prior research on 
personalization, here were see a slightly bigger effect size (medium instead of small), and this is also 
one of the first studies to test personalization with a more diverse student population. This study is 
also the first classroom study to put students at the center of the personalization process where they 
are posing their own problems based on their interests and experiences. 

This study shows the potential of pedagogical approaches that make mathematics meaningful and 
relevant, conceptualize students as competent agents who can control their own learning, and that 
allow for rich mathematical discussions around challenging ideas (e.g., Moses & Cobb, 2001; Boaler, 
2002). This study was carried out in an urban middle school in danger of not meeting state 
mathematics achievement benchmarks, with large class sizes and a diverse student population, many 
of whom did not speak English as their first language. Approaches that utilize and value the funds of 
knowledge that all students bring with them to the classroom can improve learning and interest and 
promote equity (e.g., Civil, 2007). Although funds of knowledge research has been critiqued for not 
employing multiple methods (Rios-Aguilar, Kiyama, Gravitt, & Moll, 2011) like quantitative 
analyses of effectiveness, this study expands the research base. An approach where students draw 
upon their own funds of knowledge, rather than rely solely on the teacher to make connections to 
their lived home and community experiences, could be significantly easier to scale and more 
authentic. This study also offers evidence that the activation of interest and student learning of 
mathematics go hand-in-hand (e.g., Hidi & Renninger, 2006; Mitchell, 1993). Challenging activities 
can increase the motivation of students struggling in the mathematics classroom, if proper supports 
(like funds of knowledge) are utilized. And finally, the results of this study inform the next iteration 
of our design-based research trajectory, the ultimate goal of which is to build an intervention that 
teachers can implement in different classroom contexts. 
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We review research literature concerning “number sense” from several related fields. Whereas 
other authors have pointed to difficulty defining “number sense” or to some degree of 
inconsistency in the literature, we argue instead that this is a case of polysemy: There are 3 
different constructs that go by the same name. In this article, we clarify the research literature 
concerning “number sense” by naming and defining these 3 constructs, identifying similarities 
and differences between them, and contrasting themes in each body of literature by drawing 
upon a sample of 124 research articles that focus on “number sense.”  

Keywords: Number Concepts and Operations 

What’s in a name? That which we call a rose, by any other name, would smell as sweet. —
Juliet in Romeo & Juliet, William Shakespeare 
There has been increasing interest in “number sense” from researchers in fields including 

experimental psychology, mathematical cognition, special education, and mathematics 
education. As an illustration, in a search for research articles with “number sense” in the title, we 
found 13 articles published in the 1990s, 40 articles published in 2000–2009, and 71 articles 
published in 2010–2016. Yet there seem to be a wide variety of uses of the term number sense. 
For example, consider the following two article titles: “Relationships among computational 
performance, pictorial representation, symbolic representation and number sense of sixth-grade 
students in Taiwan” (Yang & Huang, 2004) and “Wild number sense in brood parasitic Brown-
headed Cowbirds” (Low, Burns, & Hauber, 2009). As this contrasting pair illustrates, we find a 
wide range of uses of the term number sense in the research literature. 

More broadly, researchers in the social and behavioral sciences have become concerned with 
impediments to progress resulting from confusion over constructs (Brown, 2015; Gintis, 2007; 
Larsen, Voronovich, Cook, & Pedro, 2013; Le, Schmidt, Harter, & Lauver, 2010; Shaffer, 
DeGeest, & Li, 2016). Two particular issues have the potential to plague the research literature: 
synonymy and polysemy. Synonymy refers to different terms having the same meaning. 
Polysemy refers to the same term being used in different ways. Larsen et al. (2013) argue that 
these issues result in a proliferation of constructs and meanings, leading to “reverse progress” (p. 
1532) as less is known over time about relationships between constructs, relative to the number 
of constructs that appear in the literature. As we will demonstrate, we regard the varied uses of 
the term number sense in the research literature as a problematic case of polysemy. 

Many authors have noted difficulties defining “number sense” or disparities in the definitions 
and descriptions found in the literature (e.g., Andrews & Sayers, 2015; Berch, 2005; Dunphy, 
2007; Howell & Kemp, 2005; 2009; 2010; Lago & DiPerna, 2010). In a seminal article published 
25 years ago, McIntosh, Reys, and Reys (1992) emphasized the need to clarify the meaning of 
“number sense” in order for related research to progress. More recent articles have pointed to 
differences in definitions and assumptions about “number sense” but have assumed that these 
reflect different “perspectives” concerning a single construct, rather than fundamentally different 
constructs with the same name (Berch, 2005; Andrews & Sayers, 2015). 
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The above critiques of the “number sense” literature have each been situated within a 
particular field. Our review, which is a product of collaboration between researchers in special 
education and mathematics education, is concerned with the need for greater clarity in the 
“number sense” literature across fields. In this article, we categorize the literature focusing on 
“number sense” based on researchers’ definitions and assumptions. Our systematic review of a 
sample of 124 research articles leads to a clear conclusion that is responsive to the issues 
identified above: Instead of disagreement over a single construct, we find three distinct “number 
sense” constructs at play in the literature. We argue that this is a problematic case of polysemy 
and a microcosm of broader issues of construct confusion in the social and behavioral sciences. It 
is difficult for research concerning a particular “number sense” construct to advance so long as 
authors continue to attempt to draw upon literature concerning different constructs that go by the 
same name. These different constructs involve contrasting assumptions about the nature of 
“number sense” and they are embedded in traditions with distinct orientations and concerns. 

Method 
We conducted a literature review to answer the following research question: How is the term 

number sense used in research literature in the social and behavioral sciences? In particular, how 
is “number sense” defined, and what assumptions do researchers make about the nature of 
“number sense”? We searched five databases (Academic Search Complete, Education FullText, 
ERIC, JSTOR, and Psyc INFO) for research articles with “number sense” in their titles. It was 
important to control the scope of our review in this way, because we sought to identify how 
“number sense” was defined and analyzed and to identify characteristics of “number sense” 
research. This being our purpose, including all articles that made any mention of “number sense” 
would have muddied our results. The numbers of journal articles that mentioned “number sense” 
varied from 168 to 1,587 in the databases listed above, and many of these were not research 
studies or were studies that did not focus on “number sense.” For the purposes of our review, the 
relevant studies were those in which “number sense” was central to the research. We found the 
inclusion of “number sense” in the title of the article to be a reasonable proxy for this centrality. 

We searched for all such articles that met the criteria described above and that were 
published on or before December 31, 2016. We focused on research articles published in peer-
reviewed journals. Thus, we filtered out practitioner articles, books and book reviews, and 
conference abstracts and proceedings. We also filtered out publications not written in English. A 
final count of 124 articles qualified for inclusion in our sample. We recognize that some high- 
quality articles concerning “number sense” may not be included in our sample as a result of these 
requirements. Our purpose was not to provide comprehensive reviews of the literature belonging 
to each “number sense” tradition. It was to identify and describe “number sense” constructs 
based on a sufficient sample of the research literature associated with each construct. 

In addition to the sample of articles described above, we consulted seminal works and 
publications of historical significance that explicitly addressed “number sense.” We identified 
these based on their being cited frequently in our sample of research articles and/or representing 
a synthesis of research related to “number sense” in a particular research tradition. We included 
in this category the works of Dehaene (1997/2011), Geary, Berch, and Koepke (2015), Sowder 
and Schappelle (1989), and Sowder (1992). Consulting these sources provided us greater access 
and insights into the history of “number sense” research and enabled us to answer questions 
concerning definitions, assumptions, findings, and themes in cases in which a consensus could 
not be identified within our sample of articles. 
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We initially read a selection articles from our sample, focusing on authors’ interpretations of 
“number sense” and the apparent origins of those interpretations (based on citations and use of 
key constructs), as well as the populations studied and methods used. We proceeded using open 
coding to define distinct “number sense” constructs. We refined our definitions through constant 
comparative analysis as we reviewed additional articles (Corbin & Strauss, 2008). Once we had 
reached a saturation point, we settled on three constructs: (a) innate number sense, (b) early 
number sense, and (c) mature number sense. 

We grouped the bodies of literature related to each of the three constructs into distinct 
research traditions. We each took primary responsibility for reading and summarizing the 
literature belonging to one of the traditions. We developed these summaries iteratively with 
feedback from one another. We then compared our summaries based on key concepts, analytic 
approaches, findings, and themes. Questions that arose concerning similarities and differences 
between traditions or lack of clarity regarding any terms led us to return to our sample of articles 
and/or our set of seminal publications for answers. This process, too, was iterative. We refined 
our summaries of the aspects of each tradition in order to focus more clearly on the similarities 
and differences between traditions. Length constraints for this manuscript do not permit us to 
report on the research traditions in any detail; however, the themes that we identified helped to 
focus our descriptions of the “number sense” constructs and related concepts from each tradition.  

Findings: Three “Number Sense” Constructs 
We describe the three “number sense” constructs, along with key concepts related to each of 

them, based on our review of the literature. We also highlight similarities and differences in 
assumptions that distinguish these constructs.  

Overview of the Three “Number Sense” Constructs 
Innate number sense (INS) is believed to be an inborn set of neurological abilities that is 

common to humans and some animals. Thus, INS research involves infants, children, adults, and 
non-human animals (e.g., Libertus & Brannon, 2009; Halberda & Feigerson, 2008; Low et al., 
2009). This construct concerns perception and discrimination of magnitudes, rather than explicit 
knowledge of number words or symbols. Much of the research with humans involves observing 
brain activity while participants perform tasks such as determining which of two sets consists of 
more items (e.g., Dehaene, 2001; Libertus & Brannon, 2009; Stoianov & Zorzo, 2012). Dehaene 
(1997/2011) believes that most people are born with an equal endowment of number sense and, 
therefore, INS is not predictive of success in learning mathematics. Dehaene’s use of the term 
the number sense (with the definite article the and emphasis on the word number) is indicative of 
the view of INS as an innate sense, which is related to visual and auditory perception. 

Early number sense (ENS), in contrast to INS, includes learned skills that involve explicit 
number knowledge, such as counting items using number words and comparing numbers 
represented symbolically as numerals. Some researchers believe that ENS builds upon the more 
basic INS (Andrew & Sayers, 2015; Aunio et al., 2005; Geary, et al., 2015). Levels of ENS skills 
vary from person to person and are influenced by education and experiences in early childhood 
(Cheung & McBride-Chang, 2015; Dunphy, 2006). ENS is regarded as an important predictor of 
success in school mathematics (Dyson, Jordan, & Glutting, 2011; Locuniak & Jordan, 2008; 
Jordan, Kaplan, Locuniak, & Ramineni, 2007). Accordingly, ENS skills are well aligned with 
school mathematics, especially in the early childhood years (preschool to Grade 2). Typically, 
studies of ENS involve young children or students with disabilities. ENS research does not 
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belong to a single field. It is conducted primarily by researchers in mathematics education, 
special education, and cognitive psychology. 

We use the term mature number sense (MNS) to distinguish the “number sense” construct 
that features prominently in the mathematics education research literature. MNS encompasses 
multidigit and rational number sense, and studies focus primarily on middle-grades (i.e., upper 
elementary and middle school) students and preservice teachers. Like ENS, the MNS construct 
refers to something learned, rather than innate. In contrast to ENS, MNS is typically described in 
terms of components, which refer to conceptual structures and habits of mind, rather than skills 
(e.g., McIntosh et al., 1992; Reys & Yang, 1998). For example, MNS is associated with 
flexibility in mental computation (Markovits & Sowder, 1994). Furthermore, whereas ENS is 
well aligned with school mathematics, MNS is often contrasted with school mathematics: 
Students who competently perform computations using standard algorithms may not exhibit 
characteristics of MNS, such as flexibility (Reys & Yang, 1998; Reys et al., 1999). 

Key Concepts in “Number Sense” Research Traditions 
Having provided an overview of the three constructs, we delve deeper into related concepts 

that appear in the three corresponding research traditions. 
Key concepts in INS research. According to Dehaene (2001), “Number sense is a short-hand 

for our ability to quickly understand, approximate, and manipulate numerical quantities” (p.16). 
INS is considered part of an evolutionary process related to neurological abilities. Specifically, 
three neurological abilities are associated with INS: perceptual subitization, magnitude 
discrimination, and the use of a mental number line. Perceptual subitization can be defined as 
rapidly or immediately identifying numerosities of sets consisting of up to three or four items 
(Clements, 1999; Dehaene, 2001). Any numbers that are beyond four are then approximated with 
less precision (Clark & Grossman, 2007). Magnitude discrimination consists of indicating the 
difference in cardinality between two sets of items (presented visually or auditorily) (Dehaene, 
2001). The mental number line is a mental approximation of magnitude based on a continuous 
number line believed to be present in an individual’s mind (Clark & Grossman, 2007). The use 
of a mental number is inferred from the ability to “quickly decide that 9 is larger than 5, that 3 
falls in the middle of 2 and 4, or that 12 + 15 cannot equal 96” (Dehaene, 2001, p. 16). (Although 
comparisons of numerals require explicit number knowledge, they are taken as evidence of a 
mental number line in humans who have developed such knowledge.) 

Key concepts in ENS research. ENS is conceptualized and studied as a set of skills. In a 
prominent example, Jordan and colleagues (2006) focused on “assessed skills that have been 
validated by research and are relevant to the mathematics curriculum in primary school” (p. 154). 
Six main skills are focal in ENS research: number recognition, counting, number patterns, 
number comparison, number operations, and estimation. Number recognition requires children to 
associate the number symbols with the vocabulary and meaning of numbers. Counting includes 
ordinality, cardinality, and counting backward or forward starting with an arbitrary number. 
Number patterns is the ability to copy a given pattern or identify a missing number in a 
sequence. Number comparison refers to awareness of the magnitude of given numbers and the 
ability to make comparisons between different magnitudes. Number operations involves the 
ability to perform simple calculations of sums and differences within 10 or 20. Estimation refers 
to magnitude estimation of symbolic and non-symbolic quantities, including the use of a number 
line to identify the approximate location of a number (Andrews & Sayers, 2015; Berch, 2005; 
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Baroody et al., 2012; Ivrendi, 2011; Jordan et al., 2006; Howell & Kemp, 2010; Malofeeva, Day, 
Saco, Young, & Ciancio, 2004; McGuire, Kinzie, & Berch, 2012).  

Key concepts in MNS research. McIntosh and colleagues (1992) provided a definition of 
MNS that has often been cited or paraphrased:  

Number sense refers to a person’s general understanding of number and operations along 
with the ability and inclination to use this understanding in flexible ways to make 
mathematical judgments and to develop useful strategies for handling numbers and 
operations. It reflects an inclination and an ability to use numbers and quantitative methods 
as a means of communicating, processing, and interpreting information. It results in an 
expectation that numbers are useful and that mathematics has a certain regularity. (p. 3) 

The above description seems to capture the gist of the term number sense, as it is commonly 
used in the mathematics education community. It focuses on habits of mind and ways of 
behaving mathematically that are considered desirable, such as flexibly manipulating numbers. 

Despite this holistic definition, MNS is typically partitioned into up to six components: 
understanding of the meaning and size of numbers (e.g., to compare fractions), understanding 
and use of equivalent representations of numbers (e.g., to write rational numbers in different 
ways), understanding the meaning and effect of operations (e.g., to reason about the effect of 
dividing by a number between 0 and 1), understanding and use of equivalent expressions (e.g., to 
compare expressions involving different numbers and/or operations), flexible computing and 
counting strategies for mental computation, written computation, and calculator use (e.g., to 
select strategies and perform mental computation), and measurement benchmarks (e.g., to 
estimate the height of an object) (Reys et al., 1999; p. 62). Many studies use assessments 
designed to measure specified components of number sense (e.g., Yang & Lin, 2015). 

Similarities and Differences 
In summary, INS is regarded as innate and equally distributed among normal people at birth. 

It is also found in some animals. INS consists of a set of basic neurological abilities, which do 
not account for success in learning mathematics. ENS, by contrast, is regarded as learned. It is 
unequally distributed among people and is not found in animals. ENS is typically conceptualized 
as consisting of a set of skills, and these skills are well aligned with primary-grades mathematics. 
MNS is also learned and unequally distributed among people. It is typically described as 
consisting of a set of components, which include conceptual understandings and habits of mind. 
In contrast to ENS, MNS is often described as being at odds with students’ typical experiences in 
school mathematics and the mathematical knowledge and orientation that result.  

Discussion and Conclusion 
Whereas other authors have observed differences in definitions or interpretations of “number 

sense,” they have assumed that this confusion surrounds a single construct (Andrews & Sayers, 
2015; Berch, 2005). For example, Berch (2005) referred to “the concept of number sense” (p. 
333, emphasis added) and Andrews and Sayers (2015) described “number sense” as “a poorly-
defined construct” (p. 257, emphasis added). These previous observations were made from the 
perspective of researchers in the ENS tradition, and their purpose was not to clarify the “number 
sense” literature more broadly. Whereas INS and MNS research represent two extremes, ENS 
research lies in between them, and particular studies may lean closer to one side or the other. 
Thus, it is ENS researchers who face the most potential for confusion in attempting to navigate 
the muddled “number sense” literature. It is no surprise, then, that ENS researchers have taken 
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the lead in recent efforts to clarify what “number sense” means in order to facilitate progress in 
ENS research. 

Our systematic review led to the identification of three “number sense” constructs. To the 
best of our knowledge, our review of the “number sense” literature is the first of its kind. It had 
the express purpose of analyzing the use of the term number sense in research literature across 
fields in order to disentangle the meanings and assumptions associated with the term. The 
contrasting features of the constructs underscore the need to clearly distinguish them. 

The results presented above contribute to the literature by clarifying distinctions between 
three constructs that have gone by the same name. The widespread use of the term number sense 
to refer to three distinct constructs belonging to different traditions has led to some confusion 
and has not gone unnoticed in the literature. By systematically coding the articles in our data set 
according to the authors’ assumptions about “number sense” and their methods of investigation, 
we were able to clarify the nature of the construct within each tradition. 

The differences that we identified in definitions and assumptions are not a trivial observation 
about the literature. We noted in our review many instances of inappropriate citations across 
research traditions. For example, some MNS articles cite INS research to support their claims 
about “number sense” despite the fact that their research concerns a different construct. To be 
clear, authors working in one “number sense” tradition should not be citing authors working in 
another tradition, unless there is explicit acknowledgment of the differences between traditions 
and unless there is a particular reason for the citation. We suggest that researchers use terms such 
as INS, ENS, or MNS to distinguish the “number sense” construct that they are investigating. 
Although “number sense” is a catchy term that rolls off the tongue, its loose usage across related 
research traditions has led to confusion and impediments to progress. 

In conclusion, we find in the “number sense” literature a problematic case of polysemy. As 
Larsen et al. (2013) state, “The task of integrating research by connecting synonymous 
constructs and parsing polysemous constructs is an urgent one if behavioral science is to 
advance” (p. 1533). We agree, and we add that the same issue applies to research in the social 
sciences. In particular, in order to propel progress in “number sense” research in a variety of 
fields, there is a need to clarify the construct under investigation within each tradition. 
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EXPLORING THE STRUCTURE OF EQUIVALENCE ITEMS IN AN ASSESSMENT OF 
ELEMENTARY GRADES 

 Rashmi Singh Karl W. Kosko 
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This study is focused on the structure of equivalence problem to probe the evolution from operational 
to relational view of students’ understanding of equals sign. We propose a modified construct map 
which incorporates the intermediate levels in such a transition which were previously ignored. Our 
findings suggest that the structure of number sentences (place value and the position of answer box) 
has undeniably significant role in developing students’ conception of equivalence. In addition, the 
designed and validated example presented here could potentially serve as a tool for better 
assessment of understanding of equivalence. 

Keywords: Number Concepts and Operations, Algebra and Algebraic Thinking, Elementary School 
Education, Assessment and Evaluation. 

Background / Overview 
There is a consistent and increasing focus by educational researchers on the development of 

elementary grade algebraic reasoning, specifically in regard to the use of open number sentences (e.g. 
4 + o = 5 + 7) (Falkner, Levi, & Carpenter, 1999; McNeil & Alibali, 2004; Molina & Ambrose, 
2008; McNeil, Fyfe, Petersen, Dunwiddie & Berletic-Shipley, 2011). Such open number sentences 
often include expressions on both sides of the equation and are often introduced as arithmetical 
equations where students are tasked to find the unknown or missing number in place of a blank or 
empty box. This affords students the opportunity to explore the underlying structure of an 
arithmetical equation and improve their understanding of the meaning of symbols and operations. 
Various researchers (Mc Neil & Alibali, 2004; McNeil et al., 2006; Sherman & Bisanz, 2009; 
Powell, 2014) suggest that many elementary students are introduced to only traditional arithmetic 
equations (i.e., a + b = c). These studies suggest that such operations equals answer type equations 
encourage the operational view and may hinder students’ development of a relational view of the 
equals sign. 

In an operational view of the equal signs students carry the notion that the equals sign means 
makes, produces the answer, find the total, or as an indication to do something such as computation 
(Behr, Erlwanger & Nichols, 1976; Kieran, 1981; Seo & Ginsburg, 2003; Knuth, Stephens, McNeil 
& Alibali, 2006; McNeil et al., 2006; Jacobs et al, 2007). Students holding a relational view consider 
the equals sign as a mathematical symbol which represents the sameness of the expressions or 
quantities on either side of an equation (Kieran, 1981; Baroody & Ginsburg, 1983; Falkner et al., 
1999; Alibali, Knuth, Hattikudur, McNeil, & Stephens, 2007; Blanton, Levi, Crites, & Dougherty, 
2011). A vast majority of research suggests that a relational understanding of equivalence is a first 
step towards early algebraization (Falkner et al., 1999; Carpenter & Levi, 2000; Blanton & Kaput, 
2005; Jacobs et al., 2007; Byrd, McNeil, Chesney, & Matthews, 2015). Students holding a more 
operational view tend not to develop the conceptual understanding of arithmetic and other more 
advanced mathematics such as Algebra (Kiren, 1981; Knuth et al., 2006; Jones, Inglis, Gilmore, & 
Dowens, 2012; Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). Thus, the traditional way of 
introducing equal sign (a + b = c) tends to focus predominately on step-by-step computation to find 
the answer rather. By contrast, explorations of the underlying structure or number relations between 
and within the expressions appears to require alternative forms of equations. 
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The research to date generally interprets the structure of equations as open number sentences (a + 
b = c +¨) vs traditional arithmetic equations (a + b =¨). However, it is unclear whether and to what 
degree other mathematical structure within such equations interacts with children’s conceptions of 
equivalence. Namely, place-value is an aspect of mathematical structure that children engage 
concurrently with their developing conceptions of equivalence.  The aim of this study is to 
investigate the role of number structure, specifically place-value with whole numbers, in students’ 
conception of mathematical equivalence. To facilitate this purpose, we examined third grade 
students’ responses to a conceptions of equivalence assessment using psychometric analysis. 

Theoretical Framework 

Numeric Structure in Number Sentences 
Traditionally, most studies on equivalence define two basic categories of students’ conceptions of 

the equals sign: operational and relational. More recently, Rittle-Johnson et al. (2011) elaborated on 
this dichotomy (operational vs relational) and expanded it into four levels ranging from rigid 
operational to comparative relational. Students at Level 1, the rigid operational level, are expected to 
successfully solve the traditional format (i.e., a + b = c). Students at Level 2, the flexible operational 
level, maintain an operational view of the equal sign with some flexibility to correctly solve and 
accept the atypical or “backwards” equations (i.e., c = a + b and a = a) as valid. At Level 3, the basic 
relational level, children successfully solve, evaluate, and encode equation structures with operations 
on both sides of the equal sign (such as a + b = c + d or a + b - c = d + e). Finally, children identified 
at Level 4, the comparative relational level, show a more nuanced understanding of the equals sign. 
These students can correctly solve and evaluate equations by comparing the expressions on both 
sides of equal sign. Students at this level use compensatory strategies. For example, in solving 37 + 
24 = 36 + ¨, such students may recognize that 36 is 1 less than 37 and use this knowledge to 
determine that the unknown number must be one more than 24 (Carpenter et al. 2003).  

More recently, Singh & Kosko (2015, 2016a) observed other possible levels in the continuum of 
conception of equivalence. Therefore, we argue that further modifications to the field’s models for 
the ways students consider equivalence are needed. Specifically, students who can successfully solve 
a + b = c + d types of equations are currently evaluated as holding a basic relational conception of 
the equals sign. However, Rittle-Johnson et al (2011) suggest that the construct is continuous, which 
allows for the possibility of other sub-constructs between consecutive levels.  

Singh and Kosko (2015) conducted a teaching experiment with a variety of equivalence problems 
and found that some students demonstrated a pseudo-relational conception (PRC) of equivalence. 
Specifically, student with a PRC can solve problems of the form a + b = c + �owhen the numbers 
involved allow them to regroup 10’s and 1’s in an obvious manner. For example, in problems like 34 
+ 25 = 50 + �o, such students first regroup 10’s from 34 and 25 (30 + 20 = 50), which is visually 
available on right hand side. Thus, these students are then able to add the ones (4 + 5 = 9) to find the 
solution. At first glance, it may seem like these students hold a relational view of equivalence. 
However, when closely comparing their strategies in other equations of the same structure but 
different numeric structure, it was apparent that the place-value structure of such equations allowed 
students to use different strategies than working with other a + b = c + o types of equations. For 
example, in solving 15 + 24 = 20 +� o, a student successful with the prior example failed to provide 
the correct solution when using their regrouping of 10’s and 1’s strategy.  This suggests that the 
mathematical structure numbers in an equation, such as that of place-value, plays an important role in 
students’ conceptions of equivalence. This was verified in another study by Singh & Kosko (2016a) 
in which the authors found that some students can successfully solve problems like 4 + 5 + 8 = �o + 
8 by finding the answer 9 (i.e., 4 + 5), whereas the same students demonstrated a different conception 
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in solving very similar problem like 7 + 6 + 4 = 7 + �o. These students used an adding all then 
subtracting strategy to solve the problem 7 + 6 + 4 = 7 + �o. Specifically, students first added 7 + 6 
+ 4 and then the 7 on the right-hand side to get 24. They then subtracted 7 to obtain the answer 17. 
Singh and Kosko (2016a) suggest that the use of this strategy may have more to do with the position 
of the missing value box than students’ operational or relational view of the equal sign. 

Conceptual Model for Conception of Equivalence  
To define the way an equivalence problem is presented to students, different researchers have 

used different terminologies, or the same terminology with different meanings. Molina & Ambrose 
(2008) used the term structure in reference to the structure of mathematics operations. Later, Molina, 
Castro, & Castro (2009) used the term structure in the same sense as used by Kieran (1989), 
describing the surface structure of arithmetic and algebraic expressions. Recently. Stephens et al. 
(2013) used the term “equation structure” as opposed to focusing on probing their computational 
fluency. This study uses a broad definition of structure of number sentences which includes an 
emphasis on place value and the position of the missing value box(es). Thus, the definition differs 
significantly from the meaning of structure used in prior studies.  

Using our definition of structure of number sentence, and based both on our previous findings 
(Singh & Kosko, 2015; Singh & Kosko, 2016a), and ongoing work with elementary students, we 
suggest six levels of conception of equivalence along a continuum (Figure 1). The construct map in 
Figure 1 includes levels from basic operational (least sophisticated) to full relational (most 
sophisticated). A student at the basic operational level can successfully solve traditional number 
sentences (a + b = c) with various positions of unknown or box such as 6 + 7 = o or 5 + o = 9, 
while students at the flexible operational level can successfully solve less typical number sentences 
(e.g. 19 = o + 3; 24 = 10 + o; o = 5 + 7). However, both types of conceptions include student 
strategies that rely on an operational view of equals. 

We argue that the transition from flexible operational to basic relational is not always smooth and 
is accompanied by the existence of pseudo-relational level. Students at this level are able to solve 
number sentences which have operations on both sides (such as a + b = c + d), but only in cases 
where the number sentences can be solved by using regrouping of ones and tens addends.  

Similar to the pseudo-relational level, students at the basic relational level can successfully solve 
number sentences which have operations on both sides (a + b = c + d) with the position of the box 
directly after or before the equals sign. Such students can confirm the sameness of expressions on 
both sides of the equals sign through computation. 

Prior to a full relational conception, we suggest some students demonstrate what we describe as 
an advanced basic relational level. This level is characterized by students who can successfully 
solving number sentences with operations on both sides (a + b = c + d), but such students may use 
either computation or compensatory strategies. Finally, at the full relational level, students can 
successfully solve number sentences which have operations on both sides (such as a + b = c + d) and 
two unknowns either both on same side or one on each side of equal sign by relying predominately 
on compensatory strategies. 
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Figure 1. Construct map for knowledge of equivalence. 

 
The different levels of students’ conception of equivalence are included in the construct map 

shown in figure 1. As discussed above, prior studies (Singh & Kosko, 2015,2016a) describe students’ 
transition from operational to relational conception of equivalence is not always smooth. Rather, 
students’ holding an operational view may do things that resemble, but do not comprise, a relational 
view of equivalence (i.e. pseudo-relational) when solving some specific types of equations. The 
construct map in figure 1 illustrates that as students move in a continuum they should engage in 
different levels of conception of equivalence. 

Methods 

Sample  
Data were collected in Fall 2016 from 157 third grade students (49.7% male; 50.3% female) in a 

suburban school district in a Midwestern U.S. state. Students were enrolled in one of eight 
classrooms across four schools in the district. The district includes a predominately white student 
population (74%), with a significant portion of economically disadvantaged students (40%).  

Test Development and Item Design:  
Our previous work on equivalence indicates some observable gaps in Rittle-Johnson’s 

established framework (Singh & Kosko, 2015, 2016a). In order to address these gaps, we designed a 
new assessment utilizing the aforementioned construct map. An initial version of the assessment was 
piloted with fourth and fifth grade students (n = 157) with 33 items. The overall reliability 
(Cronbach’s alpha = 0.92) of the initial test was sufficient. However, the item discrimination for 
several items was not sufficient. Also, the infit mean square statistics for more than a quarter of items 
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indicated that the initial construct map lacked unidimentionality. To improve these shortcomings in 
item design we revised some items for better fit. First, items with insufficient fit statistics were 
removed or revised. Many of these items illustrated what may be different constructs related to but 
not identifiable as conception of equivalence. Next, true/false items were removed since these items 
were found to have significant structural differences than missing-value addends, and such items also 
tended to have too low of difficulty to provide sufficient information for the assessment. The revised 
instrument included 22 items across six sub-constructs along a continuum (thus, these subconstructs 
are theorized to be hierarchical). Figure 1 shows the revised construct map with example items for 
the six subconstructs. 

The revised instrument was used in the analysis of Fall 2016 data. Raw data was inputted into 
digital files before dichotomously coding student responses (0 = incorrect answer; 1 = correct 
answer). This allowed for examining raw response distributions, as well as analyzing the 
dichotomous data via a Rasch model. The significant feature of the Rasch model is its ability to 
transform ordinal data into equal-interval scales (Bond and Fox, 2015). The item difficulties in the 
Rasch model can be determined, by the process of item calibration, independently of the distribution 
of persons’ abilities in the data and the measurement of person’s traits (i.e. abilities) is independent 
of test items used to measure that trait. Another useful feature of the Rasch Model is that it facilitates 
the process of constructing measurement variables. In other words, the model is derived 
independently of data, tests are then constructed to fit the model, and then the data are used to see if 
they conform to the requirements of the model.  

Results 
The equivalence assessment was found to have sufficient internal reliability (α = 0.92). Crocker 

& Algina (1986) suggest that a Cronbach’s alpha of 0.90 or higher is sufficient for cognitive 
assessments. Test statistics for the Rasch model indicate sufficient item reliability (0.92) and person 
reliability (0.89). To examine the unidimentionality of the assessment, infit and outfit statistics were 
calculated. The item difficulties range from -3.14 to + 2.12, which is considered as a good practice to 
have a range of difficulty among items in an assessment. In this assessment, we hypothesized that the 
item difficulty should increase from lower (i.e. operational) to higher (i.e. advance relational) levels 
and item difficulty appeared to increase as expected. The infit statistics are weighted and provide 
more weight to the performance of person whose ability is closer to the item difficulty level whereas 
outfit statistics is not weighted and as a result more sensitive to outlying scores. This is the reason 
that investigators give more attention to any small irregularities in infit scores than large outfit scores 
(Bond and Fox, 2015) The average item mean-square infit statistics is 0.90 and average mean-square 
outfit statistics is 0.77, which is considered sufficient. Contrasting the overall sufficient item fit 
statistics, item 8 (12 = o) was found to have a relatively high mean square infit statistic (1.45), 
which indicates more randomness than expected (figure 2). We had observed similar results for such 
items with our pilot of grade 4 and 5 students, and data from grade 3 students indicates that this 
particular item format (a =� o) may need further study in regards to the concept of equivalence. We 
decided to remove this item from our final equivalence assessment, given the continued poor fit 
across samples. All remaining items appeared to have sufficient fit (Bond & fox 2015), with point-
biserial statistics ranging between 0.65 to 0.79. To examine how items hypothesized to target specific 
levels along the continuum in the construct map, a Wright map was constructed (figure 2).  
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Figure 2. Wright map for equivalence assessment. 
 

The Wright map shown in figure 2 was produced by ConstructMap 4.6.0 (Kennedy et al., 2010). 
Targeted levels of sophistication (see Figure 1) are abbreviated after each item number (B.O.=Basic 
Operational; F.O.=Flexible Operational; P.R.=Pseudo-Relational; B.R.=Basic Relational; 
A.B.R.=Advanced Basic Relational; and F.R. Full Relational). The location of items in the Wright 
map (Figure 2) aligns well with the hypothesized level of sophistication on the construct map (Figure 
1). However, certain items (i.e., 8, 2, 18, & 21) visually appear at the same level as items at lower or 
higher hypothesized levels. Examination of the items’ delta statistics and associated confidence 
intervals indicates that those items hypothesized as more relational than operational do indeed have 
higher delta statistics.  

Item 21 (¨ + 28 = 46 + ¡) had a lower delta statistic than predicted, and therefore appears lower 
on the Wright map than expected. After a close inspection of students’ raw responses, it was 
observed that some students put a zero in the circular blank position “¡.” However, the the 
instructions for this item stated that students should “find a number bigger than 10 to write in the 
¨…[and] any other number to write in the ¡ that makes the problem true”. By allowing for the 
possibility of students to use zero, it may have reduced the difficulty of the item. Specifically, the 
item was meant to engage students in composing and decomposing number in relation to 
equivalence. Thus, instructions for these items may need revision in future assessments. 

Discussion and Conclusion 
Through our findings, we establish that the structure of number sentences, particularly in regard 

to the role of place value, has a significant role in students’ conception of equivalence. The results of 
our statistical analysis indicate that students may rely on more visually obvious aspects of place value 
in solving equations. This may appear to be relational at face value, but is not as sophisticated a 
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conception of equivalence as other similarly formatted number sentences. Motivated by our findings 
from previous work (Singh & Kosko, 2015, 2016a) we incorporated new intermediate levels in 
Rittle-Johnson and colleagues’ (2011) framework of students’ conception of equivalence. Our 
suggested, modified construct map appropriately incorporates students’ transition from basic 
operational to full relational understanding by considering these additional transitional stages. 
Furthermore, the designed and validated assessment described here can serve as a tool for researchers 
and practitioners interested in students’ conceptions of equivalence. 

Our results provide useful guidelines for instructors and curriculum designers. Specifically, our 
findings suggest more attention be paid to the role of place value in the teaching and learning of 
equivalence. Furthermore, there is a need for more careful examination of students’ understanding of 
equivalence in regard to various mathematical concepts. Future research is needed to confirm and 
extend the findings presented here. For example, prior research has found relationships between 
students’ conception of equivalence and multiplicative reasoning (Singh & Kosko, 2016b). Given the 
connection identified here regarding place value, a better understanding of how equivalence 
interrelates with children’s developing number sense is highly needed. Additionally, findings 
presented here provide evidence that the structure of items similar to a = o is in need of further 
study, given that understanding the Reflexive Property of Equivalence is crucial for students’ success 
in future advanced mathematic. We expect that by conducting such research, the field may better 
understand why such items do not consistently align students’ conceptions of equivalence.  

This study found that place value appears to be inherently tied with conception of equivalence. 
These results are highly significant and need additional study. There appear to be other connections 
between various concepts and equivalence research (Singh & Kosko, 2016b), potentially indicating 
that students’ unit coordination may relate to their coordination between expressions. Such 
interrelationships warrant detailed investigation.  
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We investigate thirty-three second and fifth-grade students’ solution strategies on integer addition 
problems before and after analyzing contrasting cases with integer addition and participating in a 
lesson on integers. The students took a pretest, participated in two small group sessions and a short 
lesson, and took a posttest. Even though the results reveal significant gains for both grades from 
pretest to posttest, second graders gained significantly higher than fifth graders. In this paper, we 
explore students’ treatment of the negative sign and describe this gain difference.  

Keywords: Number Concepts and Operations; Elementary School Education; Cognition 

When students encounter new concepts, they try to apply their prior knowledge in an effort to 
make sense of the new information. Consequently, children’s negative integer knowledge builds 
upon their whole number understanding (Bofferding, 2014). The transition from working with whole 
number concepts to interpreting new number classes appropriately requires substantial time and 
considerable conceptual change (Vosniadou, Vamvakoussi, & Skopeliti, 2008). However, there is a 
noteworthy time gap between when children learn about whole number concepts and the introduction 
of negative numbers. While whole numbers are introduced at an early age, negative numbers and 
operations are currently not taught until sixth and seventh grade (National Governors Association 
Center for Best Practices & Council of Chief State School Officers, 2010). Introducing negative 
numbers in upper elementary and middle school grades could serve as a barrier to student learning. 
As a result of this large gap, students may interpret negative numbers in various ways given their 
whole number knowledge, which may influence their solution strategies in problems involving 
negative numbers. For instance, students may treat the negative sign as a subtraction sign (e.g., 
solving -4 + 7 as 7 – 4) (Bofferding, 2010).  In fact, Murray (1985) found that students continued to 
explain that you could not take larger numbers away from smaller ones (e.g., 5 – 8) even though they 
could solve other negative integer problems. 

Even first graders can move toward having more formal mental models of integers, integer order, 
and integer values by engaging in instructional activities that help them focus on the meaning of the 
negative sign and evaluate the numbers in relation to each other (Bofferding, 2014).  Similarly, 
instructional activities can help students make specific connections between the results of operating 
with negative and positive numbers. One way to encourage these connections is via the analysis of 
two carefully chosen, contrasting integer problems shown as worked examples. Studies have 
identified contrasting cases as a powerful instructional tool that has promising results in students’ 
developmental knowledge in the mathematics classroom (e.g., Rittle-Johnson & Star, 2007; 2009; 
2011). As one of the promising ways to help students conceptualize negative number operations, this 
method can help students leverage their prior knowledge of whole number addition to making sense 
of negative number addition problem types.  

However, it is not clear to what extent analyzing contrasting cases of integer addition problems 
could benefit younger students compared to older students.  Although younger elementary students 
can reason productively about integers, they may need more intense experiences in order to facilitate 
their conceptual change.  On the other hand, older students may be less willing to modify their 
conceptions.  In this paper, we analyze the performance of younger and older elementary students 
before and after they compare sets of integer addition problems.  Further, we explore how their 
interpretations of negative number addition change. 
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Specifically, we ask the following research questions: 

1. How do second and fifth-grade students perform in solving integer addition problems before 
and after analyzing contrasting cases involving negative numbers? 

2. How do students’ interpretations of the negative sign and addition operations change before 
and after analyzing the contrasts? 

Theoretical Framework 

Interpretation of the Minus Sign 
Students engaged in working with algebraic equations experience difficulty when manipulating 

negative numbers due to the different perceived meanings of minus signs (Vlassis, 2004). The three 
primary meanings of the minus sign are unary, binary, and symmetric and also play a role in 
students’ interpretations of integer addition and subtraction problems. The binary meaning of the 
minus sign corresponds to the subtraction operation (Vlassis, 2004), which students with a whole 
number mental model will interpret to mean getting less or smaller (Vosniadou, Vamvakoussi, & 
Skopeliti, 2008). Students with only a binary understanding of the minus sign might ignore negatives 
or treat them as a subtraction sign (Bofferding, 2010). For example, -8 + 6 can be turned into a 
subtraction problem as 6 – 8 or 8 – 6 and might be answered incorrectly or correctly.  The symmetric, 
or opposite, meaning of the minus sign indicates an operation of multiplying by -1. In other words, 
the symmetric meaning illuminates the opposite positions of negative and positive numbers (Vlassis, 
2004). Students rely on the symmetric meaning when they add integers as if they were positive and 
make the answer negative (Bofferding, 2010). For instance, -2 + 5 might be solved as 2 + 5, with 
students adding the negative sign at the end, and answering -7. Finally, the unary meaning of the 
minus sign involves seeing the negative sign as attached to a numeral, a negative number (Vlassis, 
2004). Students with a strong unary understanding will often start at a negative number and count 
towards or away from the negative direction (Bofferding, 2010). 

Conceptual Change 
In prior research, students’ difficulties in interpreting minus signs were primarily reflected in 

situations involving successive signs in arithmetic operations. From a conceptual change lens, this is 
unsurprising.  Until students encounter negative numbers, they would not see two successive minus 
signs.  Their unawareness of the multiple roles of the minus sign resulted in the mistreatment of the 
signs and signaled partial conceptions (Vlassis, 2008).  In terms of conceptual change, students were 
trying to make sense of new information in light of their prior knowledge.  During this process, they 
likely formed synthetic mental models (Vosniadou & Brewer, 1992), conceptions that blend their 
prior understanding with new hypotheses about the meaning of the new signs. Different studies have 
explored students’ various ways of reasoning in their arithmetic solution strategies. They framed how 
students’ understanding of the multiple meanings of the minus sign correspond to their integer 
arithmetic solutions (e.g., Bofferding, 2010, Lamb et al., 2012; Murray, 1985, Vlassis, 2008). Lamb, 
Bishop, Philipp, Whitacre, and Schappelle (2016) claimed that no single best model exists that could 
be applied in students’ ways of reasoning.  We build on this literature by using a conceptual change 
lens to investigate how students’ conceptions of the minus sign – and consequently their strategies – 
change as they explore contrasting integer addition problems.  
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Methods 

Participants and Settings 
Both second and fifth-grade students engaged in this study.  We chose to work with second 

graders because they represent students who typically have not had formal instruction in negative 
numbers but have whole number understanding.  We chose fifth graders because they often have 
heard about negative numbers and would learn about them formally in the following school year. We 
recruited fifth-grade students from two public elementary schools in a rural Midwestern school 
district where 32% of students were classified as English-language learners (ELLs) and 75% 
qualified for free or reduced-price lunch. Based on their pretest scores, 17 of the 32 fifth graders who 
returned permission slips were selected for this analysis as they had not reached the ceiling in terms 
of their order and value integer mental models (formal mental model) (Bofferding, 2014).  It was 
important not to include students with formal mental models so that we could compare their growth 
to the second graders’ growth.  Because we had already worked with second graders at the schools 
where we recruited the fifth graders, we recruited second graders from one classroom at a different 
school. The public elementary school was in a small city within a Midwestern school district where 
14% of students were classified as ELLs and 57% qualified for free or reduced-price lunch.  Overall, 
16 second-grade students from the recruited class participated.   

Design and Materials 
Students from both grades completed a pretest, participated in two small-group sessions, engaged 

in a whole-class lesson, and finally took a posttest.  
Pretest and posttest. Test items were designed to evaluate students’ knowledge related to integers 

and were identical on both pretest and posttest. Both tests took approximately 30 minutes to finish for 
students in both grades. Questions focused on ordering integers, integer value comparisons, integer 
addition, directed magnitude comparisons, and transfer problems with addition. After both tests, we 
interviewed some of the students to learn more about their answers and strategies and to clarify 
students’ insights. 

Small-group sessions. During the sessions, students analyzed sets of contrasting integer addition 
problems in groups of two to four. They analyzed worked examples of correct and incorrect solutions 
to integer addition problems within four different illustration contexts including (a) a gingerbread 
boy starting at zero and moving on a number path situated on a hill (translation model [see Wessman-
Enzinger & Mooney, 2014]), (b) an ant starting at the first number in the addition problem and 
moving below and above ground next to a vertical number line, (c) a chip model (counterbalance 
model [see Wessman-Enzinger & Mooney, 2014]), and (d) a folding number line (see Tsang, Blair, 
Bofferding, & Schwartz, 2015). Each session took approximately 20 minutes.  

In their first session, students analyzed integer addition problems with two positive numbers in 
comparison with adding a positive number to a negative number (e.g., 3 + 5 = 8 versus -3 + 5 = 2). 
This contrast can help emphasize that regardless of the starting number, adding a positive number 
always corresponds to a movement towards the positive direction (or up). At the end of the session, 
students solved eight integer addition problems, four where they added two positive numbers and 
four where they added positive numbers to negative numbers. 

In the second session, students compared addition problems with two negative numbers to 
addition problems with adding a negative number to a positive number (e.g., -2 + -5 = -7 versus 2 + -
5 = -3). This comparison can help students to realize that adding a negative number to either a 
positive or a negative number always results in a movement in the negative direction (or down). At 
the end of the session, students solved eight integer addition problems, four where they added two 
negative numbers and four where they added negative numbers to positive numbers.  The collective 
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16 problems solved at the end of their both sessions composed what we call a midtest and helped us 
understand how they would answer the problems immediately after making comparisons with them.   

Whole-class instruction. The whole-class lesson, led by one of the researchers and given 
separately to fifth and second graders, had two parts: interactive instruction and a game.  Instruction 
began by helping students think about moving on an integer number path to solving integer addition 
problems.  Therefore, adding a positive number represented moving up on the number path (going 
more in the positive direction), and adding a negative number indicated a downward movement on 
the number path (moving more in the negative direction). Students helped explain how they would 
move the gingerbread boy along the number path to solve example integer addition problems.  As 
students’ understanding built upon the directional movements of adding two integers, the researcher-
teacher presented an additive inverse problem (e.g., -2 + 2) to introduce the “zero pair” concept.  As 
demonstrated, zero pairs occurred when the two movements added on the number path ended at zero. 
Students later engaged in a game where they had to make zero pairs using positive and negative one 
cards.  

Analysis  
To address the first research question about students’ performance, we ran a repeated measures 

ANOVA grouped by grade level on the 17 arithmetic items presented to students on the pretest and 
posttest. Next, in order to determine students’ progress before, during, and after the study more 
thoroughly, we determined students’ average percent correct on six common problems (-9 + 2, -8 + 
8, 6 + -8, 9 + -9, -1 + -7, and -2 + -2) that were given to students on the pretest, midtest, and posttest.  
Students’ responses to items of a similar problem type (e.g., -9 + 2 and -8 + 8) provided some insight 
into their interpretations of the minus signs and helped paint a picture of their conceptual change.  
We sought further clarification of the meanings students attributed to the minus signs through the 
interview data.   

Results  

Overview of Students’ Arithmetic Gains 
The results of the repeated measures ANOVA indicate a significant main effect of test, F(1, 31) = 

62.32, p<.001.  Students from both grades gained significantly from pretest to posttest. Table 1 
shows that even though the fifth-grade students’ average score on the pretest arithmetic items was 
higher than second graders, they scored a lower average on the posttest arithmetic items than second-
grade students. In fact, based on the repeated measures ANOVA, the difference between the grade 
level gains is significant, with second graders making greater gains on average than the fifth graders, 
F(1, 31) = 4.51, p<.001.  

 
Table 1: Students’ Mean Scores (And Average Percent Correct) On Integer Addition 

Problems  

Grade Level 
/Tests 

Pre-test 
(M ± SD) 
(average 

percent correct) 
(17 items) 

Mid-test 
(M ± SD) 

(average percent 
correct) 
(12 items) 

Post-test 
(M ± SD) 
(average 

percent correct) 
(17 items) 

Second Grade 
(N = 16) 

5.1 ± 6.2 
30% 

7 ± 3.8 
58% 

13.5 ± 2.8 
79% 

Fifth Grade 
(n = 17) 

7 ± 3.9 
41% 

6.9 ± 2.8 
58% 

11.8 ± 3.8 
69% 
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Students’ Interpretation of the Minus Sign 
We explored how student’s interpretation of the minus sign might support the significant 

difference between the two grade level gains. We, therefore, investigated students’ responses to six 
integer addition problems common to the three tests. Students’ percentage correct on each problem 
was calculated for each group (see Table 2). On average, fifth-grade students performed better than 
second graders on four of the six common integer addition problems (67%) on the pretest, while 
second graders scored higher on all posttest common items (with one tie).  

 
Table 2: Students’ Average Percent Correct on Common Integer Addition Problems  
Common integer 

addition 
-9 + 
2 

-8 + 
8 

9 + -
9 

6 + -
8 

-1 + -
7 

-2 + -
2 

Sec
ond 

Grade 

Pret
est 38% 38% 19% 19% 31% 25% 

Mid
test 44% 75% 44% 56% 81% 75% 

Post
test 75% 94% 94% 69% 88% 69% 

Fift
h 

Grade 

Pret
est 12% 29% 41% 29% 71% 59% 

Mid
test 35% 41% 47% 29% 88% 82% 

Post
test 65% 82% 82% 65% 88% 47% 

Note: Shaded cells indicate questions where that grade level did better than the other. 
 

Fifth graders’ pretest. Fifth graders frequently gave answers consistent with a strategy of adding a 
negative sign to the sum of two integers’ absolute values. If students only used this strategy on the 
problems where it would lead to correct answers, we would expect them to use it roughly 29% of the 
time.  Among all of the 17 integer addition problems, they had these types of answers for 46% of the 
problems on average. Because of this, not only did fifth graders have a higher average performance 
on -1 + -7 and -2 + -2 compared to second graders on the pretest, but their average scores were the 
highest on these compared to the other problems (9 + -9, 6 + -8, -9 + 2, and -8 + 8) where that 
strategy would not work. A fifth-grader, Jennifer, in describing her answer said, “They’re both 
negative[s], so it is going to be [a] negative.” 

Another consistent strategy applied by fifth graders was treating the negative sign as a 
subtraction sign, the binary meaning of the minus sign. Across the problems fifth graders provided 
answers consistent with subtracting one number from the other and getting positive answers for 19% 
of the 17 problems on average.  In six cases, students provided answers illustrating the common 
misconception that you always subtract a smaller number from a bigger number (e.g., solving 4 + -5 
= 1).  Interpreting the minus sign as a subtraction sign could help them in solving 5 + -2 = 3, which 7 
fifth graders did.  However, only one of them also solved 7 + -3 = 4, because they were more 
inclined to add the numbers.  Additionally, their tendency to subtract in the treatment of the negative 
numbers could not help them to correctly answer problems such as -9 + 2, for which counting up or 
down from the negative requires unary meaning of the minus sign.  

Second graders’ pretest. Unlike the fifth graders, second graders did not often provide answers 
consistent with adding a negative sign to the sum of two integers’ absolute values in the problems. 
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Their answers only reflected this strategy on 9% of the 17 problems on average. Also, their answers 
were consistent with subtracting to get a positive number only 9% of the time on average as well, 
which seemed more likely when the negative was first, given their better performance on -8 + 8 
versus 9 + -9.  When solving 6 + -8, lower number of possible answers on using subtraction 
operation with integers (e.g., 6 + -8 = 2 or -2 or 0) suggest they applied the binary meaning of the 
minus sign less often. When solving 6 + -8, Sandra who answered two demonstrated a conception of 
starting with the larger absolute value, “I did eight, seven, six, five, four, three, two and that is how I 
got it, and negative, if negative plus a positive number, you go backward to the negative.”  However, 
Edward, a second grader used the binary meaning to get a negative answer, reasoning, “Because six 
minus eight is negative two [be]cause it has to go below zero,” also demonstrating an awareness of 
the unary meaning given to his answer.   

Starting at the negative number and counting up or down the other number (e.g., -9 + 2 counting 
up -8 and -7 or counting down -10 and -11) leverages the unary meaning of the minus sign. Second-
grade students’ slightly higher average scores on -9 + 2 are consistent with them interpreting negative 
numbers as corresponding to a point on the number line, the unary meaning of the minus sign. Tara 
explained her solution for -9 + 2, “So I counted on my fingers negative eight, negative seven, and it 
is negative seven.” Timmy said, “If it is a negative number plus [a] regular number, it would be less 
of the negatives. So, negative nine plus two equals negative seven.”  

Midtest. Students’ gains for the six problems on the midtest show their development in 
interpreting multiple meanings of the minus sign. Second graders still averaged higher for -9 + 2 and 
-8 + 8 compared to fifth graders. Interestingly, even though fifth graders started higher in 9 + -9 and 
6 + -8 on the pretest, second graders had a higher average correct for 6 + -8 on the midtest. Fifth-
grade students’ responses appeared to be influenced by their prior knowledge and treating the minus 
sign with a symmetric meaning (answering -14). In fact, fifth-grade students’ consistent responses 
over 12 integer addition problems illustrate they applied the symmetric meaning on average for 33% 
of problems; whereas, second graders did so for 26% on average.  

Second graders’ posttest. Both grades’ highest average was in -8 + 8 and 9 + -9, which 
demonstrates the significance of the zero pairs introduction in the lesson. Tara said, “I know that 
negative nine plus nine equals zero because negative means below zero and it is nine below zero, so 
it would be just zero. [Be]cause it is nine more than the negative.” Timmy described a zero pair 
problem, “If you have a negative number plus a normal number, it would be zero. If you have normal 
nine plus a negative nine, it would be zero.” 

Surprisingly, students’ average scores were lower on -2 + -2 after the midtest. Since zero was the 
most usual incorrect answer, one explanation could be that they identified the two same numbers and 
a negative sign in the problem, associated it with the zero pairs problem, and answered zero. Another 
second-grade student, Anthony, said, “So, I looked at it and I thought it’s zero for a second. But I 
thought that would be negative two plus two. So, I thought negative two plus negative two would be 
negative four.” Based on their responses, they used the symmetric meaning 15% of the time on 
average.   

Second graders’ responses to 6 + -8 did not result in -14 anymore, which reveals that they 
abandoned the symmetric meaning of the minus sign for this problem and treated the negative sign in 
a way that could provide the correct answer (unary meaning starting at -8 or binary meaning instead). 
Tara’s unary interpretation is exemplified, “So, I know that since that is a lower number [referring to 
6] than this one [referring to 8], then the answer would be still in the negatives. So, I started at 
negative eight and went up six.” Another student, Kathryn, who interpreted the negative sign with a 
binary meaning said, “I did six and took away eight.” The researcher asked, “So, when you ran out of 
six, what happened after that?” She continued, “I got into the negatives.” Also, students explained 
their responses with zero pairs. Anthony mentioned zero pairs when solving 6 + -8, “I noticed six 
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plus eight is 14 but six plus negative eight, when we did the zero problems [zero pairs] if it was six 
plus negative six, he [gingerbread man] would be going up and then go down. So, I noticed that so I 
did it.”  Further, when they answered -9 + 2 = -11, it was not necessarily because they focused on a 
symmetric meaning of the minus sign. Anthony started at -9 and answered -11 stating, “So, it would 
be nine plus whatever. It is still be going up but if you do [plus] a negative, it would have to go 
down.” This student started to understand integer addition as involving directional movements that 
can be both upward or downward but was still trying to make sense of how the direction interacted 
with the numbers.   

Fifth graders’ posttest. Fifth graders scored slightly lower on -8 + 8 and 9 + -9, often answering -
16 or -18 respectively, either due to overuse of the symmetric meaning or using the unary meaning 
and moving in the wrong direction.  Further, their responses to the problem 6 + -8 involved -14, 
unlike second graders.  Similar to second graders, they scored lower on -2 + -2, often associated with 
overgeneralizing the zero pairs concept. Though both grades averaged the same in -1 + -7, fifth 
graders did not improve from the midtest. Overall, fifth graders’ responses highlighted the symmetric 
meaning for an average of 30% of 17 integer problems. This compared to 15% average among 
second graders provides initial evidence that fifth-grade students’ stronger prior conception limited 
their ability to make use of the contrasting cases and change their thinking based on the instruction 
compared to the second graders.   

Discussion  
Our results provide insights into students’ interpretations of minus signs and solution strategies 

for integer addition problems before and after making comparisons between them.  Similar to the 
results of the fifth graders presented here, Murray (1985) found that adding two negatives was easy 
for upper elementary students compared to other integer addition problems.  The results here suggest 
that this may be due to older students’ tendency to focus on the symmetric meaning of the minus 
sign.  Given this, one interpretation of our data is that if students naturally focus on the symmetric 
meaning and this interpretation persists without challenge (as could be the case with the fifth graders 
who relied on the symmetric interpretation heavily), they have more difficulty shifting away from it.  
Therefore, the second graders may have been more open to changing their conceptions about 
numbers, minus signs, and operations because they had not had much prior opportunity to think 
about them and establish strong initial conceptions.  The data shows fifth graders’ stronger prior 
conception about the negative sign influenced their future reasoning; however, second graders 
changed their interpretation of the minus sign throughout the study. Their willingness to apply the 
new information in their solution strategies helped them to improve higher.  

Students experience a barrier to learning negative numbers when they have time to establish 
strong preconceptions without the opportunity to address them, a problem exacerbated by the 
location of integer standards in upper grades. In order to overcome students’ difficulties in 
conceptualizing the negative numbers, we should provide opportunities for them to develop their 
integer number sense knowledge from at least second grade. Contrasting problem types (Rittle-
Johnson & Star, 2009) using different conceptual models (Tsang, Blair, Bofferding, & Schwartz, 
2015; Wessman-Enzinger & Mooney, 2014) helped students to improve their understanding.  By 
capturing students’ reasoning, discoveries, and interpretation through these activities, we can provide 
additional tasks more in-line with their needs to facilitate their learning and exploration process 
(Behrend & Mohs, 2005/6) throughout the following grade levels. 
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En este documento se describen características del objeto mental fracción de estudiantes, de 12 a 14 
años de edad, de una secundaria pública, quienes tienen problemas de absentismo escolar y bajo 
rendimiento académico. Para ello, se diseñó un cuestionario como parte de un proyecto de 
investigación cuyo objetivo general es contribuir a la construcción de mejores objetos mentales 
fracción a través de una secuencia de enseñanza. El diseño de los ítems del cuestionario está 
estructurado de acuerdo con los resultados de una fenomenología didáctica de las fracciones y el 
contenido curricular propuesto para los últimos años de primaria. Los resultados indican que los 
alumnos tienen mayor éxito al responder cuestiones relacionadas con fenómenos de partición de 
figuras geométricas, mientras que tienen menor éxito para usar las fracciones en la recta numérica.  

Palabras clave: Números Racionales, Educación Primaria, Cognición 

Planteamiento del Problema y Objetivos 
La enseñanza y el aprendizaje de las fracciones siguen siendo tema de interés en el campo de la 

investigación en matemática educativa, pese a la gran cantidad de estudios que ya se han hecho 
durante las últimas décadas. Algunas de las principales razones de esa preocupación se vinculan con 
el hecho de que las fracciones forman parte integral del curriculum matemático y porque de acuerdo 
con Siegler, Duncan, Davis-Kean et al. (2012) el conocimiento de esos números es uno de los 
predictores del desempeño en matemáticas de alumnos egresados de primaria hasta el bachillerato. 
Los resultados de investigaciones recientes versan sobre dificultades que los estudiantes siguen 
enfrentando cuando resuelven tareas o problemas que implican el uso de las fracciones (ver por 
ejemplo a Ni y Zhou, 2010 y Petit, Laird y Marsden, 2010) a pesar de los cambios que se han 
instrumentado en su enseñanza.  

Por lo anterior se pretende contribuir a la construcción de un mejor objeto mental fracción de los 
estudiantes a partir de la educación básica. Los resultados que se exponen en este documento son de 
un estudio piloto hecho con el propósito de caracterizar el objeto mental fracción de los estudiantes 
con problemas de bajo desempeño escolar al finalizar la escuela primaria. El estudio piloto forma 
parte de una investigación más amplia y esos resultados se toman en consideración al estructurar un 
modelo de enseñanza con el cual se favorezcan procesos de construcción de mejores objetos 
mentales fracción de alumnos de ese tipo de comunidades. 

Referente Teórico 
Para el desarrollo de la investigación general se tomó como marco teórico y metodológico a los 

Modelos Teóricos Locales (MTLs) desarrollados por Filloy, Rojano, Puig y Rubio (1999), en donde 
el objeto de estudio es visto desde la interrelación de cuatro componentes que se construyen, el 
componente de competencia formal, el de enseñanza, el de cognición y el de comunicación.  
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En esta parte del proyecto se pone énfasis en los resultados de la construcción de los 
componentes formal y de enseñanza, ya que esas conclusiones se usaron principalmente para diseñar 
los ítems del cuestionario aplicado. Los resultados de la construcción del componente formal sirven 
como referente teórico para considerar en el diseño distintos fenómenos en los cuales aparecen las 
fracciones, mientras que los resultados del componente de enseñanza permiten seleccionar los 
contenidos de las fracciones que se evalúan en el cuestionario. 

Para la construcción del componente formal del MTL se realizó una fenomenología didáctica de 
las fracciones, tomando como base las ideas de Freudenthal (1983), Kieren (1976; 1988; 1992) y 
Behr, Harel, Post, y Lesh (1992). De acuerdo con Freudenthal (1983, pp. 28-33), hacer una 
fenomenología es describir un concepto en su relación con los fenómenos para los cuales es el medio 
de organización. Una fenomenología didáctica rica ayuda a proveer a los estudiantes de una amplia 
variedad de ejemplos de fenómenos para construir mejores objetos mentales, entendiendo a un objeto 
mental como el conjunto de ideas sobre un concepto matemático (el objeto pensado) que han 
elaborado los alumnos y que precede a la adquisición del concepto. 

Para hacer la fenomenología didáctica de las fracciones se han considerado fenómenos de las 
fracciones que aparecen tanto en el lenguaje cotidiano, como en la propia matemática. Las fracciones 
en el lenguaje cotidiano se utilizan principalmente para describir o comparar cantidades, valores de 
magnitud, razones o procesos cíclicos o periódicos. Los aspectos de las fracciones que se distinguen 
son: la fracción como fracturador, como comparador, como operador, como medidora y como 
número racional, ver Figura 1. 

La fracción como fracturador se refiere al proceso de producir fracciones (fracturar), por medio 
del cual se relacionan las partes con un todo. Esto podría surgir de hacer una partición para hacer un 
reparto equitativo, una distribución o simplemente dividir cantidades o magnitudes con o sin resto. 
En el proceso de producir fracciones a partir de la relación de un todo y sus partes, el todo puede ser 
discreto o continuo, definido o indefinido, estructurado o carente de estructura. La parte también 
tiene sus variantes, mismas que se detallan en la Figura 1. 

Según Freudenthal (1983) las fracciones también surgen de una comparación, la cual puede ser 
directa o indirecta. Cuando la comparación es directa, es decir, los objetos que se comparan se 
consideran o piensan como si uno fuera parte del otro, entonces esto se reduce a la fracción como 
fracturador. En cambio, cuando un tercer objeto media entre los objetos que se comparan, entonces la 
comparación es indirecta. En este último caso se establece una relación razón entre los valores de 
magnitud o entre los propios objetos que se comparan. En el proceso de establecer la relación razón 
se utiliza la fracción como medidora, ya que se puede emplear una medida no convencional o 
convencional para determinar valores de magnitud y así establecer la relación razón entre ambos 
objetos. La fracción como medidora surge también en la medición de segmentos sobre la recta 
numérica o como un valor que precede a una unidad de medida. Es importante mencionar que para 
identificar las fracciones que preceden a una unidad de medida, en el proceso fue necesario usar las 
fracciones en su aspecto de operador fracturante.     

Se puede distinguir otro aspecto de la fracción, la fracción como operador, considerado como el 
inverso del operador multiplicación, es decir, el operador fracción actúa en el puro dominio del 
número. Se extiende esta fenomenología a un ámbito más abstracto y formal de la matemática, donde 
se identifica a las fracciones como elementos de clases de equivalencias del campo de cocientes que 
define al conjunto de los números racionales y sus propiedades.  

Una explicación complementaria de los diversos aspectos de las fracciones se encuentra en 
Valenzuela, Figueras, Arnau y Gutiérrez-Soto (2016).  
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Figura 1. Usos y aspectos de las fracciones. 
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Diseño del Cuestionario 
El cuestionario tiene seis ítems. El ítem uno está compuesto por ocho incisos, en los que se 

muestra en una representación de una fracción usando figuras geométricas para que el alumno 
escriba de forma simbólica la fracción correspondiente. En este ítem la fracción aparece como 
fracturador, específicamente se debe establecer una relación de fractura. 

• En los incisos (a) y (c) el todo es continuo, definido y estructurado. Las partes están 
conectadas, su igualdad se determina por congruencia de áreas y la elección de las partes 
(coloreadas) es contigua. El inciso (d) cumple con estas condiciones excepto que la 
elección de las partes (partes coloreadas) no es contigua. Como el todo aparece partido en 
partes iguales se dice que se establece una relación de fractura. En el inciso (a) el todo es 
un rectángulo y en los incisos (c) y (d) círculos representan el todo.   

• En los incisos (b), (e), (f) y (h) el todo es continuo, definido y estructurado. Las partes 
están conectadas, pero se definen dos unidades fraccionarias, el alumno debe completar o 
imaginar una partición con una unidad fraccionaria menor, por lo que la fracción podría 
actuar como un operador fracturante. En el inciso (h) la congruencia de las partes no es 
fácil de identificar. En los incisos (b) y (h) el todo está representado por cuadrados y en 
los incisos (e) y (f) por círculos. 

• La representación del inciso (g) puede generar una transición de un todo continuo a uno 
discreto o viceversa, lo que puede causar una fracción propia o impropia, depende de 
cómo se interprete al todo.   

El ítem dos tiene cuatro incisos, en cada uno se muestra una figura geométrica para que el 
alumno represente una fracción dada. En este caso, como los alumnos son quienes hacen la partición, 
la fracción aparece como un operador fracturante. 

En el ítem tres se presentan dos situaciones con dos incisos cada uno, en los que aparece un todo 
discreto (bolas de colores), definido y estructurado de acuerdo con el color de las bolas. En el inciso 
(a) de cada situación se debe identificar la relación de fractura, mientras que en los incisos (b) es 
necesario comparar la cantidad de bolas de un color con respecto a la del otro color, por lo que la 
fracción aparece como una relación razón. 

Sobre la recta numérica se deben representar 10 fracciones, ya sea como punto o como 
segmentos sobre la recta numérica; esta tarea constituye el ítem cuatro. Cinco fracciones son propias 
y cinco impropias; todas son menores que tres. Se han propuesto fracciones con denominadores 
distintos para que el alumno haga distintas particiones “a ojo”. En este ítem la fracción aparece como 
número en la recta numérica, pero también como medidora, se puede considerar como una unidad de 
medida de los segmentos sobre la recta numérica, que depende del número de partes entre las que se 
divide el segmento unidad, en este proceso la fracción aparece también como fracturador.  

Para responder el ítem cinco los alumnos deben hacer una clasificación de fracciones propias e 
impropias, incisos (d) y (e) respectivamente. En los incisos (a) y (b) se piden dos ejemplos de 
fracciones ubicadas en un intervalo limitado por números enteros, (0,1) y (3,4) respectivamente, y en 
el inciso (c) el intervalo queda limitado por dos fracciones (7/8, 8/9). 

El ítem seis corresponde a la resolución de un problema en el que aparecen distintos aspectos de 
las fracciones. En este caso la fracción se usa para describir una cantidad, como fracturador, 
comparador y como operador.    

Población y Método 
El estudio piloto se llevó a cabo con estudiantes de un instituto público de educación secundaria 

que se ubica en la ciudad de Valencia, España. 35 alumnos respondieron el cuestionario, 23 de ellos 
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son de primer año y 12 de segundo, pero estos últimos asisten a un taller de regularización donde se 
trabajan contenidos matemáticos de primer curso. El rendimiento académico de todos los alumnos se 
considera bajo, de acuerdo con los criterios de evaluación que sigue el profesor de matemáticas. 
Además, los estudiantes tienen graves problemas de absentismo escolar.  

El cuestionario se aplicó a los alumnos de primer grado de secundaria en dos sesiones de 45 
minutos, los estudiantes de segundo grado lo resolvieron en una sesión. El cuestionario fue aplicado 
por el profesor del curso, se resolvió de manera individual y no se proporcionó ayuda. 

Para realizar la caracterización de los objetos mentales de los estudiantes se han codificado las 
respuestas. Las correctas se han etiquetado con un 1 y las incorrectas con 0, en esta última categoría 
se han incluido aquellas respuestas que los estudiantes dejaron en blanco. Los resultados están 
organizados por cada ítem de acuerdo con las características del diseño, y también se organizan en 
una tabla de frecuencias en la cual se indica el porcentaje de éxito.  

Resultados 
Los resultados generales que se muestran en la Tabla 1 indican que los alumnos tienen mayor 

éxito al responder cuestiones que se relacionan con la representación simbólica de fracciones a partir 
de una representación gráfica, considerando modelos continuos y definidos (aspectos evaluados por 
medio del ítem 1). Los educandos tienen menor éxito para identificar fracciones entre dos números y 
clasificar fracciones como propias o impropias (aspectos evaluados mediante el ítem 5), así como 
para representar fracciones como puntos o segmentos en la recta numérica (aspectos evaluados a 
través del ítem 4). Se observa un descenso porcentual en cuanto al éxito obtenido que va del 58.21% 
en el ítem 1 hasta el 5.71% en el ítem 4. 

Tabla 1: Resultados Globales por Ítem 
Ítem 1 Ítem 2 Ítem 3 Ítem 4 Ítem 5 Ítem 6 

163/280 54/140 48/140 20/350 16/175 19/140 
58.21% 38.57% 34.29% 5.71% 9.14% 13.57% 

 
Como se describió en el diseño del cuestionario, los ítems están formados por varios incisos, por 

esta razón varía el número de reactivos que se evalúan por ítem. Los resultados obtenidos para el 
ítem 1 se muestran en la Tabla 2. La información está organizada de acuerdo con las características 
del aspecto de la fracción como fracturador que se consideraron en el diseño del cuestionario.  

Tabla 2: Resultados del Ítem Uno 
Representación simbólica de fracciones a partir de una representación gráfica   

(Modelos continuos) 
Fracciones propias Fracciones 

impropias 
Una unidad fraccionaria Dos unidades fraccionarias Una unidad 

fraccionaria 
Elección de las 
partes contiguas 

Elección de 
las partes no 

contiguas 

Elección de las partes contiguas Elección de 
las partes 
contiguas 

a) c) d) b) e) f) h) g) 

27/35 30/35 26/35 20/35 17/35 10/35 14/35 19/35 
77.14% 85.71% 74.29% 57.14% 48.57% 28.57% 40.00% 54.29% 

 
Los resultados indican que los alumnos tienen mayor éxito para establecer una relación de 

fractura en modelos continuos donde la partición tiene solo una unidad fraccionaria (incisos a, c y d), 
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principalmente cuando se utilizan círculos (inciso c). Esto indica que el objeto mental de los 
estudiantes está más relacionado con este tipo de fenómenos, pero cuando se presentan fenómenos de 
partición donde hay dos unidades fraccionarias (incisos b, e, f y h) el porcentaje de éxito de 
respuestas correctas disminuye. Un error común que cometieron los estudiantes al responder el inciso 
(f) que evalúa este aspecto, está relacionado con el conteo de partes sin tener en cuenta la 
congruencia del área de las partes. Un ejemplo se muestra en la Figura 2. 

 

 
Figura 2. Respuestas de dos alumnos donde se desatiende la congruencia de las partes. 

En la Figura 2 se observa el rastro de puntos que dejaron los estudiantes con el bolígrafo, lo que 
indica el conteo de las partes sin tomar en cuenta la congruencia. Otro error cometido al responder 
este inciso es el cambio de numerador por el denominador al momento de establecer la relación de 
fractura.  

En la Tabla 1 se observa un descenso porcentual entre el ítem uno y el ítem dos de 
aproximadamente el 20% de éxito en las respuestas dadas por los alumnos. Esto indica que los 
fenómenos donde se usa la fracción como un operador fracturante requieren ser considerados en la 
enseñanza, particularmente cuando se tiene que representar una fracción impropia y se usan figuras 
geométricas menos usuales. Esto ayudaría a construir un mejor objeto mental fracción. 

Los modelos discretos donde se usa la fracción como fracturador y como comparador, 
específicamente como una relación razón, fueron evaluados en el ítem tres y sus resultados se 
muestran en la Tabla 3. Con respecto a los ítems anteriores también se observa un descenso 
porcentual en el número de respuestas correctas. Se afirma que el objeto mental de los estudiantes 
está vinculado con los fenómenos donde se relaciona la parte con el todo, tanto en modelos continuos 
como discretos. Sin embargo, se requiere proponer para la enseñanza, más problemas donde la 
fracción actúe como comparador, ya que para resolver problemas relacionados con este tipo de 
fenómenos hay un porcentaje de éxito bajo. 

Tabla 3: Resultados del Ítem Tres 
Representación simbólica de fracciones a partir de una 

representación gráfica  (modelos discretos)  
Distractor: estructurada 

respecto al tamaño (caja 1) 
Distractor: no estructurada 
respecto al tamaño (caja 2) 

Fracturador  Comparador  Fracturador  Comparador 
a) b) c) d) 

21/35 4/35 21/35 2/35 
60.00% 11.43% 60.00% 5.71% 

 
Representar fracciones en la recta numérica fue el ítem con menos éxito, ya que sólo 20 de 350 

posibles respuestas fueron correctas. Las fracciones que se tenían que representar se muestran en la 
tercera fila de la Tabla 4.  

La fracción 7/3 es la que pudieron representar correctamente más estudiantes, después 1/4 y 6/5. 
El hecho de que nadie haya representado correctamente la fracción 4/8 permite suponer que el objeto 
mental de los alumnos no les permite reconocer la equivalencia entre fracciones, porque incluso 
ningún alumno identificó que 2/12 y 1/6 son equivalentes.  
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Tabla 4: Resultados del Ítem Cuatro 
Representación de fracciones en la recta numérica 

Fracciones propias Fracciones impropias 
2/12 4/8 2/10 1/4 1/6 6/5 7/3 5/2 8/7 12/9 
1/35 0/35 2/35 3/35 1/35 3/35 4/35 2/35 2/35 2/35 

2.86% 0% 5.71% 8.57% 2.86% 8.57% 11.43% 5.71% 5.71% 5.71% 
  
Uno de los errores comunes al resolver este ítem, se refiere al hecho de ubicar las fracciones en la 

recta numérica teniendo en cuenta solo el valor del numerador de la fracción pero sin hacer explícita 
una partición del segmento de recta, tal como se muestra en la Figura 3.  

 
Figura 3. Representación de fracciones en la recta numérica. 

 
Otro de los ítems de la prueba con menor porcentaje de éxito es el 5. En éste se evalúa la 

identificación de fracciones entre dos números enteros y entre dos fracciones, así como la 
clasificación de fracciones propias e impropias. Los resultados de esta evaluación permiten afirmar 
que los alumnos no reconocen características de las fracciones propias e impropias tomando en 
cuenta su relación con la unidad o la comparación entre numerador y denominador.  

Los resultados de la evaluación del último ítem resultan de interés, ya que permiten confirmar 
que la resolución de problemas con datos numéricos en forma de fracción es otro tema en el cual los 
estudiantes tienen mayor dificultad. 

De los resultados de los ítems propuestos en la prueba se puede afirmar que el objeto mental 
fracción de los estudiantes está vinculados principalmente con: 

• Fenómenos de partición en donde el área de una figura geométrica, considerada como un 
todo continuo, definido y estructurado es dividido en partes iguales para establecer una 
relación de fractura, donde la igualdad de las partes se determina por congruencia de 
áreas. Pero cuando hay dos unidades fraccionarias los alumnos enfrentan dificultades. 

• Otros fenómenos menos usuales pero que también se manifiestan se refieren a la división 
de un todo discreto para establecer una relación de fractura.  

• Fenómenos de partición de un todo continuo y definido, donde la fracción actúa como 
operador fracturante, la elección de las partes es contigua y su igualdad se estima a ojo. 
Cuando hay variaciones en la estructura del todo los estudiantes enfrentan dificultades. 

Conclusiones 
Los resultados generales del test previenen que los estudiantes que participaron en la aplicación 

del cuestionario tienen un objeto mental fracción limitado, por lo que se requiere ofrecer una gama de 
actividades que promuevan la construcción de mejores objetos mentales, partiendo de fenómenos 
relacionados con los diferentes usos y aspectos de las fracciones que se ilustran en la Figura 1, y no 
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limitarse a uno solo de sus aspectos durante la enseñanza de las fracciones. Ya que se hace notar que 
los estudiantes no transfieren de manera natural los conocimientos que tienen sobre un determinado 
aspecto de la fracción a otro. Por ejemplo, de fenómenos de partición donde se emplean modelos 
continuos como círculos o rectángulos no pueden pasar a una partición de segmentos en la recta para 
ubicar fracciones.  

Aunado a lo anterior, se considera importante proponer actividades donde se aprovechen cada 
una de las particularidades que se detallan en el espécimen de fenomenología didáctica esbozado en 
este documento. Ya que a pesar de que los alumnos tienen objetos mentales sólidos relacionados con 
la fracción como fracturador, cuando se varía un poco para tomar en cuenta algunas particularidades, 
se observa que los estudiantes enfrentan dificultades. Respecto a los aspectos de la fracción como 
comparador, medidora, operador y número racional que se evaluaron en la prueba, los estudiantes 
mostraron un uso restringido de su conocimiento.  

Los resultados también confirman que pese a que en el currículo de los últimos años de la 
educación primaria se propone explícitamente el estudio de las fracciones utilizando la recta 
numérica como recurso didáctico, así como el estudio de las características de las fracciones propias 
e impropias, los alumnos tienen poco éxito para resolver este tipo de tareas. Este resultado se 
atribuye al hecho de que estos aprendices han sido instruidos principalmente bajo el uso del modelo 
de áreas, ya que a pesar de que son alumnos de bajo rendimiento académico, mostraron tener 
conocimientos sólidos para representar fracciones propias cuando se usa dicho modelo, 
principalmente cuando se usan círculos o rectángulos.  
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In this paper characterizations of mental objects for fractions of middle school students (from 12 to 
14 years old) with absenteeism problems and low academic performance, are described. A test was 
designed as part of a research whose general purpose is to contribute in the building up of better 
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mental objects for fractions through a teaching sequence. Items for the test were structured 
according to the results of a didactic phenomenology of fractions and the curricular content 
proposed for the last years of elementary school. Results indicate that students have a greater 
success in issues related to continuous model partitions phenomena, whereas they are less successful 
using fractions on the number line. Students cannot transfer their knowledge from an area model to a 
linear model to identify or represent fractions.  

Keywords: Rational Numbers, Elementary School Education, Cognition  

Problem Approach and Research Objectives  
Teaching and learning of fractions continue to be a subject of interest within mathematics 

education research. The main reasons behind this concern are that fractions are an integral part of 
mathematics’ curriculum, and according to Siegler, Duncan, Davis-Kean et al. (2012), fractions’ 
knowledge has been characterized as one of the predictors of students’ mathematics performance 
from secondary to higher education. Other research findings show difficulties that students face when 
solving tasks or problems involving the use of fractions (e.g., Ni & Zhou, 2010; Petit, Laird & 
Marsden, 2010) even though changes have been made in their teaching. 

With this research, we want to contribute to the building up of a better mental object for fractions 
of students from primary education. The results presented in this document are from a pilot study 
done with the purpose of characterizing the mental object for fractions of students with low 
performance at the end of primary school. The pilot study is part of a broader research and these 
results are taken into account when structuring a teaching model that favor processes to constitute 
better mental objects for fractions of this type of students. 

Theoretical Framework 
For the development of the general research, Local Theoretical Models (LTMs) developed by 

Filloy, Rojano, Puig & Rubio (1999) were used as a theoretical and methodological framework. 
From the theoretical point of view, the LTMs serve to focus on the object of study through four 
interrelated components: formal competence models, teaching models, models for cognitive 
processes, and models of communication. 

In this part of the research project, the emphasis is put on the results of the construction of the 
formal and the teaching models components. These results were mainly used to design the items that 
were evaluated in the test. Results of the building up of the formal component serve as a theoretical 
reference in designing the test in order to evaluate tasks related to different phenomena where 
fractions appear. Results of the teaching component construction enable the choice of specific 
fractions' contents evaluated in the test. 

For the construction of the formal component of the LTM a didactic phenomenology of fractions 
was made, based on ideas of Freudenthal (1983), Kieren (1976; 1988; 1992) and Behr, Harel, Post & 
Lesh (1992). According to Freudenthal (1983, pp. 28-33), to make a phenomenology is to describe a 
concept in its relation to the phenomena for which it is a means of organization. A rich didactic 
phenomenology helps to provide students with a wide variety of examples of phenomena to 
constitute better mental objects, understanding a mental object as the set of ideas about a 
mathematical concept (the thought object) that the students have elaborated and which precedes 
concept attainment.  

To carry out the didactic phenomenology of the fractions, phenomena that appear both in 
everyday language and in mathematics itself were considered. Fractions in everyday language are 
mainly used to describe or compare quantities, magnitude, ratios, and cyclic or periodic processes. 
Other aspects distinguished are: fraction as a fracturer, fraction as a comparer, fraction as an 
operator; fraction as a measurer, and fraction as a rational number, see Figure 1. 
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Figure 1. Uses and aspects of fractions. 

Fraction as a fracturer refers to the process of producing fractions (fracturing), through which 
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parts are related with a whole. This could arise from making a partition to make a fair sharing, a 
distribution or simply dividing quantities or values of magnitude with or without remainder. In the 
process of producing fractions in order to relate a whole with its parts, the whole can be discrete or 
continuous, definite or indefinite, structured or without structure. Parts also have its variants, which 
are detailed in Figure 1. 

According to Freudenthal (1983) fractions also arise from a comparison, which may be direct or 
indirect. The comparison is direct when the objects being compared are considered or thought as one 
part of the other, in this case, the comparison is reduced to the aspect of fractions as a fracturer. In 
contrast, when a third object mediates between the objects being compared, an indirect comparison is 
carried out. In the latter case, a ratio relation between the values of magnitude or the objects that are 
being compared is established. 

In the process of establishing the ratio relation, fractions are used as a measurer, because an 
unconventional or conventional measure can be used to determine magnitude values and establish the 
ratio relation between both objects. The fraction as measurer also arises in the measurement of 
segments on the number line or as a value that precedes a unit of measurement. It is important to 
mention that in order to identify the fractions that precede a magnitude value, in the process, it was 
necessary to use other aspects of fractions, for example as fracturing operator. 

Another aspect of fractions can be distinguished: fraction as an operator. This aspect can be used 
as a fracturing operator, a ratio operator, and as a fraction operator. The last aspect is considered as 
the inverse of the multiplication operator, i.e, the fraction operator acts in the number’s domain. This 
phenomenology can be extended to a more abstract and formal area of mathematics, where fractions 
are identified as elements of equivalence classes of the quotient field that defines the set of rational 
numbers and their properties. 

A complementary explanation of the various aspects of fractions can be find in Valenzuela, 
Figueras, Arnau & Gutiérrez-Soto (2016). 

Test Design 
The test has six items. Item one has eight subsections. In each one a representation of a fraction is 

shown on a geometric figure in order that students write the corresponding fraction in a symbolic 
form. In this item the fraction appears as a fracturer, specifically, a fracturing relation must be 
established. 

• In subsections (a) and (c) the whole is continuous, defined and structured. Parts are 
connected, their equality is determined by congruence of areas and the choice of the parts is 
contiguous. Subsection (d) has these characteristics except that the choice of parts (colored 
parts) is not contiguous. As the whole appears fractured in equal parts, a fracturing relation 
must be established. In subsection (a) a rectangle is use to represent the whole and in 
subsections (c) and (d) circles are chosen as wholes.   

• Subsections (b), (e), (f) and (h) contain a continuous, defined, and structured whole. Parts are 
connected, but two fractional units are defined. Students must partition the whole or imagine 
a partition with only one fractional unit, so the fraction could act as a fracturing operator. In 
subsection (h) congruence of parts is not easy to identify. In subsections (b) and (h) squares 
represent wholes, and in subsections (e) and (f) circles are wholes.  

• The graphical representation in subsection (g) can generate a transition from a continuous 
whole to a discrete one or vice versa, which can cause a proper or an improper fraction, 
depending on how the student interprets the whole. 
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The second item consists of four subsections. In each one, a geometric figure is shown so that 
students represent a given fraction. In this case, students produce a partition of the whole; for this 
reason, the fraction appears as a fracturing operator. 

Two situations with two subsections are presented in item three, where a discrete whole (colored 
balls), defined, and structured according to the balls’ colors is represented. In subsection (a) of each 
situation, the fracturing relation must be identified, while in subsection (b) it is necessary to compare 
the number of balls of one color with the number of balls of the other color, so that the fraction 
appears as comparer, specifically to identify a ratio relation. 

In item four, ten fractions should be represented as a point or as segments on the number line. 
Five are proper fraction and the rest improper fractions. All of the fractions are less than three. 
Fractions with different denominators have been proposed to students to make different partitions "at 
sight". In this item, the fraction appears as a number on the number line, but also as a measure. It can 
be considered as a unit of measure of the number line segments that depends on the number of parts 
in which the unit segment is divided. In this process, the fraction also appears as a fracturing 
operator. 

To answer the item five, students must make a classification of proper and improper fractions, 
subsection (d) and (e), respectively. In subsections (a) and (b), two examples of fractions in an 
interval limited by integers, (0, 1) and (3, 4) respectively, are requested, and in subsection (c) the 
interval is limited by two fractions (7/8, 8/9). 

Item six is a problem in which different aspects of fractions appear. In this case, fractions are 
used to describe an amount, as a fracturer, a comparer, and as operator. 

Setting and Participants 
The pilot study was carried out with middle school students in Valencia, Spain. 35 students 

answered the test, 23 of them were studying in seventh grade, and 12 in eighth grade. The latter 
attended a remedial workshop where they worked on seventh grade mathematical contents. 
According to the evaluation criteria followed by the mathematics teacher, the academic performance 
of all students was considered low. The students had serious truancy problems. 

The questionnaire was applied in two sessions of 45 minutes for students in seventh grade. The 
eighth grade students completed the test in one session. The mathematics teacher applied the test and 
the students solved it individually; no help was provided.  

To characterize the mental objects for fractions that students had, answers were codified, using 
“1” for correct ones, and “0” for incorrect ones. In this last category, answers left blank were 
included. Results were organized by each item according to the characteristics of the design and are 
also in a table of frequencies that indicates the percentage of success. 

Results  
The general results showed in Table 1 indicate that students are more successful when answering 

items related to the symbolic representation of fractions, from a graphical representation, considering 
continuous and defined models, for example, the area model. These results show that students can 
establish a fracturing relation when working with this kind of representations. Students are less 
successful in identifying fractions between two numbers and classify fractions as proper or improper 
(aspects evaluated in item 5), as well as to represent fractions as points on the number line (aspects 
evaluated through item 4). There is a decreasing percentage of the success obtained that goes from 
58.21% in item 1 to 5.71% in item 4.  
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Table 1: General Results by Item 
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

163/280 54/140 48/140 20/350 16/175 19/140 
58.21% 38.57% 34.29% 5.71% 9.14% 13.57% 

 
As described in the design of the questionnaire, test items consist of several subsections; for this 

reason, the number of answers evaluated per item varies. The results obtained for item 1 are shown in 
Table 2. The information is organized according to the characteristics of fractions as fracturer 
considered in the design of the test. 

Table 2: Results of Item 1 
Symbolic representation of fractions from a graphical representation 

(Continuous models) 
Proper fractions Improper 

fractions 
Defined Partition Partially defined partition Undefined 

partition  
Choice of 

contiguous parts 
Choice of no 
contiguous 

parts 

Choice of contiguous parts Choice of 
contiguous 

parts 
a) c) d) b) e) f) h) g) 

27/35 30/35 26/35 20/35 17/35 10/35 14/35 19/35 
77.14% 85.71% 74.29% 57.14% 48.57% 28.57% 40.0% 54.29% 

 
Results reveal that students are more successful in establishing a fracturing relation in continuous 

models where the partition is defined (subsections a, c, and d), mainly when circles are used 
(subsection c). This indicates that the mental object that students have is related to this type of 
phenomena; but, when there are partition phenomena where the fractional unit is not completely 
defined (sections b, e, f, and h), the success of correct answers percentage decreases especially when 
two different fractional units are shown. A common mistake that students made when responding to 
subsection (f) is related to the counting of parts and to disregard the congruence of the area of the 
parts. An example of this is in Figure 2.  

 

 
Figure 2. Answers from two students where the congruence of the parts is disregarded. 

 
Figure 2 shows the trace of points that the students left with a pen, which indicates the counting 

of the parts carried out without considering the congruence of parts area. Another mistake that 
appears in this subsection is the change of the numerator by the denominator when establishing the 
fracturing relation. 

There is a percentage decrease between items 1 and 2 of approximately 20% of success in the 
students’ answers (see Table 1). The prior indicates that the tasks where the fraction is used as a 
fracturing operator need to be favored, in particular when an improper fraction has to be represented 
and when working with less common geometric figures, which would help to constitute a better 
mental object of the fraction. 
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The discrete models where the aspects of fractions as fracturer and comparator, specifically as a 
ratio relation, were evaluated in item 3 (see results in Table 3). In the previous items it is also 
observed a percentage decrease on the number of correct answers. Despite that the mental object 
students have is related to the phenomena where they establish a fracturing relation, in both, 
continuous and discrete models; however, it is necessary to propose more tasks for teaching, where 
the fraction acts as a comparator to solve problems related to this type of phenomena since there is a 
very low success rate of answers.  

Table 3: Results of Item 3 
Symbolic representation of fractions from a graphical representation 

(discrete models) 
Distractor: structured with respect 

to size of balls  (box 1) 
Distractor: non-structured with 
respect to size of balls  (box 2)  

Fracturer Comparator  Fracturer Comparator 
a) b) c) d) 

21/35 4/35 21/35 2/35 
60.00% 11.43% 60.00% 5.71% 

 
Representing fractions in the number line was the least successful item in the test since only 20 

out of 350 possible answers were correct. The fractions to be represented are shown in the third row 
of Table 4. The fraction 7/3 was correctly represented by more students, then 1/4 and 6/5. The fact 
that no students had correctly represented fraction 4/8 allows supposing that the mental object 
students have does not allow them to recognize the fractions equivalence because no students 
identified that 2/12 and 1/6 are equivalent. 

Table 4: Results of Item 4 
Representation of fractions on the number line 

Proper fractions Improper fractions 
2/12 4/8 2/10 1/4 1/6 6/5 7/3 5/2 8/7 12/9 
1/35 0/35 2/35 3/35 1/35 3/35 4/35 2/35 2/35 2/35 

2.86% 0% 5.71% 8.57% 2.86% 8.57% 11.43% 5.71% 5.71% 5.71% 
 
One of the common errors in solving item 4, was locating the fractions in the number line taking 

into account only the numerator value of the fraction, but without making a partition of the line 
segment, as shown in Figure 3. 

 
Figure 3. Representation of fractions on the number line. 
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One of the other items with a lower percentage of success is item 5. The identification of 
fractions between two integers and two fractions, as well as the classification of proper and improper 
fractions, were evaluated. The results allow affirming that the students did not recognize 
characteristics of the proper and improper fractions taking into account their relation to the unit or the 
comparison between the numerator and denominator of the fraction. 

The results of the last item’s evaluation are interesting, those allow us confirming that the solving 
problem with numerical data in fraction form is another subject where students have greater 
difficulty since only 19 out of 140 possible answers were correct. 

From the results of the items proposed in the test, it can be affirmed that the mental object 
fraction that students have is linked mainly to: 

• Partition phenomena in which the area of a geometric figure, considered as a continuous, 
defined and structured whole, is divided into equal parts in order to establish a fracturing 
relation, and the equality of the parts is estimated by the congruence of areas. But, when the 
partition is not defined the students face difficulties.  

• Other less usual but also manifest phenomena refer to the division of a discrete whole in 
order to establish a fracturing relation.  

• Partition phenomena of a continuous and defined whole, where the fraction acts as a 
fracturing operator, the choice of the parts is contiguous and their equality is estimated "at 
sight". But, when there are variations in the structure or form of the whole, students face 
difficulties.  

Conclusions 
Students who participated in the test application have limited mental objects for fraction. It is 

necessary to offer a range of activities that will promote the construction of a better mental object; 
starting from phenomena related to different uses and aspects of the fractions illustrated in Figure 1, 
and not limited to only one of its aspects during the teaching of fractions. It is noted that students do 
not naturally transfer their knowledge about one particular aspect of the fraction to another one. For 
example, students' knowledge to solving problems related to partition phenomena where continuous 
models as circles or rectangles were used, do not use to make a segments partition on the number line 
in order to represent fractions. 

In addition, it is considered important to propose activities that take advantage of each of the 
particularities that are detailed in the specimen of didactic phenomenology outlined in this paper. 
Although students showed solid mental objects related to the fraction as fracturer, it was observed 
that the students faced difficulties when the aspect of fracture takes account its particularities. 
Regarding the aspects of the fraction as comparator, measurer, operator, and rational numbers that 
were evaluated in the test, the students showed a very restricted use of knowledge. 

The results also confirm that, although in the last years of elementary school curriculum it is 
explicitly proposed the study of fractions using the number line as a didactical resource, as well as 
the study of the characteristics of the proper and improper fractions, the students faced difficulties to 
solve these types of task. In fact, they did not show knowledge about it at all. This result is attributed 
to the fact that students have been instructed mainly under the use of the model area as a didactical 
resource. Although these students had low academic performance, they showed solid knowledge to 
represent their proper fractions when using this model, mainly when circles or rectangles were used. 
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In this study, we explore thirty-two second graders’ performance on integer addition problems 
before and after analyzing contrasting cases involving integers. The students, as part of a larger 
study, completed a pretest, were randomly assigned to one of three intervention groups, and 
participated in two small-group sessions, one short whole-class lesson on integer addition, and a 
posttest. The group interventions differed in terms of which problems students compared in their 
small-group sessions.  Based on students’ solution strategies for integer addition problems and their 
treatment of negative signs, all three groups progressed in solving negative integer addition 
problems; however, students who initially contrasted adding two positives with adding a negative to 
a positive showed important differences, which we describe further. 

Keywords: Number Concepts and Operations, Cognition, Elementary School Education 

Providing students with early access to integer learning is important.  Recent standards do not 
require students to learn integer concepts until sixth grade and integer operations until seventh grade 
(National Governors Association Center for Best Practices [NGA] & Council of Chief State School 
Officers [CCSSO], 2010); however, prior standards suggested that students should learn about 
integers as early as third grade (National Council of Teachers of Mathematics [NCTM], 2000). 
Moreover, current research indicates that young students can productively learn about and work with 
integers (e.g., Bishop, Lamb, Philipp, Schappelle, & Whitacre, 2011; Bofferding, 2014).  Students 
who are unfamiliar with negative numbers or who over-rely on whole number concepts, will often 
ignore the negative signs when solving problems (e.g., -4 + 5 = 9) (Bofferding, 2010; Murray, 1985) 
or will encounter other obstacles (e.g., thinking addition always results in a larger number) (Bishop, 
Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014).  Often, students develop incorrect and 
resistant conceptions, such as the belief that you cannot subtract a larger number from a smaller one 
(Murray, 1985). It is therefore important to help students notice early on, not only the differences 
between positive and negative numbers, but how they affect operations.  

Contrasting cases can be a powerful instructional tool for helping students focus on important 
structural features in problems and give students access to new problems or solution methods.  In a 
study on learning algebra equations, students who compared alternative solution methods gained 
more in procedural knowledge and flexibility than those studying multiple methods sequentially 
(Rittle-Johnson & Star, 2007). In a subsequent study, students with limited prior knowledge in 
algebra benefited more from comparing problem types than solution methods (Rittle-Johnson, Star, 
& Durkin, 2009).  In one study, first graders noticed and made use of negative signs more if they 
were in an instructional condition where they compared problems with and without negative signs 
(Bofferding, 2014). A feature of the contrasting cases used in Rittle-Johnson and Star’s (2007) work 
is that they involved worked examples, powerful tools for helping students learn new information 
(Atkinson, Derry, Renkl, & Wortham, 2000).     

Some textbooks introduce negative integer addition by first presenting the case of adding two 
negative numbers (Hake, 2007; Pearson Education, 2014) and then contrasting it with adding two 
positive numbers through worked examples. Providing students with the opportunity to compare the 
addition of two positive numbers with that of adding two negative numbers may encourage them to 
notice that the numeral increases in magnitude just like with positive number addition but with a 
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negative sign before the answer.  This problem type tends to be one of the easiest for those recently 
exposed to negatives (Murray, 1985).  However, if adding two negatives makes intuitive sense to 
students, having them see a different problem type first might provide a more productive 
contrast.  Therefore, we investigated the following question:  When learning integer addition, what 
role does the sequence of problem contrasts play in second graders’ (a) integer addition performance 
and (b) the development of solution strategies? 

Conceptual Change Framework 
Students’ initial mental models for number are based on whole number understanding.  As 

students learn about new numbers, they make sense of them in light of their prior understanding 
(Vosniadou, Vamvakoussi, & Skopeliti, 2008).  With negatives, this can lead to a series of transition 
and synthetic mental models based on how students interpret the order and value of negatives 
(Bofferding, 2014). 

Interpretations of the Minus Sign  
Successful integer contrasting cases should help students interpret and make use of the meanings 

of the minus sign in productive ways.  There are three meanings that students might ascribe to the 
minus signs in arithmetic problems (binary, symmetric, or unary), which play “a major role in the 
development of understanding and using negative numbers” (Vlassis, 2004, p. 471). The binary 
interpretation of the minus sign corresponds to the subtraction operation (Vlassis, 2004).  Students 
with only a binary understanding of minus signs might ignore negatives or treat them as subtraction 
signs (e.g., solving 6 + -8 as 6 – 8 = 0 or 8 – 6 = 2) (Bofferding, 2010). The symmetric or opposite 
meaning indicates an operation of multiplying by -1 (switching from positive to negative or negative 
to positive) (Vlassis, 2004). Students rely on the symmetric meaning when they add integers as 
positive and make the answer negative (e.g., solving -2 + 5 as 2 + 5 and answering -7) (Bofferding, 
2010).  The unary meaning of the minus sign is that of the negative sign, designating negative 
numbers. Students with a strong unary understanding will often start at a negative number and count, 
either solving -2 + 3 by counting incorrectly, “negative three, negative four, negative five,” or 
correctly, “negative one, zero, one” (Bofferding, 2010), depending on their conceptions of addition 
and integer values.  Those with a strong binary and weaker unary understanding may still solve 6 + -
8 as 6 – 8 but actually get -2.  

Interpretations of Addition 
  When students add with positive numbers, they learn that counting up corresponds to an 
increase in a number’s magnitude (Vosniadou, Vamvakoussi, & Skopeliti, 2008). However with 
negative numbers, students need to learn that adding a positive number corresponds to moving right 
on the number line (or up); whereas, adding a negative number corresponds to moving left on the 
number line (or down) (Bofferding, 2014).  Stranger still, they need to understand that adding a 
positive or negative could result in either an increase or decrease in magnitude from the initial 
number (e.g., with -3 + 1, the final answer -2 has a smaller magnitude than -3 but for 3 + 1, the final 
answer 4 has a larger magnitude than 3).  In this paper, we discuss how students’ pattern of responses 
on negative addition problems changed following opportunities to analyze different sets of 
contrasting problems. 

Methods 

Participants and Design 
Participants included 32 second graders (from a larger study with 109 second graders) from two 

rural, elementary schools in the Midwest (where 32.2% of students were English-language learners 
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and 75.2% qualified for free or reduced-lunch).  These students were chosen because when solving 
the integer addition problems on the pretest, they consistently answered by adding the absolute 
values of the numbers, ignoring the negative signs (e.g., -4 + 6 = 10 or -1 + -7 = 8) and sometimes 
answering random positive numbers. After completing a pretest, students were randomly assigned to 
one of three intervention groups.  Students in each group analyzed different sets of contrasting 
integer addition problems over two sessions, engaged in one integer addition lesson, and finished by 
taking a posttest. 

Data Sources 
Pretest and posttest. Although students answered a range of integer problems (e.g., ordering, 

comparing values, missing addend problems), we focus the present analysis on 14 integer addition 
problems that students solved on both the pretest and posttest (see Table 1).  These were presented to 
students on one page in their regular classes, and students were asked to solve them as best as they 
could.  Within a few days after students took the pretest, we interviewed 20% of the original sample 
to learn more about how they solved the problems. 

Table 1: Arithmetic Problems Given on the Pretest, Posttest, and Midtest 
Negative + Negative Positive + Negative Negative + Positive 

-6 + -4 5 + -2 4 + -5 9 + -9* -5 + 5 -2 + 0  -4 + 6 
-1 + -7* 6 + -8 7 + -3 0 + -9 -9 + 2* -3 + 1  -1 + 8 

-4 + -3**, -2 + -2** 4 + -6** 8 + -3**  -1 + 3** -8 + 8**  
*Indicates a problem also given on the midtest; **Indicates a problem only given on the midtest 

 
Small-group sessions. As mentioned, students were divided into three intervention groups 

(sequential, intuitive, and conflicted). Of the 32 students who ignored all negative signs on the 
pretest, 11 students were from the sequential group, 12 were from the intuitive group, and 9 were 
from the conflicted group.  When studying the contrasts, students worked in small groups of 2-3 
students from their same intervention groups.  Students in the sequential group analyzed each type of 
addition problem separately and in contrast to similar problems.  Students in the intuitive group first 
compared adding two positive numbers versus adding two negative numbers, an intuitive 
contrast.  Students in the conflicted group compared adding two positives with adding a negative to a 
positive in session one (we called this group conflicted because addition usually makes a larger 
number).  During the second sessions, students analyzed the two other types of problems they did not 
see in their first session (see Table 2). 

Each group saw their contrasts within four different illustrated contexts: an inclined number path 
situated on a hill, a vertical number line showing ants moving below and above ground, positive and 
negative chips, and a folding number line (see Tsang, Blair, Bofferding, & Schwartz, 2015). Students 
discussed and wrote about the similarities and differences between the problems and pictures; 
analyzed incorrect answers based on research of students’ common misconceptions (e.g., ignoring 
the negative sign); and determined how to use the illustrations to correctly solve the problems. At the 
end of each session, students solved 6 integer addition problems related to the problem types they 
explore during that session for a total of 12 problems (9 with negatives) across the two session.  We 
refer these collective problems as the midtest in the analysis and results (see Table 1).   
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Table 2: Problem Types that each Group Solved During their Two Small-Group Sessions 
 Sequential Group Intuitive Group Conflicted Group 

Session 1 P + P vs. P + P, then  
N + N vs. N + N 

P + P vs. N + N P + P vs. P + N 

Example: 3 + 5 vs. 4 + 4, then 
-3 + -5 vs. -4 + -4 

3 + 5 vs. -3 + -5 3 + 5 vs. 3 + -5 

Session 2 N + P vs. N + P, then  
P + N vs. P + N 

N + P vs. P + N N + N vs. N + P 

Example: -7 + 2 vs. -6 + 1, then 
7 + -2 vs. 6 + -1 

-7 + 2 vs. 7+-2 -7 + -2 vs. -7 + 2 

Note: N = negative integer, P = positive integer 
Whole-class instruction. Students participated in a 30-minute lesson focused on solving addition 

problems using a number path.  Adding a negative number corresponded to going down or getting 
more negative and adding a positive number corresponded to going up the number path or getting 
more positive, leading to the introduction of additive inverses or “zero pairs” (e.g., -2 + 2).  Students 
then played a card game using one stack of “1” cards, one stack of “-1” cards, and a die, where the 
goal was to collect cards in order to make zero pairs. 

Analysis  
To analyze students’ integer addition performance, we marked each addition problem as either 

correct or incorrect and conducted a median test (a nonparametric test used for small sample sizes) 
on the pretest-posttest gain scores across groups.  We did not include midtest results in the median 
test because the midtest did not have completely identical items.   

In order to look for qualitative changes in students’ solution strategies, we classified students’ 
solutions to the integer addition problems on the tests according to their treatment of the negative 
signs and strategies, relying primarily on their response patterns for each negative integer problem 
type (positive plus positive, positive plus negative, and negative plus positive) and supplemented by 
interview data.  First, we identified students who correctly answered all problems and designated 
them as all correct, unary meaning.  If they had one incorrect within a problem type, we identified 
the type based on the codes and included it with the all correct code. For example, all of the students 
discussed here provided answers on the pretest consistent with ignoring the negative signs and 
adding the two numerals (e.g., -6 + -4 = 10; 6 + -8 = 14).  Given the stability of their response 
pattern, we considered these students to be using this strategy even if we did not interview them; in 
some cases we did have interview data to confirm it.  On the midtest and posttest, students sometimes 
provided responses that could have been coded in more than one way (adds negative sign vs. 
directional or subtraction (negative) vs. directional).  In these cases, we used their other responses 
within the problem type to infer which strategy they used and checked them with the transcripts 
when available.  For example, students could get -6+-4 correct by either knowing that adding a 
negative means moving to the left on the number line or by adding 6 + 4 and making it negative.  If 
students used the adds negative sign strategy on their other problems consistently, we assigned the 
same code to -6 + -4 = -10 (see Table 3). 



Early Algebra, Algebra, and Number Concepts 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

247 

Table 3: Strategies Second Graders Used on the Integer Addition Problem Types. 
Strategies Explanation (coded within each problem type) Example: -4 + 1 

Adds Negative 
Sign3 

Student answers problems by adding the absolute value of 
the numbers and then making the answer negative. 

4 + 1 = 5, so -5 

Subtraction2 
(positive) 

Student uses the negative sign as a subtraction sign and 
gets positive answers. 

4 – 1 = 3 or   
1 – 4 = 0 

Subtraction2, 3 
(negative) 

Student uses the negative sign as a subtraction sign and 
gets negative answers (or makes answers negative). 

1 – 4 = -3 or  
4 – 1 = 3, so -3 

Ignores Negatives Student ignores the negative signs. 4 + 1 = 5 

Negative as Zero1/2 Student treats negatives as equivalent to zero. 0 + 1 = 1 or 
4 – 4 + 1 = 1 

Positive Student answers with random positive numbers. -4 + 1 = 10 

Negative Student answers with random negative numbers. -4 + 1 = -8 

Directional1 Students’ answers are consistent with starting at the 
negative number and counting up or down the absolute 
value of the other number but not in a reliable direction. 

-4 + 1 = -5 
but 

-9 + 2 = -7 

(Deviation) Deviations to one of the above codes were noted when 
students’ answers to a certain problem did not follow the 
pattern of the rest of the problems.  This occurred 
particularly with the additive inverse problems (zero pair) 
that were part of instruction, problems where they had to 
add zero, or if a student skipped a problem. 

 

Meaning of minus sign: 1 = unary, 2 = binary, 3 = symmetric  

Results 

Performance on Integer Addition Problems 
 Overall, students in the conflicted and intuitive groups spent about 20 minutes in each of their 

sessions.  Students in the sequential group spent about 40 minutes in each of their sessions because 
each problem type was explored in sequence instead of in comparison to a different problem type.  
Because the students discussed here ignored negatives on the pretest, they all started with scores of 
zero.  Students in the conflicting contrast group had the highest median gain score from pretest to 
posttest (11.0) compared to those in the sequential group (8.0) and the intuitive group (4.5), 
X2=5.869, p=.053.  The conflicted contrasting group had significantly higher median scores than the 
intuitive contrast group.  There was no significant difference between the conflicted and sequential 
groups; however, the conflicted group made higher gains with an intervention that was half as long as 
the sequential group.  Table 4 presents additional information about the groups’ performance on the 
pretest and posttest, as well as on the midtest.  Not only did the conflicted group have the greatest 
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median increase from pretest to posttest, but they also had the greatest increase in mean percent 
correct from pretest to midtest, from midtest to posttest, and from pretest to posttest. 

Table 4: Groups’ Performance on the Pretest, Midtest, and Posttest Addition Problems 

Group Pretest (14 items) 
Mean (SD); % 

Midtest (9 items) 
Mean (SD); % 

Posttest (14 items) 
Mean (SD); % 

Sequential (n=11) 0 (0); 0% 1.7 (1.8); 19%  7.0 (4.9); 50% 

Intuitive (n=12) 0 (0); 0% 1.8 (1.9); 20%  5.6 (4.0); 40% 

Conflicted (n=9) 0 (0); 0% 2.3 (2.1); 26%  9.4 (3.6); 67% 

Table 5 shows an additional breakdown of the problems by problem type on the midtest and 
posttest.  Recall that the sequential and intuitive groups solved the N+N problem type (N=negative 
integer) at the end of their first session while students in the conflicted group solved the P+N 
problem type (P=positive integer).  Across the three problem types, 5 out of 11 (45%) sequential 
group students, 6 out of 12 intuitive group students (50%), and 7 out of 9 conflicted group students 
(78%) correctly solved at least one problem on the midtest.  On average, the groups did the best on 
problems related to the contrasts they saw in their first session. 

Table 5: Students’ Percent Correct for Each Problem Type on the Midtest and Posttest 

Midtest 
N + N (3 items) 
Average correct 
(% correct); Median 

N + P (3 items) 
Average correct 
(% correct); Median 

P + N (3 items) 
Average correct 
(% correct); Median 

Sequential (n=11) .82 (27%); 0.0 .36 (12%); 0.0 .55 (18%); 0.0 

Intuitive (n=12) .92 (31%); 0.0 .42 (14%); 0.0 .42 (14%); 0.0 

Conflicted (n=9) .78 (26%); 0.0 .56 (19%); 0.0 1.0 (33%); 1.0 

Posttest N + N (2 items) N + P (6 items) P + N (6 items) 

Sequential (n=11) 1.0 (50%); 1.0 3.1 (52%); 4.0 2.9 (48%); 2.0 

Intuitive (n=12) 1.1 (54%); 1.5 2.2 (36%); 1.0 2.3 (39%); 1.5 

Conflicted (n=9) 1.2 (61%); 1.0 4.2 (70%); 5.0 4.0 (67%); 5.0 

Interpretations of the Negative Sign and Addition 
Analysis of students’ use of the negative sign and strategies for solving the integer addition 

problems provides additional insight into differences between the groups.  Across the nine negative 
integer problems on the midtest, the sequential group had 5 out of 11 people (45%) continue to 
ignore the negatives when solving all of the problems.  The intuitive group had 4 out of 12 people 
(33%) and the conflicted group had only 1 out of 9 people (11%) ignore all of the negatives.  On the 
other hand, students in the conflicted group, who added negatives to positives in their first session, 
had more people interpret negative signs as subtraction signs (binary meaning) and subtract the 
numbers.  The students in the other groups were more likely to make the answers negative if they did 
subtract (combination of symmetric and binary meanings) or add a negative sign after adding the 
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absolute values (symmetric meaning).  Finally, 75% of the students in the intuitive group, 55% of 
students in the sequential group, and only 22% of students in the conflicted group used a consistent 
strategy across all of the midtest problems. 

On their first session recording sheets, many students in the sequential group ignored 
negatives.  For example, one student ignored the negative signs when copying down two of the 
problems; another student wrote that the correct answer to -6 + -4 = 10, even though this was 
identified as wrong on the page.  Students in the intuitive group paid much more attention to the 
negative signs, noticing when problems did or did not have them.  Similarly, students in the 
conflicted group also noticed the negative signs, and, during follow-up interviews, one 
student indicated that it meant to “go back.” 

On the posttest, on the problems where students had to add both a positive and negative number, 
2 out of 11 students (18%) in the sequential group, 4 out of 12 students (33%) in the intuitive group, 
and 2 out of 9 students (22%) in the conflicted group had responses consistent with adding the 
absolute values and making the sum negative (symmetric meaning) for at least one problem type.   
On the other hand 2 out of 11 students (18%) in the sequential group, 2 out of 12 students (17%) in 
the intuitive group, and 5 out of 9 students (56%) in the conflicted group correctly answered all 
questions for each problem type (allowing for one mistake per type), such as N + P.  These students 
got negative answers on problems when they couldn’t just add a negative sign, suggesting they had 
some unary understanding of the minus sign, accepting negatives as numbers in their own right. 

Discussion 
The results presented here provide insight into how students’ strategies and ways of thinking 

about the negative sign can be influenced when given access to integer problems through contrasting 
presentations.  Although students with limited prior knowledge did well comparing problem types 
and when presented sequentially as in prior research (Rittle-Johnson, Star, & Durkin, 2009), their 
intervention took twice as long and the conflicted group still made higher gains.  This data suggests 
students who initially do not acknowledge the negative sign might benefit most from analyzing 
contrasts where the initial focus is on the result of the operation (Positive + Positive vs. Positive + 
Negative) as opposed to the change in sign (Positive + Positive vs. Negative + Negative).   

Based on the collective students’ gains by the midtest, exposure to the contrasting cases helped 
them change their thinking about the meaning of negatives and their use in addition problems. 
Further, their differences in strategy use suggest that depending on their contrasts, analyzing the 
problems gave them differential benefits in interpreting the problems.  Students’ further gains from 
the midtest to the posttest suggest that the instruction made additional impact but that the conflicted 
group benefitted most, especially in terms of changes in their strategies. 

Students in the sequential and intuitive groups were more likely to ignore the negative signs, 
suggesting that they had not developed a usable meaning for the negative signs after analyzing 
problems that included two negative numbers.  Others in these groups were likely to add the absolute 
values of the numbers and then add the negative sign to the answer, suggesting they interpreted the 
negative signs as having a symmetric meaning (Vlassis, 2004).  However, it is not clear that they 
understood a negative number as being an opposite of a positive number.  A more accurate 
description may be that they saw the negative sign as a descriptor.  By comparison, students in the 
conflicted group were more likely to interpret the negative sign as indicating a binary 
operation.  Although they initially gave mostly positive answers, a focus on the negative sign as a 
subtraction sign reflects a shortcut often taught to students (i.e., adding a negative number is the same 
as subtracting a positive number).  Interestingly, by the posttest, the conflicted group did better than 
the other groups overall, suggesting an improvement in identifying when the minus sign designates a 
negative number for beginning their count or when it designates an operation.   
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This research explores the interplay between students’ understandings of proportional and functional 
relationships. Approximately 90 students participated in an early algebra intervention in Grades 3–
5. Before the intervention and after each year of the intervention, we evaluated their understandings 
of proportional and functional relationships. Data revealed that among Grades 4 and 5 students who 
identified a correct function rule, a higher percentage were unsuccessful solving a proportional 
reasoning problem than those who were not able to identify a correct function rule. Namely, the data 
suggest that students’ development of functional thinking may interfere with their development of 
understanding proportional relationships. 

Keywords: Algebra and Algebraic Thinking, Elementary School Education 

Decades of reform initiatives in teaching and learning algebra (e.g., National Council of Teachers 
of Mathematics, 2000, 2006) have brought about the “algebrafication” of elementary grades 
mathematics in which a number of core algebraic concepts are introduced into classroom curriculum 
and instruction (Kaput & Blanton, 2001). While research has documented the development of 
students’ understanding of these concepts, what is less well understood is the interplay between 
concepts that, at face value, seem to be developmentally complementary to one another (e.g., 
functional thinking and proportional thinking). In what ways does learning particular algebraic 
concepts support or hinder the learning of other algebraic concepts? This question lies at the core of 
our study in which we examine the ways in which children’s understandings of two concepts appear 
to interact and potentially constrain the development of their algebraic thinking. Specifically, we 
investigate the interplay between students' understanding of proportional relationships and students’ 
understanding of relationships between quantities that co-vary in a non-proportional way (e.g., the 
functional relationship y = 2x + 2). 

We chose to study these concepts because recent findings have shown that elementary students 
can reason about and describe relationships between co-varying and corresponding quantities (e.g., 
Blanton & Kaput, 2004; Schliemann et al., 2003) and, in fact, that even students in kindergarten and 
first grade can engage in this kind of thinking about co-varying and corresponding quantities (e.g., 
Blanton, Brizuela, Gardiner, Sawrey, & Newman-Owens, 2015; Brizuela, Blanton, Sawrey, 
Newman-Owens, & Gardiner, 2015). 

Our Early Algebra Intervention 
This research is part of a three-year longitudinal study (viz., Blanton et al., 2017) whose 

overarching goal is to design, implement, and evaluate a Grades 3 – 5 early algebra intervention. We 
based the intervention on a synthesis of Kaput’s (2008) analysis of algebra in terms of content 
strands and thinking practices (see Blanton, Stephens, et al., 2015 for an elaboration of the 
intervention). In particular, using Kaput’s content analysis of algebra we frame the content of our 
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intervention in terms of four fundamental thinking practices that characterize algebraic thinking: (1) 
generalizing, (2) representing, (3) justifying, and (4) reasoning with mathematical structure and 
relationships. We also identified several “big ideas” of algebra, that is, principles in a domain that are 
essential to developing an integrated understanding in that domain (Shin, Stevens, Short, & Krajcik, 
2009) and that reflect content spaces in which the core practices of algebraic thinking (e.g., 
generalizing) can occur. The big ideas of algebra that comprised the early algebra intervention are as 
follows: (a) equivalence, expressions, equations, and inequalities; (b) generalized arithmetic; (c) 
functional thinking; and (d) variable.  

One of the areas that becomes increasingly important as students transition into middle grades is 
proportional reasoning (NGA & CCSSO, 2010). Because of the connections between proportional 
reasoning and functional thinking, particularly as it relates to issues of rate of change and slope, we 
were interested in the interplay between students’ functional thinking, developed as part of our 
Grades 3 – 5 early algebra intervention, and their early notions of proportional reasoning addressed 
in the regular curriculum. At face value, these two conceptual areas seem developmentally 
complementary to one another. Proportional reasoning involves generalizing two related quantities in 
which “the ratio of one quantity to the other is invariant” (Blanton, Stephens, et al., 2015, p. 43). 
Functional thinking involves “generalizing relationships between (two) covarying quantities and 
representing” those generalizations “using natural language, algebraic notation, tables, and graphs” 
(Blanton, Stephens, et al., 2015, p. 43). We view proportional reasoning as a subset of functional 
thinking because all proportional relationships can be described as functions, but not all functional 
relationships are proportional relationships. The purpose of this study is to investigate the interplay 
between students’ functional thinking, developed as part of our Grades 3 – 5 early algebra 
intervention, and their early notions of proportional reasoning addressed in the regular curriculum. 

Methods 
We share data collected from a three-year longitudinal study in which we implemented and 

evaluated our early algebra intervention. To evaluate our early algebra intervention we assessed the 
algebraic thinking of students who participated in our intervention at several time points using a 
pretest and posttests.  

Participants 
At the pretest, participants included 103 Grade 3 students from a school in southeastern 

Massachusetts. The school’s district is 8% non-white, 5% ELL students, and 20% low SES students. 
Due to attrition, 90 students participated in the entire early algebra intervention (i.e., participated in 
Grades 3 – 5).  

Intervention 
The Grades 3 – 5 intervention consisted of approximately 18 lessons per year and engaged 

students in the aforementioned algebraic thinking practices of generalizing, representing, justifying, 
and reasoning and the targeted big algebraic ideas. One member of our project team served as the 
classroom instructor for the intervention, beginning with the Grade 3 cohort and continuing with this 
cohort through the completion of Grade 5. The intervention was taught as part of students’ regular 
mathematics instruction. The sequence of 18 lessons in each of Grades 3 – 5 included 6 lessons 
focusd on functional thinking. Functional thinking lessons were designed to get students to generate 
data, use function tables to organize data, identify functional relationships and represent in words and 
variables, and use these relationships to make inferences about function behavior. Lessons also 
included developing graphs to represent functions and interpreting functional behavior in graphs 
through quantitative and qualitative means. Functional thinking tasks focused primarily on linear 
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functions, but also included quadratic and exponential functions. Proportional reasoning concepts 
were not explicitly taught in the intervention. 

The instructional sequence was organized into Grades 3, 4, and 5. For each year of our 
intervention, we listed learning goals and organized them according to the associated big idea. The 
lessons were designed to address these learning goals. Each lesson began with a small-group 
discussion regarding a previously addressed learning goal, so that learning goals were revisited 
throughout the lessons. Then, a new learning goal was addressed through small-group problem 
solving and a whole-class discussion. Associated assessments were designed to test the effectiveness 
of the intervention by evaluating students’ understandings of the big ideas and administered at the 
beginning of the intervention (Grade 3 pretest) and after each year of the intervention (Grade 3 
posttest, Grade 4, and Grade 5).  

Data Collection 
Students who participated in the intervention were assessed at the beginning of Grade 3, and then 

again at the end of each year in Grades 3 – 5 using grade-level assessments designed by the project 
team. The same Grade 3 assessment was used as a pre/post measure in Grade 3, while the Grades 4 
and 5 assessments included some identical items and some new items. Each assessment consisted of 
about 12 items (10 were multi-part open response, 2 were multiple choice). Here we focus on 
students’ responses to two items that appeared on the assessments at each grade level.  

The first item (see Figure 1), the Caterpillar task (adapted from NAEP, 2003), is designed to 
evaluate students’ ability to reason proportionally. The second item, the Brady task (see Figure 2), 
was designed to evaluate students’ understandings of functional relationships. Here, we focus in 
particular on part c2, which was designed to assess students’ ability to generalize and represent a 
functional relationship using variables. Both of these items appeared on all four assessments given 
across Grades 3 – 5.  

 Data Analysis  
Responses were scored using a coding scheme developed by the project team to capture both 

correctness of student responses as well as the types of strategies students used (Blanton, Stephens, et 
al., 2015). For the response to the Caterpillar task to be coded as correct, students must have 
provided a response of 30. If students also provided an explanation that demonstrated proportional 
reasoning, coders further identified the way that the student reasoned proportionally (i.e., as using 
calculations, tables, pictures, a unit rate or repeated addition). If students provided an incorrect 
answer, coders labeled the response with one of the incorrect strategies or “other.” If no explanation 
or indication of strategy was provided, coders labeled the response “answer only.” Here we focus on 
a specific incorrect strategy, incorrect linear relationship. Students who demonstrated this strategy 
wrote a response of “25” and typically explained that they used the linear relationship “2x + 1” to 
find their solution. Students found this solution because the relationship “2x + 1” results in the 
example provided, 5 caterpillars and 2 leaves. 

 

 
Figure 1. Proportional reasoning item (Caterpillar task). 
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Figure 2. Functional thinking item (Brady task). 

 
When refining the coding scheme, we conducted iterative analyses of students’ responses to these 

items. First, we identified strategies already documented in the research literature on children’s 
algebraic thinking. For example, research shows that children may begin generalizing functional 
relationships by focusing on particular instances, demonstrating a recursive strategy (Blanton, 
Brizuela, et al., 2015). These external strategies served as a starting point for developing our coding 
scheme. If a response did not fit an external strategy, it was grouped with similar responses. We then 
identified patterns in these responses and developed new codes to capture these responses.  

For the response to part c2 of the Brady task to be coded as correct, students must have written a 
function using variables to represent the relationship at hand (e.g., y = 2x). If students provided an 
incomplete (e.g., 2x) or incorrect answer, coders labeled the response with the appropriate incorrect 
strategy. If a student’s response could not be categorized using our coding scheme, coders labeled the 
response as “other.”  

Inter-rater reliability scores were computed for 20% of the items and at least 80% agreement was 
achieved between the coders. When coders disagreed, they discussed codes until agreement was 
obtained.  

Results 
In this section, we share results from the two written assessment items and focus on relationships 

we observed between students’ understandings of functional and proportional relationships. For the 
Caterpillar task, we focus on one strategy in particular, the incorrect linear relationship strategy 
because we found an unexpected relationship between this strategy and another strategy. Students 
who used the incorrect linear relationship strategy incorrectly generalized a linear relationship 
between the number of caterpillars and the number of leaves (e.g., 2x + 1= y) were coded as using 
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this strategy. For the Brady task, we also focus on one strategy, the correct function rule. Students 
who demonstrated this strategy correctly identified a function rule and represented it using variables 
in an equation. 

We observed a trend in the ways that students who generalized functional relationships on part c2 
of the Brady task reason about the Caterpillar task. In particular, the data revealed that among the 
students in Grades 4 and 5 who identified a correct function rule using variables to describe a 
generalized relationship between the two covarying quantities, a higher percentage of those students 
demonstrated the incorrect linear relationship strategy on the Caterpillar task than did the overall 
population of students. That is, the data suggest that in the context of the intervention, students’ 
development of functional thinking and the development of their understandings of proportional 
relationships may be related. Although we are not certain of the nature of this relationship, these data 
suggest that some students’ development of functional thinking may impede the development of their 
understandings of proportional relationships in the context of the intervention.  

Table 1 shows the percentage (and number) of students who identified the correct function rule in 
response to the Brady task in Grades 3, 4, and 5. The number of students who identified the correct 
function rule is listed in parentheses. The data reveal that as students progressed through the 
intervention, they were better able to write the correct function rule using variables.  

 

Table 1: Overall Student Performance on Brady Task 

 Gr 3 Pre Gr 3 Post Gr 4 Gr 5 
Correct Function Rule 0.00% (0) 35% (36) 64% (61) 67% (60) 

 
The percentages in Tables 2 – 4 were calculated using the number of students who used the 

correct function rule for each grade (as shown in Table 1). In other words, the denominator for each 
percentage in Tables 2 – 4 is the number of students (in parentheses) for the respective grade in Table 
1. Table 2 shows how the subgroup of students—the 36 students—who identified the correct function 
rule at the Grade 3 posttest performed on the Caterpillar task at each time point. Table 3 shows how 
the subgroup of students—the 61 students—who identified the correct function rule at the Grade 4 
test performed on the Caterpillar task at each time point. Table 4 shows how the subgroup of 
students—the 60 students—who identified the correct function rule at the Grade 5 test performed on 
the Caterpillar task at each time point.  

 

Table 2: Percentage of Gr 3 Post Students who Provided a Correct Function Rule (Brady Task) 
and Used the Incorrect Linear Relationship Strategy (Caterpillar Task) 

 Gr 3 Pre Gr 3 Post Gr 4 Gr 5 
Incorrect Linear Relationship 0% 3% 7% 12% 

 

Table 3: Percentage of Gr 4 Students who Provided a Correct Function Rule (Brady Task) and 
Used the Incorrect Linear Relationship Strategy (Caterpillar Task) 

 Gr 3 Pre Gr 3 Post Gr 4 Gr 5 
Incorrect Linear Relationship 0% 7% 13% 30% 
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Table 4: Percentage of Gr 5 Students who Provided a Correct Function Rule (Brady Task) and 
Used the Incorrect Linear Relationship Strategy (Caterpillar Task) 

 Gr 3 Pre Gr 3 Post Gr 4 Gr 5 
Incorrect Linear Relationship 0% 12% 30% 30% 

 
Table 5 shows the percentage of all students who demonstrated the incorrect linear relationship 

strategy in Grades 3, 4, and 5. By comparing the performance of the subgroups on the Caterpillar 
task (Tables 2 – 4) to the overall performance of students on the Caterpillar task we noticed that 
students who identified the correct function rule were more likely to also demonstrate the incorrect 
linear relationship strategy in Grades 4 and 5 than was the general population of students.  

The percentage of students identifying the correct function rule in response to the Brady task who 
demonstrated the incorrect linear relationship strategy in response to the Caterpillar task is less than 
the total percentage of students who demonstrated the incorrect linear relationship strategy in 
response to the Caterpillar task in Grade 3. We do not believe we can draw many conclusions from 
this due to the low overall performance on the Brady task in this grade. However, as success on the 
Brady task increases into Grades 4 and 5, we feel that more can be said about the interaction between 
students’ strategy use on these items. 

Table 5: Percent of Students who Used the Incorrect Linear Relationship Strategy (Caterpillar 
Task) 

 Gr 3 Pre Gr 3 Post Gr 4 Gr 5 
Incorrect Linear Relationship 2% 5% 9% 20% 

 
Of the subgroup of students who identified the correct function rule in response to the Brady task 

in Grades 4 and 5, the percentage that also demonstrated the incorrect linear relationship strategy in 
response to the Caterpillar task is greater than the overall percentage of students who demonstrated 
the incorrect linear relationship strategy. Interestingly, the reverse relationship holds true for Grades 
4 and 5 as well. That is, of the subgroup of students who demonstrated the incorrect linear 
relationship strategy in Grades 4 and 5, the percentage who also identified the correct function rule is 
greater than the overall percentage of students who identified the correct function rule.  

Table 6: A Representative Student’s Responses in Grades 4 and 5 

 Incorrect Linear Relationship Resonse to Caterpillar Task  Correct Function Rule 
Response to Brady Task 

Grade 
4 

 
 

 

Grade 
5 

 

 
 

 
Table 6 shows one student’s responses to both tasks at the Grades 4 and 5 assessments. This 

student was selected because his strategy gives an example of the combination we focus on in this 
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paper. We chose to show the students’ responses in both Grades 4 and 5 because we observed that 
several students demonstrated both strategies in both Grades 4 and 5. Specifically, 8 students 
demonstrated both these strategies in Grade 4. Of those 8 students, 6 of them also demonstrated both 
strategies in Grade 5. An additional 11 students demonstrated both strategies in Grade 5, totaling to 
17 students.  

Discussion 
The results presented here highlight the complexity of the interrelated concepts involved in 

studying corresponding relationships in the elementary grades. It leads us to question the role of 
proportional reasoning in the regular curriculum and how that of functional thinking in our 
intervention (or even the regular curriculum, to the extent that functions are addressed in elementary 
grades) coincide.  

Moreover, the findings reveal that the characteristics of corresponding relationships that are 
salient to students are not what we anticipated when designing the intervention. That is, the findings 
highlight that educators need to be cautious when drawing conclusions about what children know and 
how it is they come to know it. The findings show that while children may have knowledge of a 
particular concept, functional thinking in this case, they might misappropriate the concepts and tools 
in other situations. We can infer from the student’s responses shown in Table 6 that this student, and 
based on the percentages shown in Tables 2 – 4 likely many students, chose to use one of the tools 
they were taught (e.g., a function table) to use when interpreting functions to represent the 
Caterpillar task. Students are taught function tables as a tool for interpreting functional relationships. 
Therefore, the fact that this student correctly responded to the Brady task and used a function table to 
interpret the Caterpillar task makes sense in the context of our intervention. The reason we did not 
observe students incorrectly responding to the Brady task and using the incorrect linear relationship 
strategy is because they did not have the tools (e.g., a function table) for interpreting functional 
relationships. 

Lastly, we believe the data displayed in Table 6 highlight that when children come to know a 
concept in a certain way, they struggle to change the way they know that concept, especially in 
different contexts. This observation may indicate that students’ thinking is entrenched from year to 
year because the context is relatively consistent. McNeil and Alibali (2004) noted that students resist 
adapting their understandings of the equal sign in different contexts and we view this finding as 
relevant to our interpretation of our findings. Similarly, our prior research (e.g., Strachota et al., 
2016) on students’ understanding of the equal sign and functional thinking have led us to consider 
how different contexts and co-developing big ideas might impede or support the development of 
children’s algebraic reasoning. We believe these studies are a small slice of an increasingly important 
area of research in early algebra. In order to move forward in supporting students in developing 
understandings of algebraic concepts, we must better understand the interplay between concepts. 

Due to the nature of our data (i.e., written assessments) we do not know with certainty what 
students might have been thinking when they demonstrated the incorrect linear relationship strategy. 
However, we can infer that students who demonstrated this strategy associated some aspect of the 
proportional relationship with the process of writing a function rule using variables. Moving forward, 
we hope to investigate what aspects of the task are salient to the students who use the incorrect linear 
relationship strategy and use these data to refine our instruction.  

We acknowledge the limitations of this study specifically the small sample size of the subgroups 
and the fact that only two tasks are considered, but hope the findings will serve as the premise for 
future research that takes the same line of inquiry. Researchers have long advocated that algebra be 
developed as a longitudinal curricular strand. We agree with this perspective, and believe that our 
findings reveal the importance of continuously supporting students in developing understanding of 
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core algebraic concepts associated with functional thinking and proportional reasoning. Further, we 
view the conceptual areas of proportional reasoning and functional thinking as interrelated, and 
recommend that early algebra curricula be designed to synthesize these core concepts of algebra, as 
well as all core concepts of algebra. 
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Generalization has been a major focus of curriculum standards and research efforts in mathematics 
education. While researchers have documented many productive contexts for generalizing and the 
generalizations students make, less attention has been given to the processes of generalizing. 
Moreover, there has been less work done with high school students in advanced mathematical 
contexts. To address these issues we use a model of learning that enables us to make explicit the 
processes of generalizing. We exemplify this model of learning in the context of an interview study 
with high school students working on cubic relationships.  

Keywords: Cognition, Learning Theory 

Generalization has been a major focus of the Common Core State Standards as both a process 
and content standard. One reason for this focus in curriculum standards is that mathematics educators 
have identified that generalizing activity is a central means through which students construct new 
knowledge and as such should be a primary focus of school instruction (Davydov, 1972/1990). To 
date a majority of the research on generalization has taken place with elementary and early middle 
school students (grades K-7) in part because it is seen as a basis for and route to algebraic reasoning 
(e.g., Carraher, Martinez, & Schliemann, 2008). Furthermore, many of these studies have focused on 
patterns or functions that involve linear relationships, however, researchers have argued that there is 
a need for investigation of studying generalizing in situations that can involve non-linear 
relationships as well as studies that include older students (Amit & Neria, 2008). Dorfler (2008) has 
also identified that researchers studying generalization have focused their attention on developing 
contexts for generalization and characterizing the kinds and qualities of generalizations students 
make within these contexts. However, he identifies that there has been significantly less attention 
paid to the processes involved in generalizing (see Ellis, 2007 for an exception). To address these 
issues, we report on an interview study conducted with eight 10th-12th grade students who worked on 
establishing cubic relationships. We situate our work within a framework for studying learning where 
a central reason for this is so that we can specify particular processes involved in generalizing.  

Theoretical Framework 
Ellis (2007) differentiates between generalizing actions and reflection generalizations; a 

generalizing action is an action that precedes and may support a formal statement of generalization 
(i.e., is a process involved in generalizing) and a reflection generalization is a formal statement of 
generalization that a student expresses verbally or symbolically (i.e., a product of generalizing 
actions). We find this distinction useful in outlining our framework for learning which is based in 
scheme theory. A scheme is a repeatable way of operating that consists of three parts: an assimilatory 
mechanism, an activity, and a result (Piaget, 1970; Von Glasersfeld, 1995). The assimilatory 
mechanism involves a student in making an interpretation of a problem situation. The activity of a 
scheme involves the use of mental operations on imagined or perceptually present material, which 
transform the assimilated situation into a result. When a person re-processes the result of a scheme so 
that she can anticipate it prior to carrying out the activity, we call this an act of interiorization, and 
we consider the person to have constructed a concept. Concepts, then, are the results of schemes that 
are available to a person prior to operating and are what a person uses to assimilate situations.  
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For a scheme to be repeatable in different experiential situations means that its formation entailed 
generalizing actions (Ellis, 2007): A person uses the same scheme in two or more different 
experiential situations, which implies that the person has abstracted some similarity among the 
experiential situations because they trigger, vis-à-vis assimilation, the same scheme. We make the 
distinction between assimilation and generalizing assimilation to mark when a generalizing action 
happens in a particular experiential situation (Piaget, 1970); assimilation entails the re-activation of a 
scheme, but the abstraction of similarity among current and past situations is not a primary feature of 
this re-activation. Assimilation is generalizing when a primary feature of the re-activation of a 
scheme is the abstraction of similarity among the current and prior situations. We consider this 
abstraction of similarity to be a generalizing action that entails an act of learning because a person 
modifies the assimilatory mechanism of a scheme. 

One marker that distinguishes situations involving assimilation and those involving generalizing 
assimilation is that in the latter case a person may experience a perturbation, a sense of cognitive 
dissonance. This perturbation may be expressed as uncertainty about what to do to solve a situation 
even though from the perspective of an observer a student has a scheme that could be used to solve 
the situation. The resolution of this kind of perturbation can occur through an abstraction of 
similarity between the current and prior situations in which a student has used his or her scheme. We 
provide one empirical example of this kind of learning later in the paper.   

We consider a second type of learning to be within the realm of generalizing actions as well. We 
call this type of learning a functional accommodation; a functional accommodation differs from a 
generalizing assimilation in that a student makes a modification to the activity of her scheme in the 
context of its use (Steffe, 1991). We specifically consider a functional accommodation to entail a 
generalizing action when it enables a student to solve a broader range of situations. We provide three 
empirical examples of this kind of learning later in the paper. 

The claim that a student has engaged in a generalizing assimilation or a functional 
accommodation means a researcher is inferring that some modification that was novel occurred in the 
context of a student using his or her scheme. We highlight that such processes are in the province of 
reflective abstraction where a reflective abstraction involves a projection of a novel way of operating 
from a lower to higher level along with the reorganization of the novel way of operating at the higher 
level (Piaget, 1970). Here we consider the “lower” and “higher level” to be defined by the fact that 
the scheme itself becomes more general in nature either because the assimilatory structure is 
broadened to include new experiential situations or because the change in activity of a scheme allows 
a student to solve a broader range of problems.  

None of the acts of learning described to this point necessarily involve a student in being 
consciously aware of having made a modification to his or her scheme. This is a key reason that we 
consider them to be in the realm of what Ellis (2007) calls generalizing actions—actions that precede 
a formal statement of generalization. Further, we note that generalizing actions can occur in the 
absence of an actual formal statement of generalization yet they are an important part of documenting 
the processes involved in generalizing. We consider formal statements of generalization, what Ellis 
calls reflection generalizations, to be in the province of a reflected abstraction (Piaget, 1970)—a 
retroactive thematization of a way of operating that brings this way of operating to conscious 
awareness. We consider reflection generalization to be in the province of a reflected abstraction 
because to make a formal statement of generalization entails becoming to some extent consciously 
aware of how one is operating. Moreover, as Ellis’s definition suggests, a reflection generalizations 
involve symbolizing—formal statements of generalization are made either with natural language or 
mathematical notation (both symbol systems). 

Following Von Glassersfeld (1995), we view symbols as involving bi-directional relationships 
among a sound/graphic image, a person’s re-presentations, and a concept (p. 131). The most 
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important point of Von Glassersfeld’s model for this paper is that when a person has constructed a 
symbol, any one of the three (a sound/graphic image, a person’s re-presentations, and a concept) can 
call up any of the others. This observation means that a sound/graphic image (e.g., a verbal statement 
or the letter “x”) can be used to call forth a concept where a concept is the operations of a scheme 
that no longer need to be implemented either mentally or materially in order for a person to consider 
them to be part of an experiential situation. We provide one empirical example of a reflection 
generalization that involves the processes of symbolizing. 

Methods and Methodology 
We provide empirical examples of generalizing actions and reflection generalizations from an 

interview study conducted with eight 10th-12th grade students. We conducted two hour long video 
recorded interviews that focused on problems like the Card Problem.  

Card Problem. You have the 2, 3, and King of Diamonds, a friend has the 2, 3, and King of 
Hearts, and another friend has the 2, 3, and King of Clubs. A three-card hand consists of one card 
from each person’s hand (order does not matter). How many different three card hands are 
possible to make? How many three-card hands have no face cards, exactly one face card, exactly 
two face cards, and exactly three face cards? 

The aim of this problem was for students to develop the equivalence that 33 = (2 + 1)3 = 23 + 3  
(22  1) + 3  (2  12) + 13. We conjectured that this equivalence could grow out of reasoning that 
there were a total of 33 possible three-card hands, that this total could be quantified as (2 + 1)3 
because each person had 2 non-face card and 1 face card, and also that this total could be quantified 
as 23 + 3  (22  1) + 3  (2  12) + 13 because: the number of three card hands with no face cards 
was 23; there were 3 ways to have one face card with each way having (22  1) three card hands, etc. 
During the interviews, students were encouraged to represent this reasoning using a 3-D array that 
represented all possible three card hands (Figure 1a), and to identify different regions of this array 
that represented three card hands that had no face cards (Figure lb, green region), one face card 
(Figure 1b, three blue regions, only two visible), two face cards (Figure 1b, three yellow regions), 
and three face cards (Figure 1b, red region). Students then worked toward a statement of 
generalization that (x + 1)3 = x3 + 3 (x2 1) + 3 (x 12) + 13. We regard the examples as “learning 
in process” because it was not possible to determine from two interviews the extent to which the 
modifications that students made were lasting.   

 

  

Figure 1a (left), 1b (right). 3-D array highlighting possible types of three-card handsi 

Empirical Examples: Learning, Generalizing Actions, and Reflection Generalizations  
Example one assimilation versus generalizing assimilation. We use Shante’s solution of the 

Subway and Card Problem to illustrate generalizing assimilation. Shante solved the Subway Problem 
with relative ease she concluded that there should be 24 possible sandwiches. 

•
• • •

• • • •
•

• • • •
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Subway Problem: Subway has two kinds of bread, three kinds of cheese, and four kinds of meat. 
A sandwich is one bread, one cheese, and one meat. How many possible sandwiches can subway 
make? 

The interviewer then asked her to determine the total number of possible three card hands in the 
Card Problem, which included making a number of sample three card hands with actual cards. When 
she was asked how many possible three card hands she could make, Shante responded quickly that 
there would be 27 three card hands because the answer would be “three times three times three.” 
However, when asked to explain the multiplication problem and to represent her solution, Shante 
expressed uncertainty. 

I: Why is it that (three times three times three)? 
S: Three cards, three hands and three kings?  Wait.  Okay.  Can you say the question again? [The 

interviewer asks the question again, but Shante is still confused. The interviewer asks Shante 
to make a tree diagram] 

…. 
S [responding to a question about making a tree diagram for the problem]: Okay. Wait a minute. 

Okay, now wait.  What's going on here?  Okay, so this would be a K and a three, and then the 
rest would branch out from that, right? [writes “K-3-2” on her paper.] 

…. 
S [she has stated that the two in the “K-3-2” is the two of spades, and is responding to the 

interviewer’s question about what the other cards represent]: It will be … a K heart and a 
three heart … I think that's one hand. 

Shante’s solution indicated that a critical difference for her in solving the Card Problem was 
determining what a valid three card hand was—in the Subway Problem it was clear to her that a 
sandwich could not consist of one bread and two cheeses. However, in the Card Problem it was 
unclear to her that a three card hand should not consist of one spade and two hearts, despite the fact 
that she had made three card hands with actual cards and these three card hands contained only one 
spade, one heart, and one diamond. The primary difference in these two situations seemed to be that 
each person had the same kind of object, cards, that were differentiated by suit whereas in the 
Subway Problem the objects were not of the same kind. This led to a perturbation for Shante, “this 
problem got me all the way messed up”, that she eventually resolved by relating the suits of the cards 
to the Subway Problem, “Could the spades be like the meats?....The diamonds could be like the 
cheeses?....Oh, the hearts would be like the bread!” Because Shante’s abstraction of similarity 
between the two situations was a primary feature of her solution of the problem, we considered her 
solution to involve a generalizing assimilation, which was an act of learning that entailed an 
adjustment to the assimilatory mechanism of her scheme.   

Example two recursion of a scheme. Our second example is drawn from a 10th grade student in 
the interview study and allows us to examine a functional accommodation that involved recursion. 
Trevon was initially presented with a modification of the Subway Problem that involved four breads 
and six meats. Trevon said, “In my head I’m attributing one bread to each meat. … and if you do 
that, it would just be 4 times 6. [He subsequently made the beginning of a tree diagram].” Trevon 
was able to quickly complete the task and provide a justification for his way of operating, which we 
take as indication that he assimilated the situation using an extant scheme. The activity of his scheme 
involved multiple operations, but we highlight that it included a systematic use of his pairing 
operation, an operation that involves a student in creating the sandwich as a unit that contains two 
units (i.e, a bread and a meat), a pair. This operation can be the basis for establishing the identity that 
one times one is one, and we focus on it because it is a key feature of students’ solutions of 
combinatorics problems that differentiates them from other multiplicative situations.  
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Later in the interviews, Trevon was presented with the Card Problem where each person had 
three cards. He responded that the number of possible three card hands would be, “eighteen”, 
explaining, “there’s six combos [indicating hearts and diamonds combined] for each card and there’s 
three cards total [indicating the three spades]. So, that’s six times three.” Our interpretation of 
Trevon’s response was that he assimilated the Card Problem using the scheme he used to solve the 
Subway Problem. There were three spades that could be paired with each of six cards. The 
interviewer asked him to show the eighteen three card hands with the actual cards. To do so, he 
initially fixed a spade and simultaneously moved two cards, one heart and one diamond, to be paired 
with the spade. By doing so he essentially treated the heart and diamond cards as if they were like the 
meats in the Subway Problem, meaning he did not pair the heart with the diamond first to establish a 
heart-diamond pair. He experienced a perturbation, however, because he was trying to monitor which 
three card hands he had created and was not able to do so. His monitoring led him to introduce a 
novel way of operating: he paired each heart with each diamond, and took the result of this scheme, 
the nine heart-diamond pairs, as material to operate on with his scheme, pairing each heart-diamond 
pair with a spade.  

We interpret this as a functional accommodation that entailed taking the result of his scheme as 
input for using his scheme again. For this reason, we consider the functional accommodation to have 
involved recursion; the recursive process did not involve his use of any novel operations. However, it 
involved more than just repeated use of the scheme—the result of the first instantiation of the scheme 
was embedded in the result of the second instantiation of the scheme. We consider this embedding 
process to be key to recursion. Moreover, we consider this to be a generalizing action because it 
broadened the class of problems Trevon could solve.  

Example three embedding novel operations into the activity of a scheme. As our description 
of Shante’s activity in Example One suggested she had constructed a scheme for solving problems 
like the Subway Problem with breads, meats, and cheeses, and vis-à-vis a generalizing assimilation 
used her scheme to solve the Card Problem. She solved each problem representing the set of 
outcomes as either a list or as a tree diagram, and the operations she used to solve the problems were 
comparable to those outlined for Trevon in Example Two. The interviewer had the goal of having 
students represent the solution of these problems using multiple 2-D arrays, and then a single 3-D 
array. For the Subway Problem, Shante easily created two 2-D arrays (Figure 2a) to represent the 
problem. The interviewer asked her what was changing as she “moved horizontally along the x-axis” 
and she said, “the cheeses”, and responded similarly to a question about, “the meats”.  

The interviewer then said that the goal was to think about how Shante could use her two-
dimensional arrays to make a three-dimensional array, specifically asking, “what direction could you 
move for the breads to change?” Shante responded that she thought her listing of the breads in Figure 
2a would “just be a title” for each array, and indicated that she was uncertain about what direction 
she might move in order for the breads to change. To further investigate this issue, the interviewer 
had Shante make two 2-D arrays using snap cubes (Figure 2b). After significant questioning, Shante 
figured out that she could stack one array on top of the other, and the interviewer had her make an 
array for a third bread (Figure 2c). At this point she still had “no idea” in which direction you’d move 
for the breads to change so the interviewer asked her to imagine where all the sandwiches with bread 
four, five, six, and seven would be, and for each she responded, “right above” all the sandwiches for 
the prior bread. The interviewer then asked her “if you had to draw a line to show where the breads 
would be represented (like the lines she had drawn for the meats and cheese), how would she draw 
it?” Shante responded, “It would be going up!”, and to show she put a pencil at the vertex of the 
bread and cheese axis in Figure 2c. From the perspective of mental operations, we consider Shante to 
have envisioned translating her 2-D array up one unit six times, and from this translation to have 
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abstracted an axis on which the breads could be located that were similar to the axes for meats and 
cheeses.  

 

   

Figure 2a (left), 2b (center), 2c (right). 
 
To determine what other operations Shante might be using in her production of a 3-D array, the 

interviewer asked her to locate in Figure 2c where the sandwich with the second bread, second 
cheese, and third meat would be. Shante initially pointed to the top of the 3-D array where the 
sandwich with bread three, cheese two, meat three was located, and said, “It’s like in this [pointing 
downward with her pencil], and then pointed to where the sandwich containing bread two, cheese 
one, and meat three was located, and said, “It’s like right next to this one [pointing inward with her 
pencil towards where the cube was located].” She then clarified that by “in this” she meant 
“underneath” the cube that she had pointed to on top of the array.  

Her identification that the cube for bread two, cheese two, meat three was “underneath” the cube 
that represented bread three, cheese two, and meat three, indicated that as part of translating the 
layers of her array upward she had also translated the referential system upward (i.e., the meat-cheese 
axes), and could use that to locate points in her 3-D array. The fact that she also identified the cube 
for bread two, cheese two, meat three as “next to” the cube for bread two, cheese one, and meat 
three, indicated that she could envision switching frames of reference; she used the meat-bread axes 
to locate the correct cube in the “cheese 1” plane, and then envisioned that the correct cube would be 
translated one unit inward on the 3-D array. We consider her switching frames of reference to be 
indication that she could mentally rotate the “meat-cheese axes” to become the “bread-meat axes”.  

We consider the operations of translation and rotation to have been embedded in the activity of 
her scheme for producing the set of outcomes. Because these operations were not part of her initial 
solution to the problem, we consider this to have been a functional accommodation to her scheme. 
We consider this functional accommodation to be a generalizing action because it allowed her to 
create a spatial structuring for a broader class of objects where her spatial structuring for 2-D arrays 
was embedded in her spatial structuring for 3-D arrays vis-à-vis the operations of translation and 
rotation.  

Example four operating on the result of a scheme with operations external to the scheme. 
DeShay entered the interview study with a scheme for solving combinatorics problems like the 
Outfits and Subway Problem, and with relative ease could represent the set of outcomes using a 3-D 
array. We took this as indication that her scheme for solving such problems included the operations 
described in example two and three. Moreover, these operations seemed well established for DeShay, 
and so we considered that the result of these operations (the set of outcomes represented as a spatially 
structured 3-D array) was material that she could operate on with operations that were external to her 
scheme for producing them. To illustrate this issue, we provide data where DeShay was finding the 
regions of her 3-D array that corresponded to a three card hands that had a certain number of face 
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cards, specifically the three card hands that contained one king where the king was the king of 
spades.  

D: Okay, so we have…Want to start with the king of spades, so it'd be these-by-these [points to 
the region in the 3-D array that represents the twenty-five three-card hands that contain the 
king of spades, Figure 3a], but it wouldn't be any in this row because that's the king of hearts 
(Figure 3b). So, it's just these four by these four. But it wouldn't be any -- or, these four by 
these five (Figure 3c). But it wouldn't be any of the very bottom because that's the king of 
diamonds (Figure 3d). So, it's this four by that four (Figure 3e). 

To solve this problem DeShay took the intersection of the set of three card hands that contained 
the king of spades with the set of three card hands (Figure 3a) that contained the king of diamonds 
(Figure 3b), and eliminated this from the original set because those three card hands would contain 
both the king of spades and king of diamonds (Figure 3c). She then used these operations recursively: 
she took the intersection of this new set (“these four by these five”) with the set of three card hands 
that contained the king of diamonds (Figure 3d), and eliminated these three card hands because they 
contained the king of spades and king of diamonds (Figure 3e).  

 

     

Figure 3a (left), 3b (second from left), 3c (middle), 3d (second from right), 3e (right). 
 
We consider this functional accommodation to entail DeShay using operations external to the 

ones that produced the set of three card hands represented as a 3-D array. We consider it to be a 
generalizing action because DeShay’s implementation of these operations led to the abstraction of a 
spatial structuring like the one shown in Figure 1b where she no longer had to implement the 
operations in order to impose the spatial structuring on future cases of the problem, represented as 
other cubes (e.g., a seven by seven by seven cube or a one hundred by one hundred by one hundred 
cube). She could simply assimilate future situations with the result of her operating, a cube that 
contained eight regions.  

Example five reflection generalization involving reflected abstraction. After solving versions 
of the Card Problem that involved three, four, and five cards, the interviewer asked DeShay to 
imagine and describe what the cube would look like for the case of six cards, and then asked her if 
she could write a formula for if there were an unknown number of non-face cards. DeShay first 
wrote, “y=1+x” where y was the total number of cards and x the total number of non-face cards, and 
then wrote “(1 + x)3 = x3 + (1 x2 3) + (12 x 3) + 13.” We considered these to be symbols that 
DeShay could use to call forth the operations outlined in examples two through four without actually 
having to implement these operations in full. We make this inference based on explanations like the 
following of how she got “(1 ∙ x2 ∙ 3)”:  

D: There would be one option times …Oh. Can't exactly put the multiplication sign. Times x 
options, also times it by x options again, because with one suit you'd only have one king 
[points to where the king of spades is represented in the 3-D array] and the other ones you 
would have  

….  

• • • •
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x different cards to pick from, so x times x. And then you'd also multiply it by three for the 
three suits. Then you get one times x squared times three. 

Her explanation clearly referred back to the Card Problem. Throughout these explanations, she 
gestured to the five by five by five cube, showing imagined locations of where particular regions 
would be in the general case. We took this as indication that the mathematical symbols she could use 
to stand in for operations that could be implemented, but no longer needed to be, and which were 
closely tied to re-presentations of her activity in prior cases of the problem.  

We considered this to be a reflection generalization based on reflected abstraction because it 
was a final formal statement of generalization that grew from a retroactive thematization of her 
reasoning. DeShay stated as much when talking about Figure 5b, saying “So, this will be the formula 
to solve because this is pretty much similar to all these other ones [points to the cases of three, four, 
five, and six cards in her chart], except we had numbers to plug into them.” 

Discussion 
One central contribution of this work is that our study of generalizing is situated within a 

framework for learning, which allows for the identification of different processes involved in 
generalizing. We do not consider our examples to be comprehensive, but rather illustrative. The first 
example illustrated how a student broadened the assimilatory mechanism of her scheme; the second 
example illustrated a student that recursively used his scheme, taking the result of a scheme and 
operating on it with operations that were internal to the scheme; the third example illustrated a 
student who embedded novel operations into an already extant scheme; and the fourth example 
illustrated a student who took the result of a prior scheme (a 3-D array) and operated on it with 
operations that were external to the scheme. Beyond just characterizing these different processes, 
situating the study in a framework for learning allows for a clear distinction between statements and 
actions that a student makes that are general, but involve no novel ways of operating (i.e., are based 
on extant schemes), from those that do involve novel ways of operating (i.e., that involve learning). 
The final example then shows the connection between the operational structures that students 
developed during the interview study and their expression in symbolic form. As such the paper 
provides an exemplar of how symbols function in a way that is compatible with Von Glasersfeld’s 
(1995) model of this process.

Endnotes 
i Students created an array with snap cubes that were all the same color like Figure 1a. We used snap cubes 

because we could find no good way to physically or virtually represent a 3-D discrete array.   
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A PROSPECTIVE SECONDARY MATHEMATICS TEACHER’S DEVELOPMENT OF 
THE MEANING OF COMPLEX NUMBERS THROUGH QUANTITATIVE REASONING 
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This study investigated a prospective secondary mathematics teacher’s development of the meaning 
of the Cartesian form of complex numbers during a teaching experiment. We illustrate that through 
shrinking/stretching of the distance(s) between the roots and the x-coordinate of the vertex of any 
quadratic function one might conceptualize complex numbers as a single entity, element of a well-
defined set, rather than a prescription of certain operations. Such awareness also yield to answering 
why quadratic functions have to have conjugate roots once they have a complex root.  

Keywords: Teacher Education-Preservice, Algebra and Algebraic Thinking 

Introduction 
Developing new sets of numbers, such as complex numbers is needed on the part of teachers 

(Karakok, Soto-Johnson, & Anderson Dyben, 2014) and their students (Nordlander & Nordlander, 
2012). However, research has shown that neither (prospective) teachers nor students do have a robust 
conception of complex numbers such that they have difficulty in thinking of both algebraic and 
geometric representations of complex numbers representing the same number (Karakok et al. 2014; 
Panaoura, Elia, Gagatsis & Giatilis, 2006). The primary goal of this research was to investigate how 
someone might develop the algebraic and geometric representations of the Cartesian form of 
complex numbers as an extension of real numbers through quantitative reasoning (Thompson, 1994). 
Quantitative reasoning occurs through quantitative operations. Thompson (1994) defined quantitative 
operation as “a mental operation by which one conceives a new quantity in relation to one or more 
already conceived quantities.” (p. 184). Dwelling on quantitative reasoning both for the design of the 
teaching sessions and the analysis, this study particularly investigated the following research 
questions: How does a prospective secondary mathematics teacher develop the meaning of the 
Cartesian form of complex numbers? What meanings of the Cartesian form of complex numbers 
does a prospective secondary mathematics teacher develop during an instructional sequence 
involving quantitative reasoning?  

Method 
Participants  

The participant of the study was one prospective secondary mathematics teacher, Esra, who was 
in the fourth year of her five-year undergraduate program. For the selection of the participant, first, a 
written pre-assessment was given to 21 prospective secondary mathematics teachers in a public 
university in Turkey where the medium of instruction is English. The participation was voluntary. 
Then, based on the preliminary analysis of their answers, seven of them were chosen to conduct a 45-
minute long clinical interview. Analyzing the transcribed pre-interviews and the written pre-
assessment, as opposed to choosing the most mathematically capable ones, we looked for participants 
who had a range of learned concepts and limited understandings. Esra suited such criteria (See results 
from the written pre-assessment and the pre-interview).  

Data Collection and Analysis of the Study 
The teaching experiment methodology was employed in this study. Data collection included three 

phases: I) a pre-interview after a written pre-assessment (the selection of the participants), II) the 
teaching sessions, and III) a post-interview after a written post-assessment. Phase I was already 
explained above. For Phase II, the teaching sessions, we first developed a hypothetical learning-
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sequence for the participant. The second author implemented the teaching experiments consisting of 
three 75- to 120-minute sessions and the first author operated a digital video camera and an audio 
recorder. Then, two weeks after the last teaching session, one-hour long structured, task-based post-
interview was conducted with the participant. For the analysis of the pre-and-post interview data, we 
read the transcripts line-by-line. We focused on Esra’s justifications and reasoning behind her 
answers and also what procedures, representations, and formulas she used. For ongoing analysis for 
teaching experiments, we reflected on the sessions and interpreted Esra’s evolving understandings 
and constructs of the targeted concepts and also focused on potential understandings to be developed 
by her. Also, we focused on her weaknesses/difficulties and possible explanations for such 
weaknesses/difficulties. For the retrospective analysis, we identified interaction sequences in which 
Esra's actions and utterances provided information about her thinking.  

Results 

Results from the Pre-Interview and the Written Pre-Assessment 
Esra was able to define quadratic functions algebraically and represent them geometrically as a 

parabola. Also, given the algebraic expressions for the roots she was able to explain the meaning of 
– !
!!

 algebraically as the half of the sum of the roots of a quadratic equation. She also stated that it 
referred to the “abscissa of the vertex” and the midpoint of the roots on the real number line, 
geometrically. She also was able to explain the meaning of ∆

!!
 as the distance of the roots to – !

!!
. 

However, she was not able to reason about what ∆= 0 and ∆< 0 meant geometrically. Also, during 
the written pre-assessment, Esra had defined complex numbers as “.. the numbers in the form of 
𝑎 + 𝑏𝑖 where 𝑎, 𝑏 ∈ 𝑅 and 𝑖 = −1”. She could refer to the three cases of delta and the roots of the 
quadratic equations being real and complex numbers and had stated that complex numbers included 
real numbers. Though, when asked, she stated “I have no idea why real numbers are the subset of 
complex... That is how I learned”. Similarly, Esra had written that 𝑥 and 𝑦 algebraically referred to 
real numbers in the form of 𝑥 + 𝑖𝑦. Then, during the interview when asked again, she stated “I still 
think that both can be real”. Also, for the questions why they were real numbers and what they 
referred to geometrically she said “I don't know”.  

Results from the Teaching Sessions: Esra’s developing the definition of Complex Numbers 
To take Esra’s attention to the dynamic nature of the distance between the roots and the x-

coordinate of the vertex, we asked how many parabolas having the same x-coordinate of the vertex 
one could draw. She stated that one could draw infinitely many parabolas having the same x-
coordinate of vertex as in the figure she drew (See Figure 1). We then asked her “what was changing 
and what did remain invariant in the parabolas she drew given the algebraic form of 𝑓(𝑥) =  𝑎𝑥! +
𝑏𝑥 + 𝑐?”.  

 
Figure 1. Esra’s drawing many parabolas with the same x-coordinate of the vertex. 

 

She stated that the values of 𝑎, 𝑏, 𝑐 and also 𝑥 and 𝑦 were all changing. She also stated that since 
these values were changing the roots’ distances to the x-coordinate of the vertex was also changing; 
but, the ratio of – !

!!
 did not change. Then we asked her to come up with specific examples. She 

wrote; 𝑦 = 2𝑥! − 8𝑥 + 6, 𝑦 = 4𝑥! − 16𝑥 + 7, y= 6𝑥! − 24𝑥 + 1. Then we gave her the following 
examples on GeoGebra such as 𝑥² + 2𝑥 − 8, 𝑥² + 2𝑥 − 4, 𝑥² + 2𝑥 − 1, 𝑥² + 2𝑥, 𝑥² + 2𝑥 + 1 to 
think about: The reason was to allow her to imagine the movability of the distances of the roots to the 
x-coordinate of the vertex so that she could reason through the geometric meaning of  ∆= 0 and 
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∆< 0 since she was not able to do so during the pre-assessment. She was able to comment that the x-
coordinate of the vertex was the same for all of them albeit the roots’ distances to it has changed. She 
also claimed that the roots’ equi-distances from the vertex was invariant in each specific example. 
Then we asked her to put all the information on the Real number line. She drew (See Figure 2) and 
explained: 

 

Figure 2. Esra’s showing the roots on the real number line she drew. 

Esra: Delta is here [𝑥! + 2𝑥 + 1] with its roots (𝑥!,!!! ,0). None, it is 0. ∆
!!

 is none…It means the 
overlap of this point with the roots and with the abscissa of the vertex. Eee delta is 0. 

R: What was it in the others, here, when there were two roots in here [on the x axis] 
E: When ∆

!!
 exists... 

The excerpt indicated that acknowledging that the distances of the roots from the x-coordinate of 
the vertex decreased further and got to a point until there was no distance between the roots and the 
x-coordinate of the vertex algebraically meant that ∆

!!
= 0. It also meant that there were no distances 

between the roots for such kind of a quadratic equation geometrically. At that point she stated, 
E: ... I can generate parabola from all real numbers... I can add and divide by two. I can draw 

infinitely many parabolas having the same abscissa of the vertex, and because of that all the 
roots can be the numbers on the real number line. 

The excerpt is important because Esra reversed her thinking in a way that she started from real 
numbers and given two real numbers she could find the midpoint that would have indicated the x-
coordinate of the vertex from which she would have drawn infinitely many parabolas. At that point, 
we asked what would happen to – !

!!
 and ∆

!!
 after that point. She stated that the x-coordinate of the 

vertex would stay on the real number line but she would not be able to put the roots’ distances on the 
real number line anymore because “It [𝑏! − 4𝑎𝑐] is smaller than zero”. Then we asked her if she 
could re-write the expression [𝑏! − 4𝑎𝑐] in terms of a positive expression. She was able to write: 
𝑏! − 4𝑎𝑐 = − 𝑏! − 4𝑎𝑐 . (−1) and 𝑏! − 4𝑎𝑐= 4𝑎𝑐 − 𝑏! . (−1). Then we asked if she could place 
this expression into the general algebraic expression of the roots: She wrote: (See the first two lines 
in Figure 3). When we asked if she could write it separately she stated “Normally I cannot take it 
out”. But then she stated that she was not working with real numbers anymore, she said “I run out of 
them [real numbers]”. Then, when we asked if she could state the expression using symbols she 
wrote (See the last two line in Figure 3) and stated: "Let's say there are infinitely many [quadratic] 
functions, and the x-coordinate of the vertex of any quadratic function is t...and m is the distance 
from one of the roots to the x-coordinate of its vertex." 

What is interesting is that Esra was able to make sense of the values of “𝑡” and “𝑚” not only 

algebraically but also geometrically: She knew that “𝑡” stood for – !
!!

 and “𝑚” stood for !∆
!!

. She also 
could relate those values to the quadratic functions such that those values referred to the x-coordinate 
of the vertex of any quadratic function and the roots’ distances to it. Though, it is important to state 
that Esra’s geometrically making sense of “𝑚” was limited because not the value “𝑚” on its own but 
“𝑚. −1” referred to the roots’ distances to the x-coordinate of the vertex. When asked what kind of 
numbers t and m were, she stated"..ee they are real." and her explanation was “because we have 
taken a and b as real numbers, – !

!!
 becomes real and here this number inside [−∆] is a real number 
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and it becomes real number outside the root. And when we divide it by 2𝑎, which is real, it [𝑚] is 
real number again”. Then to define complex numbers, she stated “Ee I obtain them from the real 
roots of quadratic functions. If they are eee.., okay correct, I obtain them from their real roots. Okay, 
I obtain [complex numbers] from unreal ones [the unreal roots] as well. The numbers obtained from 
the roots of all quadratic functions are complex numbers. Exactly. They give complex numbers.”  

 

 
Figure 3. Esra’s re-writing the roots of the quadratic equations. 

Conclusion 
Research on complex numbers has shown that students consider “…the geometric and algebraic 

representation as two different autonomous mathematical objects and not as two means of 
representing the same concept” (Panaoura et al., 2006). In this research, through quantitative 
reasoning focusing on both the algebraic and the geometric meanings of the components of the roots 
of quadratic equations, i.e. – !

!!
 and ∆

!!
, Esra was able to develop the meanings of the Cartesian form 

of complex numbers, 𝑥 + 𝑖𝑦, both algebraically and geometrically. In particular, we argue that 
starting with the examination of any quadratic function and its graph focusing on the quantities (e.g., 
the roots and the x-coordinate of the vertex), and answering the question of how many parabola(s) 
someone can construct with the same x-coordinate of the vertex might have the following 
affordances on reasoning on complex numbers on the part of students: First, thinking of the existence 
of infinitely many parabolas enabled Esra to focus on (imagine) the ‘movability’ of the distances of 
the roots to the x-coordinate of the vertex. That is, as a quantity, ∆

!!
 could shrink and/or stretch 

(dilate) and this was imagined by thinking parabolas as shown in Figure 1. Thinking of the 
movability of the roots’ distances to the x-coordinate of the vertex also allowed Esra to think of the 
placements of them on the real number line too. Once Esra reached such a point in her cognition; that 
is, once she imagined and thought about the movability of the roots’ distances to the x-coordinate of 
the vertex shrunk to zero it triggered the necessity that real numbers were not sufficient enough to 
consider the roots of all quadratic functions with real coefficients. Such realization also afforded 
understanding why complex numbers involved real numbers too. This was important because 
research has shown that students had difficulty in recognizing that any number is a complex number 

(Nordlander & Nordlander, 2012). Esra’s re-writing the roots as 𝑥!,! = − !
!!
± −1 (!!"!!!)

!!
 

allowed her to realize what the components of the complex numbers 𝑧 = 𝑥 ± 𝑖𝑦 meant algebraically 
and geometrically. Esra was also able to define complex numbers as the elements of the roots of any 
quadratic equation with real coefficients (i.e., as members of a well-defined set). 
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ACTIVATING A FOURTH LEVEL OF UNITS COORDINATION 

 Jesse L. M. Wilkins Anderson Norton Catherine Ulrich 
 Virginia Tech Virginia Tech Virginia Tech 
 wilkins@vt.edu anorton3@vt.edu culrich@vt.edu 

Recent research has highlighted the developmental importance of units coordination for students’ 
continued mathematical learning. In this study, we introduce a task that ostensibly involves four 
levels of units. We examine student responses to this task and how they relate to student responses 
from tasks that assess students’ coordination of three levels of units. This investigation helps to (1) 
characterize students’ coordination of four levels of units in activity and, (2) explore the potential to 
use such activity as a valid indicator of students’ interiorized coordination of three levels of units. 
Results of the study provide preliminary evidence for the validity of the task because it positively 
relates to another measure of units coordination and positively predicts students’ construction of an 
iterative fraction scheme.  

Keywords: Number Concepts and Operations, Rational Numbers, Assessment and Evaluation 

Purpose 
Recent research has highlighted the developmental importance of the ability to interiorize three 

levels of units coordination for middle grades mathematics concepts (e.g., Hackenberg & Tillema, 
2009; Norton & Wilkins, 2012; Ulrich, 2016; Tillema, 2014). In this study, we introduce a task that, 
from the researchers’ perspective, involves the coordination of four levels of units. We examine 
student responses to this task and how they relate to two other tasks: one measuring students’ 
coordination of three levels of units and one measuring the construction of the iterative fraction 
scheme (IFS), for which coordinating three levels of units is a prerequisite (Hackenberg, 2007; 
Norton & Wilkins, 2012). This investigation helps to (1) characterize students’ coordination of four 
levels of units in activity, and, (2) examine the potential of such activity as a valid indicator of 
students’ interiorized coordination of three levels of units.  

In order for a task to successfully measure the existence of a conceptual construct, such as units 
coordination, it is important that the task be novel and not be susceptible to solution strategies that 
could circumvent the need to use the concept in question. For example, Task 3 (see Figure 1), which 
has been used as an indicator of three levels of units coordination in studies with younger children 
(e.g., Norton & Wilkins, 2012), might be solved by older children by way of a memorized procedure 
to find equivalent fractions, thus by-passing the need to mentally coordinate three levels of units (cf. 
Lovin et al., in press).  

In theory, students who can manipulate two levels of units in activity have interiorized the 
construction of (one level of) units; similarly, if a student can coordinate three levels of units in 
activity they have interiorized the coordination of two levels of units (Hackenberg & Tillema, 2009; 
Norton & Boyce, 2015). By extension, if a student were able to coordinate four levels of units in 
activity, this might suggest that they have interiorized the coordination of three levels of units. The 
purpose of this exploratory study is to use solutions to Task 1 (see Figure 1) to investigate the 
potential use of a task that involves four levels of units as an indicator of the interiorization of the 
coordination of three levels of units, particularly with older students. 
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(1) Consider the following situation involving chips inside of cups, inside of boxes, inside of 
crates. There are 3 chips in each cup, 4 cups in each box, and 2 boxes in each crate. If you 
have 9 chips, how many more cups do you need to make a crate? 

(2) Suppose that below is 
5

6  of Sam’s pie. Draw Sam’s amount of pie. 

 
 
 
 

(3) The pizza shown below is 2/3 of a whole pizza.  If each person wants 1/9 of a whole pizza, 
how many people can share the amount shown below? 

                

Figure 1. Tasks designed to elicit coordination of units and the iterative fraction scheme. 

Theoretical Framework 
Units coordination (Steffe, 1992) refers to the ways that students can quantitatively relate 

different units, and the term is often used to specifically refer to the ability to mentally distribute one 
composite unit (integer greater than 1) across the elements of another composite unit, yielding what 
is, to the observer, a multiplication. For example, a student could imagine 4 people who each get 6 
brownies, and distribute the 6 across the 4 units of 1 (people) to get the total number of brownies, 24. 
In this situation, if the student is aware of the 24 as being made up of groups of 6’s, then the student 
can think of 24 as being made up of units of 1 or units of 6. Therefore, the student is working with at 
least two levels of units in activity.  

By reflecting on the activity and results of this kind of units coordination (cf., Simon & Tzur, 
2004), students might interiorize the coordination of two levels of units, allowing them to use them 
when assimilating situations (Norton & Boyce, 2015). For example, such a student may be able to 
add 24 three times, while keeping track of the number of 6’s in the final sum. At that point, 24 itself 
has become a unit of counting that is coordinated with 6’s and 1’s, so the student is coordinating 
three levels of units in activity. Students who have interiorized three levels of units could take the 
entire structure (3×24 as being made up of 4×3 6’s and (4×3)×6 ones) for granted and use it in 
further operating. This could involve further multiplicative or additive coordinations (Ulrich, 2016), 
such as realizing that 6 is made up of 5 and 1, so that we can also think of 3×24 as made up of 
twelve 5’s and twelve 1’s.  

Currently, we hypothesize that students do not need to coordinate more than three levels of units 
at a time because they can recursively apply their units coordinating schemes to the results of those 
schemes without mentally keeping track of all the quantities along the way. One might wonder if this 
implies that only two levels need be coordinated simultaneously with further coordination carried out 
recursively. However, interiorizing three levels of units seems to be a prerequisite for many 
mathematical concepts. In particular, Hackenberg (2007) found that understanding fractions as 
“numbers in their own right” (p. 27) (rather than ratios of two numbers, or a comparison of parts in 
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the fraction to parts in the whole) relies on the interiorization of three levels of units (the fraction 
itself, the unit fraction, and the whole). The scheme for understanding fractions in this way is called 
the iterative fraction scheme (Steffe & Olive, 2010).  

Method 
The study involved 34 pre-service elementary teachers. These teachers were enrolled in two 

sections of a graduate level elementary mathematics methods course in the fall of 2016 and 2017. 
Participants completed three tasks as part of their final exam for the methods course (see Figure 1). 
We designed Task 1 to elicit the coordination of four levels of units in activity. The strength of this 
task is that it does not initially offer known strategies that would allow participants to solve the 
problem without coordinating units. However, it is possible for participants to solve the task by 
coordinating two two-level structures simultaneously, and in essence not activate a fourth level of 
coordination. Task 1 was coded for correctness (0 = incorrect; 1 = correct). 

Task 3 has been used in other studies to elicit the coordination of three levels of units (see Norton 
& Wilkins, 2012) and is used in this study to provide comparative data to evaluate the convergent 
validity of Task 1. We designed Task 2 to elicit participants’ iterative fraction scheme (IFS). 
Responses to this task are used to evaluate the predictive validity of Task 1. Tasks 2 and 3 were 
coded for indication of operating with an IFS and three levels of units coordination, respectively (0 = 
no indication; 1 = indication). 

In order to examine the relationships between the tasks we created three contingency tables for 
pairs of tasks (see Table 1). In order to evaluate the predictive validity of Task 1, we measured the 
association between responses to Task 1 and Task 2 using the gamma statistic (G) and tested for 
directionality using the Exact Binomial test. In order to evaluate the convergent validity of Task 1, 
we examined the relationship between Task 1 and Task 3 based on a comparison of the proportion of 
correct and incorrect responses to the tasks.  

Results 
We present the contingency table for Task 1 and Task 2 in Table 1a. Based on these data we 

documented a relatively strong relationship between responses to Task 1 and Task 2 (G = .75, p [one-
tailed] < .05). By examining the eight off-diagonal entries, we can further ascertain evidence of 
developmental order, that is, whether three levels of units coordination precedes the construction of 
an IFS. In this case, we see that of the eight participants who answered one or the other task correctly 
(but not both), seven answered Task 1 correctly, which is statistically significant, exact binomial p = 
.035. Together, these results provide evidence for the predictive validity of Task 1. That is, three 
levels of units coordination (measured by Task 1) is associated with and precedes the construction of 
an iterative fraction scheme (measured by Task 2). 

We present the contingency table for responses to Task 1 and Task 3 in Table 1c. Based on these 
data, 29 out of 34 participants (85%) answered both items correctly providing evidence that success 
on either item is indicative of success on the other. Furthermore, for the five students that only 
answered one of the tasks correctly, the prevalence of correctness or incorrectness was not found to 
be concentrated with either task, exact binomial p = .813. Together, these results provide evidence 
for the convergent validity of Task 1. That is, both tasks tend to be measuring the same construct; in 
this case, correctness of Task 1 provides evidence for the coordination of three levels of units. 
However, because no participants answered both items incorrectly, the claim about the association 
between the tasks may be weakened. Further study involving a sample of students of more varied 
ability would help to verify this claim. 
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Table 1: Associations between Responses for Three Tasks 
 T2: IFS   Q2: IFS   Q3: 3U 

0 1 Total  0 1 Total  0 1 Total 
T1: 
4U 

0 2 1 3  Q3: 
3U 

0 1 1 2  Q1: 
4U 

0 0 3 3 
1 7 24 31  1 8 24 32  1 2 29 31 

Total 9 25 34  Total 9 25 34  Total 2 32 34 
(a)  (b)  (c) 

 

Conclusions 
In this study, we introduced a task that ostensibly involves four levels of units. Our goal was to 

examine the potential of such tasks as indicators of the interiorization of three levels of units 
coordination. The task was designed to provide a novel situation for which most students do not have 
a readily available solution strategy, and so, responses are likely to be a true indicator of units 
coordination. Results of the study provide preliminary evidence for the convergent and predictive 
validity of the task as it positively relates to an established measure of units coordination and 
positively predicts students’ construction of an iterative fraction scheme. Future research on similar 
tasks would benefit from a qualitative analysis of participant responses and a wider range of 
participants, but initial findings show the potential for assessing three levels of units coordination by 
using tasks that activate a fourth level of units coordination. 
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ANALYSIS OF THE RELATIVE DIFFICULTY OF DIFFERENT INTEGER PROBLEM 
TYPES 

 Aran W. Glancy Christy Pettis 
 Purdue University University of Minnesota 
 aglancy@purdue.edu cpettis@umn.edu  

This paper describes an analysis of students’ relative abilities to solve different types of integer 
addition and subtraction problems. Logistic regression and hierarchical methods revealed that, even 
before instruction, certain problem types proved fairly easy for students while other were extremely 
difficult. Specifically, certain problems involving subtracting a negative were particularly 
challenging. These differences have important implications for instructional strategies used to teach 
integer operations. 

 Keywords: Number Concepts and Operations 

On the surface, addition and subtraction with integers, i.e. positive and negative numbers, are 
straightforward operations, but middle school teachers consistently find these concepts difficult to 
teach. When students encounter these types of problems, typically in sixth or seventh grade, they 
struggle to understand why subtracting a negative actually increases the result. To help their students, 
teachers often employ a variety of models (e.g., number lines or chips), contexts (e.g. temperature, or 
money), and/or procedural rules (e.g. “keep-change-change”) (Tillema, 2012, Whitacre et al., 2011). 
These approaches are often most helpful for certain types of integer problems and exhibit weaknesses 
when applied to other problem types. For example, a student might solve ! + (-%)   by thinking of 
having $5 and owing someone else $3, leaving $2. This approach is much more difficult, however, 
for a problem like !-(-$)  , where the idea of removing an owed amount is not as easily understood. 
Typically, these differences between the effectiveness of models, contexts, or rules for different 
problem types are not addressed in the literature, and classroom teachers tend to focus on common 
models and contexts that, while effective for some problems, are not helpful for the most difficult 
integer subtraction problems. The tacit assumption being that providing students productive ways to 
think about certain problem will help them to be more successful on all problems. The goal of this 
analysis is to examine student performance on different integer addition and subtraction problems to 
highlight the significant differences in difficulty between the problems. Once the most difficult 
problems are identified, we can examine the weaknesses of common instructional approaches in 
supporting student thinking around those problems and hopefully move forward in designing better, 
more effective instructional strategies. 

Theoretical Framework 
The majority of research on the teaching and learning of integer operations focuses on two areas: 

how students conceptualize positive and negative numbers, and the models and contexts that teachers 
use to teach these concepts. Bofferding (2014), Bishop et al. (2016), and Whitacre et al. (2011) for 
example, examined the ways that young children reasoned through symbolic integer problems, 
demonstrating that even in early grades students are capable of applying a variety of approaches to 
integer problems. These authors also found that students often try to apply or extend whole number 
reasoning strategies to signed number problems with varying degrees of success. While the ways 
students conceptualize integers and the strategies they use to solve problems are well documented, 
the effectiveness of those conceptions or strategies for different types of problems is less well 
understood. 



Early Algebra, Algebra, and Number Concepts 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

276 

The other major strain of research revolves around different instructional strategies used to teach 
students to add and subtract integers. Battista (1983) outlined the use of collections of charged 
particles for modeling integer addition and subtraction, and Hayes and Stacey (1998) described a 
similar strategy involving integer tiles (yellow and red chips representing positive and negative 
numbers respectively). Stephan and Akyuz (2012) documented the use of debts and credits (a more 
intentional application of the context of money) in conjunction with a number line model. Tillema 
(2012) described using contextual stories that embody models such as colored chips or number lines, 
and Whitacre et al. (2011) pointed out several other models and contexts such as temperature, and 
directed distance/motion on the number line that appear frequently in textbooks. In most of these 
cases, the articles discuss in general the merits and disadvantages of each of these approaches; 
however, these discussions rarely examine the ways these approaches interact with specific types of 
problems. Very little research has yet attempted to look at the structural properties of different 
integer problems and connect those properties to students’ difficulties or successes with the 
problems. 

Methodology 
This study uses both logistic regression and hierarchical linear methods to examine the relative 

performance of students on different types of integer addition and subtraction problems. The data for 
this analysis came from a pilot study of 6th grade students at a suburban, midwestern public school. 

Research Question 
The question addressed with this analysis is “How are structural characteristics of integer 

addition and subtraction problems related to students’ abilities to successfully solve those problems?” 
Although there are a variety of ways to categorize the structural properties of integer addition and 
subtraction problems, for this analysis, problems were categorized by the sign of the addends (for 
addition) or of the minuend and subtrahend (for subtraction), by the sign of the answer, and by the 
primary operation. Based on this classification, there are 12 types of integer addition and subtraction 
problems. The problem types and their (arbitrary) identifiers, along with an example for each type, 
are summarized in Table 1. 

Participants and Instruments 
The participants in this study were all of the students (n = 159) in the sixth grade class of a 

suburban, midwestern middle school. The students were spread across three teachers and seven 
classes, and represent all ability and demographic groups present at the school. In recent years, the 
school has typically scored slightly below average on state standardized tests, and approximately 
40% of students are on free or reduced lunch. 

The data in this analysis come from a 15-question free response test involving single digit integer 
operation problems of different types (see Table 1). “Whole number” problems, i.e. problems that did 
not require students to engage with negative numbers such as 2 + 3 = 5, were omitted as they were 
deemed not necessary. The frequency with which each type was tested is also shown in Table 1. Each 
problem was scored correct (1) or incorrect (0). This test was given prior to instruction as we were 
interested in students baseline abilities on these problems. 

Analysis and Results 
The analysis proceeded in two phases. In the first phase, a simple logistic regression was 

performed to model the probability of success on a specific problem given the problem type and 
controlling for the student’s overall ability as measured by his or her total score on the test. Figure 1 
shows a plot of 95% confidence intervals for the predicted probabilities of success for each problem 
type after controlling for a students’ overall score. Notably, students are fairly successful on the 
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addition problems (Types 2-5) and two of the subtraction problems (Types 11 and 15) even prior to 
instruction, while Types 12, 13, and 14 showed extremely low success rates. 

Table 1: The Twelve Integer Problem Types and Examples 

 
The logistic regression makes it clear that certain problems are more difficult than others, but it is 

not able to account for the potential for individual students to respond differently to the more 
challenging problems. For this reason, a secondary analysis was carried out using a hierarchical 
repeated measures approach (Raudenbush & Bryk, 2002). In this analysis, the test items were treated 
as nested within students, and the students’ scores on individual problems were aggregated over 
problem type (as a percent) and were treated as repeated measures of the students’ general ability to 
solve integer problems. Based on the results of the logistic regression analysis, a difficulty score was 
assigned to each problem type (the log-odds for that problem) and this difficulty score was used as 
the predictor for the repeated measures. If there were truly no difference between problem types, we 
would expect the slopes for each student relative to the problem difficulty to be zero. In this case, a 
two-level model was fitted (problem type scores nested within students), where problem difficulty 
was used as a level 1 predictor and overall score (grand mean centered) was used as a level 2 
predictor. Intercepts and slopes were allowed to vary randomly. This analysis revealed that the slopes 
were not zero (difficulty slope = 0.135, p <0.001), instead implying that between the easiest and 
hardest problems (a difference in log-odds of about 2.2) we would expect a difference in score of 
about 30%. Additionally, the slope corresponding to the interaction between problem difficulty and 
overall score, 0.34, (p < 0.001) indicates that higher overall scores actually increase the impact of 
problem difficulty making the gap between the hard problem and the easier problems even larger. 

 Identifier Problem Types Example 
Number of Test 

Items 
Addition Type0 (+) + (+) = (+) 2 + 3 = 5 0 

Type1 (+) + (-) = (+) 3 + (-2) = 1 0 
Type2 (+) + (-) = (-) 3 + (-5) = -2 1 
Type3 (-) + (+) = (+) (-2) + 3 = 1 1 
Type4 (-) + (+) = (-) (-3) + 2 = -1 1 
Type5 (-) + (-) = (-) (-3) + (-2) = -5 1 

Subtraction Type10 (+) - (+) = (+) 5 – 3 = 2 0 
Type11 (+) - (+) = (-) 5 – 7 = -2 1 
Type12 (+) - (-) = (+) 5 – (-2) = 7 3 
Type13 (-) - (+) = (-) (-5) – 3 = -8 2 
Type14 (-) - (-) = (+) (-3) – (-5) = 2 3 
Type15 (-) - (-) = (-) (-5) – (-2) = -3 2 
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Figure 1. 95% Confidence Intervals for the probability of success for an average student on each 

problem type after controlling for overall pre-test score. 

Conclusions 
Based on this analysis, all integer addition and subtraction problems are not alike. Specifically, 

problem types 12, 13, and 14, appear dramatically different from the rest. Furthermore, the 
significance of the interaction between the problem difficulty and the students’ overall score implies 
that these problems are, relatively speaking, even more difficult for the stronger students. This 
indicates that careful thought should be given as to how to help students think about and solve 
specific problem types, namely those involving subtracting a negative, not just integer operations 
problems in general. Additionally, because not all models and metaphors work equally well for all 
types, these results suggest that students would benefit from instruction targeted at those models and 
metaphors which are most helpful for the most challenging problem types.  
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Decades of research have documented young students’ misunderstanding of the equal sign. Further, 
these misunderstandings matter, as young students’ knowledge of the equal sign relates to their 
performance on key algebra problems. However, much less is known about whether knowledge of the 
equal sign matters beyond elementary and middle school – after students have completed Algebra 
and have experience with the equal sign in a variety of contexts. In the current study, we assessed 
189 college students’ knowledge of the equal sign and examined how it related to their performance 
on formal algebra problems. College students varied in their definitions of the equal sign. Further, 
students who only provided operational definitions of the equal sign were less likely to solve and 
interpret key algebra problems correctly. Results suggest that knowledge of the equal sign matters 
well beyond elementary and middle school. 

Keywords: Algebra and Algebraic Thinking, Problem Solving, Standards  

Introduction 
A large body of research has focused on students’ understanding of the equal sign – a concept 

fundamental to algebra (e.g., Baroody & Ginsburg, 1983; Behr et al., 1980; Matthews et al., 2012; 
McNeil & Alibali, 2005). The equal sign is ubiquitous at all levels of mathematics, and relational 
knowledge of the equal sign is included in the Common Core State Standards as early as first grade 
(National Governors Association Center for Best Practices, 2010).  

Unfortunately, decades of research have established elementary and middle school students’ 
difficulties with the equal sign indicating that they often view it operationally, as a signal to do 
something. Indeed, many students define the equal sign as “the answer” or “the total” (e.g., Alibali et 
al., 2007; Behr et al., 1980; McNeil & Alibali, 2005), and these definitions matter. For example, in 
Knuth et al. (2006), approximately one third of middle school students provided a relational 
definition of the equal sign (e.g., “the same”), and those students were almost twice as likely to solve 
algebra equations correctly (e.g., 4m + 10 = 70) as students who did not.  

Much less is known about older students’ knowledge of the equal sign and whether it matters for 
their success on algebra problems. Younger students’ difficulties with the equal sign are often 
thought to stem from their overly narrow experience with problems presented in a standard 
“operations-equals-answer” format (McNeil & Alibali, 2005). College students, however, have 
already passed Algebra and have experience with the equal sign in a variety of contexts. That said, 
some limited research suggests that an operational view of equations persists among college students. 
For example, undergraduates sometimes solve standard equality problems (e.g., 6 + 8 + 4 = 7 + __) 
using operational “find the total” strategies, particularly under speeded conditions (e.g., Chesney et 
al., 2013; McNeil & Alibali, 2005). But no research to date has documented college students’ explicit 
knowledge of the equal sign and whether it relates to their equation-solving success. Moreover, few 
studies with students of any age have examined the relation between students’ knowledge of the 
equal sign and their conceptual interpretations of variable expressions (e.g., 3a, a + 3). Variable 
expressions are fundamental in Algebra, yet do not contain the equal sign. We contend that if 
knowledge of the equal sign is truly foundational for algebraic thinking, it should predict 
performance on a variety of algebraic tasks – including tasks with expressions that do not include the 
equal sign (Kieran, 1981). 
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Method 

Participants 
Participants were 189 college students attending a large public university in the western region of 

the U.S. The student body at the university is 53% female, has an average age of 26, and 92% are in-
state residents. Participants (~58% female) were recruited from their college-level developmental 
math courses and they received course credit for their participation. 

Measures 
Equal sign definition. Students provided written responses to two questions: “What does this 

symbol (=) mean?” and “Can it mean anything else?” Responses to each question were coded as 
relational, operational, or other (see Knuth et al., 2006). A response was coded as relational if it 
expressed the idea that the equal sign means the “same as” or the “same amount” and as operational 
if it expressed the idea that it means “add the numbers” or “the answer.” Responses coded as other 
included definitions such as “equal to.” Some students provided more than one interpretation, so we 
also assigned an overall code indicating their “best” interpretation (e.g., if they provided a relational 
and an operational definition, their best code was relational). 

Algebraic equation-solving. Students also solved a set of three basic equations. Approximately 
half of the students (n = 92) completed Version 1 and the other half of the students (n = 97) 
completed Version 2. See Table 1 for the items. Responses were coded as correct if the student 
provided the numerical answer that satisfied the equation. 

Table 1: Equation-Solving Items on Each Version of the Assessment 
Version 1 Percent Correct  Version 2 Percent Correct 
13 = n + 5 97%  10 = z + 6 98% 
c + c + 4 = 16 83%  c + c + 4 = 16 65% 
z + z + z = z + 8 78%  m + m + m = m + 12 64% 

 
Algebraic expression-interpretation. Students also provided written responses to the following: 

“Cakes cost c dollars each and brownies cost b dollars each. Suppose I buy 4 cakes and 3 brownies. 
What does 4c + 3b stand for?” On Version 1 of the assessment, the symbols used were mnemonic in 
that the price of a cake was represented by c and the price of a brownie was represented by b. On 
Version 2, the symbols used were traditional in that the c and b were replaced by the letters x and y. 
This contrast has been of interest because use of mnemonic symbols may strengthen students’ naïve 
conceptions that variables in algebraic expressions stand for labels instead of quantities (Küchemann, 
1978; McNeil et al, 2010). Responses were coded as correct if it indicated that the letters stood for 
the cost or price of the cakes and brownies. 

Results 
Students varied in their definitions of the equal sign. Only 66% of sampled college students 

provided a relational definition of the equal sign. Nearly half (47%) provided an operational 
definition, and nearly a quarter (23%) provided a vague, “equal” definition. In terms of students’ 
“best” definitions, 65% were relational, 18% were other/equal, and 17% were operational.  

We examined the relation between students’ equal sign understanding and their performance 
solving algebraic equations. We created a total equation-solving score by summing their scores on 
each of the three equation-solving items. Figure 1 shows their performance. 
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Figure 1. Percent correct on equation solving as a function of equal sign definition. 
 

Providing only an operational definition was predictive of college students’ equation-solving 
scores. Students who only provided an operational definition had lower equation-solving scores (M = 
71%, SD = 33%) relative to other students (M = 85%, SD = 24%), t = 2.30, p = .02. This was 
primarily driven by performance on the more difficult algebraic equations. For example, students 
who only provided an operational definition were significantly less likely to solve z + z + z = z + 8 
correctly relative to students who provided relational or other/equal to definitions (56% vs. 83%), χ2 
(1, N = 92) = 5.35, p = .02, and less likely to solve m + m + m = m + 12 correctly relative to other 
students (30% vs. 69%), χ2 (1, N = 97) = 5.81, p = .01. 

We also examined the relation between students’ equal sign interpretation and their conceptual 
interpretation of an algebraic expression – a key mathematical object in algebra that does not include 
the equal sign. Overall, 65% of college students interpreted the expression correctly by indicating 
that the variables stood for the costs of the cakes and brownies. Of all the incorrect responses, 48% 
were the common “labels” error (e.g., interpreting the variables as labels for the objects; “four cakes 
and three brownies”). However, performance varied somewhat by the letter used. Students given the 
x-and-y version were somewhat more likely to interpret the expression correctly than students given 
the c-and-b version (72% vs. 60%), χ2 (1, N = 189) = 2.79, p = .09. Further, students given the x-and-
y version were significantly less likely to make the common labels error than students given the c-
and-b version (9% vs. 24%), χ2 (1, N = 189) = 7.06, p = .01. This suggests that, even among college 
students, the use of mnemonic letters can interfere with the ability to conceptually interpret the 
algebraic expression. Importantly, students’ equal sign definitions were related to performance. 
Students who only provided an operational definition were significantly less likely to interpret the 
expression correctly relative to other students (47% vs. 71%), χ2 (1, N = 189) = 6.48, p = .01, and 
somewhat more likely to make the labels error (27% vs. 14%), χ2 (1, N = 189) = 2.97, p = .09. These 
relations were similar for both expressions, but somewhat stronger for the expression containing the 
mnemonic c-and-b letters. 

Conclusion 
We examined college students’ knowledge of the equal sign and its relation to their performance 

on key algebraic problems. We found that college students varied in their definitions of the equal 
sign. Although many students endorsed a relational understanding, many also endorsed an 
operational understanding, and a small minority only provided an operational definition. Importantly, 
knowledge of the equal sign mattered. Students who only provided an operational definition were 
less likely than their peers to solve key algebraic equations correctly and to interpret an algebraic 
expression in a conceptually correct way. These results extend previous research on the importance 
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of the equal sign with elementary- and middle-school students (e.g., Knuth et al., 2006; Matthews et 
al., 2012), and suggest that knowledge of the equal sign is important beyond these early grades, even 
after students have completed Algebra.  

These findings provide support for the theoretical relation between understanding of equality and 
formal, algebraic reasoning (e.g., Linchevski & Herscovics, 1996). As in prior work with younger 
students (e.g., Alibali et al., 2007; Knuth et al., 2006), we found that knowledge of the equal sign was 
related to equation-solving success among college students. However, we also found that knowledge 
of the equal sign was related to students’ conceptual interpretation of an expression with variables – a 
key algebraic problem that does not include the equal sign. Thus, this research establishes a more 
general connection between knowledge of equality and algebra – students who view the equal sign 
operationally also tend to view equations and expressions in terms of processes and operations rather 
than as objects or structures that can be manipulated (Kieran, 1981; Linchevski & Herscovics, 1996). 
In general, this research highlights a need to focus on the importance of the equal sign beyond middle 
school.  
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Understanding function is a critical aspect of algebraic reasoning, and building up functional 
relationships is an activity increasingly encouraged at the elementary and middle school levels. This 
study identifies how one group of middle-school students leveraged their rate of change thinking to 
inform the development and understanding of correspondence rules. Drawing on an analysis of a 15-
day teaching experiment with 6 eighth-grade students, we introduce three dependency relations of 
change concepts – recognition, identification, and translation – and discuss how these concepts 
support students’ transitions to more formal algebraic expressions.  

Keywords: Algebra and Algebraic Thinking, Middle School Education 

Research Issues and Purpose 
Recommendations for fostering students’ algebraic understanding include introducing functional 

relationships in upper elementary and middle school (e.g., Blanton & Kaput, 2011), with researchers 
arguing that functions can unite a wide range of otherwise isolated topics, encourage student inquiry, 
and provide a rich context for generalization and justification. However, students’ difficulty in 
developing function understanding is well documented (Stephens et al., in press), highlighting the 
need to better support an emerging function concept that is flexible and mathematically productive. 
Approaches to function often distinguish between correspondence views (e.g., Smith, 2003) and 
covariation views (e.g., Confrey & Smith, 1994; Thompson & Carlson, in press). Separately these 
approaches emphasize either a direct mapping relationship between x and y, or attention to a 
coordinated change in one quantity with associated change in the other. These two ways of thinking 
about function are often presented as separate approaches, with researchers advocating for flexibility 
across these modes of reasoning in order to inform a more robust understanding of function 
(Stephens et al., in press). It remains an open question, however, how one can leverage a covariation 
perspective to inform the correspondence view and vice versa. In this paper, we address the 
following research question: How might students capitalize on their understanding of function from 
one mode of reasoning in order to inform their thinking in the other? In particular, we characterize 
the transition made by middle-school students who leveraged their coordinated change thinking to 
inform the development of correspondence rules in the context of instruction about quadratic 
functions. We identify three student concepts, which we term dependency relations of change 
concepts, that address how students recognized and developed links between these modes of 
reasoning.  

Theoretical Framework and Background 
Two perspectives typically drive a function-based approach to algebraic reasoning: the 

correspondence perspective and the coordination/covariation perspective. The correspondence view 
emphasizes a function as a relationship between members of two sets, in which y = f(x) represents a 
mapping, with each value of x is associated with a unique value of y (Smith, 2003). This view 
underlies traditional instruction on functions (Yerushalmy, 2000), and offers the affordance of 
emphasizing the development of closed-form rules that can be used to analyze and predict function 
behaviors. In contrast, Thompson and colleagues (e.g., Thompson & Carlson, in press) and Confrey 
and Smith (e.g., Confrey & Smith, 1994) offer a covariation model, although they address ideas of 
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covariation differently. Confrey and Smith describe an approach relying on coordinated changes of x- 
and y-values, in which one can coordinate a shift from ym to ym+1 with a corresponding shift from xm 
to xm+1. Such an emphasis on the coordination of sequences is a natural fit for tasks relying on images 
or tables that present successive states of variation. 

Thompson and Colleagues (e.g., Saldanha & Thompson, 1998) also discuss ideas of covariation, 
but from the perspective of identifying students’ reasoning about quantities that vary, together, either 
simultaneously or interdependently. This form of reasoning involves mentally coordinating two 
varying quantities while attending to how they change in relation to one another, and thus represents 
a dynamic perspective of covariation. This work also leverages the notion of quantity as a conceptual 
entity composed of a person’s conception of an object, a quality of the object, such as length or 
height, an appropriate unit for measurement, and a process of assigning a value to the quality 
(Thompson & Carlson, in press). For the purposes of this paper we use the term covariation to refer 
to students’ dynamic coordinated images of change, and coordination to refer to students’ static 
coordinated images of change. In both cases, students can begin to develop an understanding of 
classes of functions in terms of their characteristic actions (e.g., recognizing that linear functions 
represent a constant rate of change while quadratic functions represent a rate of change that is 
constantly changing). 

Methods 
The data presented are from a 15-day videotaped teaching experiment conducted with 6 8th-grade 

students. The participants included 3 students in general 8th-grade mathematics, 2 students in pre-
algebra, and 1 student in 8th-grade algebra. None of the participants had been introduced to quadratic 
function in their mathematics courses at the time of the study. Each session lasted 1 hour, and all 
sessions were transcribed. Our aim was to build students’ understanding of quadratic function from a 
rate-of-change perspective, in which quadratic growth is conceived as a constantly changing rate of 
change. We therefore grounded students’ exploration in one context, that of a rectangle that grew 
while maintaining its length/height ratio. Students worked with computer simulations of different 
growing rectangles and made area predictions, created algebraic rules for height and area, and made 
graphs representing those relationships. 

Data sources included video and transcripts from the teaching sessions and copies of the 
students’ written work. Following the constant comparative method (Glaser & Strauss, 1967), we 
developed emergent categories of student concepts about quadratic growth and function based on 
evidence from students’ written work, descriptions of their ideas, drawings, and gestures. Each co-
author independently analyzed each of the 15 sessions before coming together to discuss and 
reconcile code decisions. This led to a series of iterative revisions to the coding scheme on a day-by-
day basis until no new codes emerged. 

Results: Identification of Dependency Relations of Change 
We present three concepts within a family of related ideas we call dependency relations of 

change. These concepts address how students can leverage coordination thinking into the 
development of correspondence relations by attending to how the magnitude of change in one 
quantity determines the magnitude of change in an associated quantity. Students evidenced three 
stages of thinking as they began to shift from coordinated changes to relating those changes to direct 
correspondence rules: recognition, identification, and translation (Table 1).  

Below we provide excerpts characterizing students’ thinking across the three concepts. The 
students invented a number of terms to capture the change in quantities. They described the change in 
height and length values as “DiH” and “DiL”, respectively, referring to the difference in successive 
height or length values when organized in a table or a series of figures. The students used the term 
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“RoG” to refer to the rate of growth of the rectangle’s area for successive increases in height/length, 
and they used the term “DiRoG” to refer to the difference in the rate of growth of the area, Δ(ΔA).  

Table 1: Recognition, Identification, and Translation 
Concept Definition Data Example 

Recognition: Understanding that the magnitude 
of the change in one quantity determines the 
amount of change in another quantity. Student 
understands that there is a dependency relation 
without determining what that relation is. 

Jim: So, couldn’t your rate of growth be, like, really 
high instead of just…if you’re going, like, every 
other one, or you can go like every 5 or whatever 
(referring to increases in height values). So your rate 
of growth (for the area) can change no matter what. 

Identification: Quantifying the relation between 
changes in associated quantities. Student can 
identify a quantity (or its change) as dependent 
on and determined by the change in the 
associated quantity and can characterize this 
dependency relation. 

Tai: (Referring to a table of values coordinating 
successive height (H), length (L), and area (A) values 
for a growing rectangle) DiRoG divided by DiL 
equals…and, divided by DiH equals 2. [Here he 

verbally expressed the relationship 
∆∆!
∆!
∆!

= 2.] 

Translation: Expressing the relation between 
changes in two quantities in an algebraic rule, 
such as y = ax2. Student understands the rule in 
terms of a relation of change.  

Daeshim: [Wrote the equation 𝐴 = !
!
ℎ! + 4] 

Bianca: Where did you get that? (Referring to 5/3). 
Daeshim: DiL over DiH. [Here 𝑎 = ∆!

∆!
] 

 
As shown in Table 1 with Jim’s comment, the students first understood that the change in height, 

for instance, would determine the rate of growth of the area and Δ(ΔA), but they could not yet 
determine how that change would affect the other changes. Tasks providing different tables of values 
for the same rectangle induced the students to begin to account for how multiple quantities changed 
together. For instance, consider a task that presented four tables of height/area pairs for the same 
growing rectangle. Each table grew by uniform increments in height, which were 1 cm, 2cm, 5 cm, 
and 10 cm respectively. Prior to this task the students had characterized the DiRoG as the rate at 
which a rectangle added units as it grew in height and length, so they knew that it would be greater 
for larger increments (recognition), but they did not know how much larger. For the Four Tables 
task, however, Tai found a way to relate the DiRoG to the changes in both the height and the length 
(identification): “Take the DiRoG of the area, and you divide by the difference in the length…and 
also divided by, the difference in height…and, always equals 2.” Tai identified a dependency relation 
between ΔH, ΔL, and Δ(ΔA), but he did not connect that relation to a correspondence rule. Similarly, 
Bianca noticed that Δ(ΔA) could be expressed solely in terms of the change in height values: “So it’s 
basically like 3 DiH squared times 2”, which Tai then expressed as “3 × [DiH]2 × 2 = DiRoG of 
Area”. The students correctly wrote the rule A = 3h2 to express the area in terms of height, but they 
struggled to understand how the parameter 3 related to the quantities length, height, or area.  

The translation concept emerges when students leverage their coordination thinking to create and 
make sense of correspondence rules. For instance, two days later the students worked with a 
rectangle with the following height and area values: (2, 1), (5, 6.25), (7, 12.25), (8, 16), and (10, 25). 
Bianca realized that the length was ¼ of the corresponding height for each pair and wrote “h(.25h)” 
to express the area. Tai then reacted to Bianca’s rule by exclaiming, “The DiL divided by DiH equals 
that number (0.25).” Tai had divided the change in length by the change in height for each successive 
pair of values, and found the ratio to be 0.25. Subsequently, Tai and the other students began to 
determine ratios of change in order to develop correspondence rules (translation). For instance, given 
a new task with three pictures of a growing rectangle with an unchanging “tail” of 4 square cm, the 
students determined that for each 3-cm increase in height, there was a 5-cm increase in length. They 
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were then able to form the rule A = 5/3h2 + 4. Daeshim explained the parameter 5/3 as the ratio of ΔL 
to ΔH, and Bianca noted that one could also think of this as the ratio of sides for any given rectangle. 
Ultimately the students also related the parameter “a” to Δ(ΔA), but learned that they had to account 
for Δh, expressing this relationship as “a = DiRoG/2” when Δh was 1.  

Discussion 
The teaching experiment students began attending to functional relationships through coordinated 

changes, an approach common with middle-school students (Stephens et al., in press). Ultimately 
they were able to leverage coordinated changes in the associated quantities height, length, and area in 
order to make sense of the correspondence rules they wrote. The students understood those 
correspondence rules – particularly the parameter “a” – in a number of ways, with the more powerful 
meanings being those that emerged from their activities of coordinating growth in the relevant 
quantities. These findings suggest that coordination and correspondence views do not have to arise 
separately or in parallel, with robust understanding being limited to translating across forms of 
reasoning. Rather, correspondence rules can emerge from a coordination view and can also represent 
a formalization of the activities of coordination and covariation. This suggests an avenue for future 
research in investigating the ways in which covariation and coordination can support function 
understanding across the function families. 
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This study explores the conditions that support students in forming verbal generalizations in one 
Grade 4 classroom’s discussions. By analyzing the student-teacher discourse in ten teaching 
segments, we coded for purpose of statement, as well as technique for fulfilling the purpose. We 
identified sixteen statements of generalization. The data reveal that students’ generalizations are 
linked to discursive moves associated with the purpose of extending and the techniques of requesting 
for justification and justifying. We argue the findings have implications for instruction that fosters 
generalizing.  

Keywords: Algebra and Algebraic Thinking, Elementary School Education 

Generalizing is “intrinsic to mathematical activity and thinking” (Kaput, 1999, p. 137), yet 
students struggle to generalize, often make weak generalizations, and rarely justify their 
generalizations (Breiteig & Grevholm, 2006). Supporting generalizing in the mathematics classroom 
requires a better understanding of the conditions that encourage students’ generalizing. This issue is 
central to our research, which seeks to understand the nature of the discourse that supports students’ 
generalizing. In particular, the study reported here explores the conditions that support students in 
constructing generalizations in Grade 4 classroom discussions. Working from the premise that 
discourse represents the interrelationships between thought and speech (Truxaw & DeFranco, 2008), 
we examine teacher-student discourse to gain insight into students’ generalizing.  

Generalization and Discourse 
We define generalization as the situated activity of “lifting” and communicating reasoning to a 

level where the focus is no longer on a particular instance, but rather on patterns and relationships of 
those particular instances (Kaput, 1999, p. 137). To explore how discourse supports generalizing we 
use the concepts of linguistic moves. Moves are utterances that can be categorized based on the 
speaker’s purpose. For example, initiating moves occur when the teacher introduces an idea, 
knowing that it will likely prompt centering or extending moves (Lobato, Clarke, & Ellis, 2005).  Re-
centering moves are responses to the conversation changing track or needing redirection (Love & 
Suherdi, 1996) and provide conceptual anchoring. Extending moves are used to obtain or offer 
additional information through elaborating or enhancing ideas (Gonzalez & DeJarnette, 2012). And 
centering moves continue the conversation without changing the track. Recentering, centering, and 
extending moves are responsive in nature, meaning they are usually a part of an exchange (Truxaw & 
DeFranco, 2008). Each move may also be assigned to a technique. The technique is the way in which 
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the speaker fulfills their purpose. For example, if the purpose of a teacher’s move is to extend, she 
might use the discursive technique of requesting justification.  

Methods 
Participants (n=21) were from one Grade 4 classroom participating in an early algebra 

intervention that was taught by a member of our research team. All lessons in the intervention were 
video recorded and transcribed. Each video recording was segmented into clips of classroom 
discussion, of which the first ten were selected for analysis. 

This research is a part of a larger project (viz., Blanton et al., 2015), aimed at designing and 
evaluating the effectiveness of a longitudinal early algebra intervention in Grades 3-5. Clips were 
selected by the larger research team based on their representation of exemplary teaching to be used in 
professional development supporting the implementation of an early algebra intervention. Analyzing 
these clips allowed us to focus on the discourse-rich moments of the lesson. Clips were de-identified 
using gender appropriate pseudonyms and numbered randomly. 

We conducted a multi-level analysis of the classroom discourse. That is, the transcribed videos 
were organized by each speaker’s (students or teacher) statement.  Then, based on the inferred goal 
of the speaker, each move (or utterance) was coded for purpose and technique for fulfilling that 
purpose (Gonzalez & DeJarnette, 2012). Additionally, we recorded generalizations (Ellis, 2011), and 
situated these generalizations in the discourse in order to describe the discursive moves and 
techniques that contributed to and resulted from the generalizations. We identified statements within 
discussions that could be characterized as generalizations according to Kaput’s (1999) definition. 
Namely, we coded statements made by students that indicated their reasoning was no longer on a 
particular instance, but rather on general patterns and relationships of those particular instances 
(Kaput, 1999). At least two members of our research team coded each transcript. Codes were 
discussed until agreement was reached.  

Findings 
In the ten clips that were analyzed, we identified 14 techniques. Here we report on two 

interrelated techniques. The first technique, requesting justification, occurred when the speaker, 
usually the teacher, responded to an idea by encouraging the original speaker to support their idea by 
providing an explanation. The second technique, justifying, occurred when the speaker (formally or 
informally) described why they believed his or her idea is true. 

We found 16 student utterances that were characteristic of Kaput’s definition of generalization. 
Clips were ranked based on the frequency of generalizations with respect to the length (in number of 
turns and time). Clips 3, 5, and 6 were the most generalization-dense based on the total number of 
generalizations and the total turns in each segment. Whereas clips 2, 7, and 8 were the most 
generalization-sparse. Important differences between these clips in terms of purpose, techniques of 
the teacher, and techniques of the students are captured in Table 1. The percentages refer to the 
frequency of a particular purpose or technique within the discussion.  

Of the 16 utterances coded as generalizations, 11 were coded as Student Response as Justifying 
Technique. This finding supports prior findings (e.g., Ellis, 2011) regarding the relationship between 
generalizing and justifying; specifically that generalization and justification are interrelated, 
inseparable mental activities.   

We identified a variety of techniques, but here we focus on two techniques—Teacher Request for 
Justification Technique (rejust) and Student Response as Justifying (just)—because we noticed a 
relationship between these techniques and generalizations. In particular, we observed that in 
comparison to the generalization-sparse clips the generalization-dense clips had a higher percentage 
of the techniques, teacher requests for justification and student responses as justifying. Conversely, in 
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the generalization-sparse clips, we found an overwhelming percentage of student responses that do 
not map to a technique. This finding indicates that students frequently reply with an answer only (no 
explanation) in the generalization-sparse clips.  

Table 1: Generalization-Dense Clips Vs. Generalization-Sparse Clips 
	 Generalization-dense Clips	 Generalization-sparse Clips	 Overall	
	 Clip 3	 Clip 5	 Clip 6	 Clip 2	 Clip 7	 Clip 8	 	

Extending Purpose Moves	 26.3%	 13.7%	 12.5%	 6.4%	 2.6%	 8.3%	 11%	
Teacher Request for 

Justification Technique	 6.7%	 15.4%	 0%	 0%	 3.5%	 0%	 8.4%	

Student Response as 
Justifying Technique	 50%	 27.3%	 50%	 0%	 10%	 0%	 12.3%	

Student Response with No 
Technique	 25%	 48.5%	 0%	 74%	 80%	 83%	 15.6%	

 
Furthermore, we observed that the generalization-dense clips have a higher percentage of moves 

with the purpose of extending. For instance, extending occurred when a teacher used domain-specific 
vocabulary to rephrase a student’s idea, or when a question is posed to encourage a student to 
provide additional explanation.  

Drawing from the data presented in Table 1, we conclude that generalizations occur in an 
environment where: (1) The teacher pushes for more extending purpose moves; (2) The teacher 
requests justification from student answers; and (3) The students provide justification for previous 
answers that do not contain reasoning. Because moves and techniques occur on different levels, 
finding (2) and (3) are subsets of finding (1). Additionally, finding (2) and (3) often occur 
sequentially because one prompts the other.  

Discussion 
In the generalization-dense clips, we observed a higher percentage of extending purpose moves. 

Whereas, we noticed the generalization-sparse clips lack a high frequency of extending moves. 
Instead, the teacher spends a majority of class time recentering or centering the class discussion, 
which implies that more time is needed to help students understand the basis of the problem being 
addressed. Such situations minimize actions that push students into deeper problem solving. We 
claim teaching segments that utilize extending moves are more likely to result in student 
generalizations because those instances push the students to provide more information within their 
responses. 

In the generalization dense clips, we observed a higher percentage of teacher requests for 
justification. These requests for justification often take the form of a follow-up question to a student 
response. For example, the teacher may ask, “How do you know?” or “Why?,” encouraging students 
to explain their reasoning. This was the most common catalyst for student justification as well as 
generalization. Since the teacher’s requests for justification were linked to students’ generalizations, 
we saw a higher percentage of student justifying techniques in generalization-dense clips. 
Justification techniques occurred when students explained why their answer was correct. For 
instance, we observed one student (Steven) respond to the question “m = 1 × ___” as “m.” 
Following the teacher’s request for justification (“How do you know?”), Steven justified his answer 
as shown in Table 2. Due to our multi-level analysis of purpose, technique, and generalizations, this 
example represents a statement that could be characterized as both a generalization and a Student 
Response as Justifying (just) technique. The teacher’s response technique is confirming (cf). It is also 
important to note that students often begin justifying statements by using the word “because.” 
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Table 2: Excerpt from Clip 5 on Student Generalizing 

Speaker	 Move/Utterance	 Purpose	 Technique	

Teacher	 How do you know?	 Extend	 rejust	

Steven	 Because m can equal any number and 1 times anything 
would equal that number.	

Recentering	 just	

Teacher	 Very, very, good. Excellent	 Centering	 cf	

	
We argue that the results of this study have a high-impact potential to inform instruction, because 

educators are able to incorporate the techniques that encourage generalization into curriculum. We 
suggest these findings be viewed as a starting point for research on supporting mathematically 
productive generalizing in the elementary classroom. Moving forward, we aim to build on and refine 
our claims by analyzing a broader sample of classroom discussion segments, so they have direct 
implications for educators. We also recognize that there are many ways to support generalizing, and 
that this is only one approach. We hope that future research explores this avenue and aims to uncover 
other ways to support generalizing, because research in this area is critical to advancements in 
mathematics education. 
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GRADE 5 CHILDREN’S NUMBER LINE DRAWINGS FOR INTEGERS 
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Three Grade 5 children participated in twelve weeks of a teaching experiment on integer addition 
and subtraction, and participated in four individual interviews across the 12-weeks of the teaching 
experiments. Drawing on the theoretical perspective of learner-generated drawings, the types of 
number line drawings produced by the children are qualitatively described. The children often 
unconventionally drew different types of number lines drawings (Number Sequence, Empty Number 
Line, Number Line). The results point to the importance of making sense of children’s constructions 
before imposing integer instructional models.  

Keywords: Number Concepts and Operations, Elementary School Education, Cognition 

We know that children often use strategies that incorporate drawings for solving addition and 
subtraction problems with positive integers (Carpenter, Fennema, Franke, Levi, & Empson, 2015). 
Children often use drawings paired with direct modeling or counting strategies as they invent 
strategies for solving whole number addition and subtractions problems. Although there is significant 
research into the different instructional models for the teaching and learning of integers (e.g., Javier, 
1985), we know little about the drawings that children employ as they transition from using positive 
integers to negative integers. Bofferding (2010) demonstrated that children often use a number path, 
or a sequence of numbers written in boxes, when solving integer problems. Other researchers have 
shown that children will use a variety of ways to reason about the integers which include order-based 
reasoning (e.g., Bishop et al., 2014; Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2014). Order-
based reasoning is when a child draws upon the order of integers to make decisions about integer 
addition and subtraction (e.g., -2 + 3 may be determined by counting up 3 from -2). Despite the vast 
amount of research on the ways that student think about integers (e.g., Bofferding, 2014; Bishop et 
al., 2014), we need to know more about the ways that children reason about integers in relationship 
to the types of drawing they produce, such as number lines. Understanding children’s invented 
drawings has potential to provide insight into ways we design instruction for negative number.  

Theoretical Framework 
This study draws on learner-generated drawings (Van Meter & Garner, 2005). Learn-generated 

drawings provide insight into the cognitive processes. Learner-generated drawings are: (a) 
“intentionally constructed to meet a learning goal”; (b) “meant to depict represent objects 
accurately”; and (c) “for which the learner is primarily responsible for construction” (p. 290). This 
research brief addresses these learner-generated drawings by looking at: What types of number line 
drawings did the Grade 5 children construct as they solved integer addition and subtraction open 
number sentences?  

Methods 
Three Grade 5 students from a rural Midwest school participated in a 12-week teaching 

experiment (Steffe & Thompson, 2000) centered on integer addition and subtraction, using both 
contextual problems and open number sentences. I used several structured task-based interviews 
(Goldin, 2000) to evaluate the children’s’ understandings of solving open number sentences in four 
individual sessions across the teaching experiment. During these sessions the open number sentences 
were provided on paper, with no manipulatives and only a box of markers available. The students 



Early Algebra, Algebra, and Number Concepts 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

292 

were asked to explain their reasoning for solving the open number sentences. In these four sessions, 
the students solved 20, 23, 25, and 25 integer addition and subtraction open number sentences, 
respectively.  

Each drawing produced by the children constituted the unit of data— there were 93 units for each 
child and 279 total units of data for this investigation. A constant comparative method (Merriam, 
1998) was utilized for each of these units of data, beginning with an expectation that children may 
draw objects as they do for whole numbers (Carpenter et al., 2015), number lines (Saxe et al., 2013), 
empty number lines (Verschaffel, Greer, & De Corte, 2007), or number paths (Bofferding, 2010).  

Types of Number Line Drawings Produced 
The different types of Number Line visual mediators that emerged are highlighted and defined in 

Table 1. I present the frequency in which each mediator was used in Table 2.  Then, I describe 
examples of Number Sequence, Empty Number Line, and Number Lines produced by the children.  

Table 1: Different Number Line Visual Mediators Produced by Grade 5 Students  
Type of Visual Mediator  
 

Example of Visual Mediator 

 
Number Sequence: Numbers are used in an ordered manner 
or list. Lists of numbers include negative or positive integers 
in a sequence. 
   

 
Empty Number Line: There is a segment of a number line 
that does not use equipartitioning, but numbers are listed on 
the number line. The distances on the empty number line 
may be highlighted. Negatives may be on the right or left on 
a horizontal line. Negative may be on the top or bottom of a 
vertical line.   
 

  

Number Line: There is a segment of a number line that 
attempts equipartitioning. Negatives may be on the right or 
left on a horizontal line. Negative may be on the top or 
bottom of a vertical line.   
   
 

Number Sequence 
Alice produced Number Sequences paired with objects to help her describe and solve the number 

sentence -2 – 8 = ☐ (see Figure 1). For example, Alice first produced objects, using tallies, 
determined a solution of 6 for the number sentence -2 – 8 = ☐ and then she connected her Number 
Sequence to her objects. In contrast, when Jace solved ☐ – -2 = 1 (see, e.g., Figure 1) he created a 
Number Sequence by drawing numbers vertically and ordered (1, 0, -1). He used this ordered list of 
integers to count 2 backwards from -1 to 1, determining a solution of -1.  

(a)  (b)  

Figure 1. Number sequences produced by Alice (a) and Jace (b). 
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Empty Number Line  
When Jace produced Empty Numbers lines he demonstrated flexibility with the positioning of 

the Empty Number Line—whether horizontal or vertical. He, for instance, also placed the negative 
integers flexibly on the right or left the Empty Number Line (see, Figure 2).  

(a)  (b)  

Figure 2. Empty number lines produced by Jace with negatives on left (a) and right (b). 
 
As illustrated in Figure 2, Jace also used the Empty Number Line for determining the distance in 
between two integers as he solved addition or subtraction problems. In contrast, Kim focused more 
on moving from one point to another, using the Empty Number Lines.    
 

 

Figure 3. Empty number line produced by Kim, using distance as a directed movement. 
 
For example, As Kim solved ☐ – -2 = 1 she first thought the answer was 3 and then decided to 
change her solution and drew a number line.  

The answer was one and here was a negative two (points at -2). So I sort of knew the only way I 
could get to a positive, which was the one (points at 1), which was to like have a smaller negative 
number (points at -2) besides 0 and then negative two. And, the only number was negative one 
(points at box with -1) 

She started at -1 and moved to the right to 0, “losing -1,” and then moved right to losing another -1 to 
1.  

When you subtract the two off of it, it would go, but when it hit zero it's lost one (marks number 
line). So, it has zero. It has one remaining over, so you could just add onto and go into the 
positive area. And it, when you got done using your remainders it'd be one... 

Number Line  
Jace and Kim drew Number Lines. Jace, for example, created a line segment from -20 to 20 when 

he first solved -20 + 15 = ☐ (see Figure 4). This was the first problem he solved in the first session 
and he began with equipartitioned units from -20 to -5 by starting with -20 and moving to the right 15 
units drawing a tick mark each time. Similarly, Kim drew a line segment and partitioned her 
segment, from -2 to 5, as she attempted to solve 3 – ☐ = 4 (see Figure 4). Kim also used this Number 
Line drawing as she addressed a problem in the second session, which she was not able to solve.  

The different types of drawings created are a significant component to understanding children’s 
thinking because they illustrate the students’ constructed meanings. As this study was conducted with 
these children prior to formal school instruction with negatives and they were not provided 
manipulatives or explicit instructional models, their drawings highlight the sophisticated nature of 
their mathematical inventions of the number line. Although we have insight into the types of 
drawings that children may produce for whole numbers (e.g., Carpenter et al., 2015), these 
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descriptions of number line drawings illustrate what this may look like for children that work with 
integers.  

 

(a)  (b)  

l4. Number lines produced by Jace (a) and Kim (b). 

Discussion 
Top-down approaches where students are required to utilize a particular instructional model (e.g., 

number line models that specify particular movements to solve integer subtraction) may not be the 
best way to begin integer instruction. Rather, children should be allowed to produce and create their 
own drawings, which could then serve as the instructional models.  
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To investigate the relationship between PSTs’ quantitative understandings of distributive reasoning 
and proportional reasoning, two 12-episode teaching experiment were conducted with two pairs of 
PSTs. During the experiments, PSTs were asked to work on particular mathematical tasks tailoring 
their ways of thinking regarding to proportional reasoning. Preliminary findings indicate that one of 
the participants was mostly illustrating the results of her way of thinking as opposed to engaging in 
distributive reasoning. She also had some powerful ways of thinking and did not need to show a 
distributive partitioning operation (DPO). On the other hand, another participant showed evidence 
of distributive partitioning schemes and operations throughout the experiment, which enabled her to 
find unit ratios and create equivalent ratios.  

Keywords: Teacher Education-Preservice, Cognition, Algebra and Algebraic Thinking 

Distributive reasoning plays an important role in the development of ratio reasoning (Steffe, Liss 
II, & Lee, 2014). An illustration of this statement would be that one way of thinking about ratios is 
measuring one quantity in terms of the other. If there are three tbsp. of powder and five oz. of water, 
the three tbsp. must be distributed across those five oz. to determine the quantity of powder that goes 
with one ounce. Alternately, the five oz. must be distributed across those three tbsp. to know how 
much water goes with one tbsp. of powder. Establishing a unit ratio, say 3/5 tbsp. of powder for each 
ounce of water, involves distributive reasoning. Making these unit ratios and being able to distribute 
them is a powerful way of establishing equivalent ratios. So, construing the distribution as measuring 
one quantity in terms of another quantity demonstrates that distributive reasoning is involved in 
proportional reasoning and reasoning with ratios.  

The main purposes of this research, which is part of my dissertation project, are to understand 
how pre-service teachers (PSTs) reason distributively and proportionally, and to examine 
relationships between PST’s distributive reasoning and proportional reasoning. Specifically, the 
research questions for this study are: (1) How do PSTs solve problems that involve proportional 
relationships? (2) How do PSTs reason distributively? (3) What schemes, operations, and concepts 
are involved in PSTs’ construction of proportional reasoning? (4) What are relationships between 
PSTs’ distributive and proportional reasoning? 

Conceptual Framework 

A Quantitative Approach 
Thompson (2010) defines a quantity as a scheme consisting of an object, a quality of the object, 

an attribute of this object that has a unit of measure, and a process that the attribute’s measure entails 
a proportional relationship with its unit. Throughout this paper, following Thompson, I interpret 
quantitative operations as mental operations and regard these operations as essential aspects of 
quantitative schemes because this approach allows me to account for PSTs’ schemes and operations 
when they reasoned quantitatively with ratios. 

Operations and Schemes 
The concept of schemes, or goal-directed ways of operating that involve an assimilatory 

mechanism, activity, and result, is a substantial part of Piaget’s theory of knowledge (von 
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Glasersfeld, 1995). My study is based on the mathematical thinking in PSTs’ operations, which are 
components of schemes. Based on Steffe and Olive (2010), I define a distributive partitioning 
operation (DPO) as partitioning n items among m shares by partitioning each of the n items into m 
parts and distributing one part from each of the n items to the m shares. For example, when asked to 
equally share three candy bars with five people, a student with a DPO would partition each of the 
three candy bars into five equal parts and take one part from each bar to determine a share. Steffe and 
colleagues (2014) also originated the ideas of a distributive partitioning scheme (DPS) and a 
reversible distributive partitioning scheme (RPDS). A child who has constructed a DPS could 
interpret one share as n/m of one unit by taking 1/m of each n item, while a child with an RDPS 
could interpret one share as 1/m of all the units and see that n/m of one unit is equal to 1/m of all the 
units, and could also justify that iterating n/m m times does indeed produce n items (Liss, 2014). 

Methods 
To launch each of the two small scale intensive 12-episode teaching experiments, I conducted 60-

minute task-based selection interviews with 8 PSTs to assess their multiplicative reasoning, 
distributive operations, and initial ways of reasoning with ratios. Then, I invited four PSTs to 
participate in my dissertation project. Based upon the similarities in their reasoning, I matched them 
in two pairs. In this paper, I will present some data from one of the pairs: Maggie and Rose. The 
teaching experiment consisted of 12 45-minute sessions (two episodes in each week for each group) 
for a total of 6 weeks. They worked in pairs on particular mathematical tasks related to distributive 
and proportional reasoning. All teaching experiment sessions were video-recorded and all written 
work were collected. During episodes, PSTs often used a software program called JavaBars 
(Biddlecomb & Olive, 2000). After each teaching session, I processed data, kept a digital research 
journal, watched video, took notes, and discussed conjectures with my advisor to organize my plans 
and develop the tasks for the next episode. Following teaching experiments, each PST participated in 
a 60-minute follow up interview to elicit their reasoning and experiences after the teaching 
experiment.  

The data were analyzed retrospectively (Steffe & Thompson, 2000). Through retrospective 
analysis, I formulated a second-order model of PSTs’ reasoning with ratios. A second order model is 
a researcher’s constellation of constructs to describe and account for another person’s ways and 
means of operating (Steffe, von Glasersfeld, Richards, & Cobb, 1983). For this purpose, I repeatedly 
viewed the relevant video files, transcribed major portions, and took detailed analytic notes. I also 
wrote memos and conjectures about changes and persistent constraints in PSTs’ ways of thinking and 
operating, and about interactions that may have supported these changes and constraints. Finally, I 
wrote a document comparing these models and synthesizing the interactions that contributed to 
changes. 

Preliminary Analysis 
So far, I found qualitative differences in how PSTs represented and thought about proportional 

reasoning. I support this claim by demonstrating how they worked on the Lemonade Mixture 
Problem in the teaching experiment. Because I am still analyzing my data, I will present a very small 
but important portion of what I have right now. 

Near the end of episode 7, I had already created a sketch showing 1 tbsp. and 1 ounce bars in 
JavaBars (Figure 1, upper left). The main question was “How much tbsp. of lemonade powder would 
go with 1 ounce of water if 3 tbsp. of lemonade powder with 16 ounces of water are the ingredients 
of the “best” lemonade?” To solve that problem, Rose worked on JavaBars and Maggie worked on 
paper. Rose first created her 3 tbsp. and 16 oz. bars (Figure 1, upper right). She then copied the 3 
tbsp. bar, divided each part into 16 mini-parts, and filled them in blue, peach and red, respectively 
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(Figure 2, bottom right). She pulled out one mini-part from each tbsp. bar and joined these 3 mini-
parts under 1 ounce of water bar (Figure 2, bottom left). Looking at 3 mini-parts she pulled out, Rose 
stated that 3/48 tbsp. of powder, which can be simplified to 1/16, would go with 1 ounce of water. 
Rose has demonstrated a DPO when pulling out one mini-part from each bar to get 3 mini-parts for 1 
ounce of water after dividing each of the tbsp. bars into 16 mini-parts. However, her answer was 1/16 
tbsp. not 3/16 tbsp. since she did not relate her answer to the unit bar, 1 tbsp.  

In Episode 8, after probing with me, Rose realized that since 3 mini-parts together are 1/16 of 3 
tbsp., if she repeats 3 mini-parts 16 times it would give her 3 tbsp. bar. So she corrected her answer 
as 3/16 tbsp. of powder. Then she repeated 3 mini-parts 16 times in her JavaBars picture. I infer that 
repeating 3 mini-parts 16 times might have helped her see her reasoning with the picture. During that 
justification, she has also constructed an RDPS when she repeated 3 mini-parts 16 times to see that 
would give her whole 3 tbsp. bar.  

 

 
Figure 1. Rose’s work on the Lemonade Mixture Problem. 

 
Maggie first drew out 3 tbsp. of powder and 16 oz. of water. She said she wanted to start with 

how many tbsp. of powder goes with how much ounces of water. After figuring out 5 1/3 oz. goes 
with 1T of powder, she drew 5 1/3 oz. of water in three groups and she wanted to find out how much 
tbsp. of powder goes with 1 ounce by highlighting the first 3 mini-parts of her first 5 1/3 drawing 
(Figure 2). She stated that she needed to be her pieces even that is why she divided every 1 ounce in 
3 mini-parts to find the proper fraction. Then she realized every three mini-parts would give her how 
many tbsp. of powder in 1 ounce and said she needed to look at the whole picture—including other 
two 5 1/3 drawings, which has totally 48 mini-parts. She said the answer is not 3/16 because she 
needed to think all three 5 1/3 oz. groups. So she said the answer is 3/48 (she counted all mini-parts) 
and she simplified it to 1/16. Maggie has not demonstrated a DPO in solving this problem. Her way 
of thinking is pretty similar to what she did before with other lemonade mixture problems. 
Representing the powder and water together in the same bar might have masked showing the 
distribution idea and focusing on the unit bar (1 tbsp.) as well.  
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Figure 2: Maggie’s work on the Lemonade Mixture Problem. 

In Episode 8, although Maggie might have interpreted Rose’s idea/justification, she did not make 
it her own. When I asked about her justification, she realized that she needs to focus on the 1T bar 
not all 3T bars saying "But then I guess it is 3/16 [she meant 3/16 tbsp. of powder would go with 1 
ounce of water] because I counted up all of the 48s. But if you are counting up for 1T it is just three-
sixteenths [pointing out her first drawing]. Cause I counted up all 48. Well, I know that it is 1/16 of 
3T then I was just trying to think in my head how you can like mathematically prove it."  

Discussion 
The teaching experiment data presented above provides several important results. First, Rose 

mostly showed evidence of demonstrating a DPO and even an RDPS when she was reasoning with 
ratios. This helped her create unit ratios and use these unit ratios to find any other equivalent ratios. 
Second, Maggie had powerful ways of thinking and a desire to understand other people’s reasoning. 
She did not spontaneously produce these ideas when she was working on problems even though she 
could understand and justify them in interactions with me and Rose. She did not necessarily do so, 
perhaps because she did not see them as more powerful than her own. Therefore, having her own 
powerful ways and not adopting others’ ideas as her own could also help us understand why Maggie 
did not need to show use of a DPO in reasoning with ratios.	
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Through a theoretical framework emphasizing the importance of fidelity of implementation (FOI), 
this paper explores how 3rd grade teachers implemented an early algebra intervention, and the extent 
to which the FOI related to student learning. The data for this report are taken from the first year of 
an experimental research project. Videotaped classroom observations, our primary measure of FOI, 
were coded by adding to and adapting the Mathematical Quality of Instruction (MQI) instrument, 
and student performance was measured by overall score (correctness) on an algebra assessment. 
Results revealed a significant positive relationship between teachers’ implementation and their 
students’ performance.  

Keywords: Algebra and Algebraic Thinking, Elementary School Education, Assessment and 
Evaluation  

This paper reports on the fidelity of implementation (FOI) of 3rd grade teachers as they 
implemented an early algebra intervention, and the relationship between FOI and student learning. 
The data from this study are taken from the first year of an experimental research project (Project 
LEAP: Learning through an Early Algebra Progression) that tests the hypothesis that children who 
receive comprehensive, longitudinal early algebra instruction during the elementary grades are better 
prepared for algebra in middle school than children who have only arithmetic-based experiences 
during elementary grades. 

Theoretical Framework 
The treatment of algebra in school mathematics has changed dramatically over the past two 

decades. The Common Core State Standards for Mathematics (National Governors Association 
Center for Best Practices and Council of Chief State School Officers [NGA Center & CCSSO], 
2010) calls for algebraic reasoning to start in Grade K and span across the grades. In response to this 
challenge, we initiated a study to examine the effectiveness of an early algebra intervention in Grades 
3-5. The intervention consisted of 18 lessons and teachers also attended ongoing professional 
development to support their implementation of the intervention. 

The focus in this paper is on the relationship between student performance outcomes and 
teachers’ FOI of the early algebra intervention. Our goal was to measure the fidelity with which 
teachers in diverse demographic settings implemented the intervention and how this intervention 
affected student learning outcomes. Measuring FOI revealed differential patterns of implementation 
and their relationship to the intervention (Mowbray et al., 2003), a critical factor in evaluating an 
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intervention’s effectiveness (NRC, 2004; Summerfelt & Meltzer, 1998) and promoting external 
validity (O’Donnell, 2008). 

Methodology 
Three school districts (including approximately 240 classrooms and 3,400 children) participated 

in the cluster randomized trial, with entire schools being assigned to either the experimental or 
control condition. During the first year of implementation, we focused on third grade classrooms, and 
subsequently followed these children into fourth grade.  

Data sources for the study reported here are classroom observations and student assessment data. 
Classroom observations (videotaped LEAP lessons) were conducted with a subsample of 
experimental teachers (n=50). All teachers were observed twice except for one, for a total of 99 
observations.  

Student participants were given a one-hour, written algebra assessment as a pre/post measure. 
The assessment was designed by the project team (Blanton et al, 2015) and measured students’ 
understanding of early algebra. We have assessment data from approximately 800 students in the 
observed classrooms. For the purposes of the analyses reported here, student assessment data were 
coded according to item correctness. 

We coded classroom observation data with a specific focus on the degree to which teachers 
implemented the early algebra materials with fidelity as well as the quality of mathematics 
instruction. Teachers were rated on 5-point Likert scales on each of the three cognitive demand 
variables created by the project team: justify an answer, generalize a mathematical relationship, and 
represent with variables. Separate codes were given for whole class work and individual/group work. 
Observations were also coded for six items adapted from the Mathematical Quality of Instruction 
(MQI) instrument (Hill et al, 2008): efficient use of class time, clear presentation of mathematics, 
student engagement, teacher attention to student difficulty, teacher use of student ideas, and precise 
use of mathematical language and notation.  

Approximately 15% of videos were double coded in order to assess inter-rater reliability. Factor 
analysis was then employed in order to create composite variables that could be used as teacher-level 
predictors of student outcomes (i.e., student performance on the early algebra assessments) in a 
multilevel analysis.  

Results 
As a first step, we looked at the implementation of the intervention. Lessons in this early algebra 

intervention consist of two parts – the Jumpstart (a review and warm up activity related to the 
objectives of the lesson) and the main early algebra activity. The jumpstart activity was completed in 
95% of observed classes. Of those that did, 100% of the observed classes included whole class 
discussion led by the teacher, 67% included individual student work, 32% included group work, and 
35% included student-led presentations. Jumpstarts activities lasted, on average, 15 minutes and 32 
seconds (SD = 07:54). 

     Once the Jumpstart was completed, lessons moved on to the early algebra task. Overall, in 
90% of observed classrooms teachers read the problem aloud or had a student read the problem. In 
52% of classrooms, teachers ensured students understood any terms or concepts that might be 
unfamiliar to them. Teachers demonstrated methods of presenting numerical information that might 
be unfamiliar to students in 42% of classrooms. 

After the lesson was introduced, in 71% of the observed classrooms students worked on their 
own (either independently or in groups) on the bulk of the remainder of the activity. During 
individual/group work, teachers were rated on whether they were active or passive. An active teacher 
would actively visit individuals/groups to help students with questions, but also to challenge their 
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thinking. A passive teacher would go around to groups only when asked, and would be largely 
reactive to students’ needs rather than being proactive and challenging mathematical thinking. In 
69% of observed classrooms, the teacher was coded as “active.” 

LEAP Cognitive Demand Variables: Justify, Generalize, Represent  
A rating of 1 indicates that a teacher did not ask students to justify, generalize, or represent at all, 

while a rate of 5 indicates that the teacher asked students to justify, generalize, or represent in a way 
that went beyond the lesson expectations (see Table 1). 

Table 1: Mean (SD) Justify, Generalize, and Represent Ratings 
Whole Class Individual Group 

Justify Generalize Represent Justify Generalize Represent 
3.75 (1.02) 3.51 (1.08) 3.00 (1.25) 2.91 (1.39) 2.55 (1.33) 2.10 (1.34) 

 

Adapted MQI Codes 
With the exception of imprecision, which was coded on a 4-point scale, all MQI items were 

coded using a 5-point Likert scale. For all items, 1 is the most “negative” rating, indicating inefficient 
use of class time, severely distorted mathematics, total lack of student engagement with the lesson, 
student difficulty without any teacher remediation, no substantive use of student ideas, or imprecision 
that obscured the mathematics of the lesson (see Table 2). 

Table 2: Mean (SD) Adapted MQI Ratings 
Efficiency Math is Clear Engaged Attends to 

Student Difficulty 
Uses Student 

Ideas 
Precision in 
Language 

3.33 (1.11) 4.24 (0.96) 3.80 (1.00) 3.56 (0.99) 3.85 (0.93) 3.31 (0.83) 
 
Inter-rater reliability was assessed for the cognitive demand and MQI data using weighted 

Cohen’s kappa. The analysis suggested that raters had acceptable levels of agreement (κw>.60) for all 
MQI variables, for the three individual/group cognitive demand variables, and for the whole class 
represent variable. However, there was only moderate agreement for two of the whole class cognitive 
demand variables: whole class generalize (κw =.54) and whole class justify (κw =.53). For this reason, 
subsequent analyses do not include the whole class variables. 

Relationship Between FOI and Student Performance 
We hypothesized that several of our observed variables would be correlated due to their 

association to latent (unobserved) variables. In order to identify these underlying latent variables, 
factor analysis using principal components analysis was utilized.  

The six MQI variables and the three individual/group cognitive demand variables were entered. 
A two-factor solution, which explained 71% of the variance, emerged. The three individual/group 
cognitive demand codes (justify, generalize, represent) were added together to create a composite 
variable, “cognitive demand,” M = 7.55, SD = 2.82, and the six MQI variables were added together 
to create a composite variable, “MQI,” M = 22.25, SD = 3.79. 

       Using these composite variables as level 2 (teacher-level) predictors, we conducted a 
multilevel regression analysis to explore the relationship between the teacher-level FOI variables and 
student performance. The baseline measure of performance, grade 3 pre-test, was included as a 
student-level (level 1) predictor, and a measure of SES (percentage of students with free or reduced 
lunch) was included at the school-level (level 3). 



Early Algebra, Algebra, and Number Concepts 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

302 

After controlling for baseline performance and school-level SES, the cognitive demand 
composite variable was found to be a significant predictor of students’ score on the LEAP post-
assessment, γ = .015, t(30) = 3.093, p < .001. A one-unit increase in cognitive demand score was 
associated with a 1.5% increase (.015 points) in post-test score. The MQI composite variable was not 
a significant predictor of student performance.  

Discussion 
Understanding the ways in which teachers implemented the early algebra intervention and how it 

impacted student learning have important implications for this particular study and, more broadly, 
how we as a community understand the complexity of finding ways for educational research to 
influence actual instruction and have an impact on the mathematics learning of large numbers of 
students. This is critical if we are to take educational innovations to scale. 

Aspects of teachers’ implementation were significantly positively related to their students’ 
performance on the early algebra assessments. Given the range of the cognitive demand composite 
variable (3 to 14), students in classrooms where the teacher received the highest rating outperformed 
their peers in the classroom of the lowest rated teachers by an average of 16.5%. Therefore, students 
of teachers who implemented the intervention with higher fidelity had higher mean scores on the 
early algebra assessment, suggesting that these students are better prepared for algebra in middle 
school than their peers whose teachers implement with lower fidelity.  
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This paper discusses a pre-service secondary teacher’s mental actions in the context of her 
partitioning activity and reasoning about amounts of change (i.e., coordinating the amounts of 
change of one quantity for changes of another) to structure dynamic situations. We illustrate ways of 
thinking that necessitated that she carried out partitioning activity, and thus had difficulty re-
presenting actions when reasoning with changes on graphs and situations.  

Keywords: Cognition, Advanced Mathematical Thinking, Algebra and Algebraic Thinking 

Background 
Researchers have shown that quantitative reasoning—the mental actions involved in 

conceptualizing a situation in terms of a structure of measurable attributes (Thompson, 2011)—and 
covariational reasoning—the mental actions involved in coordinating quantities changing in tandem 
(Carlson et al., 2002)—are critical for students’ rate of change understandings (Johnson, 2015; 
Thompson, 1994). Highlighting the complexities in the ways students conceive of relationship 
between covarying quantities, these researchers have called for a closer look into students’ reasoning 
about amounts of change in order to explain nuances in students’ rate of change understandings. 
Inspired by the aforementioned research, this study aims to gain a better understanding of students’ 
reasoning with amounts of change in relation to their partitioning activity. We draw on both Carlson 
et al. (2002) and Saldanha and Thompson’s (1998) theories of covariational reasoning, with 
particular attention to Level 3 (i.e., students’ coordination of amounts of change of one variable with 
respect to changes in another) of Carlson et al.’s (2002) covariation framework. For example, given a 
graph or a situation, a student can partition one quantity into equal increments and visualize the 
amounts of change of the other quantity corresponding to the endpoint of each increment. We refer to 
this particular kind of activity including the mental operations involved when we use partitioning 
activity throughout the paper.  

Methods 
This paper reports results of a semester-long teaching experiment (Steffe & Thompson, 2000) 

with Lydia, who was in her first semester of a four-semester secondary math education program. We 
conducted 12 teaching sessions with her and videotaped and digitized them for analysis. In both 
ongoing and retrospective analyses efforts, we conducted a conceptual analysis (Thompson, 2008) in 
combination with open and axial techniques (Corbin & Strauss, 2008) in order to develop models of 
her mathematical thinking. Specifically, our iterative analyses efforts involved constructing 
hypothetical mental actions that viably explained Lydia’s observable and audible behaviors. We also 
continually searched for instances that the models could not account for, and modified our models or 
attempted to explain developmental shifts in her meanings.  

Results 

The Taking a Ride and Which One Task 
In our first teaching sessions, we designed the Taking a Ride task (Figure 1a) to support students 

in reasoning about the relationship between the height of the green rider above the horizontal 
diameter of the wheel and the arc length the rider has traveled. Lydia initially claimed, “the arc 
length has increased to this [drawing an arc on the first quarter of the circumference of the wheel] 
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while the distance from the center has increased to that [drawing a vertical segment from the top 
position to the center of the wheel].” Eventually, Lydia constructed successive amounts of change of 
height (see the blue segments in Figure 1b) for successive, equal changes in arc length. Noticing that 
these blue segments decreased in magnitude, Lydia concluded that as the arc length is increasing by 
equal amounts, the amount of increase in height is decreasing.  

 

           
                                 (a)                         (b)                                         (c) 

Figure 1: (a) Animation for the Taking a Ride task; (b) Lydia identified the amounts of change of 
height on the animation; (c) The Which One task. 

Immediately following this task, we presented the Which One task (Figure 1c), where we 
presented a simplified version of the Ferris Wheel with the position of a rider indicated by a dynamic 
point on a circle. We informed Lydia that the topmost blue segment represents the arc length the 
rider has traveled counterclockwise from the initial three o’clock position. We then asked Lydia to 
determine which of the six red segments, if any, accurately represents the rider’s height above the 
horizontal diameter as the rider’s arc length traveled varies. Lydia chose a red segment (which 
represented a normatively correct solution), oriented it vertically, and put it inside the circle (Figure 
2a). She then confirmed that the length of the segment matched the height of the dynamic point for 
different states (Figure 2b). We then asked if the segment entailed the amounts of change relationship 
constructed in Figure 1b, to which she responded: 

Lydia: Not really. […] Um, don’t know. [laughs] Because that was just like something that I had 
seen for the first time, so I don’t know if that will like show in every other case […] for a 
theory to hold true, it like – it needs to be true in other occasions, um, unless defined to one 
occasion. […] I saw what I saw, and I saw that difference in the Ferris wheel, but I don’t see 
it here, and so – 

I: And by you don’t see it here, you mean you don’t see it in that red segment?  
Lydia: Yes.  
 

              
                             (a)                                        (b)                                        (c) 

Figure 2: (a) Lydia was working on the Which One task; (b) Lydia was checking the red segment 
point-wisely; (c) We were assisting Lydia to identify amounts of change of height. 

 
We draw attention to Lydia referencing height increasing by decreasing amounts as a “theory” 

that needed to be tested despite her having already identified that the red segments worked point-
wisely with respect to traversed arc length; her knowing that the red segment worked for each state 
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did not imply by necessity that the red and blue segments existed in a covariational relationship 
consistent with the relationship between height and arc she identified in the Taking a Ride task. 
Furthermore, after we assisted her in denoting amounts of change of the red segment (i.e., height) for 
successive cases (Figure 2c), she responded in surprise that her “theory” held true in the current 
situation. Collectively, her activity was a contraindication that she had constructed a re-presentable 
quantitative relationship between co-varying quantities; rather, her understandings were rooted in 
carrying out particular activity of partitioning in order to make amounts of change perceptually 
available for comparison on the specific representation (Figure 1b). That is, when moved away from 
the original representation to a novel context with magnitudes changing continuously, she did not 
envision the same quantitative relationship of those magnitudes because from her perspective, she 
was carrying out a different activity (i.e., point-wise checking of the red segment) than the one in the 
previous situation.   

The Circle Task 
In the ninth teaching session, we asked Lydia to recall her graph related to the Circle Task in the 

previous session. The Circle Task included an animation of a circle with a point moving along the 
circle, with the red segment representing the height above the horizontal diameter and the blue 
segment representing the arc length traced out as the point traveled along the circumference of the 
circle (Figure 3a). Lydia drew from memory the graph shown in Figure 3b, created equal partitions 
along the horizontal axis, and denoted corresponding height magnitudes and amounts of change of 
height (Figure 3b). She claimed, “arc length is increasing at a constant rate, and height is increasing 
at a decreasing rate.” We note that Lydia was only talking about one quantity (either height or arc 
length) when she used the word “rate” as opposed to using “rate” to describe the multiplicative 
comparison between two co-varying quantities. In response to Lydia discussing each quantity 
separately with respect to “rate,” the teacher-researcher drew a copy of the graph with equal 
partitions along the vertical axis (Figure 3c). She described, “you’re increasing in height at a constant 
rate, and then our arc length is increasing at an increasing rate.” 

 

                 
                                (a)                                     (b)                                       (c)        

Figure 3: (a) The Circle Task; (b) Lydia’s graph; (c) The teacher-researcher’s graph. 

Noticing that Lydia described height as both “increasing at a decreasing rate” and “increasing at a 
constant rate,” the teacher-researcher questioned her in ways that would draw her attention to 
comparing the two claims. She explained:  

Lydia: […] Because [height] increases at a decreasing rate [pointing to Figure 3b], and I'm 
assuming, I am assuming that the pattern would probably hold [on Figure 3c] if we did this 
[pointing to the partitions in Figure 3b], um, kind of test […] so I'm kind of seeing that 
maybe that pattern would hold. I haven't tested it, so I can't say that –  

This demonstrated Lydia’s difficulty with imagining or anticipating the partitions of Figure 3b on 
Figure 3c, and her continued work on the task indicated uncertainty with conceiving “height is 
increasing at a decreasing rate” on Figure 3c due to the perceptually available equal partitions of 
height. She was constrained by the partitions she perceived on the graph to the extent that without 
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physically carrying out subsequent partitioning activity, she could not take those partitions 
represented on Figure 3b as relevant to Figure 3c.  

Discussions 
Through our analysis, we found that although the partitioning activity assisted Lydia’s reasoning 

with amounts of change, it did not necessarily support her abstracting an operative covariational 
relationship between quantities. That is, when confronted with a series of similar situations, and 
without carrying out particular sensorimotor actions (e.g., drawing lines to partition one quantity and 
highlights the amounts of change of another) to produce perceptually available results, she had 
difficulty re-presenting the actions and its results mentally. By “re-presenting” an activity, we 
employ Piaget’s notion of re-presentation to refer to a student’s ability to mentally run through an 
activity and coordinate the results of the activity when the perceptual situation that originally led to 
the coordination is not actually present (von Glasersfeld, 1995). Lydia’s difficulty with mentally re-
presenting partitioning activity particularly constrained her thinking in situations that differed in 
segment orientation and placement (e.g., the Which One task) or situations where perceptual features 
of previous results were absent (e.g., Figure 3c). We highlight that when carrying out an activity 
dominates a student’s thinking of graphs and situations, that student might have difficulty with 
reasoning with novel representations because of not having the coordination of such activity (e.g., the 
underlying quantitative relationships and operations) mentally available in those representations. 
Moving forward, we call for continued explorations into how students reflect upon their partitioning 
activity and abstract quantitative relationships and structures (e.g., rate of change).  

Acknowledgments 
This material is based upon work supported by the National Science Foundation under Grant No. 

(DRL-1350342). Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the authors and do not necessarily reflect the views of the NSF.  

References  
Carlson, M. P., Jacobs, S., Coe, E. L., Sean, & Hsu, E. (2002). Applying covariational reasoning while modeling 

dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-379.  
Corbin, J. M., & Strauss, A. (2008). Basics of Qualitative Research: Techniques and Procedures for Developing 

Grounded Theory (3rd ed.). Thousand Oaks, CA: Sage. 
Johnson, H. L. (2015). Together yet separate: Students’ associating amounts of change in quantities involved in rate 

of change. Educational Studies in Mathematics, 1-22. doi:10.1007/s10649-014-9590-y 
Saldanha, L. A., & Thompson, P. W. (1998). Re-thinking covariation from a quantitative perspective: Simultaneous 

continuous variation. In S. B. Berensah & W. N. Coulombe (Eds.),Proceesings of the 20th Annual Meeting of 
the Psychology of Mathematics Education - North America.). Raleigh, NC: North Carolina State University. 

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential 
elements. In R. A. Lesh & A. E. Kelly (Eds.), Handbook of research design in mathematics and science 
education (pp. 267-307). Hillside, NJ: Erlbaum. 

Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. 
Educational Studies in Mathematics, 26(2-3), 229-274.  

Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundation of 
mathematics education. Paper presented at the Annual Meeting of the International Group for the Psychology of 
Mathematics Education, Morélia, Mexico.  

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In S. Chamberlin, L. L. Hatfield, & S. 
Belbase (Eds.), New Perspectives And Directions For Collaborative Research In Mathematics Education., 
WISDOMe Monographs (Vol. 1, pp. 33-57). Laramie, WY: University of Wyoming Press. 

von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. Washington, D.C.: Falmer 
Press. 



Early Algebra, Algebra, and Number Concepts 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

307 

STUDENTS’ APPROPRIATION OF MATHEMATICAL DISCOURSE IN A DISCOURSE-
DRIVEN CLASSROOM  

 Salvador Huitzilopochtli Judit Moschkovich 
 University of California- Santa Cruz University of California- Santa Cruz 
 shuitzil@ucsc.edu jmoschko@ucsc.edu 

This study explored how students appropriated mathematical and discursive practices in a class 
whose teacher took a discursive approach to instruction while supported by professional 
development and a curriculum designed with equity and discourse in mind.   The study deployed a 
theoretical framework that used Academic Literacy in Mathematics (Moschkovich, 2015) as a 
framework for analysis of visual representations and Talk Moves (Anderson, Chapin, & O’Connor, 
2011).  The study examined a 4th-grade classroom in the San Francisco Bay Area where roughly 
three out of five students were English Language Learners and 19 out of 20 were low-income.  
Results showed that students appropriated the Talk Move, “Do you have any ideas?” for multiple 
purposes. 

Keywords: Classroom Discourse, Elementary School Education 

The National Council of Teachers of Mathematics (NCTM) and California Common Core State 
Standards (CCCSS) call for students to participate in mathematical discussions (CDE, 2014).  
However, few students enter classrooms already knowing how to participate in these kinds of 
discussions.  The purpose of this qualitative study was to examine how students appropriated 
mathematical and discursive. The study is part of a larger research project, led by the Early 
Mathematics Education Research Group (EMERGe) at Stanford University.  The following 
questions, in part, guided the exploration of mathematical communication:  

1. In a setting where a teacher attempts to provide mathematics instruction that supports a 
discursive approach, do students appropriate discourse practices provided and/or promoted 
by the teacher or curriculum? 

a. If so, which ones? 
2. How do students make use of multiple representations when engaged in mathematical 

discussions during group work?   

Theoretical Framework 
Academic literacy in mathematics has three integrated components: mathematical proficiency, 

mathematical practices, and mathematical discourse.  Mathematical proficiency refers to the 
“expertise, competence, knowledge, and facility” that is required to successfully learn mathematics 
and is a “cognitive account” of mathematical activity vis-à-vis the five strands of proficiency (NRC, 
2001); Conceptual Understanding, Procedural Fluency, Strategic Competence, Adaptive Reasoning, 
and a Productive Disposition.  Defining characteristics of mathematical practices come from the 
NCTM standards and the Common Core State Standards include problem solving, sense-making, 
reasoning, modeling, and looking for patterns, structure or regularity (California Department of 
Education, 2014).  Finally, Moschkovich describes mathematical discourse as the “communicative 
competence (Hymes, 1972) necessary and sufficient for competent participation in mathematical 
practices” (Moschkovich, 2015b, p.47)   

A sociocultural perspective on mathematics learning views mathematics learning as a “discursive 
activity that involves participating in a community of practice” and mathematical activity is framed 
by mathematical knowledge, practices, and discourse (Moschkovich 2002, 2015b). Within a 
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sociocultural approach, the assumed mechanism for learning is appropriation.  Appropriation refers 
to the process by which learners come to use “cultural tools” for themselves and transform them for 
their own purposes (Moschkovich, 2004 and Rogoff, 1990).   

Setting and Curriculum 
The professional development and curriculum supported the teacher’s efforts to facilitate 

mathematical discussions through the promotion of Talk Moves (TMs).  TMs are described as the 
tools that enable productive classroom discussions in mathematics through four steps: 

Step 1. Helping individual students clarify and share their own thoughts, 

Step 2. Helping students orient to the thinking of other students, 

Step 3. Helping students deepen their reasoning, 

Step 4. Helping students to engage with the reasoning of others (Anderson, Chapin, & O’Connor, 
2011, p. 13). 

The unit of instruction, The T-shirt Factory (2007), was designed to provide students with a 
rigorous curriculum and invite their active participation.   It is written as a simulation where groups 
of students establish a T-Shirt factory and keep their warehouse organized while focusing on 
unitizing, place value, and equivalence (Fosnot, 2007). 

Methods 
Field observations, student work, and video recordings (of group work and whole-class 

discussions) were collected during the instructional unit (17 instructional days, total). Field 
observations were taken primarily as an observer. Interactions with students were minimized.  
Researchers gathered samples of student work on two occasions (Days 3 and 6 of the instructional 
unit). Video data for this study were selected from a subsample of six lessons (two each from the 
beginning, middle, and end of the unit) to see if there were any changes in student discussions. Each 
lesson typically included time for Small Groups, during which students worked on assigned tasks in 
groups of 1 – 4.  For each of the six lessons, 1 – 2 small group work sessions (which were student-
centered activities) were transcribed and coded.  The analysis started by locating episodes in the 
video recordings of small groups where students were engaged in the focal mathematical practice, 
Model with mathematics. Within these episodes, I looked for evidence of mathematical proficiency 
(either Conceptual Understanding or Procedural Fluency) and cataloged which discursive practices 
students appeared to appropriate. Then, I looked for evidence of student coordination of multiple 
representations, including utterances, when engaging in mathematical discussions.  In the interactions 
I looked for situated meanings of words and phrases. 

Results 
The teacher often used the “Do you have an idea?” TM as an invitation to explore students’ prior 

knowledge and followed up with a “Say More” TM for elaboration or clarification.  There was one 
student that demonstrated the variety of situated meanings that a single TM could engender.  During 
Day 2 of the instructional unit (see Figure 1 for a copy of the problem on which students are 
working), Jefferson used the “Do you have an idea?” TM five times (pseudonyms are used for all 
participants in the study ). However, two distinct purposes emerged: 1) use of the TM as a request for 
answers, and 2) use of the TM as a deflection.  In all cases, Jefferson initiated the conversational 
exchange using the TM and meaning was determined by the characterization of the outcome initiated 
by the TM when Chloe responded.  
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Number of Rolls Number of Loose T-
Shirts 

 13 
33 

 
Figure 1. Student Problem. Jefferson and Chloe’s instructions: Bundle the shirts.  How many ways 

can you find? 

For example, in the excerpt below, Chloe answered Jefferson’s question in a manner that suggests 
she interpreted the question as a request for an answer; not an idea or a solution process. 

1 Jefferson: Ok.  Do you have any idea? 
2 Chloe:   Yeah.  Yeah.  Yeah.  Yeah.  What’s the number? 
3 Jefferson: It is 13. 
4 Chloe:  We could make one pile… One row of ten and three left over. 
5 Jefferson: Oh yeah!  So, one pile of ten.  Three loose ones.  ((writes down response and 

raises hands victoriously))  So, ok, we need another two. 

When Chloe responded with an answer, “One row of ten and three left over” (Turn 4), Jefferson 
didn’t hesitate to acknowledge the response with hands in the air and stated the need for ‘another 
two’.  When the students attempt the second problem (see Figure 1 for the problem and the excerpt 
below), the students similarly construct the purpose of the TM as a request for answers.   

60 Jefferson …Now we’re on to thirty-three.  Do you have any ideas? 
61 Chloe  Ok.  We could make..  three rows of ten and another three rows of tens. 

Chloe’s suggestion is incorrect; however, these instances suggest that Chloe interpreted the 
question as a request for answers.  Other uses of the TM seem to have been used for the purpose of 
deflection.  In Turn 36, below, Chloe indicated that she “already gave [him] two ideas” and, in Turns 
38 and 40, asserted that she has no more ‘ideas’.  Jefferson’s persistence and the pair’s ultimate 
abandonment of the task suggest that he was using the TM to deflect having to contribute a novel 
solution or process (see excerpt, below). 

35 Jefferson: Ok.  Let’s get to work.  I said do you have any ideas? 
36 Chloe:  I already give you two ideas. 
37 Jefferson: I know you have more. 
38 Chloe:   No, I don’t. 
39 Jefferson: Why are you laughing, huh?  Dude, I know that you have ideas. 
40 Chloe:  No, I don’t. 
41 Jefferson: I think we’re already done with this.  So,… 
42 Chloe:   Go get a new one. 

In the excerpt below, Jefferson appears to use the TM to deflect responding, again. 

76 Chloe   Write three T-shirts and three left-overs. 
77 Jefferson I was gonna do that.  Your turn to do ideas. 
78 Chloe  I already told you one. 
79 Jefferson No!  Those were me.  I did do it. 
80 Chloe   No.  You just do that one. 
81 Jefferson We need to hurry up.  …  I don’t think we need these [unifix] cubes. 
[Turns 82 – 83 omitted]   
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84 Chloe   Ten.  Twenty.  Thirty.  Thirty-one.  Thirty-two.  [modeling with Base-10 
blocks while speaking]  You could make three piles of ten… 

85 Jefferson Ok. 

Chloe, reluctant to give additional answers, stated, “I already told you one” (Turn 78).  Jefferson 
claimed credit saying, “Those were me” (Turn 79) and pressuring Chloe by saying “We need to hurry 
up” (Turn 81).  Chloe conceded and offers another possible answer, “You could make three piles of 
ten…” (Turn 84).  Jefferson successfully deflected his obligation.  There was scant evidence of the 
appropriation of TMs by the students at large.  The interactions above illustrate how the TM “Do you 
have any ideas?” was appropriated and transformed by a student to suit his own purposes. 

Discussion/ Conclusion 
In this study, students appeared to appropriate a TM when engaged in mathematical activity.  The 

purposes seemed to reflect a request for answers to a problem or a deflection of responsibility to 
answer.  This study reflects how students can appropriate and transform practices in unpredictable 
ways.  Further research is warranted to determine how ‘purpose’ can be addressed and incorporated 
into mathematical discussions so that students can reap their full benefit.   
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A series of three design experiments was conducted with middle school students to investigate 
relationships between students’ rational number knowledge and algebraic reasoning. After the first 
experiment a change was made in the investigation of students’ construction of extensive quantitative 
unknowns. Students were asked to represent in pictures and equations the values for an unknown 
height measured in two different, multiplicatively-related measurement units. The work of 13 
students operating at two levels of multiplicative reasoning was analyzed to identify differences and 
similarities. Students operating at the lower level of reasoning required substantial support to 
construct unknowns with implicit quantitative relationships, while students operating at the higher 
level of reasoning constructed unknowns with explicitly embedded units.    

Keywords: Algebra and Algebraic Thinking, Middle School Education 

It is well known that secondary students develop concepts for unknowns and variables that are 
often quite different from what teachers and curriculum developers intend. Common and persistent 
issues include that students see letters as standing for labels of objects rather than quantities and for 
known rather than indeterminate values (e.g., Knuth, Alibali, McNeil, Weinberg, & Stephens, 2005; 
Küchemann, 1981). In addition, an increasing number of secondary students take algebra courses 
(Stein, Kaufman, Sherman, & Hillen, 2011), and so algebra teachers are tasked with working with a 
greater diversity of students. This phenomenon has been managed in several ways, from tracking 
lower-skilled students into double periods of algebra (Nomi & Allensworth, 2013) to teaching all 
students in heterogeneous groups with supports such as a 2-year algebra course (Boaler & Staples, 
2008). In whatever ways diversity is managed, more needs to be known about the algebraic thinking 
and learning of a wide range of secondary students in order to inform the kind of supports that both 
students and teachers need. 

To address these issues, we conducted three iterative design experiments with small groups of 
cognitively diverse middle school students in which we studied relationships between their rational 
number knowledge and algebraic reasoning. Analysis of the first experiment led us to revise our 
approach to developing concepts of unknowns. The purpose of this paper is to describe and account 
for how the students in the second and third experiments conceived of what we call extensive 
quantitative unknowns (EQUs). For example, consider the relationship between two values of the 
unknown height of a school measured in feet and inches: The number of inches that can fit into the 
height is 12 times the number of feet that can fit into the height because each foot in the height is 
equivalent to 12 inches. We call these problems Single Unknown Problems, and we posed them with 
non-standard measurement units to promote rethinking of relationships that students might take for 
granted when working with standard ones. Our research questions are: (1) How did the students 
conceive of EQUs? (2) How can we account for their conceptions? 
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Approach to Algebraic Reasoning and an Analytical Tool 

A Quantitative Approach 
In our experiments we took a quantitative approach to algebraic reasoning, in which a quantity is 

a property of one’s concept of an object or phenomenon “that can be subjected to comparison” 
(Steffe & Olive, 2010, p. 49). Quantities can be extensive or intensive (Schwartz, 1988): Extensive 
quantities can be directly counted or measured (e.g., a distance), while intensive quantities are often 
created out of multiplicative comparisons of extensive quantities (e.g., amount of distance covered 
per unit of time). In our experiments we focused first on extensive quantities because, generally 
speaking, they are more basic than intensive quantities. 

To conceive of an extensive quantity requires conceiving of a measurement unit, of the property 
as subdivided into these units, and of a way to enumerate these units to find a value (Thompson, 
2011). However, extensive quantities can be thought about absent values, which makes them useful 
algebraically (Smith & Thompson, 2008). We conceptualized an EQU as an extensive quantity for 
which a value is not known, but for which a value could be determined. In our experiment we 
focused primarily on distances. So, an EQU could be thought of as a distance for which we have a 
measurement unit; we can imagine subdividing the distance into those units; but we don’t know how 
many of those units will be needed to span the distance. 

Students’ Multiplicative Concepts 
In our work we use students’ multiplicative concepts as a key analytical tool. We conceive of 

students’ multiplicative concepts as the interiorized results of students’ units-coordinating schemes 
(Steffe, 1994). Interiorization refers to re-processing the result of a scheme so that students can 
anticipate it prior to activity. A units coordination involves two composite units (units of units), and 
it means to distribute the units of one composite unit across the units of another composite unit. For 
example, a units coordination of 5 and 7 involves distributing 7 units of 1 across each of the units of 
the 5 to get a unit of 35 that students structure in various ways. 

Students who have interiorized two levels of units (MC2 students) can treat a length as a unit of 
units, or composite unit, prior to activity (Hackenberg & Tillema, 2009; Steffe & Olive, 2010). For 
example, MC2 students can imagine taking a 1-meter length and partitioning it into 5 equal parts 
without having to actually make the partitions. In other words, they can treat a length that represents 
1 meter as a unit containing 5 units, a two-levels-of-units structure.  

Furthermore, MC2 students can make three levels of units in activity: They can insert units into 
each unit in solving a problem. For example, they can insert 7 parts into each of the 5 parts in the 5/5-
meter and determine that they have made 35 parts in all. However, in further activity the 35/35-meter 
becomes only a unit of 35 units; these students do not continue to view the 35/35-meter as a unit of 5 
units each containing 7 units. So, MC2 students can consistently take two levels of units as given and 
create three-levels-of-units structures, but they don’t maintain these structures in further operating. In 
contrast, students who have interiorized three levels of units (MC3 students) can maintain three-
levels-of-units structures in further operating. 

MC2 and MC3 students are the focus of this paper, so we don’t discuss students who have 
interiorized only one level of units (MC1 students) here. We note that operating with a multiplicative 
concept is relatively stable: Progressing from one concept to another requires a significant 
reorganization of schemes that can take two years (Steffe & Cobb, 1988). Current estimates are that 
about one-third of incoming sixth-grade students are MC1 students, with MC2 and MC3 students 
making up the rest of the population (Norton, Boyce, Phillips, Anwyll, Ulrich, & Wilkins, 2015). 
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Method and Data Analysis 
To launch each of the three 18-episode design experiments, we implemented a selection process 

with 21-24 7th- and 8th-grade students: a 30-minute interview and a 12-item worksheet. The 
interview questions and worksheet were designed to assess students’ multiplicative concepts and 
fractions knowledge. Our aim was to use this process to invite three MC1, three MC2, and three 
MC3 students to participate in each experiment; however, MC1 students declined to participate. So, 
we invited six MC2 and three MC3 students to participate in each experiment. In the second and 
third experiments there was some attrition, resulting in 7 students in the second experiment (4 MC2, 
3 MC3) and 6 students in the third experiment (3 MC2, 3 MC3).  

In each experiment the 18 1-hour episodes ran twice per week and were video-recorded with one 
stationary and two roaming cameras. During episodes students often worked in groups of two or 
three using a software program called JavaBars (Biddlecomb & Olive, 2000), and student work was 
recorded with Screenflow (Telestream LLC, 2013). Sometimes students worked in groups that were 
cognitively more homogeneous (e.g., all MC2 students) and sometimes more heterogeneous (e.g., 
both MC2 and MC3 students). 

One researcher (the first author) served as the teacher. Other team members operated roaming 
cameras, took notes, and interacted with students. Between episodes the team processed data, kept an 
Episode Index, watched video, took notes, and discussed conjectures to prepare for the next episode. 
Following each experiment each student participated in a 45-minute interview to assess the student’s 
understanding of topics from the experiment and experience of the class. 

For this paper we engaged in two phases of analysis. First we formulated a second-order model 
(Steffe, von Glasersfeld, Richards, & Cobb, 1983) of each of the 13 students’ rational number and 
algebraic reasoning as it was addressed in the experiments, including students’ concepts of 
unknowns. Second-order models are generated out of researchers’ theoretical constructs, models 
from prior research, and a commitment to use constructs in an orienting but not deterministic way 
(Clement, 2000). To accomplish this analysis, we repeatedly viewed video files, transcribed major 
portions of video, and took detailed notes (Cobb & Gravemeijer, 2008). We also wrote and discussed 
memos (Corbin & Strauss, 2008): interpretations of and conjectures about students’ ways of 
operating and about interactions in which those ways of operating occurred. Then, in the second 
phase we looked across the students to articulate differences in how students operated with 
unknowns and to account for these differences based on our models.  

Analysis 
We found qualitative differences in how MC2 and MC3 students represented and thought about 

EQUs: MC2 students constructed implicit quantitative unknowns, while the MC3 students 
constructed unknowns with explicitly embedded units. We support these claims by demonstrating 
how students worked on Single Unknown Problems. Often MC2 students did not represent the two 
values for the unknown height accurately (from our perspective) in pictures or equations; those who 
did represent the two values accurately in pictures and equations still demonstrated conflations that to 
us indicate their equations did not reflect embedded measurement units. Sometimes MC3 students 
also developed incorrect equations (from our perspective) but revised their work upon questioning; 
furthermore, their comments about their revised equations demonstrated that the equations did reflect 
embedded units. So, while both kinds of thinkers showed evidence of the construction of EQUs, their 
concepts of them differed significantly. 

Due to space limitations, we cannot demonstrate student work here; we will do so in the 
presentation of this paper and in a manuscript that we will develop out of this work.  
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Discussion and Conclusions 
This study suggests that MC2 students require substantial teacher support to create equations 

representing quantitative unknowns, and they may develop only an implicit understanding of the 
quantitative structure that we see. In contrast, the construction of EQUs, complete with an awareness 
of embedded units, is in the province of MC3 students. However, in our study, both MC2 and MC3 
students benefitted from explicit discussion about the meanings they attributed to letters. We see 
developing both common and different supports for algebraic learners like these students to be at the 
heart of what is needed for access to algebra. 
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Recent reports on the state of mathematics education call for a deeper understanding of mathematics 
developmental progressions and recommend improved teacher training for early childhood 
educators. However, few studies have explored the nature of preschool teachers’ existing knowledge, 
beliefs, and orientations toward children’s mathematical thinking. This report describes the initial 
phase of a project aimed at deepening teacher knowledge of how young children construct 
mathematical understanding. The video interviews described in this report illustrate the counting 
stages through which preschool children progress and show potential for use in professional 
learning settings as teachers reflect on their existing knowledge and work to develop more 
sophisticated interpretations of children’s mathematical thinking. 

Keywords: Early Childhood Education, Learning Trajectories, Teacher Knowledge 

Introduction and Purpose 
Early childhood mathematics education has been a topic of increased interest and numerous 

recommendations (NAEYC and NCTM, 2010; Duncan et al., 2007). Early mathematics teaching 
requires a particular knowledge base that includes an understanding of children’s developmental and 
learning processes (Sarama, Clements, Wolfe, & Spitler, 2016). While enhanced knowledge and 
skills have been shown to produce positive influence on change in teaching practices (Garet et al., 
2001), less is known about the specific knowledge base needed for early childhood mathematics 
teaching (Parks & Wager, 2015). 

We are engaged in a research and development project to explore ways to provide early 
childhood educators with increased opportunities to identify children’s existing mathematical 
knowledge and maximize learning opportunities in mathematical play. In the initial phase of this 
project–the focus of this research report–we collected video examples of children’s mathematical 
thinking in one-on-one play-oriented interviews with preschoolers and explored what might be 
noticed about children’s knowledge and ways of thinking. In a future phase, we will use these videos 
with early childhood mathematics educators as potential routes for developing teacher knowledge, 
addressing beliefs, and strengthening child-oriented pedagogical practices. In this study, we 
addressed the following research question: What aspects of children’s counting schemes are 
evidenced through interactions with play-oriented tasks in video-recorded interviews? 

Theoretical Framework 
This project’s goals and activities are situated within a constructivist epistemic framework. 

Consistent with the theories of Piaget, we assume that children construct understanding and develop 
knowledge as a function of their natural ability to think (Kamii & DeClark, 1985). This epistemology 
points to the role a child’s existing knowledge plays in the construction of new knowledge. We draw 
on work by Steffe, Richards, and Cobb to support the identification of the stages through which 
children progress as they develop a counting scheme (1983). Of particular interest to us is the 
“child’s progress in counting…marked by decreasing dependence on perceptual material. The first 
step in that direction is the ability to count figural representations of perceptual items (i.e., visualized 
images), which, though presented in the context of the task, are not perceptually available at the 
moment” (Steffe, Richards, & Cobb, 1983, p. 36-37). 
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For teachers, we acknowledge that enhanced pedagogical skills are needed to recognize and 
make use of children’s knowledge during play (Wager & Parks, 2016). To structure our future work 
with early childhood educators, we will rely on the construct of teacher noticing (Jacobs, Lamb, & 
Philipp, 2010) and the use of videos of children’s thinking in a professional learning setting to 
explore potential pedagogical strategies with teachers. Studies by Sherin and Van Es suggest that 
video use can support teacher noticing and may influence the focus of teachers’ attention (2005). In 
fact, video from teachers’ own classrooms has been shown to be a useful tool in helping teachers 
consider their current practices and explore new strategies (Borko, Jacobs, Eiteljorg, & Pittman, 
2008). We also consider the role of teachers’ beliefs as they develop and enact new teaching 
practices (Borko & Putnam, 1996). Consistent with findings that written vignettes of classroom 
activity have the potential to elicit preschool teachers’ beliefs (Lee & Ginsburg, 2007), we suggest 
that the use of these videos will show similar potential. 

Method 
The data for this phase of the project were collected through video-recorded interviews with 

preschool children from two Head Start preschools in the Western United States. Research associates 
interviewed all preschool children whose parents provided consent. Twenty children were selected 
for ongoing interviews based on the goal of obtaining a sample of children representative of gender, 
initially observed counting level, and primary language. These 20 children were interviewed 
biweekly over the course of 12 weeks. 

Interviews were conducted consistent with the constructivist teaching experiment goals of 
“formulating and testing hypotheses about various aspects of the child’s goal-directed mathematical 
activity in order to learn what the child’s mathematical knowledge might be like” (Steffe, 2002, p. 
177). Within each 10-15 minute interview, children were presented with several short play-oriented 
tasks in which they were asked to count items, say a number word sequence, produce collections of a 
given number, tell the number of items in small sets without counting, sort plastic animals into 
groups by color and count them, count claps or marbles dropped into a cup, count hidden items, or 
build block towers and count the number of blocks used. Following each week of interviews, video 
episodes were analyzed for evidence of children’s mathematical thinking and anecdotal notes were 
taken. During this analysis interviewers discussed observations and planned tasks and questions they 
would consider in the following interview. 

Preliminary Findings 
All interviews were video-recorded and analyzed by the team of research associates. Initial 

findings revealed that children brought a range of counting concepts and skills to the tasks, evidenced 
in the ways they counted items and responded to questions. Table 1 presents a sampling of our 
observations consistent with established research drawn from the analysis of the video interviews. 
We then offer one vignette from video collected to illustrate a specific example noted in the table. 

In one interview [noted in bold in the table], the interviewer asked Mario (pseudonym) to count 
the number of marbles that were dropped into a cup. The marbles remained hidden from Mario’s 
view while being dropped and while in the cup. The following portion of the interview took place 
after Mario had correctly produced counts of three and two marbles. 

Mario: (Summarizes his previous two counts). I got three and two. (Shows finger pattern of three 
on left hand with thumb, forefinger, and middle finger. Shows finger pattern of two on right 
hand with forefinger and middle finger.) 

Interviewer: Good job, you made them with your fingers. OK, let’s do it again. (Slowly drops 
four marbles into the cup while Mario listens.) 
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Mario: Four. (Quickly shows finger pattern of three on his right hand with thumb, forefinger, and 
middle finger). 

Interviewer: (Shows Mario the cup). 
Mario: (Touches each marble inside the cup as he counts.) One, two, three, four. I got four! 

Table 1: Observations Based on Counting Types (Steffe et al., 1983; Wright et al., 2006) 

Emergent Perceptual    Figurative 

may use number word sequence, but 
may not coordinate words with 
items 

counts to find out how many items 
are present 

counts items in a screened 
collection or may count items in 
more than one screened collection 

may count items of a collection 
multiple times and arrive at 
different number words  

counts perceptual unit items, 
coordinates correct number word 
sequence with items 

counts substitutes for perceptual 
items (visualized spatial patterns, 
sequentially raised fingers or other 
movements, verbal items) 

may use number word sequence 
from “one” in response to “How 
many are there?” 

may count two addends and not 
count joined collection when asked 
how many 

 

may make finger patterns for 
numbers one to five 

may reorganize items to facilitate 
counting 

 

 
Mario recognized the sound of the marbles hitting the bottom of the cup as something to be 

counted, and progressively produced more accurate counts of the marbles. While Mario has some 
finger patterns for numbers to five, he may lack a consistent pattern for four. In further interactions 
with Mario, asking him about the finger patterns he shows for his counts may help him to reconcile 
this inconsistency. 

Discussion 
The videos collected during this phase of the project provide specific examples of preschool 

children’s thinking in counting activities and demonstrate the range of counting types that may exist 
in a preschool classroom. Furthermore, our analyses suggest that early learning environments are 
comprised of children who are operating at varied levels of understanding. Our goal in the 
subsequent phase of this project is to use these videos as models of early mathematical thinking to 
encourage discussion and reflection among teachers in professional learning settings. Using the 
construct of noticing, we plan to support teachers in learning to identify ways in which children may 
be operating and encourage the implementation of child-oriented pedagogical practices that 
acknowledge these existing understandings. We believe these video artifacts have the potential to 
surface the implicit theories teachers hold about how young children come to know and understand 
mathematics and could prove to be helpful tools in developing early educators’ knowledge, beliefs, 
and practices. 
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This research brief highlights analogy use of a Grade 5 student, Kim. Kim participated in four 
individual interviews across 12-weeks, embedded within a teaching experiment. Drawing on the 
theoretical perspective of in-between and within-domain analogies, I analyzed how Kim drew upon 
analogies as she solved the integer open number sentences during the individual interviews. These 
analogies are distinguished between whole number and integer analogy use. I connect existing 
research with descriptions of whole number and integer analogy.   

Keywords: Number Concepts and Operations, Elementary School Education, Cognition, Middle 
School Education  

Children are capable of reasoning about negative integers in productive and sophisticated ways 
prior to school instruction (e.g., Bofferding, 2014; Bishop et al., 2014; Featherstone, 2000). Although 
there are different ways to describe children’s thinking about integers—mental models (Bofferding, 
2014), ways of reasoning (Bishop et al., 2014), and conceptual models (Wessman-Enzinger, 2015)—
there is much agreement that children frequently utilize analogies as they make sense of integer 
addition and subtraction (Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2016; Bofferding, 2011; 
Bofferding, 2014; Wessman-Enzinger, 2015). In fact, analogical reasoning is likely a component of 
all learning (Vosniadou, 1989).  

Bofferding (2011) described the different types of analogies that children make, ranging from 
comparisons that involve surface features to deep structural comparisons, and comparisons that 
involve both. A surface feature comparison, for example, includes comparisons like -5 – 9 = � to 9 – 
5 = �, because both number sentences involve the same digits. A deep structure comparison 
includes recognizing that 3 – 7 = � is different from 7 – 3 = �. Bishop et al. (2016) described 
different comparisons, or analogies, that are logical necessities: variations in signs, variations in 
operation, and variations in addends. A variation in sign when number sentences like 3 – 7 = � and 
3 – -7 = � are compared. Variation in operations includes comparisons like -5 + 2 = � and -5 – 2 = 
�. Variations in addends includes comparing -1 + 4 = � and 4 + -1 =�.  

Although differentiating these types of comparisons is important, researchers do it differently 
(Bishop et al., 2016; Bofferding, 2011; Wessman-Enzinger, 2015). This work seeks to understand the 
structural similarities of these different types of analogies and potentially connect this work by 
drawing on Vosniadou’s (1989) definition of analogical reasoning.  

Theoretical Perspective  
Vosniadou (1989) characterized the mechanism behind analogical reasoning as the following: (a) 

“retrieving a source system (Y), which is similar to X in some way”; (b) “mapping a relational 
structure from Y to X”; (c) “evaluating the applicability of this relationship structure for X” (p. 422). 
She also highlighted two different types of analogies: between-domain and within-domain analogies. 
Between-domain analogies are when two comparisons are made (i.e., comparing Y to X), but these 
comparisons have similarity in structure, but are in two different systems (i.e., X ∍ {A}, Y ∍ {B}). 
Within-domain analogies are comparisons that belong to the same, or very close, conceptual 
domains. For example, if I compared wavelengths of air to wavelengths of water this would be a 
between-domain analogy since water and air are different structures. But, if I compared amplitude 
and frequency of sounds waves these would be within-domain analogies since amplitude and 
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frequencies of sounds waves belong to the same conceptual structure. Vosniadou stated, “The 
distinction between within-domain and between-domain analogical reasoning is not a dichotomous 
one. Rather, it represents a continuum from comparisons involving items that are clear examples of 
the same concept to items that belong to different and remote domains” (p. 415). Specific to this brief 
report, I address the distinction between whole number and integer analogy (between-domain and 
within-domain analogies), and use one student, Kim, to illustrate this difference.  

Method 

Context of Study 
Three 10-year old Grade 5 children from a rural Midwest school in the United States participated 

in a 12-week teaching experiment (Steffe & Thompson, 2000). These Grade 5 children made ideal 
participants because they did not have prior instructional experiences with operations with negative 
integers. As part of this study, the children engaged in four individual, structured task-based 
interviews (Goldin, 2000). These structured task-based interviews provided space to evaluate the 
children’s understandings of open number sentences individually, while they solved the same integer 
number sentences types (Murray, 1985) across the 12-weeks. Group sessions of the teaching 
experiment were about solving integer problem in contexts, not intended to support analogy use, and 
are described elsewhere (Wessman-Enzinger, 2015). The data generated for this study comes from 
when the children solved open number sentences during the individual sessions.  

Individual Interviews 
Across the individual sessions, the student solved open number sentences of the same type. For 

instance, -20 + 15 = �	is considered the same problem type as -16 + 4 = �, aligning with the 
problem type -a + b = �, a > b (Murray, 1985). The transcript for solving each of these open number 
sentences constituted the unit of data— there were 93 units for each child and 279 total units of data 
for this investigation. For this report, Kim is selected as case study because she had the most units of 
data coded with analogical reasoning. 

Data Analysis 
A second researcher and I examined the data utilizing a constant comparative method (Merriam, 

1998), looking for the use of analogy as defined by Vosniadou (1989). We compared and negotiated 
all differences on this first coding of analogy. During the secondary pass of data, I developed the 
definition of analogy further with the distinction between whole number analogies and integer 
analogies, relating to Vosniadou’s within-domain and between-domain analogies.  

Descriptions of Analogical Reasoning with Integer Addition and Subtraction 
Children utilized analogy when they compared integers in a way that connects an integer addition 

and subtraction number sentence to different addition and subtraction number sentences. The two 
subcategories of analogy, whole number analogy and integer analogy, constitute types of analogy 
use. Whole number analogies are comparisons of integer addition or subtraction open number 
sentences to other addition or subtraction problems with only whole numbers, or positive integers. 
For example, Kim compared -15 – -4  = � to 15 – 4 = 11 (correctly determining the solutions to -15 
– -4  = � as -11). Her comparison, 15 – 4 = 11 is a number sentence with only whole numbers. 
Integers analogies are comparisons of integer addition or subtraction problems to different, and not 
necessarily equivalent, integer addition or subtraction problems. Integer analogies include the 
comparison of an integer addition and subtraction problem to a number sentence with at least one 
negative integer. For example, Kim compared � – -3 = 2 to 1 – -3 = 4 (correctly determining the 
solution to � – -3 = 2 as -1). Her comparison, 1 – -3 = 4, involved negative integers in the number 
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sentence this time. For both of these examples, the comparisons are not mathematically equivalent: -
15 – -4 ≠ 15 – 4 and -1 – -3 ≠  1 – -3. This aligns to Vosniadou’s (1989) definition of analogy that 
two comparisons are related, but not necessarily structurally equivalent. What distinguishes 
analogical reasoning is the relation is not the equivalence, but the comparison of addition and 
subtraction problems to other addition and subtraction problems. Thus, both whole number analogies 
and integer analogies are examples of analogical reasoning (Vosniadou, 1989). This distinction 
between whole number and integer analogy is described in more depth next.  

Whole Number Analogy 
Kim utilized whole number analogy when she solved -12 + -5 = � in the following excerpt: 

(Writes -17 in the box.) Both of the numbers have the negative sign in front of them. That means 
that they are both negatives. And, that's pretty much the same thing as twelve plus five when you 
add a negative twelve plus five. It’s just negatives this time. So you just (shrugs) ... the twelve 
plus five and got seventeen. And I just added the negative onto it. … It comes out as the exact 
same answer, but the only difference is that they add a negative sign to it. 

In this excerpt, Kim stated that -12 + -5 = � is “pretty much the same” as 12 + 5 = �. Kim’s direct 
comparison of -12 + -5 = � to 12 + 5 = �, only includes whole numbers is a typical example of 
whole number analogy.  

In the excerpt above Kim drew upon whole number analogy and determined a correct solution. 
However, sometimes as Kim drew upon whole number analogy she obtained incorrect solutions. For 
example, she compared -5 – 4 = � to 5 – 4 = 1. As Kim solved -5 – 4 = = ☐, she concluded the 
answer was -1, “Five minus four equals one. Pretty much the same thing. You don’t really need the 
negatives.”  

Integer Analogy 
Kim constructed integer analogies included when she made comparisons to number sentences 

with negative integers. For instance, Kim compared -4 + � = -19 to -4 + 15 =11 (correctly 
determining the solution of -4 + � = -19 as -15). She made her comparison, -4 + 15 = 11, to help her 
determine that the solution to -4 + � = -19 needed to be negative. She, then made a second 
comparison, a whole number analogy, comparing -4 + � = -19 to 4 + 15 = 19. In contrast to whole 
number analogy, comparing -4 + � = -19 to -4 + 15 =11 constitutes an integer analogy because it 
involves negative integers.  

Kim also constructed integer analogies that did not lead to a correct answer or made comparisons 
to number sentences that are not true. For example, Kim drew upon integer analogy as she compared 
3 – � = 4 to 3 – -1 = 2. But, 3 – -1 does not equal 2. Consequently, Kim’s use of integer analogy 
could not help her produce a correct solution since 3 – -1 ≠ 2.     

Discussion & Final Remarks 
The distinction between whole number and integer analogies reported here relates to Vosniadou’s 

(1989) within-domain and between-domain types of analogies. Whole number analogy related to 
between-domain analogy in the sense that these types of analogies connect the whole numbers to 
integers. Integer analogy is a type of between-domain analogy in that, although the two integer 
number sentences are not necessarily mathematically equivalent, the children relate these two 
different types of integer number sentences in their own unique ways. 

Crossroads are a place where a road crosses a main road or connects two main roads, one of the 
conference themes this year. This theme resonates in this research. First, this research represents a 
crossroad as it connects well-traversed work in analogy (Vosniadou, 1989) and current research with 



Early Algebra, Algebra, and Number Concepts 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

322 

integers (e.g., Bishop et al., 2016). In alignment with prior work on children’s thinking about integers 
that illustrates that different types of comparison are made (Bishop et al., 2016; Bofferding, 2011), 
Kim used whole number and integer analogy differently, developing use of integer analogy and using 
analogies to obtain correct solutions. These results extend this work of Bofferding (2011) and Bishop 
et al. (2016), but also complement and connect this work by illustrating that these types of 
comparisons (e.g., surface features, deep structure, variation in operations, varying order of addends) 
are capable of being grouped as whole number analogy and integer analogy. A surface feature 
comparison (Bofferding, 2011) or variations in operations (Bishop et al., 2016), for example, could 
be a whole number or integer analogy. Analogy use represents a crossroad where integer research is 
connected.  
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Introduction 
This analysis is situated within the Improving Formative Assessment to Support Teaching Algebra 
(iFAST Algebra) Project, an NSF-DRK12 grant focused on enhancing middle-school mathematics 
teachers’ formative assessment practices in algebraic function. The project involves design and study 
of a professional development program that aims to develop teachers’ understanding of the 
hypothetical learning trajectories (HLTs) embedded in their classroom curriculum. The integration 
of HLTs into teaching requires framing them in ways that are interpretable and useful for teachers. 
One such framing establishes a set of dimensions for linear-function tasks to highlight key 
conceptual obstacles and landmarks along an HLT. We document how dimensions and 
representations play out in a sequence of tasks across a middle-grades curriculum (CMP3). We show 
how key task features signal conceptual concerns along HLTs in algebra.  

Analysis of Dimensions and Representations of Linear-Function Tasks 
Our framing of task dimensions draws from an approach to algebraic task analysis (Leinhardt, 

Zaslavsky, & Stein, 1990) in which functions-related graphing tasks were investigated using four 
constructs: action called for, contextualizing situation, type of variables, and location of 
mathematical attention. In addition, the importance of translating among representations of algebraic 
functions— tables, graphs, equations, pictures, and verbal situations—is well documented (see 
Brenner, et al., 1999). We first analyzed several pilot tasks to further specify dimensions and levels 
for each, and refine representation codes (Figure 1). We then applied the refined tools to all tasks. 

Results 
Preliminary analysis identified key dimensions levels with 

a hypothesized direction of increasing complexity. When 
analyzed against these dimensions, the sample of tasks in 
CMP3 reflected a robust distribution of task features, 
particularly with respect to translations among 
representations, mathematical actions, and explicitness of 
parameters in the function representation. Analysis also 
identified key conceptual transitions in the curriculum (e.g., 
introduction of non-proportional linear functions, non-positive 
slopes, tables with non-unitary input increments). 
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Figure 1. Task dimensions. 
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The give-me-n task (e.g., asking a child for 3 or 5 chips from a pile of 10 chips) is used 
widely in developmental research as the operational definition of a child’s understanding of 
small numbers (n-knower level) and the cardinality principle (CP) with larger ns (CP-knower 
level). The CP entails recognizing that the last number word used in the counting process 
represents the total. However, the give-me-n task, which entails mapping a number word to a 
collection, may be cognitively more challenging than the how-many task, which involves 
mapping a collection to a number word and, thus, provides a direct measure of these constructs. 
Two studies were undertaken to evaluate whether the two tasks produce equivalent results for 
subitizing small numbers (n-knower level) and an understanding of the CP (CP-knower level).  

Study 1 entailed comparing 60 3-year-olds’ (M = 43.2 months, SD = 3.1 months) 
performance on the give-me-n and the how-many tasks with sets of 1 to 3 at three time points 3 
weeks apart. A 2 (Task: how many v. give-me-n) x 3 (Size of n = 1, 2, or 3) x 3 (Time: T1, T2, 
or T3) repeated-measure ANOVA was conducted. This analysis yielded main effects for Task 
(F[1, 59] = 17.078, p < .001) and Size (F[2, 118] = 39.069, p < . 001) but not Time (F[2, 118] 
= .448, p  = .64). In addition, a Task x Size interaction was significant. Specifically, when n=3, 
children performed significantly better on the how-many task (mean for all three sessions = 
1.494) than on the give-me-n task (M = 1.022), F(1, 59) = 34.061, p < .001, Cohen’s d = 0.635. 

Study 2 was undertaken to directly compare 3- and 4-year-olds’ (M = 49.4 months, SD = 
3.95 months) performance on the how-many and give-me-n tasks with larger numbers (6 & 8). In 
addition to a how-many task with linear arrays, a more difficult how-many task was also 
administered. Unlike the linear version and similar to the give-me-n task, the challenging how-
many task entailed counting non-linear arrays and, thus, entailed more than minimal effort to 
keep track of which items have been counted and which need to be counted. As children may 
merely memorize a state-the-last-n rule for responding to how-many questions and may not truly 
understand the CP, two “how-many application tasks” (identity conservation and cardinality 
equivalence tasks) were also administered. These tasks involved determining a cardinal value of 
a collection and then applying this information in a meaningful manner. 

Performance on the give-me-n task was significantly and substantially (as measured by effect 
size) lower than that on the how many—easy version (p = .016, Cohen’s d = 0.434) and the how 
many—hard version (p = .001, Cohen’s d = 0.609). The difference was marginally significant 
but still substantial for the identity conservation task (p = .052, Cohen’s d = 0.356) and 
cardinality equivalence task, (p = .083, Cohen’s d = 0.352). 

The results of the present research confirm that the give-me-n task is but an indirect or 
proximate measure of the 3-knower level and the CP-knower level. Importantly, using the give-
me-n task as the sole measure of these key aspects of early numeracy may seriously 
underestimate children’s early number development. Performance on the give-me-n task more 
accurately reflects “n-producer levels”: verbal subitizing-based set production and counting-
based set production, which requires a cardinality concept more advanced than the CP.  
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ASSESSING SYMBOL SENSE BY IDENTIFYING STRATEGIC SOLUTIONS  

 Dan Manzo Kate Samson Erin Ottmar 
Worcester Polytechnic Institute Indiana University Worcester Polytechnic Institute 
 dvmanzo@wpi.edu knsamson@indiana.edu erottmar@wpi.edu 

 Tyler Marghetis David Landy 
 Indiana University Indiana University 
 tyler.marghetis@gmail.com dlandy@indiana.edu 

Keywords: Algebra and Algebraic Thinking, Assessment and Evaluation, Problem Solving 

When solving math problems, we can often reach the correct answer using different approaches. 
Some approaches are more efficient than others—for instance, you might notice a shortcut, or use a 
trick to quickly simplify a complex equation. The ability to identify clever solutions is part of what’s 
known as ‘symbol sense.’ Researchers suggest that people who are stronger at math should be better 
able to recognize strategic solutions and avoid less-strategic approaches (Bokhove & Drijvers, 2010), 
but this notion has not been tested systematically.  

The current study explored whether people can differentiate between incorrect solutions, correct 
but less strategic solutions, and correct solutions that are also highly strategic. In order to do this, we 
showed each participant a series of algebra problems. For each problem, they also saw the first step 
of four different approaches to solving it: an invalid manipulation; a valid but ultimately useless 
manipulation; a valid, helpful, but less strategic manipulation; and a valid manipulation that would 
lead to a clever, strategic solution (Table 1). On the basis of these four first-steps, participants rated 
each approach to solving the problem, using a scale from 0 (a good student should never use this 
strategy) to 100 (a good student should always use this strategy). 

We found that participants exhibited two distinct patterns of results. Many participants gave 
higher ratings to clever answers, thus distinguishing these strategic approaches from formally correct 
manipulations that were ultimately useless or inefficient. Others did not distinguish between formally 
valid approaches, giving equally good scores to any approach that did not include an error (i.e., 
clever, less strategic, and useless approaches). Critically, the ability to distinguish strategic, clever 
approaches from less strategic or useless approaches was related to both algebraic skill (as measured 
by accuracy) and mathematical experience (as measured by the number of math courses completed). 
These findings suggest that the ability to recognize clever or strategic approaches—’symbol sense’—
is a critical component of complex mathematical skill. 
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INTERVENTION PROGRAM FOR STUDENTS WITH LEARNING DIFFICULTIES IN 
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About 5-10% of school age children are identified as having learning disabilities in mathematics 
(LDM), many of whom become at significant risk of failing the secondary mathematics curriculum. 
Given the increases in sophisticated and affordable technology for in and out of school, parents and 
teachers often turn to the many games, ‘apps,’ and web-based teaching/learning programs for help. 
However, there is a lack of Resources/Materials/Tools (RMTs) that focus on building conceptual 
understanding of fundamental mathematical ideas--concepts that are essential to enabling these 
students to understand and solve word problems and catch up with their peers. Without such RMTs, 
students with LDM are left further behind and virtually denied access to mathematics learning 
opportunities both inside and outside the elementary classroom. The purpose of this National Science 
Foundation funded project (Xin, Kastberg, & Chen, 2015) is to create a web-based intervention 
program to address the skill deficit and immediate needs of second- and third-grade students with 
LDM in meeting the Common Core State Standards for Mathematics. The objectives of this project 
include:  

1. Create the curriculum content, screen design, and teacher manual for four modules of this 
computer-assisted tutoring program in the area of additive word problem solving;  

2. Design and develop the cross-platform computer application that can be ported as  web-
based, iPad, Android, or windows app, which can run on different kind of computers and be 
accessible to students with various social economics status in a range of environment;  

3. Conduct a small-scale single subject design study as well as a randomized controlled trial 
(RCT) study to evaluate the potential of this program in enhancing elementary students’ word 
problem-solving performance. 

Multiple innovative features of this computer assisted tutoring program include: (a) an 
instructional program designed to emphasize mathematical model-based approach to promote 
students’ generalized problem-solving skills, (b) an emphasis on computer science technology to 
facilitate instruction that is computer-generated and specifically tailored to each individual student’s 
learning profile in real time, and (c) an emphasis on making the reasoning behind mathematics 
explicit to students through preparing fundamental mathematical ideas (e.g., a number as an abstract 
composite unit). This computer-assisted tutoring program represents a shift from traditional problem-
solving instruction, which focuses on the choice of operation for solution, to a mathematical model-
based problem-solving approach that emphasizes an understanding and representation of 
mathematical relations in algebraic equations and therefore promotes generalized problem-solving 
skills. This project is expected to make a broader impact due to its cross-platform (web-based, iPad, 
Android, or windows app) tool’s flexibility –with group or one-on-one instruction within the regular 
classroom settings or in pull-out settings during or after the school day, and with individuals at home. 
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The Problem 
Development of conceptual understanding of the algorithm for adding fractions is built “using 

visual models, estimation, unit-fractions understanding, equivalence, and properties of operations” 
(Petit et al., 2016, p. 1420). These relevant concepts are investigated across grades 3-5 progressively, 
and by the end of grade 5, students should develop procedural fluency using the algorithm building 
on conceptual understanding (CCSSI, 2010).  Research has suggested that addition of fractions 
should be developed through solving contextual problems using area models (Carmer, Wyberg, & 
Leavitt, 2008) and/or linear models (Izsak, Tillema, & Tunc-Pekkam, 2008).  However, putting these 
research ideas into daily classrooms has been a challenging task. We report on a research-based 
lesson that promotes students’ understanding and fluency through Chinese lesson study (LS).   

Method and Results 
The LS occurred in a school system in a mid-size city in the southeastern USA. Three K-5 

teachers implemented two cycles of a research-based lesson of addition of fractions in 5th grade 
classrooms. The LS was facilitated by three professors in math education from a large, public 
university in the city, and one math specialist from the school system. Data included lesson plans, 
videotaped research lessons, and post-lesson debriefings and reflection reports. Data analysis focused on 
capturing major changes between the two lessons and major features of lesson two. Reflection essays 
were analyzed through constant comparison to identify what teachers learned by the LS.   

The lesson improved significantly toward developing the algorithm both conceptually and fluently. This 
improvement was facilitated by the development and inclusion in the second lesson of a graphic organizer 
involving three strip diagrams, bringing an area model and a number line together.  Students represented 
the two fractions to be added in two of the strips of the diagram, and subdivided these into equal-sized 
pieces, which modeled finding fractions equivalent to the original addends only with a common 
denominator. This organizer aided teachers and students in more deliberately connecting the symbolic steps of 
the algorithm with the models. In lesson one, the students used area models to add fractions and then 
performed the algorithm, but the connection between the two was weak. The teachers appreciated the process 
of the LS and were proud of the product. They perceived their growth in knowledge about content, pedagogy 
and student learning, the specifics of which will be specified in the poster.   
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Research studies about both children’s and adults’ conceptions of the relative size of large 
numbers have employed number line tasks and quantitative measures of analysis.  While these 
studies have revealed important findings, missing from these analyses are the participants’ reasons 
for their placements of large numbers on a number line.  Because pre-service teachers (PSTs) are 
tasked with planning and implementing learning experiences, their conceptions are important for 
mathematics teacher educators to understand.  Brass and Harkness (2017) used a socio-cultural 
qualitative research design and asked the question:  How do PSTs think about large numbers and the 
relationships between large numbers?  Pre-service elementary, middle, and secondary teachers’ 
(n=128) were asked to place one billion on a number line segment with endpoints at zero and one 
trillion and write explanations for their placements.  Nine distinct explanations for these placements 
were identified (Brass & Harkness, 2017).   

For this poster session we will show examples of these nine different explanations (Brass and 
Harkness, 2017) and highlight the intersections between them and the findings of quantitative studies 
involving the relative size of numbers.  Quantitative studies have largely been cognitive or 
psychological in nature and have focused on:  logarithmic-to-linear shifts (Moeller, Pixner, 
Kaufmann, & Nuerk, 2009; Slusser, Santiago, & Barth, 2013); proportionality (Barth & Paladino, 
2011; Landy, Silbert, & Gilbert, 2013; Siegler & Opfer, 2003); familiar numbers (Rips, 2013); 
number nomenclature (Landy et al., 2013); and, place value (Moeller et al., 2009).  Most studies have 
treated these topics as parallel to each other; however, our aim is to show how they overlap within 
mathematics education.  For example, concepts of place value are contingent upon both 
understanding of proportionality and familiarity with number names.   

Our aim is to provide a deeper understanding of PSTs’ conceptions of the relative size of 
numbers.  This work will inform mathematics teacher educators so that they plan activities that help 
PSTs move toward proportional, spatial, and place value number sense related to the relative size of 
large numbers.  
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It is generally accepted that a relational conception of equivalence (sameness or 
interchangeability of expressions), is critical for elementary students’ success in latter mathematics 
(Blanton & Kaput, 2005). By contrast, an operational view of the equals sign (i.e. producing the 
answer) hinders their success. Researchers often use different types of items to assess students’ 
conception of equivalence (Stephens et al., 2013). These items mainly fall into two categories: 
true/false items with closed number sentences (i.e. a + b = c + d) and open number sentences (i.e. a + 
b = c + ¨). However, research tends not to focus on the specific advantages each type of item has in 
assessing conceptions of equivalence. The purpose of this study is to examine how each open number 
sentences and true/false closed number sentences elicit evidence of students’ relational conception of 
equivalence. 

The data used in this study includes observations of two second-grade students’ in two sessions 
from a year-long teaching experiment. We found that both students’ responses on true/false closed 
number sentences indicate that they have relational conception of equals sign (see figure 1). In 
true/false closed number sentences both students compute the answer for each side (i.e. expression) 
and then compares to see if both sides equal to the same answer. However, in the very next session 
when they got open number sentence (8 + 5 = o + 10) both students represented operational 
conception of equal sign and put 13 in the box.     

 
Julia (14 + 9 + 2 = 17 + 8) Jacob (9 + 8 = 6 + 11) 

   
Figure 1. Participants’ responses in session 13 for true/false closed number sentences. 

The possible reason behind students’ success in closed number sentences is that the structure of 
such problems allows students to treat each expression separately without seeing the equation as a 
math object on its own. On the other hand, in open number sentences counting and comparing 
scheme does not work due to the presence of unknown. Thus, open number sentences make it more 
obvious if students are not seeing the whole equation as an entity. It is therefore, argued that open 
number sentences provide better assessment items for understanding of equivalence as compared to 
closed number sentences. 
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Most students are generally uninterested in mathematics because of its abstractness.  Magic 
can captivate students because of their innate capacity to be intrigued and their proclivity to 
resolve curiosity.  Educators have advocated the use of math magic to teach algebra (Benjamin & 
Brown, 2014; Matthews, 2008).  In her study involving 23 ninth graders, Koirala (2005) found 
that math magic motivated students to learn basic algebraic concepts, and resulted in a pre-to-
post improvement in solving basic algebraic problems. Recognizing the power of magic in 
reinforcing foundational concepts like variables, expressions, equations, and inverse functions, 
we implemented two magic activities in a capstone course for preservice 4-8 math teachers. In 
the 5-4-3-2-1-½ Magic, students think of a secret number and perform arithmetic operations (add 
5, times 4, minus 3, divide 2, add 1, add ½). Upon hearing a student’s final number, the teacher-
magician can spontaneously say out the corresponding secret number.  In the I-Know-Your-
Final-Answer Magic, the magician made every participants end up with the same final number.   

The research questions are: (a) How do students respond to the magic activities? (b) Which 
type of magic activities do students enjoy more? (c) In what ways do students feel that the 
activities have increased their understanding and/or appreciation of algebra? Students’ written 
work on their thoughts about how each magic worked were collected and analyzed. The other 
two research questions were answered using students’ responses in an online survey and a focus 
group. There were 25 participants in this study; a few students being absent on certain days. 

For the 5-4-3-2-1-½ magic, 13 out of 22 students figured out the trick using strategies like 
arithmetic approaches, reasoning with number patterns, and working backwards. Only two 
students thought of using algebra but could not figure out the trick algebraically. For the second 
magic, 39% successfully used algebra to show how the magic worked, 43% had errors in their 
use of algebra, and 18% did not even attempt to use algebra. Based on the survey and the focus 
group data, students overwhelmingly liked the magic activities especially the 5-4-3-2-1-½ magic, 
found them to be engaging and fun, and enjoyed the challenge to figure things out on their own. 
They appreciated its connections to algebra concepts and thereby gained a better understanding 
of the usefulness of algebra (a variable to represent the secret number, an expression to represent 
the steps, and solving for x to find the inverse function that corresponds to the trick). They found 
that the magic activities had reinforced what they had learned, but forgotten, about algebra.  
They also expressed their intent to use the magic activities in their own classroom. 
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The Common Core State Standards for Mathematics (Common Core State Standards Initiative, 
2011) highlight the importance of using “visual fraction models” for teaching and learning fractions 
to help students explore the underlying ideas of fraction multiplication and deepen their 
understanding of multiplying fractions. However, there are various misrepresentations and 
misinterpretations of fraction multiplication models made by teachers and students (Webel, Krupa, & 
McManus, 2016). Although teachers and students may assume the typical area model for the 
multiplication of fractions is a conceptual extension of the area model for whole number 
multiplication, the area model — prevalently used in current U.S. curricula for fraction multiplication 
— seems not a direct conceptual extension of the area model for whole number multiplication (Son, 
2012). Predinger (2008) also shows (dis)continuity of the mental models of multiplication when 
students having transitions from whole number multiplication to fraction multiplication. It thus 
requires a careful investigation of the effective use of area models to help students deepen their 
understanding of multiplying fractions. 

The purpose of this study is to consider how various area models in mathematics curricula 
support student understanding of fraction multiplication. Three U.S. textbooks and one Korean 
textbook are examined for how they offer opportunities with fraction representations, corresponding 
area models, and related word problems to foster understanding of fraction multiplication. 

The results point out that many models are just reflecting the appearance or different characters 
of models themselves, not carefully reflecting students' action, thinking, and thought process in 
relation to models and the nature of multiplication. They also indicate that two different types of area 
models are used in various contexts of fraction multiplication: the area-to-area model and the 
lengths-to-area model. Each model reflects different aspects of a fraction and different thinking 
processes involved with fraction multiplication. Korean textbook uses both two models in teaching 
fraction multiplication, whereas U.S. curricula rarely introduce the lengths-to-area model for fraction 
multiplication. 

These findings suggest that without a careful conceptualization of the two area models, teachers 
and students may overlook the conceptual ideas of fraction multiplication and connection to the 
models for whole number multiplication. We thus address the two types of area models representing 
the fraction multiplication processes in detail and discuss how to carefully introduce those models to 
help students attain a better understanding of the multiplication of fractions. 
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Introduction and Method 
Being fluent with basic combinations is crucial for achieving mathematical proficiency and 

entails the ability to find the sums and differences of basic number combinations efficiently (generate 
the answer accurately and quickly), appropriately and adaptively (Baroody,1985; NMAP, 2008). 
Researchers agree that children typically progress through three overlapping phases to deduce 
answers to unknown facts— a) counting, b) deliberate reasoning with known facts and, c) automatic 
retrieval—before achieving fluency with basic facts or family of facts (Geary, Hoard, Byrd-Craven, 
& Desoto, 2004). Although words such as quick and fast are often used to define basic fact fluency, 
what exactly counts as fast is often unclear. The current study evaluated the response time criterion 
for defining first graders’ fluency (retrieval) with basic addition and subtraction combinations. Part 
of a larger experimental study with a diverse group of first graders from the Midwestern U.S., the 
data considered for this study was drawn from 75 students who completed the larger study. The data 
consisted of students’ answers to basic addition and subtraction problems, response-time to generate 
each answer and, a description on how each answer was generated. 

Findings and Conclusion 
All correct responses were coded for strategy type and use: overt (deliberate or apparent use of 

the strategy) and covert (reporting a counting/reasoning strategy when asked during follow up 
questioning). The proportion of overt reasoning and counting responses for addition and subtraction 
problems were calculated with various response time (RT) cut-offs —from 2 to 5 seconds. The 3-
second response time criterion successfully differentiated between fluent and non-fluent counting, 
with zero responses created under 3 seconds for all problems. However, this was not the case for 
responses generated under 3 seconds using a reasoning strategy, with approximately 3.5% of the 
addition and 29% of the subtraction responses attributed to reasoning. These findings indicate that 
different RT cut-offs may be appropriate to define fluency in addition and subtraction problems as 
opposed to using one RT cut-off as a proxy for defining retrieval (or fluency).  
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Pattern generalization is acknowledged in its importance as an introduction to algebra as well as 
in the development of algebraic reasoning (e.g., Jurdak & El Mouhayar, 2014). Figural patterns, in 
particular, provide opportunities to reason about diagrammatic and algebraic structure (Rivera & 
Becker, 2008). This study investigated the ways in which a group of prospective teachers (PSTs) 
attempted to provide generalizations for figural patterns. More specifically, we analyzed PSTs’ 
approaches toward expressing generality and the relation of such approaches to PSTs’ algebraic 
understanding of figural patterns. The research question was: how do PSTs’ approaches to algebraic 
generalization relate to their understanding of figural patterns? 

Eight PSTs at a Midwestern university in the United States participated in our study. They were 
in their third year of a secondary mathematics teacher preparation program. During the study, the 
PSTs were asked to provide generalizations for four different figural patterns. The data sources 
included both video-recorded clinical interviews with the PSTs and their written work on the tasks. 
Based on the research goal, we coded the data qualitatively and categorized the ways in which the 
PSTs produced their generalizations. The findings show that the PSTs employed two approaches to 
generalization: rule for patterns (attempting through trial-and-error to fit a symbolic rule onto the 
numeric pattern that was extracted from the figural pattern) and rule from patterns (drawing on 
numeric patterns in conjunction with the diagrammatic structure of figures to generate a symbolic 
rule). One PST, Amy, employed a rule-for-patterns approach on all of the tasks. In solving them, she 
attempted to fit exponential expressions onto both linear and quadratic number patterns without 
considering how such expressions related to the diagrammatic structure of the figures. Another PST, 
Jim, employed a rule-from-patterns approach. Across each of the tasks, Jim consistently noticed and 
utilized the relationship between the figure number and the figural structure to produce 
generalizations. A third PST, Zoe, employed both approaches. She attempted a rule-for-patterns 
approach in the first task, but later shifted her approach to rule from patterns upon recognizing an 
algebraic relation within the figural structures of the pattern. Our results suggest that only the rule-
from-patterns approach is associated with drawing connections between algebraic expressions and 
the figures. 

The algebraic understanding of students in K–12 schools has often lacked depth due to the 
traditional focus on symbol manipulation without meaningful connections (Lannin et al., 2006). If we 
wish to support students (and PSTs) in making connections and deepening their algebraic thinking as 
it relates to generalization and functional relationships, then there may be benefits in emphasizing the 
importance of sense-making in the generalization process. 
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The view of algebra as a purely secondary school course has been challenged in recent decades, 
with algebra now being seen as an important strand of study for earlier grades (NCTM, 2006). Our 
work addresses the premise that a comprehensive early algebra education will better prepare students 
for a more formal treatment of algebra in secondary schools than an arithmetic-focused curriculum 
(Blanton et al., 2015). We share preliminary results from a randomized study (with 46 schools) in 
which we compare the performance of students who experience a teacher-led early algebra 
intervention in Grades 3-5 to the performance of students who experience a “business as usual” 
arithmetic focused curriculum. Intervention students significantly outperformed the control students 
in Grade 3, increasing their overall assessment scores 13% more than control students. Intervention 
students also demonstrated more sophisticated algebraic strategies in comparison to control. 

While previous research has produced "pockets" of success developing students' algebraic 
reasoning, often with researcher-intensive involvement and a narrower algebraic content focus, our 
work applies a comprehensive and sustained model for early algebra by engaging students in a 
greater scale and breadth of early algebra concepts under the direction of regular classroom teachers. 
Preliminary results suggest that early algebra can make a difference and motivate future research in 
early algebra instruction. 
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Algebra is often identified as requisite for the success of individuals by providing them with 
more college and career options. Kaput and Blanton (2000) refer to aspects of teaching practices and 
curricula that are focused on procedural skills instead of conceptual understanding as problematic. 
Students’ understanding and use of variable may also be problematic as a significant aspect of 
algebra. Research has shown mathematics difficulties (MD) may differ from their typically-achieving 
peers in mathematics-specific characteristics (e.g., Geary et al., 2012). Lewis (2014) warned a limited 
focus of research on MD students has resulted in low procedural fluency as a de facto defining 
characteristic of students with MDs. This neglects the more complex and conceptually-based aspects 
of mathematics. This study investigated the differences between conception and use of variable of 
low- and typically-achieving students. 

Theoretical Framework and Methodology 
The framework is based on Blanton, et. al’s (2015) description of a learning trajectory (LT) that 

characterized increasingly sophisticated levels in students’ thinking about variable. Students’ 
responses to items on a conceptual algebra progress monitoring measure (created by Foegen & 
Dougherty, 2010) were coded with respect to TL levels and then compared across the MD and 
Typical Mathematics Achievement (TMA) groups with descriptive and inferential statistics. 

Results and Implications 
This investigation revealed that the differences between MD and TMA students are limited and 

related to item complexity. More than these differences, the similarities that were illuminated by this 
study impact how we perceive what successful and struggling students look like. The overall low 
proportion of students who have a sophisticated conception of variable suggests that all students need 
access to better conceptual instruction and experiences in algebra. Students identified as MD may be 
disproportionally disadvantaged by traditional instructional practices and data-based decision making 
based on procedurally focused assessments and instruction. The limitations of the current ways in 
which students are labeled provide an opportunity to reexamine how students are identified as 
“successful”. 
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The abstract nature of algebraic notation serves as a barrier to higher mathematics for many 
students, particularly those from historically marginalized populations (Kaput, 1999). Without access 
to a meaningful understanding of algebraic symbols, students become disenfranchised with 
mathematics, a situation exasperated by the predominant focus on symbol manipulation in.  In 
response to this challenge, many scholars have advocated for the ability for students to not only 
manipulate symbols, but interpret the contextual quantities that expressions represent. The Common 
Core State Standards (2010) emphasizes this understanding as a core component of algebraic 
thinking, including it as one of the eight practice standards (SMP 2: Reason abstractly and 
quantitatively) as well as a high school algebra content standard (HSA.SSE.A.1). In addition, many 
researchers have characterized this understanding and documented difficulties that result when 
students reason and manipulate symbols void of a coherent system of referents (e.g. Harel, 2007; 
Kaput, Blanton, & Moreno-Armella, 2008). While the field has underscored the need for students to 
develop a contextual understanding of symbolic representations, limited work has explored ways to 
develop this type of thinking in practice.  

As part of a study in which I examined the instructional practices of four experienced algebra 
teachers in high needs schools, a concrete method for instilling this type of thinking emerged in one 
particular classroom, a finding that makes a valuable connection between research and practice.  
Engaging students in a series of inquiry based lessons involving figural pattern generalization, one of 
the teachers repeatedly asked students to express their understanding of the pattern using a numerical 
expression.  Each time he followed up by asking the class to articulate the exact quantity each 
symbol represented.  Results indicate that this instructional move served as a pedagogical content 
tool (Rasmussen & Marrongelle, 2006). Rather than telling students or asking them to produce a new 
way of thinking on their own, this instructional move gently pushed them to flexibly build on their 
own informal thinking and approach the problem differently. Specifically, it encouraged students to 
make the quantities within the pattern decomposition as well as their relationships more explicit.  It 
initiated a shift for many students from recursive thinking to an explicit view of the pattern and 
finally embedded their understanding of the pattern into an abstract representation. In the end, 
students began to automatically use numerical expressions to describe their thinking about the 
pattern, indicating that this act had transformed the number sentence from a calculational tool to a 
descriptive representation that captured the quantitative structure of the figure.   
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DYNAMIC MEASUREMENT: THE CROSSROAD OF AREA AND MULTIPLICATION 
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In this exploratory study, our goal was to engage students in dynamic experiences of area as a 
continuous quantity that can be measured by multiplicatively composing two linear measures 
(lengths), an approach we refer to as ‘dynamic measurement,’ or DYME. In this paper, we present 
the learning trajectory constructed from two cycles of teaching experiments with sixteen third-grade 
students. We discuss the types of tasks used for developing students’ DYME reasoning as well as the 
forms of DYME reasoning students developed as a result of their engagement with these tasks. 

Keywords: Measurement, Technology, Learning Trajectories 

Background and Aims 
Measurement is defined as assigning a number to a continuous quantity (Clements & Stephan, 

2004). In terms of area, several studies focused on using square units to cover surfaces and quantify 
that covering based on the number of square units needed to cover the surface (e.g. Barrett & 
Clements, 2003; Battista, Clements, Arnoff, Battista & Borrow, 1998; Clements & Sarama, 2009; 
Izsak, 2005; Kamii & Kysh, 2006). In these studies, structuring area first involves students counting 
the individual square units used to cover the surface, then counting unit composites of a row and 
using repeated addition to find all units, and lastly recognizing that they can count composite units in 
a row and a column and multiply rows x columns. A key structure of this approach is the construction 
of the grid/array that results when a rectangle is covered with square units (Figure 1a), a difficulty 
that students face even after extensive covering and tiling activities (Outhred & Mitchelmore, 2000). 
Ultimately, children must “switch” from the generalization rows x columns to the area formula of 
length x width (Outhred & Mitchelmore, 2000) but this “switch” is not always intuitive and results in 
students connecting multiplication to area by reciting, not by understanding the formula (Izsak, 2005; 
Simon & Blume, 1994). 

Indeed, to understand how area is generated by multiplying lengths is a very different notion 
conceptually from the construction of a matrix like shown in Figure 1a. As Piaget argues, “the 
difference between the two operational mechanisms is the difference between a matrix which is made 
up of a limited number of elements and one which is thought of as a continuous structure with an 
infinite number of elements” (p. 350). Thus, “switching” from the notion of counting discrete 
(discontinuous) squares in rows and columns to the multiplicative relationship of combining two 
linear continuous measures (lengths) in an area formula can be extremely difficult for students 
(Baturo & Nason, 1996; Kamii & Kysh, 2006). Piaget et al. (1960) suggested that these difficulties 
arise because “the child thinks of the area as a space bounded by a line, that is why he cannot 
understand how lines produce areas” (p. 350). Area measurement involves the coordination of two 
dimensions (length and width) and is a multiplicative process while covering a surface with unit 
squares is a one-dimensional process and additive in nature (e.g. Outhred & Mitchelmore, 2000; 
Reynolds & Wheatley, 1996; Simon & Blume, 1994).  

Consequently, our plan was to test the conjecture that that it was possible for children to 
experience the two-dimensional multiplicative relationship of area without relying on the switch 
from the rows by columns structuring; in effect, to provide evidence that students can visualize area 
as a dynamic continuous structure that can be measured by coordinating two linear measures 
(lengths). We drew on research on visualizing area as ‘sweeping’ through the power of motion 
(Confrey et al. 2012; Lehrer, Slovin, Dougherty, & Zbiek, 2014; Thompson, 2000) for designing 
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experiences for students to visualize area as a continuous structure dynamically. For instance, as 
suggested by Confrey et al. (2012), we considered engaging students in dynamic experiences of 
generating surfaces and visualizing a meaning for area as a ‘sweep’ of a line segment of length a 
over a distance of b to produce a rectangle of area ab (Figures 1b & c). 

 

      
Figure 1a. Area as a discrete structure.         Figures 1b & 1c. Area as continuous structure. 
  
We distinguish this dynamic continuous approach from other approaches to measurement (e.g. 

rows x columns structuring) by referring to it as Dynamic Measurement (DYME) (Panorkou & 
Vishnubhotla, 2017). By looking at the example in Figures 1b & 1c, students visualize area as a 
continuous dynamic quantity which depends on both the length of the roller and the length of the 
swipe. This dynamic approach emphasizes the relationship between the boundaries of a shape and the 
amount of surface that it encloses, so that as the boundaries converge the area approaches zero 
(Baturo & Nason, 1996).  

Although prior work (e.g. Confrey et al., 2012; Lehrer et al., 2014) identified the significance of 
teaching this dynamic approach, little information exists about how students’ DYME reasoning can 
be developed. Therefore, our goal was to examine: (1) What kinds of reasoning do students exhibit as 
they encounter DYME tasks? (2) What are critical aspects of students’ DYME reasoning that 
constitute increasingly sophisticated ways of understanding area measurement? (3) What kinds of 
measurement tasks, questioning, and scaffolding help students generalize concepts related to the 
spatial structuring of DYME? 

Methods 
Aiming to explore how students’ DYME thinking might be developed and progressed, our 

attention was drawn to research on learning trajectories (LTs), which have been widely used as an 
organizing framework for student conceptual growth (e.g. Clements & Sarama, 2009; Barrett et al., 
2012; Simon, 1995). The design of the DYME LT followed Simon’s (1995) three components of an 
LT: a learning goal, a set of learning activities, and a hypothetical learning process. These 
components were constructed simultaneously during our LT design process; in other words, we 
defined our learning goals by having some instructional tasks in mind for promoting these goals and 
also postulated how students’ thinking of DYME may develop when they engage with our specific 
tasks and goals. 

When formulating our initial conjectures about students’ reasoning of DYME, we synthesized 
existing LTs on length and area measurement (e.g. Clements & Sarama, 2009; Barrett et al., 2012; 
Confrey et al. 2012), and for each measurement construct we began by asking ourselves, “How can 
this construct be interpreted/modified/used in terms of DYME?” In contrast to other measurement 
LTs, the spatial structuring of DYME focuses on visualizing composites of 1-inch paint rollers 
iteratively dragged over a specific distance to cover a surface. In other words, a surface is described 
in terms of the number of 1-inch swipes (length) and the distance of each swipe (width). For 
example, to cover a surface of length 4 cm and width 7 cm, we need 4 swipes of 7 cm. Our design 
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promotes students’ thinking about commutativity (e.g. 4 swipes of 7 cm is the same as 7 swipes of 4 
cm) and also reversibility (e.g. constructing surfaces by iteratively dragging rollers and 
deconstructing surfaces of length a and width b by equally splitting the surface into a sections of 
length 1 and width b to find area.) The target understanding of DYME involves a dimensional 
deconstruction (Duval, 2005), in other words analytically breaking down a 2D shape (its area) into its 
constituent 1D elements (length and width measures) based on relationships. Thus, two quantities 
(length and width) are coordinated simultaneously when making judgements about size.  

In terms of task design, we used dynamic motion and paint rollers to enable students to both 
visualize area as a continuous quantity and coordinate the two linear measures.  Our conjecture was 
that the paint rollers would act as bridge between the shape, and the number used to describe the size 
of the shape (Hiebert, 1981). To illustrate this dynamic motion, we used dynamic geometry 
environments (DGEs) to design our tasks. In addition to the dragging tool, most DGEs have a trace 
tool, which gives a trace of all the points on line segment (paint roller) following a locus as they 
move on the screen (see Figures 1b & c). Our conjecture was that the user would associate this 
discrete trace with the continuous surface formed. 

We used a design-based research methodology (Barab & Squire, 2004; Brown, 1992) to develop 
and refine the LT and the tasks and tools focusing on two cycles of design, enactment, analysis, and 
redesign. The goal of Cycle 1 was to test our initial conjectures by experiencing students’ first hand 
mathematical learning and how they construct DYME reasoning. We conducted a series of design 
experiments (DEs) (Cobb et al., 2003) with six pairs of third grade students. For the design of the 
tasks we used Geometer’s Sketchpad (Jackiw, 1995). We had 6-10 sessions of 45-90 minutes with 
each pair of students. The outcome of Cycle 1 was a significant revision of the LT based on how 
students interacted with our tasks and tools.  

The aim of Cycle 2 was to further demonstrate the feasibility of learning the DYME concepts and 
evaluate the effectiveness of the revised LT and also to test our tasks and tools with a group of 
students (Cycle 1 DEs were in pairs).  We conducted a DE with a group of four students who 
participated in a STEM summer camp.  Similar to Cycle 1, we had 9 sessions of 45-90 minutes each. 
For the design of the tasks we switched to the online version of Geogebra because of limitations of 
Chromebooks for downloading software. 

Two stages of analysis occurred with the DE data, on-going analysis following each episode of 
the experiment (Cobb & Gravemeijer, 2008) and retrospective analysis at the conclusion of all DEs 
(Cobb et al., 2003). During the ongoing analysis, our initial conjectures evolved and we modified the 
tasks in light of iterative examinations of changes in students’ thinking about area when interacting 
with the DYME tasks. During the retrospective analysis, we viewed the session videos and other data 
to create chronological accounts that tracked the forms of reasoning that emerged in the DE, the ways 
in which they emerged as reorganizations of prior ways of reasoning, and the aspects of tasks and 
tools that seemed to mediate those changes in reasoning. We drew on these analyses to refine the LT 
which included both our inferences about students’ reasoning and the relationship between students’ 
reasoning and DYME tasks. 

A Learning Trajectory for DYME Reasoning 
In this paper, we describe the most recent version of the DYME LT which resulted after 

conducting two cycles of DEs. We present each level of the LT by referring to Simon’s three 
components: learning goals, sample tasks and examples from the student generalizations. 

1. Exploring Dimensions and Area as Continuous Quantities  
The goal of the first level is for students to build the idea of 2D space by using two linear 

dimensions (Clements & Stephan, 2004); in other words, visualizing area as a continuous structure 
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that can change dynamically. The tasks engage students in coloring surfaces by dragging a given 
roller in multiple distances (Figure 2) and also matching different-sized rollers with shapes to color 
them and reason about the paint distance as well as the length of the roller. Students’ generalizations 
include recognizing that the dimensions, length of the roller and the distance dragged, define how big 
or small a shape is, such as “the further we drag the roller, the bigger the shape we create” and “the 
bigger the roller, the bigger the shape we create. “At the same time, they begin to form relationships 
between the dynamic action of painting and the dimensions of the shape being painted by 
recognizing that “the length of the roller needs to be the same as the height of the rectangle” and 
“the distance of paint is same as the base of the rectangle.”  

 

 
Figure 2. How far did you drag the paint roller to paint each shape? 

2. Coordinating Two Dimensions to Compare Area  
While in Level 1 students explored each dimension (length and width) independently, the goal of 

Level 2 is for the students to recognize that the measurement of a surface requires the coordination of 
two dimensions (Outhred & Mitchelmore, 2000; Reynolds & Wheatley, 1996; Simon & Blume, 
1994). The tasks involve asking the students to fit a card into an envelope by modifying the 
dimensions of the envelope (Figure 3). Students are asked “What do we need to change? What stays 
the same?” They are asked to first write their predictions and then try it on the screen by modifying 
the envelope using the dragging tool. The card was movable so students could actually check if it fits 
in the envelope they created. Their generalizations include recognizing that to compare two shapes, 
they need to compare both dimensions.  They also recognize that if one dimension is same they just 
have to compare the other dimension, e.g. “it’s bigger because it has the same base but it doesn’t 
have the same height.”  

 

 
Figure 3. Modify the envelope to fit the size of the card! How big is the envelope you created? 

3. Multiplicative Relationship of Length, Width and Area  
The goal of this level is for the students to recognize the multiplicative relationship between the 

two dimensions of a rectangle and its area (Izsak, 2005; Simon & Blume, 1994). To help students 
identify this relationship, the tasks first involve the use of a 1-inch roller to paint shapes of different 
lengths and widths and constructing a repeating pattern for covering the shape (Outhred & 
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Mitchelmore, 2000; Reynolds & Wheatley, 1996), by considering the distance covered in one swipe 
with the number of swipes (Figure 4). This experience is critical for generating the use of the 
multiplicative ‘times’ language to find the space covered, such as “this is 30 because the base is 10 
and we are going to swipe three times.” 

 

 
Figure 4. How far did you drag the roller? How many swipes did you need to cover the wall? How 

much space did you cover? 

Central to the construction of area is understanding that the length measure indicates the number 
of unit lengths that fit along that length (Clements & Stephan, 2004). Consequently, our next goal is 
for the students to recognize that a roller of size l covers the same area as n rollers of size l/n dragged 
for the same distance. Our tasks include asking the students to paint the same rectangle first using 1-
inch rollers and second by using rollers that are of different sizes and reason about the space covered 
in both occasions. At this stage, students begin splitting rollers to find the space covered, such as: 
“This is a 3-inch roller. But if we cut it into 3 parts and you go across one time it is 4 and then if you 
go across another time it will be 8 and if you go one more time it will equal 12.” Gradually, they 
begin to recognize that the space covered can be found by the length of the roller times the base of 
the rectangle or the distance of swipe. As students recognize that the length of the roller is the same 
as the height, they also begin using “length of roller” and “height” interchangeably, and this 
intuitively leads to height times base. 

4. Multiplicative Coordination of Length and Area  
The goal of this level is for students to recognize the effects on the dimensions when the area of a 

shape is scaled. To explore these effects, our tasks engage students in doubling and tripling areas 
(Figure 5) and identifying that they can double/triple areas by multiplying only one of the dimensions 
by the same factor, generalizing that “to change area we need to change the base or height” or “to 
double the area we double just the length or just the width.” As a reverse process, we also designed 
tasks which engage students in doubling, tripling and halving lengths and widths of rectangles and 
reasoning about how area changes, such as “since the length is going two times bigger, then the area 
should go two times bigger.” 

As students’ multiplicative thinking of area develops further, our next goal is for students to 
recognize that in order to split area (fractional thinking), they need to split the length or the width. 
The tasks engage students in creating shapes that have a fraction of an area of another shape.  For 
example, students create a cafeteria which is 1/4 of an 8 by 5 inches garden and argue “If we split this 
into four parts, then one of the parts will be the cafeteria. It would be 2 inches [the height of the 
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cafeteria] because the if we use only 1-inch roller it would go 8 times across but if you use 2-inch 
roller then it would go 1,2,3, and that would go 4 parts.” 

 

 
Figure 5. How can you make the parking place twice as big as it is now? 

5. Identifying Area as a Multiple of its Dimensions 
The goal of this level is for students to recognize area as a multiple of its dimensions and identify 

factors that give the same area. Our tasks involve asking students to create different rectangles of the 
same area (e.g. 12 sq. units) (Figure 6). This connects area measurement to geometry and the concept 
of congruence by recognizing congruent shapes in different orientations (e.g. 2 x 6 or 6 x 2) and 
describing congruence by using geometric motions such as rotation (Huang & Witz, 2011). It also 
directly relates to the properties of multiplication (e.g. commutative property) as well as factors and 
multiples. Students’ generalizations include, “length 4 and width 3 is doing 4 swipes of 3. This is 
same as two swipes of 6, so length 2 and width 6.” After students create all the rectangles, we ask 
them which rectangle has more space: 

Researcher: Which one has more space?  
Student 1: Everything is equal. Everything.  
Student 2: The space is the same. The lengths and widths are different.  
 

 
Figure 6. Each store should have an area of 12 sq. meters and different length and width from the 

other stores.  

6. Coordination of Relative Areas 
The goal of the final level is for students to coordinate relative areas. The task engages students 
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in creating a robot with a fixed area (e.g. no bigger than 190 cm2) by composing and decomposing 
shapes of fixed lengths and widths (Figure 7). As part of the task, students need to find the area of 
each leg (right triangle), by recognizing that if the leg is half the rectangle, then its area is half of the 
area of the rectangle. For instance, for calculating the area of each blue leg, students argued:  

Student 1: You have to do a half of 7 and 2. We do 7 times 2 and a half of that.  
Student 2: Both of them are 7 and both of them together are 14. 
 

 
Figure 7. Make the robot as fancy as you like but its area should be no more than 190 sq. inches. 

Concluding Remarks 
This is an exploratory study examining a dynamic way of learning and teaching measurement. 

The DE findings show DYME’s potential as a route to area measurement that would make the 
multiplicative relationship of the area formula more intuitive and accessible. The DEs helped in the 
design of the DYME LT, which is a conjecture of how students' DYME reasoning may evolve in the 
context of the specific learning activities. The LT shows that DYME lies at the crossroad of multiple 
mathematical ideas such as multiplication, division, fractions, (shape and unit) transformations, and 
covariation. Among our future goals is to explore these connections further as well as to examine 
how the DYME approach could complement the existing rows x columns structuring approach that is 
emphasized in research and schools.  

Additionally, we are currently preparing a DE for a whole class to evaluate the effectiveness of 
learning the DYME concepts in a real classroom environment, and designing pre- and post-
assessment items to evaluate students’ thinking of area (as it develops) and validate the LT. We 
consider our findings to be very important for initiating a discussion around dynamic measurement 
and how it can be used for developing a conceptual understanding of area. 
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In this report, we discuss the findings from 2 pilot studies investigating the effects of interventions 
designed to provide students in Grades 3–5 with opportunities to work with dynamic and static 
models of angles in a dynamic geometry environment. We discuss the effects of the interventions on 
the children’s development of quantitative reasoning about angle measure. 

Keywords: Elementary School Education, Geometry and Geometrical and Spatial Thinking, 
Measurement, Technology 

Geometric measurement is a branch of mathematics that integrates number and space and 
includes length, area, volume, and angle measurement. Based on Barrett and Smith’s review of the 
literature in the measurement chapter of the research compendium, Smith (2016) asserted that they 
found markedly less research on angle measurement in comparison to the other three forms of 
geometric measurement (length, area, and volume). The present research on angle measurement 
focuses on student difficulties with several measurement concepts, including identifying and 
attending to the correct attribute of angle as well as angle unit, unit iteration, and origin. Specifically, 
students struggle to identify what is being measured when referring to size of angles and what is one 
degree (Keiser, 2004). Often elementary and middle school students attend to ray lengths (e.g., 
Clements, 2003; Keiser, 2004), and elementary, middle, and high school students are distracted by 
angle orientation (Mitchelmore, 1998; Noss, 1987; Fyhn, 2008). Mitchelmore (1998) argued that 
students need opportunities to work with both dynamic (the motion of an angle opening) and static 
(the resultant figure after the opening) angle models to confront their misconceptions.  

Previous research has incorporated both models. Several previous studies utilized the LOGO 
environment (e.g., Clements & Burns, 2000; Noss, 1987; Simmons & Cope, 1993) or used a 
sequence of static models to indicate motion to varying degrees of success.i In one study, Clements, 
Battista, Sarama, and Swaminathan (1996) explored third grade students’ understanding of angle 
measurement in a modified LOGO environment. These researchers found that immediate feedback 
helped students reflect on their turn commands and thus angle measurement (cf. Simmons & Cope, 
1993) and that using benchmarks helped students assign numbers to turns. However, because there 
was no record of the turn during the turn in Clements et al.’s modified LOGO environment, turn 
commands were less salient to their students than forward or backward commands, which could be 
because the forward and backward commands leave a line segment as a trace, whereas there is not a 
similar record with turns. 

 Mathematics education has yet to fully determine how to address the misconceptions present in 
the literature since the 1980s. The authors of the Common Core State Standards in Mathematics 
(CCSSM, National Governor’s Association for Best Practices [NGA] & Council of Chief State 
School Officers [CCSSO], 2010) have renewed mathematics educators’ interest in elementary 
students’ conceptions of angle and angle measurement through their definition of angle and mandate 
for how angle should be understood by fourth grade:  

An angle is measured with reference to a circle with its center at the common endpoint of the 
rays, by considering the fraction of the circular arc between the points where the two rays 
intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," 
and can be used to measure angles. (p. 31) 
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To promote this interpretation of angle and extend the literature on angle, we designed 
interventions. Both were enacted in a dynamic geometry environment utilizing the computer 
software, Geometer’s Sketchpad, to provide children with opportunities to work with movable angle 
situations as well as reflect on dynamic (the motion of an angle sweeping open) and static (the 
resulting image of an angle after sweeping open) angle models. In this report, we discuss the results 
from our testing of these interventions. We posed the research question: In what ways does 
interacting with dynamic and static angle models affect students’ reasoning about angle 
constructions in Grades 3, 4, and 5?   

Theoretical Perspective 
We approached this study from a quantitative reasoning approach. According to Thompson 

(1990), “a quantity is a quality of something that one has conceived as admitting some measurement 
process. Part of conceiving a quality as a quantity is to explicitly or implicitly conceive of an 
appropriate unit” (p. 5). In the case of angle measure, quantifying involves reasoning about the unit 
(e.g., a degree) in terms of a quantitative relationship (i.e., a multiplicative relationship) between a 
fraction of the circular arc of a circle and the circle’s circumference, which is consistent with the 
CCSSM authors’ (NGA & CCSSO, 2010) recommendations for how fourth grade students should 
understand angle measure. 

There are three types of quantity—gross, extensive, and intensive (Piaget, 1965). Gross quantity 
depends on perception—one object is bigger, smaller, more, less, or the same as another in terms of 
some attribute. Extensive quantity is additive (Piaget, 1965) and the result of unitizing activity 
(Steffe, 1991), whereas intensive quantity is not additive (Piaget, 1965). Instead, it requires 
proportional reasoning. For example, if Person A is traveling 20 mph and Person B is traveling 40 
mph, we are not traveling 60 mph. We used a quantitative reasoning approach in our design of the 
interventions as well as in our interpretation of the findings. 

Method 
To investigate dynamic and static angle models affected students’ reasoning about angle 

constructions, we wanted to observe and document changes. Thus, we utilized the microgenetic 
method (Siegler & Svetina, 2006). The microgenetic method has three main tenets:  

(1) observations span the whole period of rapidly changing competence; (2) the density of 
observation within this period is high, relative to the rate of change; and (3) observations of 
changing performance are analyzed intensively to indicate the processes that give rise to them. 
(Siegler & Svetina, 2006, p. 1000) 

The data presented in this report were collected during the 2014–2015 school year at a suburban 
public school in the Midwestern region of the United States. In the first pilot study, we interviewed 
18 students in Grades 3–5 (ages 8–12), six students per grade. For the second pilot study, we 
interviewed 19 students in Grade 3 (ages 8–9). Each student participated in three 4 to 18 minute 
individual interviews with one of the three authors of this report during the normal school day. We 
used a structured interview protocol and recorded the interviews using screen-capturing software, 
Screencast-o-matic, which also records audio. Consistent with the microgenetic method, observations 
were dense. The three interviews occurred on three separate days, and the mean elapsed time 
between first and third session was 2.9 school days (max of 5 school days). Prior to the first 
interview and after the third, children took a written survey. On this survey, children were asked to 
give a definition of angle, estimate the measure of a given angle, and construct an angle. On six 
items, children were asked to select one out of three angles that (a) had a specified measure, (b) had 
the largest measure, or (c) had the smallest measure. 
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Pilot 1 
During the first interview, we guided each student through a tutorial on how to use four sliders in 

a dynamic geometry environment (i.e., Geometer’s Sketchpad). Each of the sliders had a different 
effect. One slider opened and closed the angle, one translated the image left and right, one rotated the 
image of the angle, and one lengthened and shorted the rays. 

During the second interview, the student went through eight trials, which we define to be a task-
intervention pair (Siegler & Crowley, 1991). Specifically, the student was asked to construct an angle 
of a specified measure and to let the interviewer know when he or she was ready to check. During the 
check, the researcher clicked a check button and a ray swept from the initial ray to the angle of the 
terminal ray of the desired angle. In addition, benchmark rays appeared at each 30-degree interval 
until the ray stopped at the terminal side of the angle (see Figure 1). Note that the ray left a fading 
trace as it swept across the screen to provide a record of the turn (cf. Clements et al., 1996). The 
measure of the angle the students constructed was also briefly displayed, providing them with 
feedback. This feedback allowed them to compare the size of two angles (the created and desired) to 
their associated measure as well as to compare the difference in the created and desired angle. For 
example, in the sequence below a student would have had the opportunity to see a 120-degree angle, 
a 128-degree angle, and to see that small difference between the two was about eight degrees. During 
the third interview, the student went through nine trials with the same design principles.  

 

   

   

Figure 1. A sequence of screen shots displaying the labeled benchmark rays (e.g., 30, 60, 90) 
appearing as the student checked her attempt at a 120-degree angle. 

 

Pilot 2 
During the first interview, we asked the student to use one slider to create an angle of a specified 

measure on eight trials. This process was repeated for nine trials during the second interview and 
nine trials during the third interview. For the construction of all 26 angles, the student started with 
one initial horizontal ray and one slider that opened and closed the angle. For each angle, the 
interviewer told the student to use the slider to create an angle of a specified measure.  

The 19 participants were divided between the two intervention groups: 10 were in Intervention 
Group 1 (IG1) and nine were in Intervention Group 2 (IG2). For children in IG1, during alternating 
trials in Interviews 1 and 2, unlabeled benchmark rays of 30 degrees would appear as the child used 
the slider to open the angle (see Figure 2). During the trials in Interview 3, the benchmark rays did 
not appear during any of the trials. When the child indicated that he or she was ready to check, the 
check button was clicked, and a ray swept from the initial ray of the angle to the terminal ray of the 
angle the child had been instructed to create. The main components of Pilot 2 IG1 were a subset of 
those in Pilot 1: Benchmark rays appeared at each 30-degree interval until the ray stopped at the 
terminal side of the desired angle. The measure of the angle the child constructed was briefly 
displayed for the interviewer to record (see Figure 1). In contrast, for children in IG2, benchmark 
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rays appeared neither during construction nor during the check. Instead, when the check button was 
clicked, only the measure of the angle the child constructed was displayed. Figure 3 summaries the 
key components of the two pilot studies. 

 

    

Figure 2. A sequence of screen shots displaying the 30-degree benchmark rays appearing for 
students in Pilot 1 and Pilot 2 IG1 as the terminal ray of the angle swept open. 

 
 

Pilot 1 Pilot 2, Group 1 Pilot 2, Group 2 
Grades 3–5 Grade 3 Grade 3 
18 participants (6 per 

grade) 
10 participants 9 participants 

3 interviews 3 interviews 3 interviews 
17 trials 26 trials 26 trials 
4 sliders 1 slider 1 slider 
Alternating trials, 

unlabeled benchmark rays of 
30 appeared as created angle 
(*) 

Alternating trials, 
unlabeled benchmark rays of 
30 appeared as created angle 
(*) 

NA 

Trial 9, 90 
Trial 10, 80* 
Trial 11, 30 
Trial 12, 40* 
Trial 13, 60 
Trial 14, 70* 
Trial 15, 120 
Trial 16, 110* 

Trial 9, 90 
Trial 10, 80* 
Trial 11, 30 
Trial 12, 40* 
Trial 13, 60 
Trial 14, 70* 
Trial 15, 120 
Trial 16, 110* 

Trial 9, 90 
Trial 10, 80 
Trial 11, 30 
Trial 12, 40 
Trial 13, 60 
Trial 14, 70 
Trial 15, 120 
Trial 16, 110 

After check button clicked, 
a ray swept from the initial ray 
of the angle to the terminal ray 
of the desired angle, and that 
ray left a trace. 

After check button clicked, 
a ray swept from the initial ray 
of the angle to the terminal ray 
of the desired angle, and that 
ray left a trace. 

NA 

After ray swept from initial 
ray to the terminal ray of the 
desired angle, the measure of 
constructed angle appeared. 

After ray swept from initial 
ray to the terminal ray of the 
desired angle, the measure of 
constructed angle appeared. 

After check button clicked, 
the measure of constructed 
angle appeared. 

Figure 3. Comparison of the key components of the two pilot studies. 
 

In the design of both pilots (including Pilot 2 IG2), we privileged approximations of 10 degrees. 
During Interview 2 (Trials 9–16), we sequenced trials to pair benchmark angles with near benchmark 
angles (i.e., angles measuring 10 degrees more or less than one of the bench mark angles). There 
were four sets of paired trials (see Figure 4) to provide children with experiences that would support 
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their development of a sense of 10 degrees. (It was our conjecture that developing a sense of 1 degree 
would be more difficult than developing a sense of  10 degrees.) 

 
Trial 9, 90 degrees Trial 10, 80 degrees 
Trial 11, 30 degrees Trial 12, 40 degrees 
Trial 13, 60 degrees Trial 14, 70 degrees 
Trial 15, 120 

degrees 
Trial 16, 110 

degrees 

Figure 4. Four sets of paired trials. 
 

We also privileged the integration of number and space. At the end of each trial, we displayed the 
measure of the constructed angle, providing students with the opportunity to pair the image of the 
constructed angle with its measure. For students in Pilot 1 and Pilot 2 IG1, this was taken further 
because of how the terminal ray of the angle swept open, providing students with the opportunity to 
pair the image of the intended angle with its measure. 

In the design of Pilot 1 and Pilot 2 IG1, we privileged 30-degree benchmarks by displaying 
unlabeled benchmark rays at 30-degree intervals during construction on alternating trials. 
Additionally, the check on every trial displayed 30-degree benchmark rays with labels (e.g., 30, 60, 
90). Our purpose for including these supports was to encourage students to reason about, use, and 
operate on specific benchmark angles as well as to encourage the integration of number and space.   

In the design of Pilot 2 IG2, we privileged only feedback. Upon clicking the check button, the 
measure of the angle the child constructed on a given trial was displayed. This provided the children 
with the opportunity to reflect upon how the measure of the angle they constructed compared to the 
desired angle measure (cf. Jaehnig & Miller, 2007).  

Discussion of Findings 
Our findings indicate that the interventions had an effect on students’ angle constructions. In this 

section we provide a representative sample of quotes to illustrate each of our three main findings.  
First, we found that interacting with dynamic and static angle models increased third and fourth 

grade students’ recognition and use of 30-degree benchmarks. Most of the third and fourth grade 
students did not mention the 30-degree benchmarks during the first eight trials, but by Trial 9, many 
of these young students in Pilot 1 and Pilot 2 IG1 were referring to them when they described what 
they were thinking about during or after angle construction. 

• Trial 10, 80: “[While creating] 30, 60, that’s about 80. [After check] I noticed that I was 
right, because since the 90 degree angle is um, is up I kind of noticed that if its 80 you might 
need to make it a little more slanted.” (Bob, Grade 4, Pilot 1) 

• Trial 10, 80: “I was, um, pretty close. [What were you thinking about when you made that?] 
Uh, well, it showed us the lines. So I knew it- one was 30, one was 60, and I knew it 
wouldn’t be all the way– all the way to 90 but it’s be a little less than 90 but a little more than 
60.” (Erin, Grade 3, Pilot 2 IG1) 

• Trial 15, 120: “I was counting by 30s by like 30, 60, 90.” (Charlie, Grade 3, Pilot 2 IG1) 

Second, we found that by asking students what they noticed after the check button was clicked as 
part of our interview protocol, we prompted students to compare the desired and constructed angles 
numerically and spatially. Although this occurred for students in Pilot 2 IG2, it was more pronounced 
for students in Pilot 1 and Pilot 2 IG1. To illustrate, we provide four quotes below. We found the first 
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two (from students in Pilot 1 and Pilot 2 IG1) to be qualitatively different from the last two (from 
student in Pilot 2 IG2).  

• Trial 10, 80: “Well, I remember how last time, um, if I- I moved a lot but it was only just this 
much to get ta- just um like a tiny bit to get to like 74 from 70, [Mmm so 70] like 71 or 
something, so I didn’t want to go too far from 60 because I know that’s about 20 away.” 
(Genny, Grade 3, Pilot 2 IG1) 

• Trial 14, 70: “I had to make it just a little bit smaller in order to make it 70 degrees and like 
down here where I tried to make a 40 degree angle and I gave it too much space.” (Frank, 
Grade 5, Pilot 1)  

• Trial 11, 30: “28 degrees. [What do you think?] Good.”(Pam, Grade 3, Pilot 2 IG2)  
• Trial 12, 40: “35. 5 off. That’s good still.” (Billy, Grade 3, Pilot 2 IG2) 

Third, we found that most students appeared to benefit from paired trials. Some students 
reasoned about a unit of 10 degrees and fractional parts of the benchmark created wedge. These 
students’ quantitative reasoning was a bit more advanced than the students who could only reason 
about a little more or a little less than the benchmark rays, as illustrated by their quotes below in 
which they utilized specific numeric relationships (e.g., difference between the measure of the 
benchmark angle and the measure of the desired angle). 

• Trial 14, 70: “So like 90, so that like is 60,…okay. Um, ‘cuz 70 is, well obviously, uh 10 
degrees larger than 60.” (Amber, Grade 5, Pilot 1, created 71.97 degree angle) 

• Trial 17, 150: “That, um, like the, um, the arrow, it went a little bit past it because, um, 120 is 
only 30 away and it seems like 30’s long but it’s not.” (Eric, Grade 3, Pilot 1, created 139.01 
degree angle) 

One benefit of the microgenetic method is to have dense observations during a change to 
document that change. Hence, after we documented some shifts, we dug deeper to explore how one 
student’s explanations and actions changed from trial to trial. Oscar, a fourth grade student in Pilot 1, 
exhibited improvement in his approximations for 10 degrees across the four sets of paired trials and 
clearly articulated how he learned from the previous trials. After constructing an angle that measured 
86.36 degrees (for a desired angle measure of 80 degrees), Oscar explained, “I needed to go a little 
further back. I put, I was trying to measure about a little before the 90-degree angle.” On this trial 
(Trial 10), Oscar correctly reasoned quantitatively about the benchmark angle measure and the 
desired angle measure (i.e., that 80 degrees is less than 90 degrees); however, he did not identify how 
much less (i.e., difference between the measure of the benchmark angle and the measure of the 
desired angle). On the next off-benchmark trial (Trial 12), Oscar constructed an angle that measured 
47.84 degrees (for a desired angle measure of 40 degrees). When asked what he was thinking about 
when constructed his angle, he said, “It goes just a few shades away from the 30 degree angle, mmm, 
not that much.” Although Oscar’s constructed angle and explanation indicate he knew that a 40-
degree angle was larger than a 30-degree angle, his reference to “not that much” supports an 
inference that he realized his attempt to create an angle that was 10 degrees more than the benchmark 
angle was too large. We take his explanation as evidence that Oscar had identified a 10-degree angle 
as a mental unit, and we predicted that his next attempt to create an angle 10 degrees more than the 
benchmark angle would be improved.  

Based on these prior experiences, Oscar made an adjustment to his mental unit of 10-degrees on 
the next two off-benchmark trials (Trials 14 and 16). On Trial 14, Oscar constructed a 69.85-degree 
angle for a desired angle measure of 70 degrees. After checking the measure of his constructed angle, 
he said,  
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It’s like the other question...When it was asking the 40-degree, um, I went a little far; I was right 
there so then I kinda realized on a few more problems it was about like 80 and stuff like 
that—that I didn’t need to go as far as I was going.  

We take this as evidence that Oscar is reflecting on relating number to space—that is, his image 
of what a 10-degree angle looks like was too large in previous trials (Trials 10 and 12), so he had to 
make it smaller on this trial. 

On the last off-benchmark trial (Trial 16), Oscar constructed a 110.91-degree angle for a desired 
angle of 110 degrees. When asked to explain his thinking before getting feedback, he said,   

I think this one is going to be right ‘cuz…90 degrees. Because um, kinda of like the 60 degree 
and stuff, I knew that I had to go a little short, shorter because it was only 10 degrees higher 
than, I mean the 40 degrees… I only need it to go about right there. So then on the 90 degrees 
it was 20 degrees um higher than the 90 degrees so I went probably about another half of the 
way, right there [points to location on the screen with the cursor]. 

Oscar’s explanation indicates that he was again reflecting on what a 10-degree angle looks like. 
However, how he used that 10-degree angle as a unit can be interpreted in two different ways. One 
interpretation is that he thought about a 20-degree angle as composed of two 10-degree angles—10 
more than 90 degrees and then 10 more than that. Another interpretation is that he thought about a 
30-degree angle as 10-degrees and 20-degrees and then a 10-degree angle as half of a 20-degree 
angle—10 more than 90 degrees (100 degrees) and then half way between 120 and 100 is 110 (i.e., 
“about another half of the way”). Although we expected to see Oscar use the benchmark angle of 120 
degrees and think about 10 degrees less than the 120-degree angle, Oscar showed flexibility in his 
thinking by starting with the benchmark angle of 90 degrees to approximate a 110-degree angle. 
Regardless, Oscar exhibited improvement in his approximations for 10 degrees and his reasoning 
about angles.  

Educational Importance of the Research 
The experimental interventions enacted in Geometer’s Sketchpad were designed to provide 

opportunities for students to engage with dynamic and static angle models. The results from the two 
pilot studies extend the previous literature on children’s reasoning about angles and angle 
measurement. Specifically, our results suggest providing children with opportunities to reason about 
angles as multiples of 30 (e.g., a 120-degrees angle as four 30-degree angles) and as partitionings of 
30s (e.g., a 40-degree angle as a 30-degree angle plus one-third of another 30-degree angle) has the 
potential to support children’s recognition and use of 30-degree benchmarks. Our study also indicates 
that asking students what they noticed after receiving feedback on their angle constructions (after the 
check button was clicked) prompted students to compare the desired and constructed angles 
numerically and spatially. 

Although we do not have evidence that the participants in this study were able to reason about 
angle measure by comparing the fraction of the circular arc and the circle’s circumference, we do 
have evidence that the students were constructing their own knowledge and adapting their thinking. 
As illustrated by Oscar’s explanations discussed in the results section, Oscar and others were 
adapting their thinking based on their experiences with the interventions. Specifically, Oscar’s 
repeated attempts to approximate 10 degrees when constructing angles that were designed to be 10 
more or 10 less than a benchmark angle helped him adapt this thinking and connect his numerical 
reasoning (i.e., 10 more degrees) to his spatial reasoning (i.e., what 10 more degrees looks like). 
Hence, his perception and interpretation of his experiences on these trials allowed him to describe an 
angle as something that can be quantified. The paired trials appeared to be an important component 
of the interventions in that it gave students opportunities to receive feedback on their quantitative 
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reasoning. Thus we recommend future studies include more paired trials of 10 more or 10 less than a 
benchmark angle, interviewing more students from each grade level, including more trials, and 
parsing out the differences between groups of students with the benchmark rays and without the 
benchmark rays.

Endnotes 
i Although other researchers have considered the sequencing of static images to be dynamic angle 

situations (e.g., Clements, Battista, Sarama, & Swaminathan, 1996; Devichi & Munier, 2013), we 
argue that to be truly dynamic, the sequencing of these static images needs to be more continuous. 
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HOW SPATIAL REASONING AND NUMERICAL REASONING ARE RELATED IN 
GEOMETRIC MEASUREMENT 
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The positive correlation between spatial ability and mathematical ability has been well-documented, 
but not well-understood.  Examining student work in spatial situations that require numerical 
operations provides us with insight into this elusive connection.  Drawing on student work with 
angle, length, volume, and area, we examine the ways in which students associate numerical 
operations with their spatial structurings of objects.  We find that for students to correctly coordinate 
their spatial structurings and numerical operations, their solution methods must satisfy basic 
properties of measurement functions. We illustrate this claim by providing examples in which 
students successfully and unsuccessfully employ spatial-numerical linked structurings. 

Keywords: Cognition, Geometry and Geometrical and Spatial Thinking, Technology  

Numerous studies have found that spatial ability and mathematical ability are positively 
correlated (Mix et al., 2016).  But specifying the exact nature of the connection between these 
abilities has been elusive, with much research in this area focused on understanding correlations 
between specific spatial skills (e.g., as measured by visualization and form perception tests) and 
mathematical performance (Mix et al., 2016).  In this paper, we seek to precisely specify the spatial-
mathematical connections in geometric measurement—a content area for which numerical and 
spatial reasoning must be properly coordinated.  Indeed, de Hevia and Spelke claim that the human 
mind is "predisposed to treat number and space as related" (2010, p. 659).  And researchers in 
mathematics education argue that understanding relationships between numerical and spatial 
reasoning is fundamental to developing a full understanding of geometric and measurement 
reasoning (Clements & Battista, 1992).  However, although a great deal of research has investigated 
how students represent numbers on number lines (Gunderson, et al., 2012), in geometric 
measurement, numerous situations arise that are more complex than envisioning numbers on number 
lines.  We have investigated numerous instances of these more complex situations, and in this paper, 
we analyze these situations to more fully understand the nature and properties of the connection 
between numerical and spatial reasoning in geometric measurement.       

Theoretical Framework 

Measurement Properties 
For spatial reasoning and numerical reasoning to be properly connected in geometric 

measurement, certain basic properties of measurement functions must be followed, as described by 
Krantz: “When measuring some attribute of a class of objects or events, we associate numbers … 
with objects in such a way that properties of the attribute are faithfully represented as numerical 
properties” (1971, p. 1).  That is, if M is the function that assigns measurement values to objects—
M(a) is the measure of object a—then, consistent with Krantz et al. and basic axioms for geometric 
measurement (Moise, 1963), M satisfies the following properties: 

1. If object a and object b are congruent, then M (a) =M (b) .    
2. Object a is spatially larger than object b if and only if M (a)>M (b) . 
3. If we join-without-intersection object a and object b, then M (a  join b) =M (a)+M (b) . 
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4. Given n copies of congruent and non-overlapping unit-measure objects a1 … an: 

If  ai
i=1

n

∪ ≅ b, then nM (a1) =M (b).  

These properties justify the measurement iteration process in which we determine measure by 
iterating a unit measure to "cover" the object being measured with no gaps or overlaps.  If, however, 
there are gaps in a unit-measure covering so that it is a proper subset of the object being measured, 
then Property 2 implies that the measure of the covering will be less than the measure of the object.  
If there are overlaps, then Property 3 is not satisfied, so we cannot count/add the unit measures to 
find the measure of the object.    

Spatial-Numerical Linked Structuring 
Beyond the basic measurement properties, linking spatial and numerical reasoning in geometric 

measurement requires use of what we call spatial-numerical linked structuring (SNLS).  Spatial 
structuring is the mental act of constructing a spatial organization or form for an object or set of 
objects, imagined or real (Battista, 1999, 2007, 2008; Battista et al., 1998; Battista & Clements, 
1996).  Numerical structuring is the mental act of constructing an organization or form for a set of 
computations.  A correct spatial-numerical linked structuring is a coordinated process in which a 
numerical measurement operation is performed along with a linked spatial structuring in a way that is 
consistent with the above measurement properties.  Incorrect student enumeration is generally based 
on SNLS that violates at least one of the measurement properties.  Note that each measurement 
property expresses a spatial-numerical linked structuring.  For instance, putting one angle inside 
another to decide which is bigger spatially organizes the two angles with respect to each other.  In 
this paper, we give examples of correct and incorrect spatial-numerical linked structuring.   

Methods and Data Sources 
The data we analyze comes from individual interviews and one-on-one teaching experiments 

with elementary and middle school students from several NSF-funded geometry projects awarded to 
the first author. 

Sample Results and Discussion 
To illustrate our results and analysis, we provide examples of spatial-numerical linked structuring 

for angle, length, volume and area.  The examples (a) describe student actions, (b) discuss what 
students did, and (c) interpret what students did using the spatial-numerical linked structuring 
conceptual framework.     

Spatial-Numerical Linked Structuring for Angles  
For the computer-presented problem in Figure 1, KS employed several spatial-numerical linked 

structurings to find the angle that rotates the green point onto the red point. 
 

              
      Figure 1.             Figure 2. 
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KS: I think it may be 40 [enters 40; green ray rotates to the 40° position Figure 2]. 
Int: So what are you thinking? 
KS: So if this is 40 [angle in Figure 2], I may have to go up maybe 20 more. 
Int: Okay, why 20 more? 
KS: Cause, if this was 40 [pointing at the interior of the green 40° angle], then half of it is 
this [pointing to the interior of the angle between 40° and the target angle; enters 60°; Figure 3]. 
 

      

Figure 3.              Figure 4.  

Int: Very close, what are you thinking? 
KS: Hum.  So maybe with the other [computer page showing 5° iterations of a ray] it shows that 

they were really close together, so maybe it’d be 65 [enters 65°; Figure 4]. 

 
Discussion.  KS used a sequence of spatial-numerical linked structurings (SNLSs) for solving 

this problem (see Table 1).  After viewing the result of her first estimate, which is quite a bit off, KS 
reasoned that her original estimate was too small.  This is an example of SNLS 1, in which KS 
recognized the smaller-than spatial relationship between the angle she made and the target angle.  KS 
then, using SNLS 2, spatially compared the angle between the green ray and the black ray from her 
40° estimate as half of the 40° angle.  Then, using SNLS 3, she added 20° to 40° to produce a second 
estimate of 60°.  Finally, in her third estimate, KS used SNLS 4 followed by SNLS 3 to recall a 
previously viewed 5° angle and add that to her estimate of 60°.     

Table 1: Definitions of Types of Angle Spatial-Numerical Linked Structuring  
SNLS 1.  [Bigger Angle ⇔ Greater 

Measure; Property 2]:  If Angle X is bigger 
than Angle Y, then the measure of Angle X is 
greater than the measure of Angle Y. 

 
Definition/Spatial Structuring:  Angle X is 

spatially "bigger" than Angle Y if the angles 
have the same vertex and Angle Y fits in the 
interior of Angle X.  
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SNLS 2.  [One-half angle ⇔ One-half 
measure]   If Angle X is one-half of Angle Y, 
then the measure of Angle X equals one-half of 
the measure of Angle Y. 

 
Definition: Angle X is one-half of Angle Y 

if the initial side of Angle X coincides with the 
initial side of Angle Y and the terminal side of 
Angle X is in the interior of Angle Y and is 
halfway toward the terminal side of Angle Y. 

 

SNLS 3.  [Add angles ⇔ Add measures; 
Property 3]   If Angle X equals Angle Y plus 
Angle Z, then the measure of Angle X equals 
the measure of Angle Y plus the measure of 
Angle Z. 

 
Definition: If point D is in the interior of 

Angle ABC, then Angle ABC equals Angle 
ABD "plus" [joined with] Angle DBC.  

SNLS 4.  [Compare perceived angle to recalled angle; Property 1]  The student compares a 
perceived angle to the recalled visual image of a previously seen angle, and says that the two angles 
are congruent so their measures are equal. 
  

Spatial-Numerical Linked Structuring for Length  
To examine the way students use spatial-numerical linked structuring with length, we consider a 

student’s work in a computer golf game (Figure 5).  Students "putt" a ball by entering a distance and 
angle. When students click the PUTT button, the ball travels to the right the entered distance, then 
arcs around counterclockwise as it sweeps out the entered angle, which is a multiple of 5° (Figure 6).  
Students receive visual feedback on each of their estimates until they determine a correct putt angle 
and distance.  SJ is doing the problem in Figure 5. 

 

           
 

 Figure 5.  Figure 6. 

Example 1: 



Geometry and Measurement 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

359 

SJ: [Pointing along hash marks 0-140 on the number line with the cursor] These lines are the 
pixels right? 

Int: Yep.  So this [pointing with a finger] is 100 pixels. That’s 200 [pointing]. So they might be 
counting by, what do you think, in those little ones [points to hash marks between 100 and 
200 on the number line]? 

SJ: 25s? 
Int: So let’s see. If this is 100 [pointing to 100]. That’d be 125 [pointing to 110], 150 [pointing to 

120], 175 [pointing to 130], 200 [pointing to 140]. 
SJ: Aw, never mind.  
Int: So what do you think? 
SJ: 10, 15, [points along hash marks 110 to 190 on the number line] 45.  No [goes back to 110 on 

the number line]. Oh, tens!   

Discussion: SJ understood that each hash mark represents the same amount of space 
(Measurement Property 1), but she could not immediately determine the correct numerical value for 
the distance associated with the space between each hash mark.  When she estimated 25 as the 
distance, the Interviewer iterated by 25 starting at the landmark for 100 so that SJ recognized that the 
numerical value of 25 for each hash mark was too large. After choosing a smaller value of 5 and 
realizing it was too small, she correctly concluded that 10 was the distance between each hash mark.  
This is an example of a student using the measurement properties and the iteration spatial-numerical 
linked structuring to develop an understanding of the coordinate system inscription embedded in the 
game.  The mistakes she made with the 25 and 5 estimates for hash-mark values seem to arise from 
not coordinating the number iterations of the hash-mark interval with the beginning and end values of 
the 100-to-200 interval.  In essence, she violated Measurement Property 4. 
 

Example 2: 

 

Figure 7.                                                      Figure 8. 

SJ: [For the problem in Figure 7] Okay. This one is probably going to be 50 [points the cursor at 
50 on the number line]. Because like 10, 20, 30, 40, 50 [counting on the 10-50 hash marks 
with the cursor]. Here’s the 50 [moves from 50 towards the hole; Figure 8]. Maybe even 60.  

 
Discussion: In this example, SJ's spatial structuring of the rotation path of the ball is incorrect.  

Because of this incorrect spatial structuring, her numerical choice for the length of the putt was 
incorrect—her spatial structuring violated Measurement Property 2.  Importantly, note that SJ does 
not understand the meaning of the distance-arc inscriptions for the embedded coordinate system.  
Because of her incorrect structuring of a point rotation, she does not recognize that every point on a 
distance arc is the same distance from the origin as the reference measurement on the number line.  
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Similar to many elementary students using rectangular coordinates (Battista, 2007; Sarama et al., 
2003), SJ does not conceptualize the spatial-structural metric properties of the coordinate system.  In 
order to accurately recall spatial relations, students must abstract not pictures but mental models that 
have encoded spatial properties of objects (e.g., Hegarty & Kozhevnikov, 1999). 

Spatial-Numerical Linked Structuring for Volume 
In the complex context of enumerating unit cubes in rectangular boxes, students must link their 

numeric structuring to their spatial structuring.  For instance, consider the following example 
(Battista, 2004, 2012). 

      
     a            b 

Figure 9. 
 
For the building shown in 9a, Fred counted based on the spatial structuring shown in 9b.  He said 

that there are 12 cubes on the front, then immediately said there must be 12 on the back; he counted 
16 on the top, and immediately said there must be 16 on the bottom; finally, he counted 12 cubes on 
the right side, then immediately said there must be 12 on the left side.  He then added these numbers.  
Fred's numerical structuring of 12 + 12 + 16 + 16 + 12 + 12 corresponded to his spatial structuring 
of (front + back) + (top + bottom) + (right side + left side).  So his spatial structuring of the building 
into composite units of cubes violated Measurement Property 3—the cubes that he double-counted 
occupied the same space.   

Below we see two alternative SNLSs for the same cube building. On the left, the spatial 
structuring of front + what's left on right side + (9 columns of 3) corresponds to the numerical 
structuring of 12 + 9 + (repeat 9 times counting 3 cubes in a column).  In Figure 10b, we see a 
column spatial structuring that a student numerically structured as 3, 6, 9...45, 48.  Another spatial 
structuring is horizontal layers (Figure 10c) which students variously structure numerically as 16 + 
16 + 16, 3 x 16, or skip counting 16, 32 48. 

  

      
    a                b         c 

Figure 10. 
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Note that, unlike the first SNLS in Figure 9b, the last three SNLSs produce correct answers.  
Given that there are multiple correct SNLSs for this cube building enumeration task, part of SNLS 
reasoning is consideration of enumeration efficiency.  The SNLS in Figure 10a is correct but too 
cumbersome to be efficient and too unwieldy for large arrays.  The SNLS in Figure 10b could be 
conceptualized in terms of 3 cubes in each column times 4 columns in a horizontal row times 4 
horizontal rows, leading to the standard volume formula, as could the layer structuring SNLS (Figure 
10c).  So part of SNLS reasoning is metacognitive consideration of enumeration efficiency.  
Furthermore, using SNLS reasoning to make sense of the volume formula illustrates how SNLS 
reasoning can be used for generalization, not just enumeration.   

SNLS reasoning as sense making for volume.  The next example further illustrates how SNLS 
reasoning can be used to make sense of geometric measurement problems that deal with 
generalizations rather than enumeration.  Consider the following problem (Battista, 2012).  The 
dimensions of a box are 3 cm by 2 cm by 4 cm.  Give the dimensions of a box that has twice the 
volume.  The most common error that students make on this problem is to multiply all three 
dimensions by 2.  SNLS reasoning can help students understand why the numerical structuring of 
multiply all the dimensions by 2 is incorrect and what correct numerical structurings are possible. For 
instance, Figure 11a shows that doubling all the dimensions of a 3 cm by 2 cm by 4 cm box gives 8 
times the original box volume, whereas Figures 11b, c, d show that doubling any one of the 
dimensions of the box doubles its volume.      

   

 
a    b   c   d 

Figure 11. 

Spatial-Numerical Linked Structuring for Area 
The ability to mentally construct an accurate spatial structure for rectangular arrays is a critical 

reasoning process for students determining area.  But this process is surprisingly difficult for students 
to construct (Battista, et al., 1998).  For example, student CS was asked to determine the number of 
squares required to completely cover the inside of the rectangle in Figure 12a (Battista, et al., 1998).  
CS counted in a non-random way as shown in Figure 12b.  She counted the pre-drawn squares first, 
then she counted 9, 10, 11, 12, 13 down the right side and an equivalent number (15, 16, 17, 18, 19) 
up; overall counting in a clockwise spiral (Battista, et al., 1998).   Because of the overlapping 
positions of CS' squares, her spatial structuring of the squares violated Measurement Property 3.  

    
a         b 

Figure 12. 
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Significance 
In addition to helping us untangle the complicated nature of students' coordination of spatial and 

numerical reasoning, this research helps us decompose the basic mental processes that students use in 
geometric measurement.  It therefore helps us understand, for one content area, more precisely how 
spatial reasoning is related to numerical reasoning in geometry, which in turn helps us start 
penetrating why spatial reasoning has been found to be related to mathematical reasoning in so many 
correlational studies.    
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TIME AS A MEASURE: ELEMENTARY STUDENTS POSITIONING THE HANDS OF AN 
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Time is an area of measurement that is difficult for children. This interview study addresses the 
question: What are children’s solution approaches to position the hands of an analog clock? To 
explore this, we investigated problem solving when using a clock manipulative with mechanically 
linked hands. We compare overall success rates among students in Grades 2 (n=24) and 4 (n=24) in 
positioning hour versus minute hands. We then present a qualitative analysis of solution approach 
for both hour and minute hands. Results indicate successful students may use the linked hands 
without overt consideration of the measurement structure of the clock. 

Objective 
Children have difficulty with the topic of time (Earnest, 2017; Kamii & Russell, 2012; Williams, 

2012). Despite the fact that this topic is a staple of early grades mathematics instruction (NGA Center 
& CCSSO, 2010), little empirical research exists that documents problem solving in the context of 
common tools for telling time. Because time measure underlies mathematics of change in later grades 
as well as serving as an independent variable for STEM-related investigations, the present study 
seeks to reveal how younger students make meaning of units and unit relations on an analog clock, a 
prevalent cultural tool for time. In the present analysis, we investigate children’s strategies for 
positioning hands on an analog clock to indicate particular times. The objective of our investigation 
is to reveal patterns across children’s strategies and, because time is an area of measure, to consider 
how different strategies reflect measurement ideas related to unit and scale (Lehrer, Jaslow, & Curtis, 
2003).  

Theoretical Framework 
We frame our study with two lenses. First, we consider mathematical aspects of time units as 

related to children’s developing theory of measure (Lehrer et al., 2003). Second, we consider the 
mediating role of the clock manipulative itself. First, children develop a theory of measure through 
everyday examinations of the attributes of objects or events (Lehrer et al., 2003). In investigating the 
world in such a way, children gradually attend to such attributes as length, area, weight, and duration, 
each of which may be measured formally or informally. As children compare and contrast and, 
eventually, quantify such attributes, they grapple with mathematical ideas particular to measure 
(Lehrer et al., 2003).  These ideas include conceptions of unit (such as the need for identical or equal 
units) as well as conceptions of scale (such as any point serving as an origin or zero-point). 

As a measurement tool, the analog clock features 12 equal hour intervals, with the numeral 12 
marking both a zero-point and ending point depending on that to which a user attends. As with any 
standard tool for measure, the analog clock provides equal intervals that are arranged end-to-end 
without gaps or overlaps. Of course, the clock does not represent only hours; rather, the same 12 
intervals reflect both minutes and seconds. As in other areas of measure, individuals may draw upon 
tools for measure in procedural ways unrelated to their mathematical properties (Moore, 2013; 
Stephans & Clement, 2003). One concern in the present study was not only to identify students’ 
approaches as they position the hands, but to understand them in relation to ideas related to unit and 
scale. 
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Second, the present study positions thinking and learning as inextricably linked to cultural 
practices (Cole, 1996; Earnest, 2015, 2017; Sfard, 2008), with conventional tools (i.e., a digital or 
analog clock) serving a mediating role in problem solving. Analog and digital clocks represent time 
and its properties in different ways, with the analog clock’s intervals of time translating duration into 
spatial distance (Lakoff & Nuñez, 2000; Williams, 2012). Digital time provides a precise time to the 
minute without reflecting part-whole relations of minutes and hours. The digital time 2:50, for 
example, provides a quick and precise numeric representation of time. In contrast, for the analog 
clock’s hour hand to show 2:50, one may interpret its position as not just showing the “2” as with 
digital notation, but its displacement from 2:00 to 2:50 as well as the length remaining length for the 
ten minutes from 2:50 to 3:00. Our study involved a particular clock manipulative featuring 
mechanically linked hands; based on our perspective of thinking and learning, this material property 
is consequential to children’s solution approaches. 

Related Research 
Classrooms in the United States typically feature classroom clock manipulatives for teaching 

time, though the functionality of clock features—and how unit relations are thereby supported—vary. 
Of two common clock manipulatives, one features mechanically linked hands such that movement in 
one hand provokes the proportional shift in the hour hand; this specific clock is the focus of our study 
below. For example, on a clock displaying 7:00, if one were to move the minute hand clockwise to 
show 7:30, the hour hand would proportionally move as well (see Figure 1).  With this tool, a user 
may note the proportional shift in hand movement; alternatively, one may not attend to this particular 
feature at all, as such proportional movement is not dependent on the user’s intentions in hand 
positioning. A different clock manipulative features independent hands, such that a user must 
deliberately position each of the two hands to indicate a particular time. On this clock, given 7:00, if 
one were to move the minute hand clockwise to reflect 7:30, the hour hand would remain at the 7 and 
thereby reflect a time that does not exist in our system (Figure 1b). In particular, we seek to 
understand if one manipulative is more helpful for children in terms of connections to measurement 
(not necessarily just in terms of accuracy). 

 

 
Figure 1. Manipulatives with (a) mechanically linked hands or (b) independent hands. 

Given our concerns related to a theory of measure together with how tools mediate thinking and 
communication, our work has investigated problem solving related to time in the context of the two 
clocks in Figure 1. A recent analysis revealed that elementary students performed differently as a 
result of the clock available to them (Earnest, 2017), and in particular students were more successful 
when the hands were mechanically linked. To understand why students may have performed more 
poorly when the clock featured independent hands (Figure 1b), we further analyzed students’ 
performances with this specific tool. We found that students’ incorrect approaches often did not 
overtly reflect concerns for unit and/or a continuous scale (Earnest, Gonzales, & Plant, 2017). One 
such approach included treating intervals as containers; for example, treating the 2-3 interval as 
representing a container for the 2 o’clock hour (see also, Williams, 2012). In another approach, 
students matched a number from the digital time (i.e., the 2 of 2:50) to the numeral on the clock (i.e., 
positioning the hour hand on the 2). 
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Although less common, approaches reflecting concern for unit and scale often led to success 
(Earnest et al., 2017). One approach involved treating the two hands—functionally independent on 
the clock manipulative (Figure 1b)—as coordinated; for example, to show 2:50, one student 
explained how the hour hand would be in the 2-3 interval but close to the 3 because the minute hand 
was only ten minutes from the top of the hour. Other students identified a zero-point on the clock. 
For example, to position the minute hand for 2:50, students began with the 12 as a zero-point and 
counted by 5s to reach the accurate position; such a concern for zero-point has been identified as a 
key idea related to scale (Lehrer et al., 2003). Overall, students were statistically more successful 
with the minute hand as compared to the hour hand, which, because hands were not linked on the 
manipulative, each student had to deliberately position.  

Research Questions 
Our prior analysis focused on a manipulative with independent hands (Figure 1b), yet we found 

students were more successful overall when using the clock with mechanically linked hands (see 
Figure 1a) (Earnest, 2017; Earnest et al., 2017). We wondered if the success among students using 
linked hands reflected different solution pathways for students as compared to those using 
independent hands. If so, results could illuminate how the linked hands support disciplinary ideas 
related to time. Alternatively, the linked property of the hands may support pathways towards 
accurate hand placement through mechanically accomplishing this mathematical work on behalf of 
the user. 

The present study investigates the questions: Are children more successful positioning one hand 
over the other? And, what are the solution approaches children apply to position each hand? In 
particular, we were concerned with how such strategies reflected treatments of unit and interval 
consistent with geometric measure.  

Methods 
Participants included students in Grades 2 (n = 24) and 4 (n = 24) from six elementary schools in 

diverse areas (urban and rural) of western Massachusetts. All schools were identified as having a 
high percentage of children from low-income families. Interviews were conducted in 2015. Grade 2 
students were selected because standards indicate children in this grade have already mastered time 
to the hour and half hour and are currently working on time at the 5 minutes (NGA Center & 
CCSSO, 2010).  Grade 4 students were selected because, according to standards, time concepts 
including elapsed time have been mastered in prior grades, and their performances therefore 
illuminate any persisting differences in performance on problems involving time.  

Based on an assessment administered to a larger group of students in the six focal schools, we 
identified a range of students with permission in each classroom and assigned them to one of three 
clock conditions; our focus in this paper is on the condition featuring an analog clock with 
mechanically linked hands (Figure 1a; see Earnest et al., 2017, for a similar analysis involving an 
analog clock with independent hands).  

Interviews lasted approximately 30 minutes. Our analysis here focuses on seven particular tasks 
specific to positioning hands on the clock, as these tasks reveal students’ treatments of unit and 
interval (see Earnest, 2017, for all interview tasks). Hand Positioning tasks were designed based on 
prior literature (Kamii & Russell, 2012; Williams, 2012) and ongoing piloting of tasks. The seven 
times included in tasks were: time to the hour (7:00), time to the half hour (4:30), time on the first 
half of the clock (10:10), time on the second half of the clock (2:50), and time with a minute value 
less than 10 (9:03), along with two relative time tasks using hour units only (half past 11, quarter past 
8). To present tasks, the interviewer provided the clock positioned to an unrelated time and asked the 
student to show the target time (e.g., “Show me what 2:50 looks like on this clock.”). The interviewer 
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also turned over a card on which the same question was printed (Figure 2). Once the student 
positioned the hands, the interviewer asked that student to explain her/his thinking. 

 

 
Figure 2. Playing cards for administering the Hand Positioning tasks. 

We conducted both a quantitative and qualitative analysis. First, using video and transcript, we 
coded each hand position separately as correct (1) or incorrect (0) for placement, enabling a 
comparison in performance between the two hands. To do so, we identified an interval for the two 
hands for each problem (i.e., 4.3-4.7 for the hour hand for 4:30), outside of which a response was 
considered incorrect. All responses were double coded, and any discrepancies in hand positioning 
accuracy were resolved in team meetings. Second, we open coded video and transcripts using the 
constant comparison method (Corbin & Strauss, 2008). Based on rounds of coding to identify 
particular solution strategies in data, we generated a codebook. Three coders then double-coded all 
data, with any discrepancies discussed until reaching consensus on a final code. 

Analysis and Results 
The analysis is presented in two parts.  We first present quantitative results speaking to whether 

students had similar success at positioning hour and minute hands.  Following this, we present a 
qualitative analysis to identify strategies students applied. 

Performances on Hand Positioning Tasks 
We first compared performances for hour and minute hands: Were students more successful at 

one hand over the other? Means and standard deviations are provided in Table 1, and in general mean 
performances out of 7 problems show that students were quite successful. A Two (Hand) ! Two 
(Grade) repeated measures analysis of variance (ANOVA) revealed a main effect for Hand, F(1, 46) 
= 11.560, p = .001, with better performance with the minute hand as compared to the hour hand. A 
main effect also emerged for grade, F(1, 46) = 7.676, p = .008, with Grade 4 students outperforming 
Grade 2 students.  There was no significant Hand ! Grade interaction, suggesting that the 
discrepancy in performance was roughly equivalent across grades (p = .168). A post hoc Tukey’s 
HSD showed that the difference for Grade 4 students in hand positioning was not significant (p = 
.135) and with a low effect size (d = .194) (Cohen, 1988). For Grade 2 students, the difference was 
found to be significant (t(23) = 3.14, p = .005), yet with a low to medium (d = .338) effect size, 
suggesting only a low or low to moderate practical significance of the result.  

Table 1: Means and Standard Deviations for Each Grade for Correct Performance on the 
Seven Hand Positioning Tasks 

 Grade 2 Grade 4 
 Mean (SD) Mean (SD) 

Hour Hand 5.04 (1.681) 6.17 (1.129) 
Minute Hand  5.54 (1.250) 6.37 (0.924) 

 
This finding is different than the comparable analysis for the analog clock with independent 

hands, for which both grades were more successful with the minute hand and both with a large effect 
size (Earnest et al., 2017). In the present analysis, when using the clock with linked hands, there was 

Show 2:50
on the clock.

Show 4:30
on the clock.

Show 7:00
on the clock.

Show 10:10
on the clock.

Show 9:03
on the clock.

Show 
half past 11
on the clock.

Show 
quarter past 8
on the clock
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little detectable difference in students’ positioning of hour versus minute hands. Given our interest in 
children’s approaches to showing time on the clock, we question how the linked hands may 
differently support such accuracy and whether such success owes to conceptual understandings 
students applied or, alternatively, the mathematical achievements underlying the manipulative’s 
functionality. To address this, we turn to our second question; given the high level of success with 
this clock, what are students’ strategies when positioning the hands, and how are such strategies 
related to key ideas within measurement? 

Children’s Strategies to Position Hour and Minute Hands 
In this section, we provide an overview of solution codes that emerged in our analysis for the 

seven Hand Positioning tasks (Figure 2).  The role of qualitative data analysis involving children’s 
strategies is to further contextualize performance results above that suggests there was little 
difference in the challenge of placing the two hands and high overall accuracy in hand positioning.  
We first present the six codes that emerged from analysis of video and transcript. After this 
overview, we present our analysis of strategies for each hand across all Hand Positioning tasks in 
both grades among the 48 students using the clock with mechanically linked hands. 

Our analysis of the 48 students’ solutions resulted in six strategy codes (Table 1): Container, 
Number Matching, Hand as Lever, Number as Floor, Origin, and Coordination, with idiosyncratic or 
unclear strategies coded Other. Table 1 features code names with examples as well as the frequencies 
across the 672 possible instances (7 problems with 2 hands per problem for 48 students) and, given 
all instances for just that code, the percent correct for each of the two hands. We first consider four 
strategies that (in our determination) did not overtly relate to unit or scale followed by two additional 
strategies that reflected some aspect of these measurement ideas. 

First, 50 responses were coded as Container. Consistent with Williams (2012), children treated a 
particular interval as a container, with any point in that interval the same as any other point (see 
examples in Table 2). Second, Number Matching refers to a strategy to match the number from the 
time in the prompt with a number on the clock (e.g., “It’s 2:50, so the hour hand goes on the 2.”. At 
times, this included the application of a fact that remained unexplained in the interview (e.g., “I know 
6 is 30”).  Third, Hand as Lever involved children treating the focal hand as a mechanism to move 
the other hand; only nine students applied such a strategy, and in all cases this involved treating the 
minute hand as a lever to move the hour hand. Fourth, Number as Floor involved students finding the 
position of the hour hand for the top of the hour (e.g., when solving for 2:50, first finding 2:00 so the 
hour hand points to 2) and then applying continued movement to the minute hand clockwise resulting 
in further movement of the hour hand. In these cases, after finding time to the hour, students focused 
exclusively on positioning the minute hand without any overt further consideration of the hour hand. 
Unlike Number Matching, for which students’ goals involved positioning the hour hand as close as 
possible to the target number (e.g., indicating 1:50 on the clock when matching the hour hand as 
close to 2 as possible), students found the top of the hour and then relied on the functionality of the 
linked hands. This occurred 65 times in interviews.  

We identified two strategies related to key ideas of measurement (Lehrer et al., 2003): Origin and 
Coordination.  Origin involved strategies in which a student identified a zero-point on the clock—
typically the 12—with the target position as a path from that starting point. Unlike Number as Floor, 
which involved finding the top of the hour to locate the hour hand and then (based on available data) 
turning their attention to the minute hand, Origin involved a starting point with an explicit follow-up 
strategy (see example in Table 2). This code was applied 76 times, yet we note that it was applied 
only for the minute hand and not once to the hour hand.  In almost all applications (96.1%) of this 
strategy, students were accurate.  We also coded strategies as Coordination (n = 105), which involved 
treating the position of the focal hand as dependent or related to the position of the other hand. In 
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doing so, such cases involved the proportional relationship of hours and minutes. These two 
measurement strategies were more successful than the prior four strategies, yet arose less frequently 
in our data. 

Table 2: Strategy Codes for Positioning Hour and Minute Hands (N = 672) 
Strategy (frequency) Example  

Container (n = 50) To position the hour hand for 4:30. “It’s 4, so the hour hand is in 
the 4-space. 

Number Matching (n 
= 263) 

To position the minute hand for 4:30. “I know 6 is 30.” 

Hand as Lever (n = 9) To position the minute hand for half past 11. “I placed this here 
because I wanted this hour hand to be between 11 and 12.” 

Number as Floor (n = 
65) 

To position the hour hand for 2:50. “I first found 2:00, and then I 
knew that the hour hand would be after the 2.” 

Origin (n = 76) To position the minute hand for 4:30. “I started here [at 12] and 
counted by 5s until I got to 30. 

Coordination (n = 
105) 

To position the hour hand for 2:50. “I know this goes there 
because it’s close to the 3, and the minute hand is only 10 minutes 
away from 3:00.” 

Other (n = 104) Idiosyncratic or did not respond. 
 

 

 
Figure 3. Strategy use for hand positioning when using clock with linked hands. 

Figure 3 displays bar graphs for each grade to indicate frequencies of particular strategies for 
each hand along with whether such uses were correct or incorrect. Despite quantitative results above 
indicating little difference in success between the two hands, the strategies behind their positioning 
were often different. In particular, students’ application of Container and Number as Floor were 
almost always for the hour hand. Although we would expect in general that strategies reflecting unit 
and scale would lead to greater accuracy (see Earnest et al., 2017), the material properties of the tool 
might have accomplished important mathematical work on behalf of the users applying Container, 
Number Matching, Hand as Lever, or Number as Floor strategies.  We further note that the Origin 
strategy was applied exclusively to the minute hand.  Such a result leads us to question whether, for 
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children, the hour hand has an obvious zero-point like the minute hand does. We also note here that 
Hand as Lever was employed only in the context of relative times (i.e., half past 11) and, although 
we did not consider this to reflect unit or scale, any problem in which a student’s minute hand 
position was coded as Hand as Lever received a Coordination code for the hour hand.   

Concluding Remarks 
With limited existing research focusing on children’s understanding of time, we contend that the 

results of the present analysis are an indication that children may be developing an understanding of 
the inner workings of the clock—specifically how it reflects units and unit relations—in ways that 
are unrelated to mathematical properties of unit and scale. Further data is required to examine the 
extensiveness of these implications. Based on available data, if we were to look at overall 
performances among students using the clock with linked hands (Table 1), we may have concluded 
that this clock is a useful and productive manipulative for children to learn about time; however, our 
present analysis suggests that the material properties of the tool may be doing some important 
mathematical work on behalf of students.  

Broadly speaking, what are our instructional goals related to time, particularly given that digital 
clocks are pervasive? We contend that instruction ought to move beyond procedures of clock-
reading. Considering the role of time as a parameter in later mathematics, children ought to engage 
more deeply with the underlying meaning of clock features related to unit and scale. This research 
identifies a potential change in route with respect to how the field has framed learning and instruction 
related to time. We contend that more research is necessary in the area of how children come to 
understand time and common representations and tools for time. Although clocks are certainly 
pervasive in culture, results of this study underscore that children’s ideas of time may be unrelated to 
the mathematical ways in which we measure it.  
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EXPLORATIONS OF VOLUME IN A GESTURE-BASED VIRTUAL MATHEMATICS 
LABORATORY 

 Camden Bock Justin Dimmel 
 University of Maine University of Maine 
 camden.bock@maine.edu justin.dimmel@maine.edu 

A room-scale virtual-reality environment was used to investigate students’ conceptions of the volume 
of a pyramid. Participants controlled the virtual environment with a gesture-based interface that 
converted movements of their hands into actions on mathematical figures. Two students in graduate 
programs leading to certification in secondary science education investigated how the volume of a 
pyramid is affected by horizontal (i.e., shearing) or vertical (i.e., elongation) movements of its apex. 
Participants’ actions within the environment were analyzed using the conceptions-knowing-concept 
(cK¢) model of student conceptions. Both participants used an analogy of volume to surface area 
and area to perimeter to make sense of the effects of the shearing operator.   

Keywords: Geometry and Geometrical and Spatial Thinking, Technology, Teacher Education- 
Preservice 

Introduction 
New modes of interacting with virtual objects (Hwang & Hu, 2013; Kaufman 2011) can facilitate 

new ways of engaging with mathematical ideas (Abrahamson & Raúl Sánchez-García, 2016). 
Students today have a considerable advantage over the ancients: Instead of making do with crude, 
fixed diagrams sketched in sand, they can hold virtual mathematical objects in their hands and use 
intuitive, gestural interfaces (Goodman, Seymour, & Anderson, 2016; Zuckerman & Gal-Oz, 2013) 
to translate their instincts to explore different shapes (Hwang & Hu, 2013) into dynamic 
investigations of geometric structure (Duval, 2014; Sinclair & Bruce, 2015).  

In this study, we report on two graduate students’ explorations of the volume a pyramid in a 
virtual mathematics laboratory. We asked: How do students use virtual operators (e.g., the ability to 
dynamically elongate or shear a figure) to make and test conjectures about the volume of a pyramid? 
We use the cK¢ model (Balacheff & Gaudin, 2010) to describe two cases of students’ explorations in 
the volume laboratory.   

Theoretical Framework 

Design of the Environment 
The HandWaver environment (Dimmel & Bock, 2017) we developed was designed to create a 

space where learners could train their dimensional deconstruction skills (Duval, 2014)—the capacity 
to see representations of geometric objects as figures that can be resolved into components rather 
than as whole shapes (Laborde, 2008)—by using their hands to act directly on mathematical objects. 
The virtual tools were designed to provide various operators (Balacheff & Gaudin, 2010) participants 
could use to solve problems, such as that of relating the volume of the pyramid to the volume of a 
unit cube. For example, users could modify the (x,y,z) position of the apex of a pyramid by pinching 
and moving it in space, thereby changing the height of the pyramid by elongating (z-axis) or shearing 
(x-, y-axes).  

The Conceptions-Knowing-Concept (cK¢) Model 
Balacheff and Gaudin (2010) define a conception as a quadruplet (P,R,L,Σ): a set of problems 

(P), a set of operators (R), a representation system (L), and a control structure (Σ) (Balacheff & 
Gaudin, 2010; Balacheff, 2013). In this model, conceptions are not mental entities that belong to 
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particular learners but are rather emergent, observable states of dynamic equilibrium between 
learners and their actions in an environment (i.e., a milieu). A conception is a “system of 
relationships” between the four components of the model. The set of problems for our study 
pertained to exploring the volume of a pyramid. A prototypical problem (Balacheff, 2013) was: How 
does the volume of the pyramid change as the position of its apex changes?  

The environment provided various operators for participants to work on this problem. In addition 
to the elongating and shearing operators (Dimmel & Bock, 2017), the environment allowed users to 
constrain the elongate and shear operators by locking the apex of the pyramid in space along axes 
determined by the user. For example, users could lock the z coordinate of the apex, allowing them to 
move the apex in an xy plane without changing its height. Alternatively, users could lock its xy 
position and vary the pyramid’s height while keeping its apex in its current vertical position. We 
report below on how participants used the shear and elongate operators to investigate volume.  

Method and Participants 
We investigated how pre-service teachers explored the volume of pyramids in the environment 

by conducting task-based interviews using a semi-structured protocol. Participants were asked to 
describe their thinking out loud (Fonteyn, Kuipers, & Grobe, 1993) as they navigated the 
environment and worked on the tasks. Participants were visually immersed in room-scale virtual 
reality for the duration of the interview. There was at least 2.5 meters x 3 meters of clear floor space 
for participants to move. All manipulatives were contained within the 2.5-meter x 3-meter virtual 
space. However, the virtual environment was unbounded such that participants could see to the 
horizon. Participants were recruited from a cohort of graduate students who were completing a 
Master’s of Science in Teaching program. The two participants were given pseudonyms: Abe and 
Brendan.   

Data 
A 60-minute interview was conducted with each participant. A participant’s first-person view of 

the virtual world was displayed and screen recorded on a monitor that was visible to the researchers 
throughout the interview. A third-person view of the participant navigating the virtual environment 
was also screen captured.  A separate audio recording captured the conversation between the 
investigators and the participant. 

Analysis and Results 
After conducting three recorded interviews, each interview was transcribed and partitioned into 

episodes by task, differentiated by the operators common to each task (González & Herbst, 2009). 
Transcriptions included references to direction and geometric figures indicated by hand gestures. We 
consider here a task where participants investigated the volume of the pyramids by manipulating its 
apex. Episodes were partitioned by the type of manipulation (vertical or horizontal) of the apex 
during the participants’ inquiry. We differentiated horizontal manipulation (shearing) from vertical 
manipulation (elongating).  

Episodes of Exploring Volume 
At the beginning of the task, Abe stated that he believed “moving the apex increases the volume” 

when the apex is restricted to vertical movement (elongating). As Abe began to experiment with 
horizontal motion, shearing the pyramid, he claimed that “[the surface area is] probably balancing 
out, so the total volume isn’t changing, it’s just redistributing where the volume is.” After he was 
asked what tool exists or could be built that would increase his confidence in his claim, Abe first 
suggested that if “each side of the pyramid could be a different color, then…you might be able to 
visualize the changing of the area.”  Abe then suggested applying a “cube grid” (a graph-paper 
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material seen on the unit cube) to each face.  The measurement tools Abe wanted were absent from 
the environment by design, to discourage empirical discussions of volume (Herbst, 2005). 

Reaching a Contradiction 
The investigators prompted Abe to investigate the changes of the heights of the triangles and to 

use greater than or less than statements if measurement was not possible.  Abe then attempted to use 
relative changes in the perimeter of each face of the pyramid to gauge relative changes in area.  Abe 
acknowledged that the length of each edge of the square base was equal and constant when the apex 
of the pyramid was sheared.  Abe used the changes in lengths of the two remaining sides to 
determine if a face was increasing or decreasing in area.  Abe concluded that the net surface area was 
increasing, thus the volume was increasing. However, Abe stated that “It just doesn’t feel like it is,” 
and that it “seems weird to...say that ...the volume of [the sheared pyramid] is larger.”  The interview 
concluded shortly after Abe reached this contradiction, so we were unable to observe Abe attempt to 
resolve the contradiction. 

Connection to Perimeter and Area 
Brendan used an argument that related area to perimeter as he explored the relationship between 

surface area and volume.  Brendan suggested that there is a relationship between the structure of 
perimeter and area, and surface area and volume. He appeared to be using the connection between 
perimeter and area as a control to work on the problem of describing how volume is affected by 
shearing or elongating. This aspect of his control structure could be described as follows: Volume is 
the 3D analog of area and surface area is the 3D analog of perimeter. So, if a change in perimeter 
implies a change in area, then a change in surface area implies a change in volume. 

This control is a component of a conception of volume equality that could be described as 
follows: 

• Problem (P):  How is the volume of a pyramid affected when the position of its apex 
changes? 

• Operators (R):  Elongate (xy axis lock) or shear (z-axis lock) the pyramid.  Use one’s 
gaze or one’s position in the environment to make a visual comparison. 

• Representation (L):  A dynamic pyramid in an immersive virtual space. 
• Control Structure (Σ): Analogy between the relationships of volume to surface area and 

area to perimeter. 

Conclusions & Scholarly Significance 
We anticipated participants would use an available cross section tool (not described) to effect 

side-by-side comparisons of sheared and non-sheared pyramids of equal height. Participants’ uses of 
the analogy between perimeter/area and surface area/volume as a control on the shearing operator 
was unexpected. The participants that used this control did not recognize that the perimeter of a 
figure can increase while its area remains constant and that the surface area of a figure can increase 
while its volume remains constant.  Even though participants arrived at a conception of volume we 
had not intended, the environment we designed facilitated participants’ use of dimensional 
deconstruction to reason about plane and solid figures. The use of physical manipulatives has 
previously been proposed to address conceptions in 3-D geometry, particularly in investigations of 
shearing (Fischman & McMurran, 2011). Our study highlights how virtual manipulatives in 
immersive spaces can be used to explore how learners reason about volume.  

 Our study is significant because mathematics education is at a technological crossroads. The 
virtual reality technology we used to conduct this study is commercially available, inexpensive, and 
will be as ubiquitous as mobile phones in the coming decade. How will classroom instruction adapt 
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to strategically harness the vast potential of these new systems of representation and interaction to 
positively affect student experiences in mathematics? This is an urgent question. Studies like ours 
demonstrate what the potential of these new instructional technologies look like in practice. 
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MIDDLE AND HIGH SCHOOL STUDENT UNDERSTANDING OF HEIGHT OF A 
TRIANGLE 

 Davie Store Jessie C. Store 
 Central Michigan University Alma College 
 store1d@cmich.edu  storejc@alma.edu  

This study focuses on geometry, one of the under researched studies in mathematics education. 
Based off national and international tests, it is also the least understood areas of mathematics. 
Geometry teaching and learning should be at the center of reform policies. To contribute to 
understanding of this issue, in this study we conducted clinical interviews with 25 students from 13 
middle and high school students. The results reveal misconceptions that are likely to hinder 
development of geometric understanding. 

Keywords: Geometrical and Spatial Thinking 

Objective 
Educators contend that Geometry is one of the critical areas in mathematics education. It is 

foundational to higher-level mathematics, to understanding space in our world, and many other 
science disciplines. Several studies have shown student difficulties with geometry. Usiskin (1982) 
after a study with 2700 students on geometric thinking concluded “half the students who enroll in a 
proof oriented course experience very little or no success with proof” (p. 99). These difficulties have 
persisted over decades. Several studies (E.g., Stylianides & Silver, 2014), and achievement tests such 
as NAEP and TIMMS have shown geometry to be the weakest area for students compared to algebra, 
number, data, and chance. Secondary school mathematics teachers also report students’ difficulties 
with high school geometry. 

In light of these difficulties, standards for mathematics teaching (ex. Common Core States 
Standards, 2011) are targeting deeper and connected ways of understanding geometry from 
elementary school. In these standards, six grade students should be solving geometry problems that 
include volume and area. Seventh grade geometry standards include constructing geometric figures, 
and eighth grade students should be learning Pythagorean theorem, and congruence and similarity of 
geometric figures. One of the underlying concepts that affect depth of understanding in the geometry 
domains in the standards is the concept of height, for instance height of a triangle. Understanding 
height of a triangle pulls from understanding what a triangle is and feeds into conceptual 
understanding of area, volume, Pythagorean theorem, and congruence and similarity. 

Clearly, it is critical to explore students’ understanding of height of a triangle. Moreover, there is 
scarcity of literature on students’ geometric thinking after implementation of Common Core 2010 
standards. Furthermore, Bergstrom and Zhang (2016) in their meta-analysis of studies on geometric 
thinking and interventions reported that “compared to the rich literature on numerical instruction, 
research investigating students’ development of geometric thinking is rather limited” (p.2). For these 
reasons, the objective of this study is to explore how middle and high school students understand 
height of a triangle.  

VanHiele Theory of Geometric Thinking 
This study is informed by Van Hiele theory of geometric thinking. This theory was developed in 

response to the need for improving secondary students geometric thinking (Van Hiele, 1959) and has 
been used as a model for geometry curriculum (Burger & Shaughnessy, 1989). Drawing from Jean 
Piaget’s theory on cognitive development and other theories, Van Hiele theory organizes geometric 
thinking into five levels namely visualization, analysis, abstraction, rigor, and deduction. 
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At visualization stage, students focus on the orientation of geometric shapes. Their focus when 
identifying shapes is not the explicit properties of the shapes. Even for those beginning to use 
properties, the properties used are very imprecise as they compare drawings, sort, or characterize 
shapes. For example “a child recognizes a rectangle by its form and a rectangle seems different to 
him than a square” (Van Hiele,1959,  p.62). The vocabulary for figures is present, but the definitions 
for such vocabulary are not understood. 

Analysis stage follows visualization stage. At this stage, students analyze the shapes, discern 
properties, and are even able to make generalizations about those properties. Given the properties, 
students can draw the corresponding shapes. However, they are not able to see relationships between 
those properties. They are still unable to see a square as a rectangle (Van Hiele, 1986). Once children 
reach abstraction level, they are able to make informal deductions about properties and see their 
relationships. These informal deductions allow children to identify interrelations of properties both 
within and between shapes, enabling them to identify squares as rectangles. In the later levels, 
students are able to work with axioms and write formal proofs, and later work within abstract non-
Euclidian geometry. 

Methods 
Data were collected from 13 female and 12 male students from 13 schools from Midwestern US. 

Ten participants were in grade 6, 7, and 8 while the rest were either freshmen or sophomores in high 
school. These students had participated in a one-week college residential camp conducting research 
in STEM fields. Students were given written questions that asked them to define height of a triangle, 
draw heights to given triangle bases, and write how many heights each triangle may have. Clinical 
interviews (Piaget, 1983) were conducted with each student to understand students’ reasoning for 
their responses. The interviews were video recorded and lasted 30 minutes on average. 

A line by line coding of the interview transcripts and student worksheets was conducted in Nvivo 
to identify themes for developing categories of student reasoning. NVivo coding helped to check how 
robust the themes were and to identify relationships between themes, and between verbal and written 
reasoning. Multiple coders built in the trustworthiness of the analysis (Creswell, 2007). The results 
are presented in the following section. 

Results 

Defining Height of a Triangle 
From our sample, only three students who had just finished 10th grade were able to define height 

correctly and could identify heights that were either horizontal or vertical without changing the 
orientation of the triangle. For the rest of the sample, height of a triangle was how visually tall a 
triangle is. Some explained that a triangle can have up to three heights, but needed to rotate the 
triangle to explain that the height would change depending on which leg was the base. Some 
differences were observed between grades. 

None of the ten students who had just finished sixth and seventh grade were able to correctly 
define height. From the interview and written transcripts, to identify height of a triangle, one simply 
needs to pick one corner of a triangle with a line (leg) that looks taller, and follow that leg to the top 
corner. They interpreted height as how visibly tall a triangle is as judged from “the bottom” of that 
triangle. When asked what happens to the height when the triangle is rotated, they believed that there 
is a need to consider the bottom line again and choose the longest line to the top. Only four of these 
sixth and seventh graders believed a triangle could have up to 3 heights while the others believed the 
maximum number is 2 or 1. Notably, this group of participants did not use any formal vocabulary 
during the interview or in their written work. 
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Eighth graders were using formal vocabulary (ex. hypotenuse, base). Although their definitions 
of height were incorrect and also viewed height as how tall a triangle is, they were able to talk of 
heights meeting the base, and that height did not necessarily have to be one of the legs. In general, 
the ninth and tenth graders had similar understanding but also talked of other factors such as the type 
of triangles. They tended to default to discussing height of a right-angled triangle as being the 
opposite of a hypotenuse, but their understanding was limited to right-angled triangles where the 
right angle was on one of the bottom vertices. 

Drawing Height of a Triangle 
Participants were also asked to draw a height to a given base b. Analysis of the heights they drew 

correlated with their description of height during the interview. There were four common 
misconceptions for the students who seemed confident in their definitions and drawing of heights.  

The most common misconception was believing that the height of a triangle is the leg that looks 
the tallest. Students with this misconception, in line with their definitions of triangle, always used 
one of the legs that looked taller from the bottom to the top to draw the height. Because they believed 
that rotating the triangle would change the base and therefore which side looked the tallest, they were 
convinced that a triangle has three possible heights. However, they were confused when prompted to 
think whether every triangle would always have three heights. They thought number of heights 
depended on the relative sizes on the legs. It became very difficult for them to give a convincing 
argument on determinants of number of heights of a triangle. 

A second misconception was that the height always bisects the base. With this misconception, 
students always drew a height starting from the middle of one of the legs. Some perceived heights 
were from the given bases and others from the bottom leg. They did not necessarily go to the vertex 
opposite the base, some legs were drawn from the mid point of the perceived base and to middle of 
the triangle, and others left randomly outside the triangle. 

 Another misconception was that the only triangles with heights or whose heights can be 
identified are right-angled triangles whereby the leg opposite the hypotenuse is the height. 
Interestingly, students with this view easily identified the height of right-angled triangle when the 
height was vertical and on the left, but almost always never identified such edges as heights when the 
edges did not look ‘vertical enough’ even on triangles labeled as right-angled.  

Lastly, students had a misconception that the height of a triangle can only be drawn if the triangle 
measurements are known. The measurements that students mentioned were the formula for area of a 
triangle (A= b x h), angle measurements, and types of a triangle (ex. isosceles, acute, equilateral, 
e.t.c). These students focused on trying to recall computational geometry ideas and trying to figure 
out how they could use those ideas to draw heights. They discussed triangle properties at length but 
could not draw any height because drawing heights without measurements included in the triangles 
did not make sense to them. 

Only three students were able to draw heights for any given triangle correctly, and their 
discussion was consistent with the mathematical definition of height. These students had just finished 
10th grade at different high schools. 

Significance 
Based off these data, students’ reasoning with height of a triangle is within visualization and 

analysis levels. From different theoretical perspectives, development of geometric thinking is 
sequential; students cannot achieve higher-level thinking without the basic understanding. Any high 
level mathematics such as calculus builds on geometry concepts some of which are heights of 
figures. To reason with measurements in our world, for instance volume, require understanding 
height of objects. Students who do not fully comprehend the height of a triangle lack mathematical 
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empowerment. The results of this study show students are not well prepared to do high school 
geometry or college mathematics. By sixth grade, geometry domains require understanding of height 
of a triangle and yet in our sample only three students could define and draw height of a triangle. 
This calls for rethinking geometry curriculum, and/or pedagogy. 

References 
Bergstrom, C., & Zhang, D. (2016). Geometry interventions for K-12 students with and without disabilities: A 

research synthesis. International Journal of Educational Research, 80, 134-154. 
Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches (2nd ed.). CA: 

Sage Publications, Inc.  
Stylianides, G., & Silver, E. (2014).  Reasoning and proving in school mathematics curricula: An analytic 

framework for investigating the opportunities offered to students. Proceedings of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. PME-NA  

Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry. Chicago: University of 
Chicago, Department of Education. (ERIC Document Reproduction Service No. ED 220 288).  

Van Hiele, P. M. (1959). The child’s thought and geometry. In T. P. Carpenter, J. A. Dossey, & J. L. Koehler (EDS). 
Classics in mathematics education research. National Council of Teachers of Mathematics. 

Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Orlando, FL: Academic press 



Geometry and Measurement 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

379 

MOTIVATING THE CARTESIAN PLANE: USING ONE POINT TO REPRESENT TWO 
POINTS 

 Hwa Young Lee Hamilton L. Hardison  
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The Cartesian plane is often used as a representational tool in high school mathematics and beyond. 
Often, the Cartesian plane is taken as a given, and little research has examined students’ 
constructions of the Cartesian plane. We present data from a teaching session focused on two ninth-
grade students’ activities during the Ant Farm Task—a task we designed to motivate students’ 
construction of the Cartesian plane. We describe three elements of the students’ constructive activity 
that we view as critical for constructing the Cartesian plane. 

Keywords: Geometry and Geometrical and Spatial Thinking, High School Education, Cognition  

Using the Cartesian plane, students are expected to represent and reason about various 
mathematical ideas (e.g., characteristics of geometrical shapes, functions, etc.). Consider the 
following statement in the Common Core State Standards for Mathematics (CCSSM) regarding the 
Cartesian plane: 

Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the 
intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point 
in the plane located by using an ordered pair of numbers, called its coordinates. (NGACBP & 
CCSSO, 2010, p. 38) 

Descriptions of the Cartesian plane like the one above are common in textbooks and other 
curricular materials. In short, students are given the rules of “generating” a Cartesian plane and 
plotting points within it. We are aware of no curricular materials designed for high school students 
that attend to students’ conceptions of coordinate systems or why we construct and use the Cartesian 
plane in this manner. In this report, we present how two ninth-grade students described the location 
of two points using a single point by constructing a Cartesian-like coordinate system. More 
specifically, we will present the Ant Farm Task, analyze the two students’ strategies in the task, and 
consider educational implications. 

Theoretical Framework 
Based on our conceptual analysis (Thompson, 2008), we distinguish between two different uses of 
coordinate systems: spatial coordination and quantitative coordination (Lee, 2016; Lee & 
Hardison, 2017). Spatial coordination refers to the use of coordinate systems to re-present space 
by establishing frames of reference to locate points within the space (e.g., a map). Quantitative 
coordination refers to the use of coordinate systems to coordinate sets of quantities in a 
representational space. We are unaware of any curricular material which address our distinction 
between these two uses of coordinate systems, including the CCSSM. 

Saldanha and Thompson (1998) explained thinking covariationally as “holding in mind a 
sustained image of two quantities’ values (magnitudes) simultaneously” (p. 298). Often, curves in 
the Cartesian plane are used as static representations of the mental covariation outlined by Saldanha 
and Thompson. Previously, we have argued that spatial coordinations are necessary (i.e, a barrier) if 
Cartesian coordinate systems are to be productive tools for students’ quantitative coordination and 
subsequent covariational reasoning (Authors, year). In this paper, we present data and analysis of 
students’ constructive activities in a task we view as a bridge between spatial coordination and 
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quantitative coordination. We propose three features of students’ constructive activities that may be 
critical for fostering students’ transition from utilizing one number line to represent a single quantity 
to developing the Cartesian coordinate system to represent covariation in two quantities. 

Methods 
We conducted a yearlong teaching experiment (Steffe & Thompson, 2000) with ninth-grade 

students Kaylee and Morgan to investigate their constructions of coordinate systems (Author, year). 
The first and second authors served as the primary teacher-researcher and witness respectively for 
the teaching experiment. We collected video recordings and student work from each of the 20–25 
minute teaching episodes. We conducted both on-going and retrospective analyses and oriented our 
work in modeling students’ constructive activities (Steffe & Thompson). In this report, we discuss a 
single task: The Ant Farm Task (AFT). The goal of AFT was to engender students’ creation of a 
space that would allow them to describe the location of two points simultaneously, with one possible 
solution being the standard Cartesian system. Providing the students with two plastic tubes that 
represent ant farms, we asked students to pretend there were two ants: one moving around in each 
tube. The task was accompanied by a model of this situation in a dynamic geometry environment 
(DGE) as shown in Figure 1. 

 

 
Figure 1. Ant Farm Task dynamic geometry environment model. 

We asked the students to imagine the computer screen to be the floor of a room on which two ant 
farms—long, thin rectangles within the DGE—were resting. Each ant farm contained a single ant—
a point that moved along the longest segment connecting midpoints of opposite sides of each 
rectangle (the dashed lines in Figure 1). The rectangular-shaped models could be translated and 
rotated in the DGE by dragging the end points. The ants’ movement was designed so it appeared to 
move haphazardly along the interior of the tube. Additionally, in the DGE, there was an action 
button that allowed students to stop/activate the motion of the ants and one to hide/show the ants in 
each tube to encourage students to attend to both static and varying locations of the points. We asked 
the students to devise a way to represent the location of both ants using a single point so that if we 
were to hide both ants, they would be able to use their new point to determine the location of the two 
hidden ants. We presented the situation absent of any quantitative measurements (e.g., an ant’s 
distance from the end of the tube). 

Results 
As the students worked together, Kaylee first suggested connecting the two ants and marking the 

midpoint of that line segment as their point, as shown in Figure 2a. As such, Kaylee constructed a 
new point outside of the ant farms in two-dimensional space to coordinate the location of both points 
simultaneously. Morgan animated the ants to explore if Kaylee’s idea would work for any location of 
the ants. As the ants moved, Morgan attended to the line segment and midpoint Kaylee constructed 
and claimed, “This only shows where the middle of [the ants] are. It doesn’t actually show us where 
they are.” We consider Morgan’s remark to indicate that she viewed Kaylee’s solution as insufficient 
for determining the location of both ants 

Moments later, Morgan suggested positioning the tubes perpendicularly, with one of the ants at 
the intersection, as shown in Figure 2b. The two ants were still connected by a line segment which 



Geometry and Measurement 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

381 

contained its midpoint (Figure 2c). Morgan then animated the ants and observed various “triangles” 
formed by the two ant farms and the line segment connecting the two ants (e.g., one instance 
captured in Figure 2c). Morgan explained that she thought of “axes, like a x and y” and triangles 
formed by the axes with the connected segment. The researcher hid the two ants and the connecting 
segment, leaving only the midpoint left on the screen, and asked the students to anticipate the 
locations of the two ants based on the visible midpoint. Testing several different locations, Kaylee 
and Morgan concluded that the midpoint of the line segment connecting the two ants was insufficient 
for locating both hidden ants by noting that multiple lines could pass through this midpoint. 
Although we consider their midpoint coordination valid, Morgan and Kaylee did not find their 
midpoint sufficient for reliably locating the two hidden ants. 

 

     
 
 (a) (b) (c) (d) 

Figure 2. Kaylee and Morgan’s activities in the dynamic geometry environment. (a) Kaylee 
connects two ant points and marks midpoint (b) Morgan re-positions the two rectangles (c) One 
instance of perpendicular rectangles with midpoint coordination (d) Kaylee’s box coordination. 
 
After discarding their midpoint coordination, Kaylee and Morgan sat in silence for approximately 

40 seconds until Kaylee came up with the idea to make a rectangular “box” as shown in Figure 2d. 
Kaylee said, “I was thinking like putting a point right here so I can make a box,” as she indicated the 
point that would be the intersection of lines perpendicular to the tubes through the ants. Then she 
made a rectangular motion connecting the two ants to this point and the intersection of the tubes. In 
subsequent activities, Kaylee and Morgan tested their approach by moving, hiding, and predicting the 
locations of the ants. Both students appeared very surprised when their predictions were accurate. In 
checking each prediction, they revealed the ants using the hide/show button and both exclaimed, 
“Wooo!” “What?!” “Gosh!” as they saw the ants were located where they predicted. 

Next, Morgan posed the question, “But wait, what if we move this down more?” as she pointed 
to the vertically positioned tube and moved her finger as if to drag the tube downwards. She 
continued, “Would it change our answers?” Kaylee responded, “No, because it’s still in line with it,” 
as she moved the vertically positioned tube up and down. They were able to see the point in the plane 
move in accordance with the movement of the tube. When the researcher asked if that will work no 
matter where the two tubes were, Morgan explained using the plastic tubes, “Say these are the two 
tubes and make sure they’re crossing somewhere and then wherever that dot is, it will go.” Through 
their activities, the students had spontaneously constructed a (non- quantitative) Cartesian-like 
coordinate plane in order to coordinate the location of two points using a single point. 

Discussion 
Although Morgan and Kaylee had formal instruction in using the Cartesian plane, devising a 

system to coordinate the location of two points using a single point appeared novel to the students 
and neither student associated the activity with the Cartesian plane during the teaching session. 
Morgan described the configuration of tubes as similar to x and y axes; however, other than this 
figurative association, neither student mentioned the way in which points are coordinated in the 
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Cartesian plane. Furthermore, we consider the task non-trivial for the students as they spent 24 
minutes working on the task before reaching what they considered to be a satisfactory solution. In a 
later teaching session, one student explained how in school they were told “this happens and that 
happens” on the coordinate plane but that “they never really gave us real world examples like [the 
Ant Farm Task].” Looking across the activities of Kaylee and Morgan in AFT, we highlight three 
features of their activities that we see as critical for fostering students’ transition from utilizing one 
number line to represent a single quantity to developing the Cartesian coordinate system to represent 
covariation in two quantities. 

First, the students’ use of space outside of the ant farms suggests that the Cartesian coordination 
of two quantities represented on independent number lines requires an awareness of two-
dimensional space outside of the one-dimensional number lines. Second, the students’ attention to 
variability in both ants’ locations motivated a particular spatial coordination (e.g., perpendicular 
lines through the ants) that would enable holding a sustained image of two locations simultaneously 
(Saldanha & Thompson, 1998) for arbitrary positions of the ants. 

Having students move the tubes themselves, rather than pre-constructing them perpendicularly 
on the screen, and having the ants move haphazardly allowed the exploration to be novel for the 
students. Finally, the students’ decision to reorient the ant farms in the dynamic geometry 
environment suggests that developing the Cartesian coordinate system is supported by students 
viewing number lines as objects that can be rotated and repositioned in two-dimensional space. 

To modify AFT to provide students with an opportunity to engage in quantitative coordination, 
we recommend asking students to represent each ant’s distance from one end of its ant farm via a 
variable point on a number line; we would then ask students to represent these variable points on two 
independent number lines using a single point. AFT and the findings from this study can provide 
insight for mathematics educators and researchers who are interested in engendering productive 
meanings for the Cartesian coordinate system. 
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PUTTING OUR BODIES ON THE LINE: MATHEMATIZING ENSEMBLE 
PERFORMACES  

 Lauren Vogelstein Corey Brady Rogers Hall 
 Vanderbilt University Vanderbilt University Vanderbilt University 
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All humans have bodies. Our bodies profoundly affect our perspectives and understandings of the 
world. Today’s schools neglect the body as a resource for mathematical thinking and learning. 
Recently this changed and researchers are putting the body back into the equation. Recent research 
explores changes in the modality and scale of mathematical activity, putting the power of paper and 
pencil into whole-body coordinated movements in open spaces. This study designs and studies 
learning in new forms of mathematical activity that involve multiple, moving bodies. This paper 
reports on the first phase of a two phase project in which we use interviews with experts in a variety 
of disciplinary fields, asking people to find and make sense of emergent mathematics in 
choreographed, ensemble performances from the opening ceremony of the 2016 Rio Olympic Games, 
to design and study experimental mathematics learning.  

Keywords: Cognition, Geometry and Geometrical and Spatial Thinking 

Introduction 
Our bodies profoundly affect our perspectives and understandings of the world. However, 

today’s schools neglect the body as a resource for mathematical thinking and learning. Recently 
researchers are putting the body back into the equation (Lakoff & Núñez, 2000; Stevens & Hall, 
1998). Research on embodied mathematics learning has shown multiple affordances of gesture use 
(Goldin-Meadow, 2005), but these investigations tend to focus on stationary, individual bodies with 
an emphasis on hand and arm movements. More recent research explores changes in the modality 
and scale of mathematical activity, putting the power of paper and pencil into whole body 
coordinated movements in open spaces (Hall et al., 2014; Ma, 2016). This study investigates learning 
in new forms of mathematical activity that involve multiple, moving bodies. In this paper, we share 
initial findings from interviews with experts from various disciplines, asked to find and make sense 
of emergent mathematics in choreographed, ensemble prop-based performances from the opening 
ceremony of the 2016 Rio Olympic Games (Table 1) when they are given similar props to think with. 
Findings from these interviews will inform future designs and studies of experimental mathematics 
teaching and learning at the crossroads of embodied ensemble learning and mathematics.  

Background and Framework 
During the opening ceremony of the 2016 Rio Olympic games, billions of people worldwide 

watched over 6,000 performers execute large-scale choreographed routines with dynamic geometric 
forms that were viewed at local and global scales (Table 1). In this emerging genre of theatrical 
production, viewers are invited to engage with a performance that is mathematically complex in 
design and appearance (Lakoff & Núñez, 2000; Ma, 2016) and are able to see close up views of the 
local organization of bodies as well as aerial shots that show the global organization of bodies in 
space. We argue that these performances hold rich relations to mathematics. The performer-plus-prop 
ensemble covers the enormous stage, exhibiting tessellation after tessellation; local organization 
becomes global in emergent complex systems; performers turn straight chords into curved cones. 
However, we do not know, whether or how viewers, particular professionals with different 
disciplinary backgrounds (e.g., a choreographer or mathematician), might make sense of these 
performances mathematically. Thus, the first phase of this project examines how people with 
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different disciplinary backgrounds find patterns, articulate how they see these patterns being 
assembled in the performances (e.g., repeating shapes as tessellations), and use their own bodies (as 
well as other representational forms such as written diagrams and the use of embodied props) to 
demonstrate and communicate their understandings. Selections from the opening ceremony of the 
Rio games provide rich material for probing these understandings, since the video record involves 
hundreds of performers, who create complex dynamic formations by using their bodies and other 
tools (e.g., folding and rotating square panels and moving cords hanging from above into cones and 
triangular prisms).  

Our focus in these interviews is (1) to understand a new theatrical genre composed of units of 
props plus bodies, which expresses something important in the present cultural moment, (2) explore 
what is compelling for viewers, and (3) to ask participants to use their own most “powerful tools” 
(including mathematics, if they find it relevant) for interpreting these performances, probing how 
participants make sense of their own role within the local organization of bodies-with-props in 
relation to global orders of repeated groups of bodies and props in space. 

Table 1: Local and Global Orders in Opening Ceremony Clips 

 

Methods 
In these interviews, participants are shown two clips from the opening ceremony of the 2016 Rio 

games (Table 1). After each clip, participants are engaged in a dialogue guided by the researcher. 
This discussion follows a line of inquiry structured by three primary questions. Participants are first 
asked to describe what they saw or heard in the clip. They are then asked what they think performers 
would need to know or be able to do to in order to create the performance. Finally they are asked 
how they would describe the performance mathematically. Participants are given control of the 
computer so that they can rewind to any part of the clip and rewatch for further, iterative analysis 
(Hall & Stevens, 2016; Jordan & Henderson, 1995). They are also supplied with paper, pencils and 
similar props to think with such as a square made of silver mylar to reenact aspects of the 
performances and test their own thoughts on how these performances are enacted. Preliminary 
interview sessions have been conducted at the focus group level (about 10 participants) and at the 
smaller scale of one and two interviewees at a time.  

Through iterative analysis of interview recordings, we are developing grounded theoretical 
categories to describe similarities and differences in how participants make sense of these spectacular 
choreographed performances, both as a form of cultural expression (including the expression of 
mathematics) and as something that people learn to do together (i.e., as embodied, ensemble 
performances). We are also interested in exploring the bodies of the performers and participants as a 
technology to enact mathematical forms and processes, something that the performers are clearly 
doing and that interview participants may explore with their own bodies.  

Solar Panel  
People 

Spaghetti 

Name of Routine Local Order Global Order Props Plus Bodies 

The cords plus the 
performers holding them are 
able to create cones, where 
the cone point expands to a 
dorsal line suspended across 
the center of the 
performance space 

The square solar panels 
plus the four performers 
that hold each one at a 
time afford different local 
folding symmetries and 
grid like global formations 
and tessellations 
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These performances and viewing sessions provide an opportunity to “restore” whole bodies as a 
sensible topic and medium for understanding things from a mathematical perspective. In this sense, 
local orders and how these “parts” add up to emergent “wholes” in the performance necessarily 
involve bodies, moving in coordination together. We also want to investigate the use of “props” that 
support both part and whole aspects of ensemble performance (i.e., performances that require many, 
coordinated bodies) as a technological tool for mathematics thinking and learning because they 
constrain the movement of bodies in ways that are able to systematically organize bodies in time and 
space. These performances thus involve tools that performing bodies manipulate as props to express 
visually regular motion at the scale of “parts” (or local orders). Assembling local orders at a broader 
scale (e.g., creating a matrix with either a static of moving structure for the entire field), and how 
these forms are made depends equally on technologies. 

Preliminary Analysis and Findings 
Thus far, participants have noticed two important aspects of these performances: (1) the narrative 

affordances of these performances and (2) how they relate to mathematical descriptions of them.  
Many participants seem to expect different narrative elements in these performances and their 

sense making comes from either interpreting these expected narrative elements or dealing with an 
absence of these narrative elements. For several participants latching onto narrative elements and 
symbolic representations in these performances seems to be one way that they can start to make 
sense of these performances. These participants may begin by identifying familiar elements of the 
performance and the enable them to construct meaning in the performance. Alternatively, they may 
discard any narrative meaning and view the performance as pure entertainment, either when the 
performance lacks a clear narrative structure or the narrative elements are ambiguous. Both 
interpreting expected narrative elements and attempting to make sense of the absence of narrative 
elements has led some participants to question the relevance of mathematically describing these 
performances and has led others to eagerly explore mathematical descriptions. While some 
participants were resistant to describing the performances mathematically, claiming that mathematics 
was not relevant, others were able to share mathematical elements that they saw in the performance 
such as recognizable two and three dimensional shapes, symmetries, isometries, and wave patterns.   

As we have begun to conduct these interviews we have also noticed the importance of getting 
participants to think with props similar to those used in the clips shown. Participants in our first focus 
groups were hesitant to engage with these props, but through encouraging our smaller interview 
groups and explorations ourselves, we have found that allowing participants to stand up and move 
under the constraints of these props has proven to be an effective means of getting people to explore 
the complexity of simple performance elements such as maintaining alignment with respect to 
multiple moving bodies, moving while keeping a piece of mylar taut, and folding a square into a right 
triangle. Participants have shared how the coordination of multiple bodies in space is deceivingly 
deceptive and very complex in execution.  

In addition, asking performers to move under the constraints of props has also brought in their 
ideas about how time and rhythm and marked time are used as another tool to organize bodies in 
space. For example when one group was working with the square prop and trying to figure out how 
the performers in the Solar Panel People clip were able to fold a square into a right isosceles triangle, 
they discovered that if they stepped in synch to an agreed upon rhythm they were able to traverse 
equal distances and thus come together at the same time. Then if they took the same number of steps 
backwards, to the beat, they would form a taut triangle at the same time as well (Figure 1). The first 
image in Figure 1, shows remnants of the participant in the upper left corner moving his right arm up 
and down as he counts “1, 2, 3, 4” before the group moves on the same rhythm into the center as 
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depicted in the second image in Figure 1. He embodies the rhythm in his arm before embodying it in 
his feet. 

 

 
Figure 1. Quartet of participants folding a Mylar square into a triangle. 

Preliminary Discussion and Conclusion 
Our examination of these interview and analysis sessions has developed our understanding of 

how people use different resources to make sense of choreographed performances. It has also 
highlighted the role that mathematics plays in understanding the constituent structures of these 
performances. We have begun to see a relationship between recognizable narrative elements and 
mathematical elements to these performances. We have also identified affordances in having 
participants physically put their bodies on the line to reenact different elements from the 
performance, allowing them to get a better understanding of the choreographic rules at the local 
level. The number of participants in these interviews, however, does not afford many of our 
participants without performance experience with ways to think about how their local movements 
would need to be organized to produce visible global orders such as a grid. Nonetheless, this project 
is important for understanding how highly visible cultural events are (or can be) understood 
mathematically (i.e., extending how mathematics forms a significant component of culturally 
powerful and meaningful events), and also for understanding how human bodies can be used as a 
medium for creating and expressing these structures.  
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A TEACHER’S GEOMETRIC CONCEPTUALIZATION AND REASONING IN TERMS OF 
VARIANCE AND INVARIANCE IN DYNAMIC ENVIRONMENT 

Gili Gal Nagar 
UMass Dartmouth 

gnagar@umassd.edu 

Purpose and Background 
Developing sophisticated and abstract spatial thinking about figures, in terms of variance and 

invariance underlying mathematical structures that represent concepts and relationships between 
them, are critical for learning and teaching of mathematics at all levels (e.g Hadas, Hershkowitz, & 
Schwarz, 2000; Hegedus and Moreno-Armella, 2011; Sinclair, Pimm, & Skelin, 2012). This study 
uses a dynamic environment (Geometer's Sketchpad® (Jackiw, 1991, 2009) for iPad - Sketchpad® 
Explorer) to examine: (a) what conceptualizations and reasoning about the concept of circle, an in-
service mathematics teacher demonstrate, in terms of variance and invariance?, (b) what are the key 
elements of such conceptualizations?  

Framework & Methods 
Invariant Property (IP) denotes to geometrical properties that remain unaltered when 

transformations on the geometrical object are enacted (e.g. Hadas et al., 2000). Data were collected 
from 90-minutes videotaped task-based interview with one certified 9th-11th grades teacher with five 
years of teaching experience from the U.S. (David - pseudonym).  Task 1  was designed to explore 
ways to enable the existing of a circle, that passes through A and B and its center is C, by  dragging 
point C (A and B are fixed). Point C leaves a trace that can be deleted by clicking a button (see 
Figure 1 that presents David’s response to Task 1).  

 

 
Figure 1: Task 1  

Results 
David offered different conceptualizations and reasoning of multiple circles. David offered to 

reflect point C with respect to AB and to keep the distance of C from AB equal and to keep AC and 
CB as equal distances (invariant properties) so that there would be exist a desired circle. Later on in 
the interview, David focused on continuous variation to conceptualize and to reason that under 
translation of point C along the perpendicular bisector of AB (maintaining dragging) it is possible to 
generalize that there are infinity many circles that exist and these circles are of different sizes. 
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The fourth-grade Common Core State Standards for Mathematics describe a one degree angle as 
“an angle that turns through 1/360 of a circle.” Degrees are often introduced in this manner in terms 
of a 360-unit composite. In this poster, I question this normative approach to developing degrees as a 
unit of angular measure and illustrate that students can develop coherent conceptions of degrees 
without leveraging a 360-unit composite. I draw on data from a yearlong teaching experiment (Steffe 
& Thompson, 2000), which was informed by the principles of quantitative reasoning (Thompson, 
2011) and focused on students’ understandings of angle measure. Here, I focus on Bertin, a ninth-
grade student who participated in 15 thirty-minute sessions, and his ways of reasoning with two tasks 
(making a one-degree angle and the partitioned plane) involving degrees as a unit of angular 
measure.  

When I asked Bertin how he’d make a one degree angle, he explained, “… if you get a 90-degree 
angle, you can divide that into nine. So it would be like 10 degrees each…and then you can divide 
each one of those into 10.” In his explanation, Bertin indicated that he recursively partitioned a 
mental re-presentation of a right angle to produce 90 one-degree angles. Bertin’s method for 
producing these one-degree angles incorporated a three-levels-of-units structure (i.e., a right angle 
partitioned into 9 ten-degree units, each of which contained 10 one-degree units).  

Later, I presented Bertin with The Partitioned Plane—a dynamic geometry sketch wherein Bertin 
could set a whole-number parameter, n, to partition the screen into n equiangular parts. When I asked 
Bertin to produce one-degree angles, Bertin quickly set n = 1 and explained this gave “almost a 
straight line; I guess there’s like one, small little degree somewhere in there.” Moments later, I asked 
Bertin to set n to produce 90-degree angles. In sequence, Bertin set n = 10, 2, 6, 7, 5, and finally 4. 
Bertin explained that he settled on n = 4 because it looked like the edge of a square. When tasked 
with producing a 90-degree angle, Bertin did not anticipate a split of the plane into four equiangular 
parts. Instead, he resorted to a trial-and-error approach and stopped when he reached a perceptual 
configuration that was like “a square or a rectangle.” Bertin’s actions within the partitioned plane 
sketch indicate that he did not view the plane as a 360-unit composite angle that could be partitioned 
to produce other angles.  

In conclusion, students can construct degrees as a unit of angular measure by taking a right angle 
as a 90-unit angular composite without viewing the plane as a 360-unit angular composite. 
Additional studies are needed to determine the prevalence of this conception of degree measure.   
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In the mathematics education literature, there is little research specifically on how learners 
understand geometric reflections. Recent studies, such as Yanik (2006, 2011), have investigated PTs’ 
learning and understanding of geometric translations in a dynamic geometry environment. His 
findings revealed that PTs have motion view based on their understanding of parameters and domain 
because use of dynamic geometric software (DGS) (e.g., GeoGebra, Geometer Sketchpad) may have 
some limitations for promoting PTs’ understanding of geometric reflections as a mapping view. For 
instance, when they click on the “reflect about line” to perform a reflection, it is possible that they 
think of the line of reflection as a tool rather than a geometrical object. In other words, when students 
use features of dynamic geometric software such as the dragging modality, they may focus on as 
physical representations of the figures (e.g., movement of figures). Taken together, these empirical 
studies show that learners usually have a motion view of geometric reflections, which prevents their 
development of a mapping view. To help students develop a mapping view of reflection as a 
transformation, teachers need to know what factors are effective in facilitating the students’ transition 
from motion view to mapping view (Hollebrands, 2003; Yanik, 2006). 

The purpose of my study is to explore and investigate pre-service teachers’ (PTs’) understanding 
of the geometric reflections. To do this, I aimed to develop a model, a genetic decomposition of PTs 
to identify how schema development occurs between motion understanding and mapping 
understanding, what factors are effective to facilitate this development. To conduct this investigation, 
I created an environment in which I can explore PTs’ schema development on geometric reflections 
paper-pencil. I will use clinical interviews to collect my data since it is difficult to observe PTs’ 
understanding with direct observation. To explore PTs’ understanding, I will use the Action-Process- 
Object-Schema (APOS) theoretical perspective as the conceptual framework. The research questions 
that will guide this study are as follows: 

1. How does PTs’ motion view of geometric reflections develop into a mapping view? 
2. What factors facilitate PTs’ motion view of geometric reflections into a mapping view? 

Addressing the research questions of this study will be useful for teaching geometric reflections 
in the K-12 mathematics curriculum. More importantly, the findings and conclusions of this study 
will answer questions raised by the research community in regard to how motion view evolves and 
generate mapping view. 
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Understanding representations and their place in the high school mathematics curriculum is vital 
to the study of geometry. Duval (2006) examined representations in a theoretical manner dividing 
them into four categories of a two-by-two matrix of discursive/non-discursive and mono-
functional/multi-functional. Ainsworth (2006) devises a more practical approach in her DeFT 
framework. Pimm (2002) explored representations in a different manner, more specific for math 
education than Ainsworth; his descriptions of the many different representations are detailed and 
exhaustive. 

In the presnt study, I follow Pimm’s (2002) example, and list and analyze the representations 
presented in high school geometry classrooms. I observed five public school teachers in the 
Northeastern US during regular lessons on various content in geometry. After the observations, 
teachers shared their reasons for choosing the representations during recorded interviews. I analyzed 
the observations and the interviews looking for how often teacher used representations and common 
reasons for choosing them. 

The teachers used many of the representations Pimm (2002) described like algebra, language, and 
coordinate grid. From the observations and interviews, I divided the geometry representations into 
thirteen categories: (1) spoken language, (2) written language, (3) gestures, (4) sketches/diagrams, 
(5) symbols in statements (e.g. ∠A≅∠B), (6) numerical, (7) algebraic expressions, (8) graphs on 
coordinate grid, (9) constructions with compass, straightedge, and other tools (10) physical objects, 
including manipulatives, (11) tables, (12) construction in dynamic geometry software, and (13) 
animations. Some representations were used more often than others; for example, spoken language 
and gestures were used by all teachers during all lessons, while animations and physical objects 
rarely and by only some teachers. Teachers had a hard time explaining the reasons for using certain 
representations. During the interviews, they often said that they did not think about it, that it was in 
the textbook, that it motivated students, that it was what the content required at the time, or that it 
was spontaneous. 

Such results require more studies on representations and how they are taught in geometry. It 
seems that teachers do not have the background to discuss representations and to determine which 
ones are most useful in teaching certain concepts. They often rely on the textbook, spontaneity, or 
prior experience, and not on theory, which needs to be taught to pre-service teachers. 
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 We present data from a semester-long teaching experiment (Steffe & Thompson, 2000) 
examining preservice secondary teachers’ covariational reasoning (Saldanha & Thompson, 1998). 
We use Piaget’s (2001) distinction between figurative thought and operative thought to characterize 
the circle concept of one participant, Lydia. We define a figurative circle concept as an individual’s 
ability to recognize or re-present a circle as a static form. In contrast, an operative circle concept 
includes an individual’s mental image of a segment rotating about a fixed endpoint while the other 
endpoint traces out a circular path. We analyze Lydia’s activities in two tasks—Going Around 
Gainesville (GAG) and Where Did They Go? (WDTG). In GAG, Lydia observed an animation of a 
car driving along a path from Atlanta to Tampa; a semi-circular portion of the path was centered 
about the city of Gainesville. We asked Lydia to create a graph relating the car’s total distance 
traveled to the car’s distance from Gainesville during the trip. In WDTG, we provided Lydia with a 
Cartesian graph displaying a car’s distances from two cities, A and B. We asked Lydia to produce a 
path that the car could traverse to satisfy the graph.  

Lydia exhibited a figurative circle concept in both tasks. Upon recognizing a semi-circular path 
in GAG, she drew in radii before concluding that the distance from Gainesville was invariant; this 
invariance was not available to her without carrying out the sensorimotor activity. As Lydia 
considered a horizontal segment on the WDTG Cartesian graph, she recalled that the curved path in 
GAG resulted in an invariant distance; however, the invariant distance did not necessitate a circular 
path in WDTG for Lydia. Instead, she relied on drawing particular curves and judging viability based 
on perceptual instantiations of the relevant distances. We hypothesize that an operative circle concept 
might have supported Lydia’s covariational reasoning on these two tasks.   
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Area and perimeter are important geometrical measurement concepts in school curricula. They 
build upon the ideas of linear measurement in the early grades and serve as the basis of topics such as 
fractions and multiplicative reasoning in the middle grades as well as the 3-D geometrical 
measurements in the upper grades. Prior studies have found the relationship between the area and 
perimeter to be a challenging topic (Battista, 2007). Often, students believe that an increase in area 
for a given shape results in an increase in perimeter of that shape, or vice versa. Tirosh and Stavy 
(1999) suggested that this misconception is rooted in the More A–More B intuitive rule. The goal of 
this study was to explore the visual and intuitive reasoning behind seventh-grade students’ 
conceptions of area and perimeter. Particularly, this study sought to identify the concept definitions 
and images (Tall and Vinner, 1981) middle school students had about area and perimeter that could 
be used to build rich tasks that can further their development.  

This study was conducted in a rural school district in a Midwestern town. The participants 
included 17 seventh-grade students. Each student was interviewed individually at the school, for 45 
to 60 minutes, on a variety of measurement topics, including a task that asked students to find ways 
to cut a piece a piece off while making the perimeter bigger, stay the same or smaller.  While the 
majority (13 out of 17) of the students initially believed that the shape with smaller area would have 
a smaller perimeter, 12 of them came up with some examples of shapes that would have smaller 
areas but either the same or a longer perimeter. Their examples and the reasoning provide a much 
richer set of concept definitions and images than have been documented in previous studies. For 
example, the idea that more turns or more segments would create a longer perimeter generated 
similar concept images for many students, but some students created a longer perimeter, while others 
did not.  

Based on the concept definitions and concept images identified by this study, I proposed an 
instructional sequence to help students get a deeper understanding of the concepts of area, perimeter, 
and their relationship. Future study is needed to examine the effectiveness of such activities in 
helping students build a more solid understanding of area, perimeter, and their relationship. It would 
also be interesting to see if the effect of this sequence of activities can be transferred to the 
relationship between surface area and volume. 
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Over the last couple of decades, there has been a growing call for teachers to become more 
responsive to the increasing cultural diversity of students as a means of improving students’ 
experiences in school and their learning outcomes. Challenges exist in working with secondary 
mathematics teachers due to the common belief that math is culture-free and the lack of images of 
culturally responsive teaching in secondary mathematics classrooms. In this research, we explored 
the affordances of the Cultural Inquiry Process project in building inservice secondary mathematics 
teachers’ capacity for cultural responsiveness. 

Keywords: Equity and Diversity, Teacher Beliefs, Teacher Education-Inservice/Professional 
Development 

Over the last couple of decades, there has been a growing call for teachers to become more 
responsive to the increasing cultural diversity of students as a means of improving students’ 
experiences in school and their learning outcomes (Banks, 2001; Gay, 2010; Nieto, 2004). Studying 
culturally responsive teaching specifically within secondary mathematics education is important 
because mathematics education is its own cultural system (Nasir, Hand, & Taylor, 2008) and 
understanding that system is necessary for the types of awareness teachers need to be culturally 
responsive. In addition, supporting secondary mathematics teachers to be culturally responsive holds 
particular challenges. Mathematics is often seen as “culture-free” (Bishop, 1988), which can make 
the role of culture in the teaching and learning of mathematics more difficult to envision, especially 
as compared to language arts and social studies content. Related to this, there are few images of what 
culturally responsive teaching looks like in mathematics classrooms (Leonard, Napp, & Adeleke, 
2009), which may contribute to the struggles mathematics teachers have in operationalizing cultural 
responsiveness in their practice (Morrison, Robbins, & Rose, 2008). Furthermore, secondary students 
often have particularly negative attitudes towards and low engagement with mathematics (Nardi & 
Steward, 2003), which can make it more challenging for teachers to interest students in the content. 

In this study, we explored the nature of teachers’ perspective changes that resulted from their 
completion of the Cultural Inquiry Process (Jacob, Johnson, Finley, Gurski, & Lavine 1996) project. 
The goals of the study were to describe teachers’ perspective changes, relate these changes to how 
the teachers engaged with their CIP project, and analyze how this engagement may reflect a process 
of learning to be culturally responsive.  

Rationale for Implementing the CIP Project 
The purpose of the CIP project is “to broaden teachers’ understanding of culturally diverse 

students and to maximize these students’ success” (Jacob et al., 1996, p. 30). In the CIP project, 
teachers select a student whose behavior is puzzling, hypothesize potential cultural influences on the 
student, gather information about the student, design an intervention to support the student, and 
evaluate the intervention outcomes. Once the project is completed, the teacher turns in a report 
describing their work and reflecting on the experience. 

We chose to use the CIP project with teachers because it is a form of action research. Action 
research has generally been established as a viable means of supporting teachers in improving their 
practice, understanding better themselves and their students, and developing dispositions to continue 
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studying their practice (Zeichner, 1993). Also, because action research is situated in the teacher’s 
setting, teachers can generate images of what a particular change looks like. Furthermore, action 
research can support teachers in co-developing their beliefs and practices. While debate exists 
whether to prioritize building teachers’ beliefs or behaviors, Gay (2010) argues that, “The more 
important issue is that examining beliefs and attitudes about cultural diversity, along with developing 
cognitive knowledge and pedagogical skills, are included as essential elements of teacher education” 
(p. 151).  

Besides being a form of action research, we valued the CIP focus on exploring cultural influences 
on students’ engagement in school. Jacob suggests that teachers in the United States tend to develop 
tacit knowledge of students in terms of psychology, thus leaving teachers less equipped to understand 
students in terms of culture. The goal of the CIP project is to “provide teachers with new ideas and 
approaches they can use in the future in culturally diverse classrooms” (Jacob et al., 1996, p. 32). We 
also valued the CIP’s focus on specific students, which as Jacob et al. (1996) argue, provides an 
opportunity for teachers to consider culture at a personal level rather than relying on cultural 
generalities. Lastly, we appreciated the CIP website (http://cehdclass.gmu.edu/cip/g/gs/gs-top.htm) 
created by Jacob to support teachers in conducting the CIP.  

Theoretical Perspectives 
We drew on two theoretical perspectives for our research. 

Cultural Responsiveness 
In order to analyze the degree to which teachers’ perspective changes aligned with being 

culturally responsive, we used a framework we developed in related research (Parker, Bartell, & 
Novak, 2015). We view cultural responsiveness as dispositions grounded in cultural awareness to 
work to know, understand and support the engagement and learning of all students. Culturally 
responsive teachers, then, work to understand students’ cultures and backgrounds and using such 
knowledge to support students’ learning and cultural competence. Additionally, these teachers 
develop supportive student-teacher relationships based on culturally responsive care, have positive 
attitudes toward students’ knowledge and experiences (i.e., reject deficit perspectives), and hold high 
expectations for student learning and achievement.  

Critical Perspective 
Another disposition scholars have identified as important to cultural responsiveness is being able 

and willing to employ a critical perspective to surface, question, and, when appropriate, change the 
normative beliefs and practices that may influence students’ engagement and success in school 
(Bartolome, 2004; Valencia, 2010). Bartolome (2004) has described two aspects of this critical 
perspective: political clarity and ideological clarity. Political clarity includes being able to understand 
the influence of the broader culture, such as political, economic, and social variables, on 
subordinated students’ academic performance. Ideological clarity includes being able to explore the 
ways in which one’s own beliefs uncritically reflect those of the broader culture. With political and 
ideological clarity, teachers are able to understand the role of culture in creating a status quo and to 
make visible the beliefs and practices embedded in that status quo as a means of questioning how 
normative beliefs and practices may be limiting some students’ access to school success.  

In order to analyze how teachers’ engagement with the CIP project might support teachers in 
developing cultural responsive dispositions, we analyzed the degree to which the teachers were able 
to surface, question, and ultimately change their beliefs and practices around normative practices 
when these practices appeared to be hindering students’ success in school. We focused on examining 
how teachers critically examined the beliefs and practices related to their expectations for student 
behavior since perspective changes teachers described in their projects mostly related to their 
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expectations of student behavior. This likely occurred because the project involved teachers selecting 
students about whom they were puzzled and this puzzlement invariably involved why students were 
not behaving in desirable ways, with “desirable” being a value embedded in school culture. 
Attending to student expectations is important because it is an aspect of school culture that 
commonly influence student success - particularly underserved students (Lane, Wehby, & Cooley, 
2006; Valencia, 2010). To understand whether teachers were able to enact the process of exploring 
normative practices with respect to their influence on student success, our data analysis involved 
juxtaposing teachers’ perspective changes with their self-described normative beliefs and practices 
related to their expectations for students’ behavior. Finally, to understand the nature of the teachers’ 
perspective changes, we analyzed the perspective changes against our framework for cultural 
responsiveness. 

Data Collection and Analysis 
The course that served as the context for this study was called Culture in the Math Classroom 

(CIMC). It was a required course that was part of a graduate program for practicing secondary 
mathematics teachers at a public doctoral-granting university in the Rocky Mountain region. The 
data we collected were 58 CIP projects submitted by teachers over four semesters of the CIMC 
course. The mathematics teaching experience of the teachers ranged from 2 to 22 years, with an 
average of 7 years. Almost all of the teachers identified as white. About 60% were women and 40% 
were men. The teachers taught in suburban or rural schools that typically had 27-35% minority 
students. Hispanic students were the largest minority group in most schools. The schools had 7-10% 
of students classified as English language learners and between 26-43% classified as low-
socioeconomic status.  

Our research questions were: 

1. How did teachers’ perspective shifts relate to their normative beliefs and practices about 
student expectations? 

2. To what extent did the teachers’ perspective shifts indicate a building of capacity to engage 
in culturally responsive pedagogy? 

For data analysis, we drew on narrative inquiry, which is a set of tools and perspectives based on the 
idea that it is possible to explore how people make sense of their experiences through the stories they 
tell (Clandinin & Connelly, 2000). We chose narrative inquiry because 1) we wanted to understand 
teachers’ perspective shifts in terms of their experiences conducting the CIP project and 2) the CIP 
project reports typically were written as stories.  

The first step in analyzing the project was to identify projects with valid perspective changes. To 
do this, we included in the data analysis pool only those projects in which the teachers 1) followed 
the CIP project guidelines, 2) wrote reflections that appeared to align with their project activities, and 
3) included in their reflections a description of a perspective change likely to influence their practice. 
Thirty of the 58 projects met all three of these criteria. The focus students in the 30 projects consisted 
of 12 girls and 18 boys. Four of the students were identified as white and in 12 cases, the student’s 
race or ethnicity was not specified by the teacher, likely because the focus student was white. In 14 
projects, the teachers identified their focus student as being of mixed race/ethnicity (N=3), Hispanic 
(N=8), African-American (N=1), or Native American (N=2). 

The next step in the data analysis was to identify the student expectations the teachers’ 
perspective changes related to. In 28 of the 30 projects, the teachers explored one or more of the 
following student expectations:  

• Students should seek help if they are struggling (N=8). 
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• Students should complete their homework (N=14). 
• Students should engage in class discourse (N=8). 
• Students should value learning mathematics (N=6). 

For each student expectation, the set of projects involving this expectation were analyzed to discern 
the normative beliefs and practices the teachers associated with the expectation, the types of 
interventions the teachers implemented to address their focus student’s behavior, and the nature of 
the perspective changes the teachers described. 

Normative Beliefs and Practices about Student Expectations and Perspective Shifts 
For each of the four normative student expectations we identified in the teachers’ CIP projects, 

we illustrate the beliefs and practices associated with them by describing how the teachers identified 
the expectation, why they believed the expectation was important, and how they typically responded 
to students who did not comply with the expectation. We then describe the types of interventions the 
teachers implemented and the perspective shifts the teachers had with respect to the student 
expectation.  

Students Should Seek Help if They Are Struggling 
Eight projects focused on the expectation that students should seek help if they are struggling. 

Half of these teachers mentioned that they thought the struggling student should seek help because 
not seeking help was limiting the student’s success. Seven of the teachers provided some indications 
of how they would normally respond to struggling students who did not actively seek help. Four 
teachers suggested they would have responded in a limited way. For example, one teacher said he 
would invite students in for assistance outside class, but if they did not take him up on his invitation, 
he would not pursue the issue further. Another teacher said she would help the student pass the 
course, but would not think more broadly in terms of getting the student support outside of class. 
Statements made by three teachers indicated they would not actively respond to the student. For 
example, one teacher wrote that initially he had assumed that his focus student did not care about 
learning. Another teacher wrote that at the outset of the project he did not know how to support shy, 
low-achieving students. 

The intervention teachers often selected for their focus student involved additional tutoring 
outside class. Sometimes the teacher did the tutoring and sometimes another tutor was found. 
Another intervention was changing seating arrangements in class so the student was more 
comfortable talking to at least one classmate. Other interventions were particular to the focus 
student’s needs. For example, one teacher wanted to build the focus student’s confidence in 
discussing mathematics and arranged for the focus student to be a tutor.  

Themes in the teachers’ perspective shifts included 1) the teacher needed to be proactive in 
finding additional supports for the struggling student and 2) in order to provide appropriate supports, 
the teacher needed to communicate with the student to understand the student’s perspectives, issues, 
and goals.  

Students Should Complete their Homework 
Students needing to complete their homework was addressed in almost half (N=14) of the 

analysis pool projects. Seven of these teachers focused exclusively on supporting their student to 
complete homework and another five teachers focused on homework as well as the student’s 
participation in class discourse. Typically, homework completion, and sometimes correctness, was 
part of the course grade, so when students did not complete their homework, their course grade 
suffered. However, the teachers believed that doing homework improved a student’s learning of the 
mathematics, and this in turn, affected how well students performed on assessments, which also 
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affected the course grade. The majority of teachers (N=10) made statements suggesting they did not 
initially have a way of responding to students who do not complete their homework. Four of these 
teachers attributed a student not completing homework to characteristics of the student and/or their 
family.  

Teachers created different types of interventions to support their focus student with completing 
homework. Six teachers focused on the student feeling more comfortable and successful in class, 
such as by interacting with the student more often. Four teachers focused on helping the student be 
more organized to know what the homework assignments were, when they were due, and what 
materials were needed. Two teachers found time for their student to start homework in school. Two 
teachers changed their homework policies to accommodate their students. One of these teachers 
decided to grade only the homework the student completed in class, as long as the student did well on 
assessments. The other teacher disallowed partial credit for late homework for the focus student as he 
admitted he postponed doing homework if he knew he had some leeway. 

Teachers indicated that they learned that a student not completing homework was not necessarily 
because the student was lazy or did not value their learning, but instead may be due to psychological 
or logistical issues that could be addressed at school. One teacher found out his focus student had 
experienced a trauma the previous year for which she had kept silent and therefore had not received 
any support. Once that was addressed, her school engagement, including homework completion, 
improved. Besides the two teachers who elected to change their homework policy, two other teachers 
questioned how they were approaching what they assigned for homework and even the necessity of 
homework. While these teachers decided to retain homework in the short run, they indicated they 
thought that homework merited further consideration. Most of the other teachers indicated that they 
could influence a student’s tendency to complete homework by building a better relationship with the 
student so that the student felt cared for by the teacher and so the teacher better understood the 
student’s needs.  

Students Should Engage in Classroom Discourse 
Eight teachers expressed concern that their focus student did not engage appropriately in 

classroom discourse, such as contributing to whole class discussions or engaging productively with 
group members. Only one teacher focused exclusively on this normative expectation. Other teachers 
lumped this with one or more other behaviors, such as not completing homework. Two teachers 
described reasons for students to engage in classroom discourse other than it generally supporting 
student learning. One teacher explained that the curriculum she used included an expectation that 
students discuss their ideas with each other. The other teacher cited research that reported good social 
skills were valued by employers. The teacher believed that high school was a good time for students 
to develop these skills. None of the teachers indicated ways in which they would normally respond to 
students who did not engage in classroom discourse. One teacher noted, “As a staff we have focused 
on the students that are culturally different for more visual reasons (e.g., race, clothing, etc.) but we 
haven’t focused on the other students who are culturally different for less obvious reasons such as 
beliefs about social interactions.” 

Teachers’ interventions for addressing this normative expectation included redirecting off-task 
behavior, changing the student’s seat assignment, assigning competence to the student (Horn, 2012), 
speaking directly with the student about what behavior is desired and why, providing positive 
reinforcement for the desired behavior, and developing a closer relationship with the student.  

Teachers’ reflections focused on what they had learned about their ability to influence the 
classroom culture, which in turn could influence student engagement.  
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Students Should Value Learning Mathematics 
Instead of focusing on the student’s behaviors, six teachers ended up attempting to address their 

student’s lack of interest in learning mathematics. In all but one case, the teachers’ puzzlements were 
focused on their students’ behaviors, but after speaking with their students during data collection, 
they decided to address their students’ motivation to learn mathematics. These teachers did not 
provide much detail on why the students should value learning school mathematics, although, in the 
context of the project, there was an implicit assumption that students valuing learning mathematics 
would lead them to be more successful in class and even in completing high school. The teachers did 
not indicate they had particular ways of addressing their students’ lack of interest in learning 
mathematics. One reason for this is captured in a teacher’s question: “How do you reach a student 
who does not see value in mathematics?” which suggests readily available methods of approaching 
this issue were not known.  

All of these teachers included as part or as the entirety of their intervention creating one or more 
lessons they believed incorporated context that would have more meaning for their focus student and 
possibly the class as a whole. In their project reflections, all six teachers indicated they felt more 
empowered to influence students’ interest in mathematics by introducing context in their instruction 
that related better to students’ lives.  

Perspective Shifts and Cultural Responsiveness 
The normative expectations teachers focused on in their projects were behaviors and attitudes 

teachers believed students should comply with to be successful in school. Teachers who reflected on 
their own beliefs and lived experiences found the normative expectations so obviously appropriate 
that they had a hard time imagining why someone would not follow them, except if the person were 
somehow “faulty,” such as being lazy or not caring about their education. When the teachers 
attributed non-compliance to a student’s inherent characteristics, the teachers typically did not feel 
able to address the mismatch between students’ behaviors and what was expected of them.  

While the teachers tended to focus on one, or at most two, of the four identified normative 
expectations of students, the teachers typically expressed perspective shifts in more general terms 
about how to approach supporting students. We found that overall, teachers’ perspective shifts 
aligned with some aspect of the following narrative:   

I need to be proactive in knowing my students’ backgrounds, perspectives on school, and goals. 
This process of knowing my students allows me to understand how to meet my students’ needs 
and helps me to build better relationships with my students. Often, my assumptions about the 
student, such as that they do not care about their education or are lazy, are incorrect. Instead, 
school policies and the classroom culture can be negatively impacting students’ engagement. 
Working on making the classroom a safe place, creating lessons that are meaningful to students, 
and implementing supports outside the classroom are within my power as a teacher.  

No teacher expressed a perspective shift that encompassed the entirety of this narrative. 
However, most teachers emphasized one or two elements of the overall shift. This narrative contrasts 
with the teachers’ normative beliefs and practices as it expresses: 

• A stronger sense of responsibility for getting to know their students and responding to 
their needs 

• An awareness that their assumptions about their students’ perspectives and capabilities 
might not be accurate 

• More self-confidence in their ability to design effective interventions for students 
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• More open-mindedness in considering the need to change their practices or school policy 
to better support students 

The perspective shifts indicated by the teachers suggest they built their capacity for being culturally 
responsive in that teachers were more willing to take up the work of understanding and supporting 
students, less likely to engage in deficit thinking, and more confident and open in their thinking about 
ways to support students’ school engagement and achievement. 

In terms of developing a critical perspective, the teachers in this study appeared to exhibit more 
ideological clarity than political clarity in that they questioned their personal normative beliefs and 
practices related to the expectations they held for students, but did not reflect on the influence of the 
broader school and societal cultures. This could be a function of the CIP project or the way it was 
facilitated. It could also be representative of the way in which people’s cultural awareness evolves 
“from a self-centered state to identification with society and eventually to the larger global 
community” (McAllister & Irvine, p. 18, 2000).  

Discussion 
The nature of the perspective changes teachers expressed aligned with being culturally 

responsive in that teachers indicated an increased willingness and confidence in reaching out to, 
understanding, and supporting students they initially find puzzling. We cannot make definitive 
claims about what aspects of the CIP project might be responsible for the ways teachers engaged 
with and learned from the project, but we do believe that the project characteristics we identified in 
our rationale to implement the CIP are likely mechanisms. Another factor might have been teachers’ 
propensity to be empathetic towards their students. Teachers sometimes wrote about their 
experiences with their students in moving and passionate ways. Goodman’s (2000) research suggests 
that empathy is often one of the orientations that can move people from privileged groups to take 
action towards social justice. It is possible many of the teachers in the CIMC course had this 
orientation, which contributed to their engagement with and learning from the CIP project. 
Understanding what teachers may bring to the work of building cultural awareness can support 
teacher educators in conceptualizing teachers as “competent learners who bring rich resources to 
their learning” (Lowenstein, 2009, p. 187). 

Additional factors may have influenced teacher engagement with the CIP project. First, during 
the project implementation, the instructors offered feedback to the teachers at several points, which 
may have also influenced teacher thinking. Second was their participation in the CIMC course. The 
course content and other activities may have supported the development of knowledge and skills that 
pre-disposed teachers to explore the role of culture more successfully than they would have 
otherwise. The beginning of the course delved into theoretical foundations by asking: What is 
culture? How can examining students’ home culture influence their experiences at school? Is 
mathematics culture-free? What are the central tenets of culturally relevant pedagogy? The remainder 
of the course explored issues involving culture and student learning including student motivation, 
status and small group work, language in the classroom, the purpose of mathematics education, and 
teaching math for social justice. Teachers also completed projects analyzing case studies, exploring 
an aspect of their local community, and implementing a change in their instruction to improve 
student motivation. 

A limitation of our work is that we did not follow the teachers into their schools and classrooms 
after they completed the course, so we cannot describe what teachers brought into their ongoing 
practice. An area of further exploration would be to explore the impacts on teachers’ cultural 
awareness and cultural responsiveness in the projects where teachers did not indicate a perspective 
change. In half the projects, though, teachers’ engagement with the CIP project indicated they created 
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experiences in their practice that modeled being culturally responsive and developed their own 
perceptions about how this would influence their practice going forward. The CIP project, then, 
appears to have affordances for building the capacity of secondary mathematics teachers for being 
culturally responsive.  
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With online learning becoming a more viable option for teachers to develop their expertise, our 
report shares one such effort focused on improving the teaching of statistics. We share design 
principles and learning opportunities, as well as discuss specific impacts evident in classroom 
teachers’ course activity concerning changes to their beliefs and perspectives about statistics. 
Specific course experiences that served as triggers for critical reflection are discussed.  

Keywords: Teacher Education-Inservice/Professional Development, Teacher Beliefs 

Statistics has gained a prominent place in middle and high school curricula through the National 
Council of Teachers of Mathematics (2000), Common Core State Standards (National Governors 
Association Center for Best Practice & Council of Chief State School Officers, 2010), and 
recommendations endorsed by the American Statistical Association (Franklin et al., 2007; Franklin et 
al., 2015). Professional development (PD) for secondary teachers to develop their statistical content 
and pedagogy are being offered across the country, typically on a small local scale, and these often 
include focused evaluation and research efforts to document impacts. However, the need for 
preparing teachers to teach statistics is much bigger than what can be addressed with small local 
programs. In this paper, we discuss a way of leveraging the internet to assist in a solution that is free, 
open access, and can reach many more teachers across geographic boundaries (Kim, 2014). With an 
online solution at a much larger scale, methods for examining impacts must also evolve. We offer a 
glimpse at one effort to use course participants’ online activity, forum discussions, and self-reported 
changes on surveys as a way to measure impact. 

For a “massive” and “open” course, there are many design challenges to meet the needs of 
participants with varied backgrounds. Massive Open Online Courses (MOOCs) are designed and 
delivered in a variety of ways, depending on learning goals for participants, to serve different target 
populations and provide diverse experiences for learners. In recognizing the potential for MOOCs to 
serve as large-scale PD, some are crossing local boundaries to design MOOCs specifically for 
Educators (MOOC-Eds, Kleiman, Wolf, & Frye, 2014). Those that engage in and study impacts of 
professional development for mathematics and statistics teachers must consider how this new frontier 
can potentially assist in developing teachers’ content understanding and pedagogical strategies for 
improving practice, and forming global communities of educators. To contribute to the synergistic 
discussion needed at this crossroad, our focused question for this report is: 

How can the experiences in an online professional development impact participants’ perspectives 
about the nature of statistics and teaching statistics? Which resources and experiences in the 
course seem to influence any changes in perspectives?   

Literature and Framework 
Beliefs and perspectives about statistics include a teacher’s ideas about the nature of statistics, 

about oneself as a learner of statistics, and about the classroom context and goals for students’ 
learning statistics (Gal, Ginsburg, & Schau, 1997; Pierce & Chick, 2011; Eichler, 2011). Certain 
beliefs would likely lead to different teaching practices. For example, if a teacher believes that 
statistics is a way of quantifying data and that the many procedures available in statistics for 
computing measures lead to such quantification, his or her teaching practices may favor a focus on 
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statistical procedures and have less emphasis on the context of the data, the process of ensuring good 
data is collected and available (sampling methods), and making claims about data that are uncertain 
in nature (Pierce & Chick, 2011). Eichler (2011) further discusses how the focus of teachers’ 
intended curriculum in statistics can be considered on a continuum from traditionalists (focused on 
procedures absent of context), to those wanting students to be prepared to use statistics in everyday 
life (focused on engaging in an investigative process that is tightly connected to contexts of real 
data). A goal in statistics teacher PD is to move teachers along this continuum towards a focus on 
investigative processes, which requires impacting teachers’ beliefs about the nature of statistics and 
learning goals for students related to statistics. 

Professional development that includes accessible, personalized, and self-directed elements can 
provide increased opportunities for sustained, collaborative and meaningful work among teachers 
that can affect their knowledge, beliefs and practice (e.g., Vrasidas & Zembylas, 2004). Researchers 
have found that online professional development (OPD) that addresses the varied needs and abilities 
of its participants can be effective in changing teachers’ instructional practice (e.g., Renninger et al., 
2011; Yang & Liu, 2004). Designers of OPD should be especially mindful that activities are 
meaningful, accessible and relevant so that participants can apply their learning to their educational 
context (Ginsburg, Gray, & Levin, 2004; Vrasidas & Zembylas, 2004). 

Just as communities of practice can exist in face-to-face PD, OPD should facilitate development 
of an online community of practice (CoP).  Researchers have highlighted benefits of such 
communities that are not always afforded in traditional face-to-face PD. For example, Mackey and 
Evans (2011) argued that online CoPs provide members with “extended access to resources and 
expertise beyond the immediate school environment” (p. 11), thereby offering ongoing PD and the 
potential for increased application in their classroom. Designers of OPD should build infrastructure 
to support such communities across geographic and time zone boundaries. Asynchronous discussion 
forums, for example, provide opportunities for participants to reflect on practice, exchange ideas, and 
discuss ways to improve on their own schedules with colleagues with whom they may not otherwise 
interact (Treacy, Kleiman, & Peterson, 2002).  

While making changes in teachers’ statistics teaching practices and ultimately changing students’ 
learning of statistics is a major goal, we are guided by the integrated model for PD proposed by Clark 
and Hollingsworth (2002). In this model, they represent the change process for teachers through PD 
as being one that includes reflection and enactment among an external domain and a teacher’s 
professional world that includes domains of personal, practice, and consequence. The external 
domain includes information and resources often experienced through a PD, including interactions 
with others. In our study the external domain includes the resources in the OPD and the discussions 
with others in forums. The personal domain includes one’s knowledge beliefs and attitudes. The 
practice domain includes any professional experimentation, with content or instructional strategies, 
and the domain of consequence is concerned with salient outcomes that result in practice. Because of 
the massive size of our OPD about teaching statistics, we are most concerned with the reflections and 
enactments between the external domain (experiences and resources in the OPD) and the reflections 
and enactments we can discern concerning their beliefs and perspectives about statistics and teaching 
statistics. Though some teachers may be able to engage in professional experimentation during the 
course, this is hard to examine given everyone’s different curriculum and timing of when statistics 
units may be taught. To aid us in considering how PD experiences may have an impact on teachers’ 
beliefs and perspectives related to statistics, we draw upon Mezirow’s (2009) theory of 
transformational learning in adult education. Specifically, we are interested in what stimulus in the 
OPD (external domain) may act as triggers to evoke dilemmas (or cognitive dissonance) for teachers 
where they question their understandings or perspectives that have been formed from prior 
experiences.  
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Online Professional Development Context 
The MOOC-Ed effort at the Friday Institute for Educational Innovation includes several courses 

built using research-based design principles of effective PD and online learning (Kleiman, Wolf, & 
Frye, 2014) that emphasize: (a) self-directed learning, (b) peer-supported learning, (c) job-connected 
learning, and (d) learning from multiple voices. One such course, Teaching Statistics Through Data 
Investigations [TSDI],  aimed to have participants think about statistics teaching and learning in ways 
likely different from their current practices and past experiences. The course did not focus on a 
particular grade band or specific statistical content. A major goal was for teachers to consider 
statistics as an investigative process, promote statistical habits of mind, and view learning statistics 
from a developmental perspective.  

The TSDI course consisted of an orientation unit and five units (http://friday.institute/tsdi). The 
course was open for about 15 weeks to allow for flexibility for participants to engage while 
managing their busy professional lives. Units began with an Introduction video of the instructor 
highlighting critical aspects of teaching and learning statistics in the unit. The Essentials included 
materials to read or watch. The design principle of learning from multiple voices guided the decision 
to include many videos of Expert Panel discussions with the instructor and three experts in statistics 
education. Multiple voices were also present in many classroom videos with teachers and students 
working on statistics tasks using various technology tools, as well as, animated illustrations of real 
students’ work were created (using tools like Go Animate or Powtoon) that represented students’ 
statistical reasoning and use of technology tools.  

Self-directed and job-connected learning opportunities included Dive Into Data experiences in 
each unit for participants to use a variety of free technology tools (e.g., Gapminder, Tuva, CODAP, 
GeoGebra simulations) or import data into their own data analysis tool (e.g., Fathom, StatCrunch). 
These experiences allowed teachers to use tools accessible in their schools and connected them to 
relevant and free sources of data that can be useful in their lessons. For example, in Unit 4, the Dive 
Into Data used the Census at Schools website and asked teachers to download data and engage in 
statistical investigation. Extensions in each unit include extra resources (e.g., data sets, lesson plans, 
brief articles, java applets, additional videos) and provide self-directed opportunities to explore 
resources that may be useful in their educational context. 

Peer-supported learning is a cornerstone of the MOOC-Ed experience. Since participants are 
geographically dispersed, it is important to provide focused and ample opportunities for them to 
connect with and support one another in learning and applying the material in the course. Each unit 
contains two discussion forums: 1) a forum focused on discussing a specific pedagogical 
investigation about aspects of teaching statistics (e.g., analyzing statistics tasks, considering students’ 
approaches to statistics tasks through video clips), and 2) a forum where participants start their own 
discussions about unit materials or other ideas related to teaching statistics.   

Building upon an existing framework (GAISE, Franklin et al., 2007), the development team 
incorporated recent research on students’ statistical thinking and productive statistical habits of mind 
into a new framework, Students’ Approaches to Statistical Investigations [SASI]. There were several 
learning opportunities for participants to develop an understanding of its importance and potential 
ways it can influence teaching. The diagram in Figure 1 shows the investigative cycle, reasoning in 
each phase can occur at three levels of sophistication, and productive habits of mind. Two brief PDF 
documents described statistical habits of mind and the framework. In a video, the instructor 
illustrated the framework using student work from research, and another video featured an expert 
illustrating development of the concept of mean across three levels. Participants could watch two 
animated illustrations of students’ approaches to an investigation using different levels of statistical 
sophistication and then discuss students’ work. More details about the design of the TSDI course can 
be read in Lee and Stangl (2015). 
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Figure 1. Framework for supporting students’ approaches to statistical investigations. 

 Methods 

Participants  
Though the course is offered several times per year, we focus here on Fall 2015, the second run 

of the course. The course was advertised through many different organizations (NCTM, ASA, 
CAUSEweb), social media posts, state-level leaders in mathematics education, and personal contacts. 
Enrollment was free and open. For the purpose of this paper, we are only interested in how course 
experiences could be impacting beliefs and perspectives of K-12 classroom teachers. From 
registration (n=827), we discerned demographic characteristics and focused on those participants 
self-classified as classroom teachers (n=489). The classroom teachers resided in 46 states and 29 
countries, with majority in the US (n=380) and New Zealand (n=48). The majority were female 
(67.5%) and 72.8% had a master’s degree or above. Their years of experience in education were 
evenly distributed, creating a diverse community with varied teaching experiences that impact their 
starting perspectives and growth opportunities. Of those 489 self-identified classroom teachers, we 
confirmed 412 were actively working in K-12 contexts (e.g., some classified themselves as 
classroom teachers but taught community college).  

Data Sources and Analysis Methods 
Aside from registration data, four other data sources were used. Course activity was tracked 

through click logs that allowed us to examine trends in participants’ engagement with material. 
Qualitative data was collected from three sources: 1) posts in discussion forums (two per unit, for a 
total of 10 forums), 2) open-ended responses to end-of-unit and end-of-course surveys, and 3) a 
follow-up survey sent 6 months after the course to inquire about how participants may have applied 
their learning and what they considered the most impactful ideas from the course.  

All registration and click log data was merged and displayed in a dashboard in Tableau that 
allowed investigators to visualize participants’ engagement over time and with certain types of 
resources. The dashboard facilitated the ability to filter by role of classroom teacher, so that we could 
examine and report on trends of the 489 participants classified as classroom teachers. Descriptive 
statistics and graphical displays were used to examine engagement patterns. All discussion forum log 
data was filtered to only include posts from those classified as classroom teachers. Because our 
research question was focused on how K-12 classroom teachers’ beliefs and perspectives may be 
impacted by course experiences, it was important to maintain information about which activity and 
unit the discussion forum was embedded in, but not information about all posts from all participants. 
For the results reported in this paper, we are not discussing the impacts of particular ideas posted by 
participants or the social networks that formed in the forums as an indication of a community of 
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practice (this is part of a larger study). The 977 discussion forum posts were analyzed using open 
coding guided by our focus on change in beliefs and perspectives related to teaching statistics. Each 
post was considered a unit of analysis and we were specifically coding instances where teachers self-
reported changes or shifts in their beliefs and perspectives. The coded posts were sorted until four 
themes emerged. Within the themes, the posts were re-examined and tagged for evidence of what 
seemed to be triggering the change in perspective. We documented which triggers were most 
prevalent and only kept triggers associated with many instances of impacts on perspectives and 
beliefs, and discarded those only occurring once or twice. These themes and triggers were then used 
to examine responses on the end-of-units, end-of-course, and follow-up surveys. While we were 
looking for confirming and disconfirming evidence of themes and triggers, disconfirming evidence 
was not evident and no new themes or triggers were documented.   

Results 

Engagement 
When registration opened, participants could enroll and engage in the Orientation unit that 

included an overview video, survey to self-assess their confidence in teaching confidence, and an 
introduction forum. Each unit opened in weekly intervals for 5 weeks, with earlier units always 
accessible when later units opened. This allowed for participants to start and engage in course 
material on their own time and pace, which is part of the self-directed design principle. Once Unit 5 
opened, the entire course remained active for seven more weeks. After the course closed, participants 
could still access course material and read discussion forums in a read-only format (no new posts 
allowed in forums). In this way, the course site remained an open resource. 

Overall, a majority (n=370) of enrolled classroom teachers engaged in various aspects of the 
course. Thus, we use 370 as the number of classroom teachers who began the course. With respect to 
accessing the course by units, the greatest number of classroom teachers accessed Unit 1 followed by 
Unit 2. In Unit 1, 293 classroom teachers engaged, but by Unit 5, only about 25% (n=92) of the 
classroom teachers that began the course had accessed material. The number of classroom teachers 
accessing the course in Units 3-5 was relatively the same, indicating that most classroom teachers 
who engaged through Unit 3 finished the course in its entirety. 

The most accessed resources were discussion forums and videos (instructor videos, expert panel, 
and classroom and student work videos). 206 of the classroom teachers who began the course (56%) 
posted to a forum. The frequency of posts per teacher who engaged in forums is a skewed 
distribution (Figure 2), with 57% of teachers posting 1-3 times (typically in Units 1-2), 38% posting 
4-14 times across several units, and 11 very active teachers posting 15-45 times. The levels of 
engagement in discussion forums and videos were highest in Units 1 through 3. Teachers’ highest 
level of engagement with videos was in Unit 3 where 93 teachers took advantage of the video-based 
learning opportunities related to the SASI framework.    

 

  
Figure 2. Frequency of posts per teacher across all discussion forums. 



Inservice Teacher Education/ Professional Development 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

412 

Impact on Perspectives and Beliefs 
Looking carefully at themes from our coding, we saw four major ideas emerge related to how 

teachers’ beliefs and perspectives may have changed:  

1. engaging in statistics is more than computations and procedures and should include 
investigative cycles and habits of mind; 

2. engaging in statistics is enhanced by the use of dynamic technology; 
3. engaging in statistics requires real (and messy) data; and, 
4. statistical thinking develops along a continuum. 

Due to space limitations, we only elaborate on the first and last with examples from teachers. 
We noticed a shift begin in Unit 1 with participants thinking about statistics as more than 

computations and procedures. This was expanded by posts in later units and evident in the survey 
responses. There were two aspects to this shift in perspective. The first seemed to be a realization that 
the statistics they experienced and that they tend to teach was too focused on procedures, and that 
this focus was not aligned with what they were experiencing in TSDI. For example, a teacher started 
a discussion thread detailing a dilemma because of points made in a video by statistics education 
experts in Unit 2. The extensive post began as: 

I had a "lightbulb moment". Although I have been teaching HS math for 24 years, I have never 
actually taught "statistics" as defined by the members of the expert panel. I have taught units that 
I THOUGHT were statistics, but I was merely providing students with a few mathematical tools 
that statisiticians [sic] can use (e.g. finding a mean, making a histogram, calculating a standard 
deviation, etc.)...(female, 24 yrs experience) 

Twelve participants joined that discussion, 10 of which were teachers. They echoed that they were 
“guilty” of teaching statistics this way and that their own prior experiences in learning statistics 
treated the subject in a procedural manner. Similar discussions and replies about this issue were also 
started by several others. Teachers also recognized that attending and engaging in all parts of an 
investigation would give students opportunities to make sense of how statistics is used to answer 
questions and how important data collection (or experimental design) is to the process. Many 
admitted they spent little time on this with students and aimed to improve. 

Related to the final idea that emerged, teachers seemed to realize that statistical thinking and 
understanding develops across a continuum and that they can use this to think about instructional 
decisions and assessment of students. “The idea of the 4 process cycle and the different levels for 
different ages of each process, has helped me lot. I understand more and feel I am a better teacher to 
my students” (female, 15 yrs experience). Considering statistics as developing across levels seemed 
to impact many teachers. For example, after commenting on students’ work in a video and describing 
what levels she thought students may be working at, a teacher (10 yrs experience) noted, “with the 
SASI framework, I like how it never mentions age or grade level. I feel it's a continuum that students, 
depending on the context, can move back and forth between. If they get to a harder problem, they 
may not know how to exactly collect the data without bias and ensuring randomness. But with an 
easier experiment, that may be more obvious to them.”  

Triggers for Dilemmas  
Four elements emerged as often cited for triggering critical reflection that had impacts on beliefs 

and perspectives about statistics and teaching statistics. By far, the SASI framework (and associated 
documents and multimedia) was the most dominant trigger for change. The expert panel video 
discussions and the videos of students and teachers engaged in statistics tasks were also dominate 
triggers to assist teachers in reconsidering their prior experiences in learning and teaching statistics, 
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and help them envision a different outcome for their students if they change their practices. The use 
of technology for visualizing data with real data that are multivariable and “messy” was an additional 
trigger that seemed to impact perspectives. The technology experiences directly influenced their 
ideas that engaging in statistics is enhanced by using dynamic technology tools and real world messy 
data. These triggers came from learning opportunities that included videos of students and teachers 
engaged with messy data using technology, discussions in expert panel videos, and opportunities to 
Dive into Data. Two frequently referenced experiences were using the Gapminder tool, and engaging 
with Census at School. When asked the most valuable thing they learned on a follow-up survey, a 
teacher responded as follows, with triggers bolded that may have sparked her learning. 

“The most valuable aspect of the MOOC was obtaining resources for the improved use of 
technology to make instruction come to life and be more meaningful to students. I was able to 
see the statistical process in action and now have an idea of what it should look like in the 
classroom.” (female, 19 yrs experience) 

Discussion 
One of the challenges in designing OPD for teachers is identifying how to leverage stimuli that 

has the potential to act as triggers to impact teachers’ beliefs about teaching. For those who are at a 
crossroads facing this challenge, whether face-to-face or online, our identification of triggers can 
provide guidance as they embark on PD efforts for teachers. While we have no evidence (yet) that 
teachers experiences in a brief OPD in teaching statistics has impacted actual teaching practices and 
students’ learning, our research indicates that the purposeful design elements of the course were 
successful in causing critical reflection through certain triggers. Many teachers appear to have moved 
along the continuum described by Eicher (2011) towards beliefs that we should engage students in 
doing statistics through investigations, not merely teach them mathematical tools to apply to numbers 
devoid of context.  

Teachers are attracted to and can make sense of how frameworks apply to their practice and 
within the context of their learning environments. In addition, they learn a lot from expert opinions 
(beyond just a single PD instructor), as well as from the voices and experiences of other teachers 
with whom they collaborate with as part of the course. These voices act as additional resources 
outside of their physical school environment (Mackey & Evans, 2011) to impact their perspectives 
about statistics and teaching statistics. In accordance with other researchers, the discussion forums 
indeed provided opportunities for critical reflection about teaching statistics. 

Teachers also learn a lot about what it means to engage in statistics, by doing it, as well as from 
examining students’ thinking. Is any of this a big surprise? Perhaps not to experienced teacher 
educators. However, the key is to include these types of learning opportunities and potential triggers 
in professional development that occurs online, whether it is to a local group or massive and open to 
teachers around the world. Our research also supports the idea that online professional development 
that emphasizes: (a) self-directed learning, (b) peer-supported learning, (c) job-connected learning, 
and (d) learning from multiple voices can be effective for areas in mathematics education (e.g., 
teaching statistics) that need wide-scale efforts. 
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The following research report documents a professional development that focused on promoting 
understanding of algebraic learning progressions across vertical teams of elementary and secondary 
teachers.  Analyzing quantitative data from the pre and post MKT assessment and qualitative data 
from lesson reflections and final course reflections, revealed multiple outcomes for teachers.  More 
specifically, elementary teachers had lower MKT than the secondary teachers in both pre and post 
assessment, and teachers exhibited a significant increase in their MKT as a result of the program.  
Further, all teachers gained more in depth knowledge about the learning progression of algebra 
through collaboration in vertical teams and revealed a focus on improving pedagogy through the use 
of high leverage teaching practices. 

Keywords: Algebra and Algebraic Thinking, Learning Trajectories (or Progressions), Mathematical 
Knowledge for Teaching, Teacher Education-Inservice/Professional Development 

States and districts often have to realign their curriculum when standards are revamped.  In fact, 
forty-two states, the District of Columbia, four territories, and the Department of Defense Education 
Activity have adopted the Common Core State Standards and had to undergo realignment with their 
curricular standards (NGACBP & CCSSI, 2010).  Although our state did not adopt the Common 
Core State Standards, the state standards were revised and realigned with some standards expanded 
to bring more rigor, depth, and breadth to the learning objectives.  As district leaders, mathematics 
educators, and teacher leaders worked with classroom teachers to unpack the standards, we designed 
professional development that focused on helping teachers learn the mathematics concepts more 
deeply by mapping out the learning progressions that will guide the sequence of concepts crucial in 
building mathematical understanding.  The importance of this knowledge for teachers leads to a 
critical, practical question: what professional development experiences are necessary for teachers to 
develop an understanding of the learning progression in algebraic thinking? 

This study is aimed at examining the ways in which the designed professional development can 
engage teachers in deepening their understanding of algebra.  Further, we wished to explore how 
engaging in vertical teams for collaborative planning of lessons can help teachers at different grade 
levels better understand students’ learning progression of algebraic thinking. 

Theoretical Framework 
In the math community, the term “learning progression” has been used to describe the vertical 

articulation of standards with an emphasis on conceptual understanding (Confrey, 2012; Confrey, 
Maloney, & Corley, 2014; Wilson, Mojica, & Confrey, 2013).  Understanding of learning 
progressions is important for teachers; they serve as the guidepost for analyzing student learning and 
tailoring their teaching sequence (Wilson et al., 2013).  A research-based learning progression also 
informs how mathematical content knowledge and conceptual understanding for students develop 
over time. 
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Understanding How Vertical Knowledge of the Curriculum Contributes to Teachers’ 
Mathematical Knowledge for Teaching 

Mathematics knowledge for teaching (Hill, Sleep, Lewis & Ball, 2007) includes understanding of 
general content but also having domain specific knowledge of students.  Teachers with mathematical 
knowledge for teaching must have an extensive and complex set of knowledge and skills that 
facilitates student learning across the learning progressions so that they learn the structure and 
relationship of students’ understandings about a particular mathematical concept, teach specific 
strategies to elicit student thinking, strategically evaluate students’ responses, and move the 
mathematical agenda forward (Wilson et al., 2013). 

An example of the importance of learning progressions is found in the research on developing 
algebraic reasoning in the earlier grades through problem solving which requires depth of 
understanding.  Blanton and Kaput (2008) reported that teachers become better at teaching algebraic 
reasoning when the teachers’ own mathematical knowledge and understanding was increased and 
their algebra “eyes and ears” allowed them to bring out the algebraic reasoning while looking at 
student work and listening to their discussions and questions.  To know what to look and listen for in 
the classroom, teachers must have a deep and profound understanding of the foundational concepts 
for algebraic reasoning through patterning, relations, functions, and representations using algebraic 
symbols and utilizing mathematical models to represent relationships (NCTM, 2000). 

The knowledge of learning progressions is vertical knowledge.  Vertical knowledge includes 
“familiarity with the topics and issues that have been and will be taught in the same subject area 
during the preceding and later years in school, and the materials that embody them” (Shulman, 1986, 
p.  10).  This vertical knowledge can be supported through knowledge of learning trajectories and 
vertical teaming by teachers.  Confrey states that using learning trajectories, teacher can “plan their 
instruction based on how student learning progresses.  An added strength of a learning trajectories 
approach is that it emphasizes why each teacher, at each grade level along the way, has a critical role 
to play in each student’s mathematical development” (Confrey, 2012, p.  3).  However, teachers do 
not have frequent opportunities to work with teachers from different grade bands.  Understanding the 
learning progression across grade levels requires the collaboration of teachers through meaningful 
vertical articulation and PD. 

Context: Detailing Our PD Design and Activities 
The designers and instructors of this project included a university mathematics educator, a 

mathematician, teacher leaders from the districts, and doctoral students in mathematics education.  
This PD was conducted as year one of a three-year Mathematics Science Partnership grant focused 
on algebraic thinking and proportional reasoning during the transition years from fifth grade into 
high school.  We based this project’s design on the current research and needs in mathematics 
education with a specific attention to creating opportunities for vertical articulation focused on 
algebraic learning progressions as students move into high school algebra.  We considered all the 
core features of effective mathematics PD which includes having content as the focus, being 
sustained over time, collective participation of teachers working together on issues central to 
instruction, and focus on instructional materials that teachers use in their classrooms (Desimone, 
2009). 

To focus teachers’ work with content, we used NCTM’s standards (2000, p.  39) and explored the 
algebraic learning progression beginning with recursive patterns, representing mathematics situations 
with quantitative relationships, multiple representations of functions, including numeric, graphic, and 
symbolic, since the representational fluency develops a deeper understanding of functions 
(Moschkovich, Schoenfeld, & Arcavi, 1993).  Weekly activities in content-based class sessions 
included modeled lessons using rich tasks combined with in-depth conversation about both the 
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algebra content and the pedagogical strategies employed by facilitators.  In addition, a centerpiece of 
the PD experience was having teachers learn about the high leverage practices outlined in the 
Principles to Action (NCMT, 2014), and asking teacher teams to select a goal that they wanted to 
focus on for improving their practice.  Many of the teacher teams selected goals of facilitating 
meaningful discourse and posing purposeful questions.  In addition, we shared Smith and Stein’s 
(2011) 5 Practices for Orchestrating Productive Mathematics Discussions with the PD participants 
and guided their use of the five practices in the planning and implementation of their lessons.   

We conducted two iterations, each with a different cohort of teachers, of the content-focused 
course which included either a follow up Lesson Study or participation in a video-based teacher 
study group in school based vertical teams.  We focused on engaging teachers in active learning 
through algebraic problem solving tasks and exploring pedagogical strategies.  Our goal was to 
deepen teachers’ algebraic thinking, encourage vertical articulation, and develop a productive 
disposition towards teaching through problem solving.  The follow-up sessions were designed to 
provide teachers with continued support in professional learning implementing algebraic content, as 
well as providing opportunities for vertical articulation between and among grades levels. 

Methods 
For our study, we used a mixed methods approach to examine the outcome of the PD focused on 

learning progressions and vertical teaming of teachers.  The quantitative research focused on 
examining teachers’ content knowledge and the qualitative research focused on professional growth 
as identified by teachers’ reflections. 

Participants 
The data were collected from the teachers who participated in the two cohorts.  A total of 54 

teachers participated in the study, 23 of whom were in Cohort 1 and 31 in Cohort 2.  Most teachers 
worked in public schools (N=51 from seven school districts).  A total of 35 schools were represented 
with 21 schools being represented by one teacher, nine schools by two teachers, and five schools by 
three teachers.  The teachers also held various positions at their schools: elementary school teachers 
(N=22), secondary teachers (N=25), special education teachers (N=3), ELL teachers (N=1), and 
coaches (N=1).  Two teachers did not report their positions.  Specifically, the participants taught 
Grade 2 (N=1), Grade 3 (N=2), Grade 4 (N=3), Grade 5 (N=11), Grade 6 (N=11), Grade 7 (N=9), 
Grade 8 (N=3), and Grade 9 (N=6).  Eight teachers did not indicate which grade they taught.  On 
average, the teachers (N=52) had 9.42 years of teaching experience (SD=7.42) with a minimum of 0 
and a maximum of 30 years.   

Data Sources 
Quantitative data.  Prior to the beginning of the PD program, the Mathematics Knowledge for 

Teaching (MKT) of the participating teachers was assessed (Learning Mathematics for Teaching, 
2007).  Specifically, they completed the 2007 Middle School Patterns Functions and Algebra – 
Content Knowledge instrument, administered in two forms (N=24 for Form A; N=30 for Form B).  
At the end of the program, the same assessment was administered again (N=30 for Form A; N=24 for 
Form B).  All teachers completed different forms for the pre and posttest.  The forms were assigned 
to the teachers randomly.  Due to non-equivalence of the test forms, teachers’ raw test scores were 
converted into IRT scores, which were used in the analysis. 

Qualitative data.  The qualitative data sources included final course reflections, teacher 
reflections from lessons, video clips from the research lessons.  To delve in deeper into the nature of 
the collaborative exchange, we collected a final course reflection, that the researchers created for the 
second PD cohort, which asked teachers to reflect on the nature of the vertical professional learning 
and how the focus on an instructional practice by the team contributed to their professional learning.  



Inservice Teacher Education/ Professional Development 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

418 

We chose one of the video-based teacher study groups as a case that provided us the best opportunity 
to learn about how team members exchanged professional knowledge within the video lesson 
analysis. 

Research Questions 

1. What differences did we see in content knowledge of teachers at different grade levels? 
o Do the two cohorts of teachers differ in their MKT over the PD program? 
o Do elementary and secondary teachers differ in their MKT over the PD program?  

2. What did teachers identify as areas of professional growth from their vertical teacher study 
groups focused on algebraic thinking and enhancing their instructional practices? 

o How did vertical teaming enhance teacher’s planning and instruction? 
o What is the nature of the collaborative learning that teachers identified through their 

work with peer study groups? 

Data Analysis  
The quantitative data were statistically analyzed using IBM SPSS Statistics 22.  To begin 

analyzing the themes in the qualitative data, we systematically analyzed the data by developing initial 
codes and used the method of axial coding to find categories in such a way that drew emerging 
themes (Miles, Huberman, & Saldaña, 2013).  To verify and compare recurring themes and 
categories, the research team worked individually on coding the documents before comparing 
preliminary codes in order to agree upon recurring themes from the reflections.  Dedoose, an 
internet-based data management tool (Dedoose Version 6.2.7) was used to code and analyze the data.  
Initial codes reflected specific teacher practices and actions (e.g., posing purposeful questions, 
learning content from peers, anticipating student responses).  As codes were categorized, several 
main themes emerged: improved pedagogical practice due to instructional strategies, improved 
content knowledge; supporting student thinking in algebra; improved pedagogical practice resulting 
from collaboration, and gaining vertical knowledge of content from peer collaboration. 

Results 
Quantitative Results 

The descriptive statistics for the pre and posttest IRT scores are presented in Table 1.  In addition 
to the total, descriptive statistics by Cohort and Position at school are also presented.  Due to the 
sample size restrictions, only elementary and secondary positions are considered (secondary teachers 
include both middle and high school teachers).     

To further explore teachers’ MKT, we conducted a comparative analysis for the cohorts and 
teachers’ positions (a Bonferroni correction was employed).  First, to determine if there was a 
difference between the two cohorts on the pre and posttest, we conducted independent-samples t-
tests.  The results showed that the cohorts did not differ in MKT either on the pretest (t(52)=0.741, 
p=0.462) or on the posttest (t(52)=0.428, p=0.670).  Second, to determine if there was a difference 
between the pre and posttest for the two cohorts, we conducted paired-samples t-tests.  The results 
indicated that teachers in Cohort 2 scored higher on the posttest than on the pretest (t(30)=-2.546, 
p=0.016); however, no difference was observed between the pre and posttest scores for Cohort 1 
(t(22)=-1.219, p=0.236).   

Next, to determine if there was a difference between elementary and secondary teachers on the 
pre and posttest, we conducted independent-samples t-tests.  The results showed that the elementary 
teachers scored lower than secondary teachers on the both pre (t(45)=-3.948, p=0.000) and posttest 
(t(41.811)=-3.785, p=0.001).  Finally, to determine if there was a difference between the pre and 
posttest for the elementary and secondary teachers, we conducted paired-samples t-tests.  The results 
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indicated no difference between the pre and posttest scores of either elementary (t(21)=-2.248, 
p=0.035) or secondary (t(24)=-1.060, p=0.300) teachers. 

Table 1.  Descriptive Statistics for the Pre and Posttest of MKT 

Measure 

Mean (SD) 

Total 
(N=54) 

By Cohort By Position 
Cohort 1 
(N=23) 

Cohort 2 
(N=31) 

Elementary  
(N=22) 

Secondary 
(N=25) 

Pretest -0.049 
(1.000) 

0.068 
(0.918) 

-0.137 
(1.063) 

-0.532 
(0.749) 

0.497 
(1.000) 

Posttest 0.185 
(0.917) 

0.248 
(0.936) 

0.139 
(0.915) 

-0.244 
(0.632) 

0.645 
(0.962) 

 
Research question #1a.  First, we aimed to determine whether the two cohorts differed in MKT 

over time.  To answer this research question, we conducted the two-way mixed design ANOVA with 
Cohort (Cohort 1 and Cohort 2) as a between subject factor and Time (pre and post) as a within 
subject factor.  The results indicated the main effect of Time (F(1, 52)=6.502, p=0.014), i.e., 
teachers’ scores, averaged across cohorts, were higher on the posttest than on the pretest.  However, 
there was no main effect of Cohort (F(1,52)=0.393, p=0.534), i.e., teachers’ scores, averaged across 
time, did not differ between the cohorts.  Additionally, no interaction effect of Time and Cohort was 
observed (F(1, 52)=0.289, p=0.593).  Thus, considering these results and comparisons above, we 
decided to combine the two cohorts for the further analysis. 

Research question #1b.  Next, we aimed to determine whether elementary and secondary 
teachers differed in MKT over time.  To answer this research question, we conducted the two-way 
mixed design ANOVA with Position (elementary and secondary) as a between subject factor and 
Time (pre and post) as a within subject factor.  The results indicated the main effect of Position (F(1, 
45)=17.084, p=0.000), i.e., elementary teachers had lower scores on MKT, averaged across time, 
than secondary teachers.  The comparisons above also suggest that elementary teachers had lower 
MKT on both pre and posttest.  Additionally, there was the main effect of Time (F(1, 45)=5.187, 
p=0.028), indicating that teachers’ scores, averaged across positions, were higher on the posttest than 
on the pretest.  However, according to the comparisons above, when the teachers are split into 
elementary and secondary levels, the effect of time does not hold for either level.  This finding is also 
consistent with the absence of the interaction effect of Time and Cohort (F(1, 45)=0.532, p=0.470).  
Larger sample sizes may be needed to determine differences within the levels (i.e., elementary vs.  
secondary). 

Qualitative Results 
While the MKT results showed that teachers overall made gains in their content knowledge as a 

result of the PD, they also reported, universally, through the qualitative data that the PD led to 
improvement in their understanding of algebraic content and pedagogy for math instruction.  We will 
next examine reflections of the teachers from the second cohort to identify which particular benefits 
the teachers gained from the PD. 

Vertical teaming and its impact on teacher’s planning and instruction of algebra across the 
learning progression.  All of the second cohort teachers who completed the final reflection indicated 
that they learned from their peers and found added value in that learning because the teams were 
made up of teachers from multiple levels (i.e., elementary and secondary).  Barbara, an algebra 
teacher, described the benefit of working in vertical teams:  
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There really should be more collaboration between elementary, middle, and high school.  I loved 
hearing from the elementary teachers because of all their use of manipulatives and their different 
approaches can also work for high school and be helpful, especially for low level students. 

By working together in vertical teams, the teachers built a broader foundation of both personal 
understanding of content and knowledge of how students at different levels (both in age and 
readiness) approach algebraic thinking.  Ralph, a 5th grade teacher stated:  

The wide-range of grade levels that are taught within our group served as a catalyst for a deeper 
understanding of the levels of reasoning and problem-solving students are at and what can be 
achieved during those levels and what can be and needs to be done for those that may be behind 
developmentally. 

Finally, teachers indicated that they had a firmer grasp of the learning progression necessary for 
students to succeed in algebraic thinking at all levels.  Rebecca, a 4th grade teacher shared:  

I really was able to open my eyes to how the ideas that start in early elementary are so 
foundational to how students think when they get to their algebra class.  The connections that can 
be built through patterns and being able to recognize them is so valuable. 

Collaborative professional learning through teacher study groups.  Consistent with the 
quantitative results, almost all participants (30/32) specifically indicated that working with their peers 
improved their knowledge of math content.  More than half (18/32 total teachers) identified that they 
learned math content from their colleagues: elementary teachers learned to see equations and formal 
algebra from their secondary colleagues (10/18 elementary teachers) and secondary teachers learned 
to utilize manipulatives and visual models from their elementary colleagues (8/14 secondary 
teachers).  In fact, most teachers indicated that working with peers expanded their knowledge of 
diverse strategies and the use of varied representations when solving problems (29/32).  Jan, an 8th 
grade math teacher elucidates this idea: 

Being able to see how others approach problem-solving was very enlightening.  It was so 
interesting to me to see that there are so many different ways of solving problems.  I was never 
taught and haven’t felt comfortable using manipulatives, etc., but I really appreciated seeing this 
strategy being used.  Now when I look at a problem, I am able to see different ways of 
approaching it. 

Teachers also learned to improve their pedagogy through collaboration with their peers.  Half the 
teachers made specific comments that their pedagogical practice improved due specifically to their 
interactions with their peers (16/32).  Elizabeth, a 5th grade teacher, stated, “I liked brainstorming 
with my group members and thinking outside of my box.  I realized that anticipating the questions 
that students might ask prior to the lesson is very helpful!” Further, Jocelyn, a middle school math 
teacher reflected that, “Working with the group helped frame the plan of what ideas to share and how 
to make those mathematical connections between the students’ strategies and the ‘Big Ideas’.” 

While teachers’ reflections offered insights into their thinking, their video discussions allowed us 
to view their practice.  We selected one case study that we felt demonstrated notable exchanges 
among team members in regards to the benefits of collaboration.  The team was composed of five 
teachers, ranging from 2nd grade to 8th grade algebra.  The study group chose a growing toothpick 
pattern task which they modified for implementation at each grade level.  We coded the 
commentaries from the collaborating teachers on each video.  These exchanges revealed ways in 
which peers exchanged their knowledge for teaching and assisted one another.  One of the major 
themes was how peers validated each teacher’s instructional practices.   
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Ann, a 4th grade teacher presented the Hexagon Pattern.  A peer-teacher, Karen, commented that 
Ann did not jump in to tell a student she had the wrong number of toothpicks for two hexagons.  
Instead, Ann allowed the student to discover the error when building the pattern.   

Karen: I love how you didn't originally tell her that 12 was wrong, she noticed it was wrong 
when she got up to place the toothpicks! 

Another peer-teacher, Holly, viewing Ann’s lesson commented on Ann’s use of posing purposeful 
question to follow up on the student’s discovery:  

Holly: Purposeful questions - “If we know that hexagons have 6 sides and we are building 2 then 
why do we have 11 toothpicks instead of 12?” Great job! 

In another notable exchange, two teachers share the challenge of knowing and gauging the right 
balance between allowing students to experience “productive struggle” and knowing when to ask a 
probing question while commenting on a lesson taught in Micki’s classroom.   

Micki: Another moment where a purposeful question would have been helpful.  This student got 
stuck and I gave her time to think, believing I was supporting productive struggle, but I 
should have left her with a question to help move her thinking along.   

Sara: Sometimes it is really hard to find that balance of when to let them keep going with the 
productive struggle and when would it be better to give them a purposeful question to help 
them along.  Remember hindsight is 20/20 and it is why we should always reflect on our 
lessons.  If you do another activity with your class before the end of the year, you will know 
this student needs a little more support. 

Conclusions and Implications 
For several decades, the mathematics education community has focused their attention on the 

importance of the Mathematical Knowledge for Teaching (Hill et al, 2007) that defines the deep, 
broad, and well connected knowledge that is needed to decompose and unpack content to make it 
comprehensible by students.  In addition to conceptual understanding of the knowledge needed for 
teaching, teachers must have command of high leverage teaching practices.  Our PD design focused 
on the task of exposing teachers to the complexity of ambitious teaching.  To examine the benefits of 
participation in our PD, we conducted a mixed-methods study. 

With our quantitative analysis, we found that teachers were able to gain significant knowledge 
during the PD course.  Our qualitative results supported the increase in teachers’ content knowledge 
and also indicated learning benefits beyond the content knowledge; the teachers content scores did 
not tell the whole story.  In particular, perhaps the most encouraging result from our study is the 
notion that PD utilizing collaborative, vertical teams of teachers can contribute to teachers’ 
professional learning as they examine their practice and work to improve their pedagogical skills.  
The evidence also suggested that validation from their peers supports teachers’ continued growth.  As 
we consider Synergy at the Crossroads, mathematics educators and researchers may consider 
providing more opportunities for teachers to work in vertical professional learning communities 
focused on understanding the mathematics learning progressions in future PD offerings to increase 
teachers’ MKT and improve their practice. 
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MATHEMATICS TEACHERS’ TAKE-AWAYS FROM MORNING MATH PROBLEMS IN 
A LONG-TERM PROFESSIONAL DEVELOPMENT PROJECT  
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Considering the role of mathematics-focused professional development programs in improving 
teachers’ content knowledge and quality of teaching, we provided teachers opportunities for dealing 
with mathematics problems and positioning themselves as students in a large-scale long-term 
professional development (PD) project. In this proposal, we aimed to understand the impact of 
engaging in morning math problems on teachers in terms of their mathematical understanding and 
teaching practices. Both written work and interviews showed that solving open-ended problems 
helped teachers better understand the mathematics content and students’ challenges as they solve 
problems; thus, suggested an effective means of PD for teachers.  

Keywords: Teacher Education- Inservice/Professional Development, Problem Solving 

As many teacher education researchers highlighted, mathematics-focused professional 
developments play a central role in efforts to improve teachers’ knowledge base (Ball, 1990; Hill, 
2007; Moss, 2006). Through encountering mathematics problems and positioning participating 
teachers as students, we sought to improve not only the teachers’ mathematical content knowledge 
but also pedagogical knowledge, pedagogical content knowledge, and beliefs about what it means to 
‘do’ mathematics. Considering this role, we aimed to provide teachers opportunities of dealing with 
mathematics problems and positioning themselves as students in a large-scale long-term professional 
development (PD) project. Each professional development session started by asking teachers to work 
on authentic and challenging mathematics problems. We also interviewed teachers at the end of the 
project to learn their thoughts about morning math sessions, the nature of the math problems they 
worked on, and what they learned about mathematics and mathematics teachers. We particularly 
focused on the following research questions: 

1. What do teachers think about the role of morning math sessions on their improvement as 
mathematics teachers? 
1.1. What did teachers gain in terms of mathematical content from morning math sessions? 

1.2. What did teachers gain in terms of mathematics teaching from morning math sessions? 

We found these questions significant to investigate to better understand the role of teachers’ solving 
math problems and experiencing student position as a means of professional development. Thus, this 
study links to the conference theme, Synergy at the Crossroads: Future Directions for Theory, 
Research, and Practice, in that it introduces a promising component of professional development for 
mathematics teachers, discusses the role of morning math sessions in improving teachers’ 
mathematics teaching practices, and makes suggestions for future directions to develop more 
effective professional development sessions for mathematics teachers. 

Theoretical Framework 

Teacher Knowledge and Role of PD in Teachers’ Knowledge Development 
Over the last 40 years, understanding what teachers need to know has become one of the most 

important concerns in the field of education (Cochran-Smith & Lytle, 1999). While some studies 
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have focused on the knowledge that teachers need to know as professionals (Grossman & Richert, 
1988; Shulman, 1987), others have aimed to understand the knowledge that teachers need to know 
for the practice of teaching (Hiebert, Gallimore, & Stigler, 2002). Cochran-Smith and Lytle (1999) 
took this distinction between professional and practitioner knowledge further and suggested three 
conceptions of knowledge: (1) knowledge-for-practice, (2), knowledge-in-practice & (3) knowledge-
of-practice. Among these three conceptions, knowledge-for-practice referred to the formal 
knowledge that teachers gained in teacher education and professional development programs. In this 
vein, in the mid-1980s, Shulman (1987) had proposed seven categories of teacher knowledge: (i) 
content knowledge; (ii) general pedagogical knowledge, with special reference to those broad 
principles and strategies of classroom management and organization that appear to transcend subject 
matter; (iii) curriculum knowledge, with particular grasp of the materials and programs that serve as 
“tools of the trade” for teachers; (iv) pedagogical content knowledge, that special amalgam of content 
and pedagogy that is uniquely the province of teachers, their own special form of professional 
understanding; (v) knowledge of learners and their characteristics; (vi) knowledge of educational 
contexts, ranging from the workings of the group or classroom, the governance and financing of 
school districts, to the character of communities and cultures; and (vii) knowledge of 
educational ends, purposes, and values, and their philosophical and historical grounds. (p. 8) 

 Shulman argued that these categories constituted a teacher knowledge base which was 
supported by both theoretical and empirical sources of knowledge. Shulman’s perspective viewed the 
teacher as a trained professional who could learn about subject matter, curriculum, educational 
philosophy and history and as an active member of a scholarly community, who could pursue and 
help others pursue intellectual development. 

Understanding those categories of teachers’ content knowledge provides a strong basis for 
designing effective teacher education and professional development opportunities. Especially, 
mathematics-focused professional developments play a central role in efforts to improve teachers’ 
knowledge base (Ball, 1990). As argued by Moss (2006, p.97), “In order to encourage their students’ 
mathematical thinking, teachers must be able to appreciate and evaluate the reasonableness of their 
thinking. However, to be able to do this, they must have for themselves a deeper understanding of 
mathematics.” Thus, providing teachers opportunities of evaluating their understanding of 
mathematics is important for teacher development. 

Five Practices for Orchestrating Productive Mathematics Discussions 
The PD sessions at the focus of this study were designed using the five practices for orchestrating 

productive mathematics discussions (Stein & Smith, 2011); therefore, PD trainers demonstrated these 
five practices during morning math sessions. Stein and Smith (2011) developed these five practices 
to help teachers design and implement lessons involving mathematically rich discussions and 
enhancing students’ mathematical understanding. Stein and Smith (2011) summarized these five 
practices as follows: 

1. anticipating likely student responses to challenging mathematical tasks; 
2. monitoring students' actual responses to the tasks (while students work on the tasks in pairs 

or small groups); 
3. selecting particular students to present their mathematical work during the whole-class 

discussion; 
4. sequencing the student responses that will be displayed in a specific order; and 
5. connecting different students' responses and connecting the responses to key mathematical 

ideas (p. 8). 
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In addition to those, Stein and Smith (2011) proposed that setting instructional goals and 
selecting appropriate tasks could be viewed as the practice zero, which had to be ensured before five 
practices. It is important to note that these practices do not serve as a manual but suggest an effective 
way for teachers to characterize their work of orchestrating student-centered discussion by ensuring 
they make sense of students’ work and connect students’ thinking to the big mathematical ideas. 

Mode of Inquiry 

Professional Development Project and Participants 
Approximately twenty-two elementary teachers from across three school districts participated in 

the two-year professional development program focused on preparing mathematics teacher leaders. 
The professional development program consisted of monthly sessions and intensive summer PD 
workshops. All sessions were focused on engaging teachers’ in activities to develop their teachers’ 
mathematical knowledge for teaching and leadership skills. They were involved in 16 monthly 8-
hour workshops and 80 hours (10 days) of PD over two summers for a total of 26 workshops days. 
The sessions involved in a range of activities (e.g., video discussions, math content sessions, 
rehearsals etc.) and teachers were engaged in coaching sessions (McGatha, 2009) with the 
professional developers. In this study, we focus on the activities involved in one regular PD session 
we called Morning Math. During each Morning Math session, teachers were given a problem (or 
two) to solve. These problems were selected to not resemble typical textbook tasks; rather, they 
represented true problems for the teachers. 

Data  
In this proposal, we focused only on teachers’ work on morning math problems during two 

summer PD sessions; a five-day PD in June 2015 and a five-day PD in July 2015. In particular, we 
examined teachers’ work on four mathematics problems in June PD and five mathematics problems. 
The names of the problems that teachers worked during each PD session are given in the table below. 

Table 1: Morning Math Problems  
Name of the Math Problem PD Session 
Darts 

June PD 
Remainder 4 
Milk Chocolates  
Painted Cubes 
Rocket Science 
Marbles 

July PD Gum Drops 
The Sheep Activity 
Coin Sums 

 
Although teachers worked on these problems in groups, they recorded their thinking on provided 

worksheets, and regularly recorded their work on large flipchart paper to share with peers. 
Furthermore, their group discussions were video recorded. In addition, teachers were individually 
interviewed. Thus, data set also consisted of transcriptions of teachers’ interviews. 

Data Analysis Process 
In the initial round of data analysis, teachers’ written work on math problems were analyzed 

based on content analysis for understanding the range of solutions (Neuendorf, 2016). Then, the 
video records of group working were analyzed using more focused coding about the ways in which 
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teachers approached these problems. In the final round of data analysis, the teachers’ interviews were 
examined using thematic analysis to understand whether teachers thought the morning math sessions 
impacted their practice as mathematics teachers (Clarke & Braun, 2013).  

Findings 
In this proposal, we only present teachers’ work on the Milk Chocolates problem. To introduce 

the Milk Chocolates problem, we showed a box of chocolates as shown in Figure 1. We also 
provided a model of this chocolate box and asked whether they could find the number of milk 
chocolates in the box without counting. Moreover, we explained to the teachers that we were not 
only interested in the correct answer to the problem but also the ways in which they got the answer. 
Therefore, we asked them to find the answer in as many different ways as they could and record a 
numerical expression that modeled their thinking. 

 

 
Figure 1. Milk Chocolates Problem (adapted from Balka & Hull, 2012). 

Teachers’ Content-Related Take-Aways 
Teachers worked in groups of 2-3 and produced fifteen different solution methods as shown in 

Figure 2 below. As demonstrated by these solutions, teachers developed different ways of counting 
the chocolates in the box. When they started to work on this problem, they had not anticipated that 
there would be fifteen different solutions. As they solved the problem, we observed that they were 
changing their perspectives: “Ohh, okay. There might be a couple other ways to get the answer.” As 
the discussion ensued and additional solutions were shared, they were very excited and engaged as 
they saw many different ways that their colleagues shared on the board. 

This is also evident in their interviews that most of the teachers mentioned about more than one 
solution method when they were asked about morning math problems. The following excerpts 
illustrate this issue: 

Teacher A: I just learned different strategies during morning math and I learned, you know, not 
to give up and continue to keep trying.   

Teacher B: Well, there's definitely more than one strategy.  One way to think about something 
that everybody takes a different way, and, um, it seems that when you work in groups, um, 
with the teacher walking around and kind of, like, monitoring. 

Teacher C: Just how many different ways people approach things. Because I try to think-- well, I 
seem to think kind of 1, 2, 3 stepwise. And then people are pulling out all this other stuff that 
I've never even dreamed of thinking of. So it's good to see all the different ways that people 
approach things. 
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Figure 2. Teachers’ solutions on Milk Chocolates Problem (MCP). 

Like many other teachers, these three teachers highlighted different solution methods that were 
developed by other teachers and that they would not have anticipated otherwise. After sharing fifteen 
solutions to the milk chocolates problem, we asked teachers an extension question:  

• What if the size of the box changes?  
• Which method would you use to find the number of chocolates in these boxes (see Figure 

3 below)? 
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Figure 3. Milk Chocolates Problem Extension Part 1 (adapted from Goldenberg et al., 2015). 

 
• If the pattern (shown in figure 3) continued, how could you find the number of chocolates 

in the box of any size? (i.e., Milk Chocolates Problem Extension Part 2) 

In this extension part, teachers picked the method they thought to be more efficient to find 
the number of chocolates in Box n. It was challenging because not all of the solutions shown in 
Figure 2 led to a more general solution. Figure 4 presents four of the fifteen methods that 
teachers utilized to develop algebraic expressions. 

 

  
Figure 4. Teachers’ Solution to the Milk Chocolates Extension Problem 

After this work was shared by teachers, they engaged in a discussion about how they found 
different algebraic expressions and whether each of these expressions was a different one. During 
this discussion, teachers reached a conclusion that each of the methods showed them a pattern in 
counting, but these patterns resulted with the same simplified algebraic expression (i.e., 2n2+2n+1). 
Similarly, teachers had not thought that they would reach an algebraic expression with one unknown 
at the end of this problem, and they did, in fact, find the same expression even though they developed 
different solution methods.  

Teachers’ Teaching Practices-Related Take-Aways 
During the interviews, teachers mentioned about morning math problems in relation to the 

‘selecting’ and ‘sequencing’ practices: 

Teacher D: Well, we worked on--there's usually--definitely there's more than one way to answer 
the problems and all of them and the way that he [PD trainer] just placed them is all--
generally, the concept--the overall concept that he's trying to get everybody to see, the real 
wow moment, he saves for the end, like when there's a formula, he saves them for the end, so 
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he's working simplest to most complex is what it looks like in, uh, showing the students work 
and that is a good strategy that I feel I could benefit from. 

Teacher E: Well, it really has helped me to, um, well, learn that, uh, there's different ways that 
people think about a problem and that, um, you have to help, uh, persevere through some of 
the problems because they really help you to really think and make connections to other, um, 
other math concepts that you weren't even thinking at first. 

Those teachers described that the morning math problem sessions went beyond only showing that 
multiple solutions existed. The multiple solutions were discussed, compared with one another and 
through engaging in the ‘connecting’ practice, wisely connected to a mathematical big idea. In fact, 
the open-ended nature of the problem (i.e. involving more than one answer), the potential for 
multiple solutions, and the opportunity to build understanding of an underlying math idea were three 
characteristics named by teachers as they describe the nature of the morning math problems and the 
quality of math problems in general. 

Another important role of the morning math was that it required teachers to engage in productive 
struggle and that perseverance is important in the problem-solving process. The excerpt of a teacher 
below illustrates the sentiments of several teachers’ in terms of the impact of morning math sessions 
in that the struggle and perseverance were necessary for learning new mathematical ideas.    

Teacher F: Uh, I've learned--actually one, it's taking me back to, like, what children experience 
and how they have to persevere and just struggle through and go back--and go back to all 
those ideas and teachings that you learn from the past.  So, it brought me back to that and 
understanding what they have to experience. … And then also, with the right coaching, with 
the right assistance through those tests, I think that that's been a really big eye-opener, um, 
made me think past first-grade math.   

Interviewer: (laughs) and that's good or bad or… 
Teacher F: Oh, that's good because, I mean, I like Math so I try to refresh and keep myself as, I 

want to say up-to-date as I can. Because not too long ago, I was looking at some Algebra II 
books and just, you know, just for the sake of time, just messing around and just refreshing it. 
… knowing how to persevere and understanding what children feel. … I think it makes 
anyone a better teacher because the more you see it, the more you understand that person's 
experiences, the better you're able to actually help them through their experiences.   

 Having first-hand experience of what students were experiencing while learning new 
mathematical knowledge helped teachers think more about how they could support students 
differently; thus, this experience helped them to improve their understandings and skills for 
“monitoring” practice. As many teachers also pointed out, one of the ways of enhancing student 
learning is by selecting good problems which are challenging but attainable and which will allow 
making real-life connections. In this vein, we could observe that teachers understood the importance 
of the practice zero, “setting goals and selecting tasks.” To sum up, morning math sessions of the PD 
not only provided teachers direct experience with mathematical ideas but also demonstrated the ways 
in which such problems enhance students’ learning.  

Conclusions 
Our aim in this particular study was to understand the role of morning math PD sessions on 

teachers’ understanding of mathematics content and mathematics teaching. As illustrated with the 
data shared in this proposal, we argue that providing teachers direct experiences with mathematics 
problems is important for them to learn mathematical ideas conceptually, to understand the 
challenges that students experience as they learn, to appreciate the effectiveness of challenging, 
open-ended, and sense-making problems in learning mathematics, and to understand the role of 
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cooperative learning in teaching mathematics. These findings are important for teacher educators and 
teacher education researchers since they indicate morning math problem-solving sessions as an 
effective means of professional development for mathematics teachers. However, the role of morning 
math sessions did not solely result from teachers’ solving any mathematics problems. In fact, the 
problems which connected with real life situations, which had multiple solutions and sometimes 
multiple answers, and which were challenging but attainable, help teachers improve themselves in 
terms of mathematical content and mathematics teaching skills, particularly around five practices for 
orchestrating productive mathematics discussions because teachers also observed PD trainers as they 
monitored their work, selected and sequenced the solution methods, and connected with the big 
mathematical idea (Stein & Smith, 2011). By presenting teachers’ take-aways from morning math 
sessions of this PD project, we provide insight to teacher educators and teacher education researchers 
for improving professional development sessions designed for mathematics teachers, which we 
expect to result in improvement in teachers’ mathematics teaching practices. 
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Math Teachers’ Circles (MTCs) bring math teachers and university mathematicians together to 
engage in collaborative mathematical activity. Currently there are over 110 MTCs across 40 states. 
A key claim is that MTCs are “communities of practice.” However, to date there has been no 
research to substantiate this claim. In this paper, we explore the ways in which participants in an 
MTC negotiate aspects of community formation. 
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Founded in 2006 by the American Institute of Mathematics, Math Teachers’ Circles (MTCs; 
www.mathteacherscircle.org) bring K-12 math teachers and research mathematicians together to 
engage in collaborative mathematical activity. Unlike traditional professional development, which 
tends to foreground pedagogical practice, MTCs focus on engaging participants in mathematical 
activity. Notably, the model:  

emphasizes developing teachers’ understanding of and ability to engage in the practice of 
mathematics, particularly mathematical problem solving, in the context of significant 
mathematical content. The core activity of MTCs is regular meetings focused on mathematical 
exploration, led by mathematicians or co-led by mathematicians and teachers (White, Donaldson, 
Hodge, & Ruff, 2013, pp. 3-4).  

MTCs have expanded rapidly, and currently, there are over 110 MTCs in 40 states. As MTCs 
have expanded across the country, a small amount of research has begun to explore MTCs as a form 
of professional development for teachers. One significant finding is that MTCs can increase teachers’ 
mathematical knowledge for teaching (White et al., 2013). This is an important result, as 
mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008; Hill & Ball, 2009) is 
associated with effective math teaching (Hill, Rowan, & Ball, 2005). Further, surveys of MTC 
participants have suggested that teachers who participate in MTCs begin to identify more strongly as 
mathematicians (Fernandes, Koehler, & Reiter, 2011; White & Donaldson, 2011).  

Finally, an often-stated claim is that MTCs are communities of practice that support sustained 
teacher learning. For teachers, communities of practice help to support intellectual renewal and 
provide a sustained venue for new learning (Grossman, Wineburg, & Woolworth, 2001). However, 
there is currently no research-based evidence to support the claim that MTCs are—or develop into—
communities of practice. This is important because communities are not created by fiat, and not all 
groups of teachers are communities of practice in the way that the term has been used in the 
anthropological literature (e.g., Lave & Wenger, 1991; Wenger, 1998).  

Given the importance of communities of practice to teacher professional development, it is 
crucial to understand the ways in which MTCs are—or are not, or develop into—communities of 
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practice. In this paper, we explore the ways in which participants in an MTC negotiate aspects of 
community formation.  

Conceptual Framework 
A community of practice is defined by three features: mutual engagement, joint enterprise, and 

shared repertoire (Wenger, 1998). Mutual engagement refers to the requirement that participants 
jointly participate in the practice(s) that binds and defines the community. Joint enterprise refers to 
the purpose of the community. Shared repertoire refers to the objects that are naturalized in the 
community—those objects that are so natural to members so as to be taken-for-granted, but which 
may seem foreign or strange to outsiders (Bowker & Star, 1999). 

In this paper, we pay particular attention to the negotiation of joint enterprise by focusing on the 
essential tension in teacher communities: the tension between focusing on pedagogical practice on 
the one hand, and engaging in subject-matter disciplinary practices on the other (Grossman et al., 
2001). This is an important consideration with respect to MTCs. Primarily, MTCs are meant to 
engage participants in mathematical practice. The improvement of pedagogical practices is not a 
“core” activity (White, et al., 2013). However, Grossman et al. (2001) contend that both foci are 
essential elements in the joint enterprise of a teacher community:  

We contend that these two foci of teacher learning must be “brought into relation” in any 
successful attempt to create and sustain teacher intellectual community... Teacher community 
must be equally concerned with student learning and with teacher learning. (p. 952) 

Grossman et al. (2001) suggest that the negotiation of the essential tension will go through three 
ordered stages as a group develops into a community. A “beginning” group demonstrates a lack of 
agreement around whether the joint enterprise ought to be one focus or the other, and there is often 
opposition tension between the two foci. An “evolving” group maintains the opposition between the 
foci, but begins to demonstrate a willingness to allow different people to pursue different foci. 
Finally, a “mature” community holds the two foci in productive relation, recognizing that “teacher 
learning and student learning are fundamentally intertwined” (Grossman et al., 2001, p. 988). 

Research Questions 
On the one hand, pedagogical practice is officially backgrounded in MTCs so as to maintain a 

focus on engagement in disciplinary practice. On the other hand, “for a group of teachers to emerge 
as a professional community, the well-being of students must be central” (Grossman et al., 2001, p. 
951). This makes us wonder, even if the stated goal of an MTC is to engage participants in 
mathematical activity, what actually happens when a group of math teachers gets together to do 
mathematics? Do teachers simply engage in mathematical activity? Do they focus on pedagogy? Or 
some combination? Our study is the first to employ anthropological methods to answer 
anthropological questions about math teachers’ circles—in particular, just what is the joint enterprise, 
as it is negotiated by participants? Our research questions are:  

1. In what ways, if at all, are the two foci of the essential tension—mathematical activity and 
pedagogical practice— manifested in MTCs? 

2. When pedagogical practice is invoked, how is it treated by participants? 

Materials and Methods of Analysis 
Our data come from the initial gatherings of a newly-inaugurated statewide MTC. The gatherings 

include two after-school gatherings from each of five state-wide locations and a 3-day “summer 
retreat.” These were the first gatherings for the statewide MTC, although two locations had 
previously hosted MTC gatherings.  
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Local gatherings were facilitated by “lead teams” composed of 3-5 local teachers and university 
mathematicians. These lead teams attended a group training session facilitated by the American 
Institute of Mathematics, the organization that created and currently disseminates the MTC model. 
The lead teams designed and conducted their gatherings independently of each other. The summer 
retreat was organized and facilitated by the coordinators of the statewide MTC, four of whom are 
also authors of this paper (Peck, Erickson, Roscoe, and Wu). 

Gatherings were organized around “activities”—mathematical problems that participants worked 
on groups of 3-6 people, followed by large group discussions of the problem. There was 1 activity in 
each of the 10 local gatherings, and 9 activities in the summer retreat. In all, the data encompass 11 
gatherings and 19 activities. Across all sites, there were 177 participants: approximately 80% were 
practicing teachers (20% elementary, 30% middle school, 30% high school), approximately 10% 
were post-secondary mathematics faculty, and approximately 10% were pre-service teachers (these 
percentages are approximate because there are some participants for whom we do not have 
demographic data).  

Communities develop via engagement in joint activity. Participants interact with each other and 
with artifacts, and through this interaction norms of engagement, joint practices, and a shared 
repertoire emerges; a community develops and people become part of it (Bowker & Star, 1999; 
Dean, 2005; Lave & Wenger, 1991). Because community development occurs in interaction, we used 
video and audio recorders to capture the naturally-occurring interactions of participants as they 
engaged in activity during the gatherings. For each of the 19 activities, we have video and audio 
recordings of 2-6 problem-solving groups. Additional data include: 

• Participants’ notebooks from the summer retreat. Participants used these notebooks for 
jottings and work space during the retreat. They also used the notebooks to provide 
written responses to a series of reflection prompts at the end of the retreat.  

• Interviews with 10 participants from the summer retreat. This represents a selective 
sample of all participants. We invited all participants to be interviewed. From the set who 
agreed to be interviewed, we chose interviewees selectively in order to achieve a diverse 
sample with respect to gender self-identification, level taught (elementary, middle, high), 
and region of the state.  

Our initial analysis focused on the recordings of MTC activities. We used a cyclical data analysis 
method, which relied on both inductive and deductive approaches (Miles, Huberman, & Saldaña, 
2014). First, we developed a list of deductive codes based on our conceptual framework. We then 
engaged in the following process for each activity. Members of the research team each 
watched/listened to a different group engaging in the same activity. The team member created a 
content log (Maxwell, 2013) of the recording and coded the log according to the codebook, allowing 
new codes to emerge from the data. We then met to discuss our observations and coding. We refined 
our codebook and then used the refined codebook to code the next activity. We proceeded in this 
fashion, with inductive codes emerging from the data and subsequently undergoing refinement, for 
all 19 activities.  

We used these coded content logs to identify key segments in which participants negotiated the 
two foci of the essential tension (mathematical activity and pedagogical practice). We transcribed 
these key segments and analyzed them using multi-modal interaction analysis (Erickson, 1992; 
Goodwin & Heritage, 1990; Streeck, 2009).  

We employed a similar procedure to analyze the participants’ notebooks and interviews.  

Findings 
We present our findings organized around our two research questions.  
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RQ 1: In What Ways, if at all, Are the Two Poles of the Essential Tension Manifested in 
MTCs? 

Perhaps unsurprisingly, we found that the majority of activity in MTCs involved engaging in 
disciplinary (mathematical) practices. Pedagogical concerns occupied less than 5% of the “official” 
activity. We gloss an activity as “official” if it was introduced by the facilitators as the focal activity 
of the group. 

Pedagogical concerns were sometimes explicitly backgrounded by facilitators. For example, in 
the introduction to the one of the initial spring gatherings, a facilitator explained the goals for the 
gathering: 

You shouldn’t feel like there’s any expectation to be walking away this evening with anything 
other than a good feeling, alright? We’re not trying to prove anything, this is just for us. We’re 
not trying to say, “and now, fourth-grade math achievement will go up because-” ((laughter)). 
That has nothing to do with it. You see, we’re just- what we’re trying to do is just, be a group that 
likes mathematics. 

In this turn, the facilitator invokes both pedagogical concerns (“fourth-grade math achievement”) 
and disciplinary activity (“be a group that likes mathematics”). The turn is designed such that the two 
foci are put into opposition with each other. This can be seen in the use of the adverbs “not” and 
“just” to modify the verb “trying” in the second half of the turn (“not trying,” and “just trying”). In 
particular, the use of the word “not” in “we’re not trying to say” negates the pedagogical focus. This 
is reinforced with the exclusionary “just” in reference to mathematical activity.  

This finding—that the primary activity of an MTC is mathematical, not pedagogical, activity—is 
not surprising, given that engagement in mathematical activity is the explicit purpose of MTCs. 
Furthermore, the finding that the two foci were treated oppositionally is also not surprising due to the 
“beginning” nature of these teacher groups.  

However, we also found that pedagogical concerns were invoked in multiple, interesting—and 
sometimes surprising—ways during MTCs. 

Pedagogy was rarely the official topic of activity. Most commonly, if pedagogy was the official 
activity of an MTC gathering, it happened in the final phase of the gathering. This phase was framed 
as a “reflection” time, and pedagogy was a topic for reflection. For example, at the end of the 3-day 
summer retreat, the group met all together, and reflected on what it meant to do mathematics, based 
on their experience in the summer retreat. After the group generated a list of attributes associated 
with doing mathematics, the facilitator (Peck) referenced the list and said: 

So if we think about all this stuff that doing mathematics is, um, take a moment and write just a 
couple ideas about how you might incorporate some of this into your classroom. 

Both the design of this turn, and the subsequent uptake by participants provide evidence that 
pedagogy has become the official activity. By employing the imperative mood (take a moment and 
write just a couple of ideas…), and applying it to pedagogical concerns (…about how you might 
incorporate some of this into your classrooms), the facilitator signals that the official activity is now 
related to pedagogy. Participants’ uptake confirms this. After the facilitator’s turn ended, participants 
began writing and there is silence on the video and audio recordings. Analysis of participants’ 
notebooks confirms that each response involves pedagogy.  

Notice also how this turn brings pedagogy into a productive relationship with mathematical 
activity. Rather than treating pedagogy as separate from the mathematical activity of the retreat, the 
facilitator, through the use of the word “incorporate,” suggests that the mathematical activity of the 
retreat can productively be brought to bear on classroom pedagogy.  
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More commonly, pedagogy came up informally in relation to the concurrent mathematical 
activity. As participants engaged in mathematical activity, they often related the activity to pedagogy. 
For example, the strip of dialog in Table 1 occurred while participants were exploring the question, 
“can any number be written using only powers of 2?” The three participants, Amy (5-6th grade 
teacher), Diane (3rd grade teacher), and Patty (7-12th grade math teacher) discuss the mathematical 
question in turns 1-17. In turns 18-20, they transition to a pedagogical discussion related to the 
mathematical activity, which they continue for the remainder of the strip.  

Table 1: Doing Mathematics and Talking Pedagogy 
Turn Speaker Talk1 
1 Amy: I think, I mean- 

2 Diane: Well we have to be able to because how else- That’s how binary 
works.  

3 Amy: How else could we- 

4 Diane: They have to- 

5 Patty: Make every number? 

6 Diane: Yeah, binary’s gonna work every time. 

7 Patty: mmm-hmm 

 ((Amy looks at notebook, where she has written a list of powers of 2.)) 

8 Amy: How do you get 127? 

9 Diane: ((points to notebook)) There’s your two, 16 – ((moves finger along 
notebook, where Amy has written successive powers of 2)) That’s 
gonna be… one hundred… [twenty seven! 

10 Amy:                        [twenty seven! Okay… 

 ((Talk continues in this fashion, for turns 11-17, with Amy suggesting an 
number, and Diane showing how to make the number)). 

18 Amy: Two:::: f::::- ((smiling))  

19 Diane: You little pain in the butt! ((laughing)) 

20 Amy: Hmmm… I’m trying to think like a f- 

21 Diane: Trying to think like a sixth-grader?  

22 Amy: Yes! 

23 Diane: They are difficult little critters, but they’re adorable! 

24 Amy: “well what if you want to do this? What if you want to do this?”  

25 Diane: “So tell me how. What’s the pattern you’re seeing?”  

26 Patty: So what grade do you start doing these problems?  

27 Amy: Binary? 

28 Patty: No- 

29 Diane: Exponents! 

30 Amy: [Oh exponents  

31 Patty: [Yeah, just- just exponents? 
32 Amy: Fifth- fifth grade.  
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33 Patty: Well, we talk about squaring (crosstalk) not- not square roots- 
34 Diane: Just squared? 

35 Patty: Just squared. So I [sh- 
36 Amy:                    [I don’t even talk about square roots, until- 

37 Patty: So I show the kids that notation ((draws a “2” in the air)), and I 
talk to them about how if it’s 54 square units, I show them how you 
can write 54 units squared ((draws “2” in the air)) [with a-.  

38 Amy:                                                     [yeah 
39 Patty: with a- with an exponent two… so what grade do you start talking 

about, “what does that exponent MEAN?” ((draws 2 in the air)) and- 
40 Amy: I do fifth and sixth grade, and in fifth grade I introduce it to 

them- 
41 Patty: Okay.  

1 In general, talk is transcribed using standard punctuation, so that a comma denotes a short pause, a period denotes a 
longer pause after a falling intonation, and a question mark denotes a pause after a rising intonation. Ellipses ... 
denote a long pause. Underline denotes vocal emphasis, co:::lons denote a drawn-out sound, and a hyphen- denotes 
a restart. Vertically-aligned open brackets [denote overlapping speech. ((Double parentheses)) denote non-vocal 
action. 
 

Because participants often invoked pedagogy even when it was not the “official” topic, we found 
that participants were engaged in pedagogical conversations or activity approximately 15% of the 
time—3 times more than that which was accounted for in the official activity.  

RQ 2: When Pedagogical Practice Is Invoked, How Is It Treated by Participants?  
We found that pedagogical practice was treated as a normative topic of discussion in MTCs. The 

strip in Table 1 is representative of this. Notice the framing of the turns where pedagogy is first 
evoked, and the response to these turns:  

 
20 Amy: Hmmm… I’m trying to think like a f- 

21 Diane: Trying to think like a sixth-grader?  

22 Amy: Yes! 

23 Diane: They are difficult little critters, but they’re adorable! 

24 Amy: “well what if you want to do this? What if you want to do this?”  

25 Diane: “So tell me how. What’s the pattern you’re seeing?”  

26 Patty: So what grade do you start doing these problems?  

27 Amy: Binary? 

28 Patty: No- 

29 Diane: Exponents! 

30 Amy: [Oh exponents  

 
In particular, notice the absence of an account for why pedagogy is being introduced. Neither 

Amy nor Patty provides a rationale for why they are introducing pedagogy, and subsequent turns do 
not hold them to account for such an introduction. Together the design of turns 20-30 can be taken as 
evidence that for these participants, pedagogy is normative topic of discussion (consider how these 
turns would be designed differently in a situation where pedagogy was not normative, say at an adult-
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league softball game). This finding is somewhat surprising, considering the “official” framing of 
MTCs as primarily focused on engaging in disciplinary practice.  

Even though pedagogy was a normative topic, the way that it interacted with disciplinary 
practices varied. In some cases, these two foci were treated oppositionally, as would be expected in a 
“beginning” group like the ones that we studied. The first facilitator quote given above is one 
example of this. A second example comes from the reflections of participants in the summer retreat, 
one of whom wrote,  

Some of the activities were good, but others were not helpful. I guess I was looking for more 
options to take back to my classroom.  

Using the word “but,” the participant contrasts “good” activities with those that were “not 
helpful.” She goes on to identify “helpful” activities as those that could be used in the classroom. 
This comes even after the participant discussed how much she had learned about doing mathematics 
from the activities. This suggests that, for this participant, “engaging in disciplinary activity” and 
“improving pedagogical practice” are two separate foci.    

However, we also found multiple times where the two foci were held in “productive relation,” 
which would be evidence of a more mature community. The strip of talk in Table 1 is one example of 
this, where the content of the activity spurred a conversation about pedagogy related to that content.  

We also see evidence for the “productive relation” in participants’ reflections. For example, a 
different participant reflected: 

Working together to solve problems reminds me how important and fun it is, and I need to do 
that as much as possible in my class! 

Here the participant uses a different conjunction: “and” instead of “but.” In doing so, she brings 
disciplinary activity (“working together to solve problems”) into a productive relation with pedagogy 
(“I need to do that… in my class”).  

Conclusion and Significance 
Math Teachers’ Circles have exploded in popularity since their introduction in 2006. A key claim 

is that MTCs constitute communities of practice. However, this claim has not been subjected to 
analytical scrutiny. In this paper, we take a step towards such scrutiny by employing anthropological 
methods to analyze the ways that participants in MTCs negotiate their joint enterprise.  

We found evidence that both disciplinary practice and pedagogical practice are part of the joint 
enterprise. This is a surprising finding because the groups are “officially” framed around disciplinary 
practice only, and are represented as such in the published literature (e.g., the excerpt from White et 
al, 2013, in the introduction). This supports Grossman et al.’s contention that teacher communities 
must include a focus on pedagogical practice. 

We also found that, in negotiating the joint enterprise, MTC groups display hallmarks of both 
“beginning groups” and “mature communities.” This complicates the claim that all MTCs are 
communities of practice: our findings suggest that a beginning MTC, at least, may not be a mature 
community of practice. Participants are still negotiating the essential tension, and some participants 
struggle to hold the two foci in productive relation.  

However, what is perhaps our most striking finding is that, most often, when pedagogy was 
invoked, it was treated as normative by participants. Most of the time, when the “essential tension” 
manifested itself, there was no tension at all. This finding complicates the model of Grossman et al. 
(2001) in which communities must go through ordered stages of oppositional tension between 
mathematical activity and pedagogical practice, before they can hold the two in productive relation. 
This finding should be explored and elaborated in future research.   
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This research highlights a university-school division collaboration to pilot a professional 
development framework for integrating STEM in K-8 mathematics classrooms. The university 
researchers worked with mathematics coaches to construct a realistic and reasonable vision of 
STEM integration built upon the design principles of model-eliciting activities (MEAs). Analysis of 
participant reflections after they experienced two MEAs as learners in mixed grade-level teams 
suggests an evolving conceptualization of STEM integration with an explicit connectedness to 
mathematics content.  Mathematics coaches valued the potential for MEAs to provide multiple entry 
points to open-ended problem solving, but they articulated a sense of vulnerability as they 
contemplated the challenges of time and teacher buy-in within the contextual realities of curriculum 
pacing and standardized test preparation.  

Keywords:  Teacher Education-In-service/Professional Development, Modeling, Instructional 
Activities and Practices, Problem Solving 

Introduction 
School divisions across the United States have “embraced” the slogan of STEM (Bybee, 2010), 

but there is limited evidence of theoretical frameworks for the design and development of sustainable 
STEM integration in K-12 education [National Academy of Engineering (NAE) & National Research 
Council Committee (NRC), 2014].  Mathematics may be relegated to a supporting role in STEM 
integration (Fitzallen, 2015) when it is characterized as the calculations or the data representations in 
science classrooms, technology labs, or outside-of-school programs. To bring mathematics content to 
the forefront in STEM integration, designers must attend to “learning goals and learning 
progressions” within mathematics (NAE & NRC, 2014, p. 148) and avoid a dilution of mathematics 
content (Shaughnessy, 2013).  Without specific connections to mathematics content, teachers may 
perceive STEM integration as an additional instructional requirement that is placed on top of the 
existing curriculum (Wang, Moore, Roehrig, & Park, 2011). 

The university researchers reflected upon these challenges as they collaborated with a school 
division to develop a STEM integration professional development (PD) framework for mathematics 
coaches. They hypothesized that model-eliciting activities (MEAs) offer a vehicle for reasonable and 
realistic STEM integration in K-8 mathematics classrooms by providing open-ended problems within 
a client-driven, real-life context.  With mathematics coaching support and explicit connectedness to 
content, teachers can use MEAs to engage students in both collaborative mathematical thinking and 
productive engineering design processes. 

In this paper, we describe preliminary findings from our exploratory study during a STEM 
integration PD initiative in a mid-Atlantic school division.  The mathematics coaches experienced 
two MEAs as learners and collaborated to envision MEAs as an instructional vehicle for integrating 
STEM within the bounds of their coaching contexts.  

Conceptual Framework 
STEM integration should offer students and teachers the opportunity to engage in “real-world, 

rigorous, and relevant learning experiences” (Vasquez, Sneider, & Comer, 2013). For many 
mathematics teachers, this conceptualization of STEM integration is so distant from their daily 
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understandings of content, curriculum, and pacing that implementation becomes unrealistic. STEM 
may be perceived as a project or activity that is ancillary to content-specific instruction and may 
become an unintended barrier to richer opportunities to learn.  Although reform curricula have 
emphasized the need for problem-solving opportunities in mathematics, many teachers still perceive 
problem solving as an elite activity, accessible only to students who have mastered essential 
mathematical skills and formulas (Crespo, 2003). This perception impedes conceptualization of 
mathematics content instruction through STEM activities. In addition, mathematics students in 
underperforming populations are often denied access to opportunities to practice 21st century skills 
as they are instead provided with remediation and extra support to gain computational fluency in 
preparation for standardized assessments.   

Drawing from Stohlmann’s (2013) definition of STEM integration as “an effort for mathematics 
teachers to use the engineering design process as the structure for students to learn mathematical 
content along with science concepts through technology-infused activities,” the researchers designed 
a PD structure that would support teachers in incorporating MEAs within existing mathematics 
curriculum. The research team’s goals were to: 1) explore participant understanding of mathematics 
within STEM integration; 2) use hands-on MEA experiences to elicit a more accessible classroom 
implementation of STEM aligned with coach and teacher beliefs; and 3) build coaching capacity to 
use MEA design principles to develop STEM tasks with a specific focus on keeping the mathematics 
content explicit. 

MEAs were originally conceptualized as a device to help mathematics education researchers 
elicit student modeling and to develop expertise about cognition and problem-solving behavior. They 
have since become a tool that can also be used to help teachers and students develop their own 
competencies (Hamilton, Lesh, Lester, & Brilleslyper, 2008). MEAs support the learning of 
mathematics within STEM by integrating other content areas found inside and outside of 
mathematics, by encouraging learning through discovery, and by promoting problem-solving 
dispositions (Magiera, 2013) with a specific focus on accessibility to varied learning styles and 
experiences (Stohlmann, 2013). MEAs offer teachers a contextual and content-focused lens on 
student mathematical thinking (Chamberlin & Moon, 2008; Stohlmann, 2013) that yields explicit 
evidence of student learning that is needed to ensure the mathematical rigor in STEM integration. 

Because educator expertise may be the “key factor” in STEM integration (NAE & NRC, 2014, p. 
115), PD is needed to support teachers who did not learn mathematics in STEM contexts to build a 
working knowledge of what STEM integration can look like (Stinson, Harkness, Meyer, and 
Stallworth., 2009). PD that is both “site-based” and “curriculum-linked” (Penuel, Fishman, 
Yamaguchi, & Gallagher, 2007, p. 928) is theorized to improve teacher enactment of reform-oriented 
instruction, and prior research has shown that ongoing mentoring and support (p. 124) and teacher 
collaboration (p. 125) increase the likelihood of successful STEM integration (NAE & NRC, 2014).  
The university researcher-school division partnership offered a bridge between research with MEAs 
and the practical demands of existing curriculum and standards.  As the division mathematics 
coaches experienced MEAs as learners, they could begin to conceptualize STEM integration built 
upon engineering design and real-world contexts with an explicit connectedness to mathematics 
content.  The research question which guided this study was as follows: How do iterative experiences 
with MEAs during a university-facilitated PD help mathematics coaches to envision STEM 
integration in K-8 classrooms? 

Methodology 
Design-based implementation research (DBIR) is an emerging methodology in which 

stakeholders are committed to iteratively developing an educational innovation with a goal of broader 
and sustainable impact (Penuel, Fishman, Cheng, & Sabelli, 2011). This collaborative PD connected 
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research on MEAs which “engage learners in productive mathematical thinking” (Hamilton, et al., 
2008, p. 5) to STEM integration efforts within one school division. The university-school division 
partnership drew upon studies of specific enactments of MEAs as tools in mathematics and 
engineering education and theorized a STEM PD structure to explicitly focus on instructional 
coaching and mathematics content. The team worked to construct coaching expertise that schools 
would need to broadly implement MEAs as a vehicle for STEM integration. 

Setting and Participants 
The university researchers and the division mathematics supervisor collaborated to create a 

longitudinal PD structure in response to a district directive to integrate quarterly STEM tasks at each 
grade level.  Within this school division, 73% of students were traditionally underserved and 53% 
were economically disadvantaged students (State Department of Education, 2015). The division had 
five elementary schools, each with Title I designation, one intermediate school, one middle school, 
and one high school.  The supervisor sought to leverage the university’s mathematics education and 
instructional coaching expertise to bring mathematics to the forefront of STEM integration.  She 
allocated time for mathematics coaches from the seven K-8 schools to explore and design MEAs 
with university facilitator support during their monthly academic year coaching meetings. 

The Professional Development Context  
The university researchers developed resources aligned with the partnership’s PD goals and 

piloted a four-day summer institute for eight aspiring STEM teacher leaders to engage with MEAs 
and plan for use within their classrooms. Two of the participants were mathematics coaches. The 
summer institute participants explored their perspectives on STEM, engaged with MEAs as learners, 
evaluated the affordances and challenges of implementing MEAs in their classrooms, and adapted 
existing curricular materials and online resources to design MEA instructional materials for their 
schools. The university researchers drew upon participant reflections and questions from the summer 
institute as they designed ongoing PD for the mathematics coaches during monthly academic year 
meetings.  The evolving PD structure was purposefully adapted to support coaches in seeing the 
possibilities of MEAs, first through the eyes of students, then as teachers, and finally as coaches. 

Month 1.  The university researchers asked the coaches to reflect on the meaning of STEM in 
order to situate their existing understandings before introducing MEAs.  The definition of MEAs 
offered by Maiorca and Stohlmann (2014) provided an accessible set of four design features (open-
ended, client-driven, mathematics similar to real-life, and engineering design process) to help 
coaches as they began to build a working knowledge of model eliciting. These practitioner-friendly 
constructs were a crucial bridge from the researcher language of MEA design principles (Hamilton et 
al., 2008) to coach envisioning of MEAs in classrooms. 

Teams of coaches engaged with the Survivor MEA (Maiorca & Stohlmann, 2014) to explore the 
affordances and challenges of MEAs from a student perspective. Although the Survivor MEA 
offered an engaging, relatable context for the participants as they experienced their first mathematics-
focused STEM integration task, the research team observed that the physical construction of the 
weather-resistant shelter model became the primary focus of iterating and refining.  The coaches 
required additional hands-on experiences to see the potential for explicit mathematics content 
instruction within this type of engineering activity. 

Month 2.  Before the coaches engaged in a second hands-on MEA experience, they needed time 
to make sense of MEAs and connect them to their own K-8 educational contexts. The university 
researchers offered a task adaptation template based upon the four MEA design features to support 
coaches in thinking critically about MEAs and in exploring online resources.  This space for 
exploration allowed the coaches to purposefully think about not only the teachers they would support 
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and the classrooms in which they would pilot MEAs, but also to build important contextual 
knowledge that would prepare them for their second hands-on experience. 

Month 3.  The university researchers selected the Pelican Colonies MEA (see Figure 1) as a 
second hands-on experience because the mathematics content could be more flexibly connected to K-
8 standards and there were more varied opportunities for use of manipulatives. The coaches were 
purposefully grouped to offer mixed levels of content expertise and grade-level experience.  The goal 
of this second exploration was to allow the coaches an opportunity to not only analyze their own 
collaborative engagement with the MEA as learners but also to reflect on transferring these ideas to 
their coaching practice. 

Data Collection  
Multiple qualitative data sources were used to characterize the envisioning and enactment of 

MEAs as vehicles for STEM integration. Written reflections were centered on the participants’ 
perceptions and understandings of STEM integration and the affordances and challenges of using 
MEAs in mathematics teaching and coaching.  Additionally, discussions during and after MEA 
problem-solving experiences were audio recorded to capture the dynamic nature of conversations and 
preserve the integrity of the participants’ experiences and perceptions. Finally, PD artifacts, 
mathematics task adaptation charts, and modified curriculum materials provided evidence of the 
evolution of participant thinking on specific strengths of MEAs and the contextual challenges of 
implementing MEAs.   

Data Analysis 
Data gathered was qualitatively analyzed to inform real-time changes in the PD structure and to 

support longitudinal evaluations of changing conceptualizations of STEM integration.  The 
university researchers examined participant writing prompts at the end of each session as they 
modified each iteration of the PD to maximize stakeholder involvement and negotiation in design 
decisions (Fishman, Penuel, Cheng & Sabelli, 2013; Penuel et al., 2011). Group discussions and 
written reflections provided evidence of beliefs about the potential role of MEAs in mathematics 
instruction and the emerging challenges of using MEAs to integrate STEM in their classroom 
contexts. Sample codes that emerged from the analysis of audio recordings and reflection prompts 
included: reasonable, realistic, teacher buy-in, appreciation of PD design, need for collaboration, 
student readiness, and time.  The reduction of all codes into categories led to the emergence of 
themes which illuminated the role of PD design decisions in both evoking and alleviating coaches’ 
concerns about introducing and supporting MEA enactments. 
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Pelican Colonies MEA - Excerpts from Client Memorandum  
“The U.S. Fish and Wildlife Service needs a procedure to estimate the number of nests at each 

pelican colony...We are enlisting your team’s help to create a procedure that will allow us to estimate 
the number of nests in a pelican colony, based on the photograph that shows a sample of the colony, 

and a map that shows the size and the shape of the entire site.” 

 

MEA Design Features Affordances of Pelican MEA for PD for 
Mathematics Coaches 

Client-Driven Request from U.S. Fish and Wildlife Service; Context 
activated by one-page newspaper article; connection to 
scientific research 

Open-Ended Variety of relevant manipulatives: ruler, tape measure, 
small beans, transparencies, and markers 

Mathematics Similar to Real Life Multiple K-8 entry points: Multiplication; 
decomposing area of a polygon into rectangles; 
measurement; estimation; ratios and proportions; unit rate; 
random sampling and inferential statistics 

Engineering Design Process Iterative refining and testing 

Figure 1.  Pelican Colonies MEA Summary and Design Features (Adapted from 
http://wordpress.unlvcoe.net/wordpress/wp-content/uploads/2013/01/Pelican-Colonies-MEA-

Teacher-Materials.pdf. 

Findings  
Because mathematics coaches have varying school contexts and administrator expectations, the 

university researchers needed to be responsive to the changing needs of the participants as they 
engaged in a collaborative journey toward envisioning MEAs as a vehicle for STEM integration with 
a specific place for K-8 mathematics content.  The PD design decisions to provide time and space for 
peer exploration of MEA resources and to offer a second hands-on experience with an MEA were 
critical moments in the collaborative journey toward STEM integration in mathematics classrooms. 
While coaches expressed enthusiasm about the problem-solving potential of MEAs, they also became 
more fully aware of the pedagogical and leadership challenges they would face in bringing MEAs to 
classrooms.   
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Affordances of a Second Hands-On Experience  
As the coaches discussed their experiences with the Survivor MEA during Month 1, they initially 

focused on the relatability of the context to their lives.  They also adopted a teacher lens as they 
discussed the possibilities of tailoring the context, introducing mathematical language, and 
completing the written component of the task outside of mathematics instructional time.  However, 
there was no organic discussion of possible application of grade-level content. One of the university 
researchers needed to prompt the coaches to specifically think about the mathematics content within 
this MEA.  

In contrast, the coaches’ second hands-on experience with the Pelican Colonies MEA during 
Month 3 elicited deeper mathematical thinking that aligned with familiar standards. The centrality 
and potential flexibility of mathematics application elicited by the Pelican Colonies MEA 
encouraged the coaches to draw on their content knowledge and past teaching experiences.  
Mathematics coaches looked at engagement with the MEA through a different lens than Month 1 as 
they initiated discussions on the multiple mathematical entry points and their grade-level 
expectations.  In Group 1, the district math supervisor acknowledged that her problem-solving 
approach was consistent with her secondary math experiences. “I thought unit rate, others on the 
team thought ratio.”  The other two K-6 mathematics coaches in her group connected to content by 
drawing on their most recent classroom teaching responsibilities.  “Amy said 60 x 19 because that’s 
what we would do in 3rd grade, while I was still thinking ratio because the last grade I taught was 
middle school.” (Jill, K-6 mathematics coach) 

Because the previous monthly PD sessions built working knowledge of MEA design features and 
task design, coaches were able to reflect on the MEA from a teaching perspective centering on 
mathematical implementation. Yet they also maintained an important attentiveness to client-driven, 
open-ended, real-world aspects of the MEA. Although the coaches in Group 2 did not progress as far 
into the task as Group 1, they engaged in an engineering design process. “We did not finish because 
we took time to think, which the kids need to do” (Mia, 6-8 mathematics coach).  Mia also wondered 
if middle school students would question the purpose of the MEA. “Why are we trying to save the 
pelicans?” Anticipating potential student responses to the MEA context was essential for the 
mathematics coaches to think about the future enactments in K-8 classrooms. “Real world to kids is 
something they can activate - something they can be interested in doing.  In middle school it’s hard to 
get them engaged to think something is important.” 

The university researchers had selected the Pelican Colonies MEA because of its broad potential 
for K-8 mathematical thinking and for use of manipulatives.  The mathematics was more accessible 
to the coaches than it had been with the Survivor MEA, and the coaches responded by discussing the 
explicit use of mathematics content without specific prompting by the university researchers.  

Coaching Challenges 
During Month 3, the coaches transitioned from acting as students to anticipating the unique 

demands of implementing MEAs in their own schools.  Their critical thinking about the potential of 
MEAs to improve student opportunities to learn was accompanied by a vulnerability they would feel 
as they introduced MEAs to K-8 mathematics teachers and students. They shared their anxieties 
about advocating for the use of a resource that they were still exploring.    

Because I am new to MEAs, I feel like I will be entering uncharted territory where I will no 
longer be the ‘knowledgeable other’ or expert... It’s hard to walk into someone else’s classroom.  
If [the experience] is perceived as a waste, what is the fall out for that? (Jill, K-6 mathematics 
coach) 
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The concern about consequences of failure extended beyond elementary contexts.  Mia, the 
middle school mathematics coach, worried that an unsuccessful MEA could harm her ongoing efforts 
“to get kids to do more than the teachers.”  She further wondered how teachers would see MEAs 
connecting to math, specifically standardized tests and other accountability measures. 

The math piece of it is where I think the teachers will struggle as much as the kids do when we 
talk about there not being [one] answer.  They are at that level where they think there should be 
[one] answer or [the task] needs to look like the [standardized test] questions. (Mia, 6-8 
mathematics coach) 

Finally, the coaches articulated concern that students would not be able to make the important 
“connection between what they are doing and the content that they know” (Jess, K-6 mathematics 
coach). They also speculated that teachers would assume that the MEA would be too hard for their 
students.  

While the coaches expressed vulnerability with respect to student and teacher readiness, they 
believed that opportunities to collaborate with other coaches and teachers could build their 
confidence in addressing these challenges. In her written reflection at the end of the Month 3 PD, Jill 
described her planned collaboration with another mathematics coach, a STEM coach, and a 3rd grade 
teacher to “help build buy-in with other teachers, provide more adult support with students, and 
increase excitement/engagement of the students.” Three of the coaches expressed a need for more 
time to collaborate to develop their MEAs.  These needs were shared with district mathematics 
supervisor as the university-school division partnership planned future directions for the STEM 
integration PD. 

Conclusions 
The construction of a reasonable and realistic STEM orientation for teachers is critical as the 

education community looks toward connecting STEM integration and mathematics learning.  At the 
beginning, the coaches were challenged to reevaluate their conceptualizations of STEM from prior 
PD experiences.  The university facilitators engaged in real-time iterations of planning, reflecting, 
and revising as they gauged participant perceptions and responded to participant challenges to 
connect research to practice. As the coaches iteratively engaged with MEAs, they envisioned 
multiple entry points within these problem-solving structures with respect to grade-level content and 
student readiness.   

School contexts, administrator expectations, and assessment-driven cultures must inform the 
ongoing negotiation of STEM implementation.  The challenges that the coaches articulated in 
bringing their MEA designs to the classroom is consistent with prior research on the need for 
ongoing school-based support.  Coaches, teachers, and researchers will continue to engage in this 
STEM integration design and development process as they reflect upon prototype MEA enactments 
and redesign resources for wider implementation.  Their shared investment in realizing classroom 
and school STEM integration capacity with a specific focus on mathematics outcomes and coaching 
contributions will offer a model for STEM integration that challenges “one-size-fits-all” PD, defines 
a new role for mathematics coaches and teachers as STEM instructional leaders, and promotes 
meaningful readiness for STEM citizenship and careers for their students.  The district supervisor 
articulated the student-centered possibilities of MEAs that continue to motivate the work of the team. 
“The kids are acting as mathematicians instead of learning about math.” 
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TEACHER PERCEPTIONS ABOUT VALUE AND INFLUENCE OF PROFESSIONAL 
DEVELOPMENT 
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We used a situative perspective to examine teachers’ perceptions of a professional development 
intervention that integrated lesson study, video clubs, and animation discussions. The analysis of 
interviews with the five geometry teachers who participated in the intervention during two 
consecutive years showed three characteristics of professional development that were valuable: 
designated time to collaborate, focus on student mathematical thinking, and use of animations to 
represent practice. A fourth characteristic, accountability for implementation, is also discussed. The 
findings have implications for designing professional development, because participants cited links 
between their experiences and changes in their practice. 

Keywords: Teacher Education-Inservice/Professional Development, Geometry and Geometrical and 
Spatial Thinking, High School Education 

Perspectives 
Putnam and Borko (2000) cited the importance of creating situative learning experiences for 

inservice teachers and described aspects of such experiences that promote growth in teacher learning 
and practice. In a situated learning experience, teachers engage with others (e.g., in a discourse 
community) both within their own classrooms and outside their classrooms (Putnam & Borko, 2000). 
Although familiar contexts may help teachers make connections to their daily practice, there are 
limitations to professional development that occurs exclusively in a teacher’s own classroom. 
Comfortable habits, supported by a local culture, are difficult to break. Discussions with others may 
serve as disruptors to entrenched patterns of behavior which may then spark reflection and change. 
Putnam and Borko described how discourse communities can help teachers face the risks entailed in 
making meaningful change. When a group explores new materials and strategies in a forum that 
draws on different perspectives and expertise, practice may become the subject of critical reflection. 
As a result, teachers may be empowered by knowledge drawn from and trust in the group to try new 
ideas that were previously seen as too unfamiliar and, thus, risky to use with students. 

Lesson study (Lewis, Perry, & Murata, 2006) is one example of a professional development 
model that is both classroom-centered, and considers teaching and learning as objects of reflection by 
a community of practitioners. Hiebert, Gallimore, and Stigler (2002) concurred that effective 
professional development should be centered in the classroom, part of a long-term collaborative 
process, and focused on student learning and curricula. These perspectives frame our investigation of 
teachers’ perceptions about valuable characteristics of professional development. 

Purpose and Research Questions 
The purpose of this study was to determine what teachers valued about a professional 

development experience that was designed to create a situative learning experience. In other words, 
we looked at ways that teachers might justify the value of different aspects of such an experience, 
including components of that experience that were both centered on their own practice, yet occurred 
away from their classroom in the context of a discourse community. Given that such situative 
learning experiences have been shown to induce powerful teacher learning, we examined the extent 
to which teachers reported such learning and the factors to which they attributed that learning. The 
following research questions guided our analysis: 
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1. Which aspects of the professional development intervention did teachers find most valuable 
and how did they justify that value? 

2. What changes did teachers note in their practice and to what factors did they attribute those 
changes? 

Methods 
The teachers in this study were participants in a larger study focused on promoting teacher 

noticing and use of students’ prior knowledge to inform lesson design, implementation, and 
reflection on implementation (González, Deal, & Skultety, 2016). The five participants were all high 
school geometry teachers, with 4–26 years of teaching experience, who taught in high-need schools 
in the Midwestern United States. Teachers participated in two iterations of a lesson study process. 
The teachers met in 3-hour monthly sessions that teachers called study groups. Each year, 
participants watched and discussed animated, cartoon depictions of several versions of a geometry 
lesson (i.e., animations; Chazan & Herbst, 2012), collaboratively planned and implemented a lesson 
on the same topic, watched and discussed videos of their own students participating in the planned 
lesson (in a video club; van Es, Tunney, Goldsmith, & Seago, 2014), revised the lesson they 
developed, and repeated the process. 

The lessons topics (i.e., dilations and perpendicular bisectors) were predetermined by the 
research team. Because the focus of the lesson development and analysis was on identifying and 
building upon students’ prior knowledge during instruction, the focus of study group discussion was 
on student understanding, rather than on the teacher actions during lesson implementation. 
Participants constituted a discourse community, as they worked together to plan the lessons and 
analyze video clips of students’ work during the lessons. 

The data for this paper are teacher self-reports from 20–60 minute individual interviews that the 
first author conducted at the end of each of the two years of the professional development experience. 
Teachers were asked to describe strengths and weaknesses of the study group, their perceptions about 
the goals of the study group, and the relative value of each aspect of the study group (e.g., 
animations, collaborative planning, analysis of student thinking). Participants were also asked to 
comment on whether the experience had an impact on their teaching. 

The first author audio recorded and transcribed the interviews, using pseudonyms for each 
teacher. Transcripts were analyzed for common themes mentioned by participants using a grounded 
theory approach (Corbin & Strauss, 2008). In the first iteration, we used an open coding process, 
identifying any significant aspects that the participants noted, regardless of the question that they 
were addressing. In a second iteration, we looked more closely for participants’ justifications for 
significant aspects of the professional development and examples participants provided of how their 
practice changed as a result of the professional development. 

Results 
The resulting themes from the open coding process are listed in Table 1, by teacher and year. 

Themes are grouped in broad categories: (a) aspects of the professional development that were 
significant for teachers in their own right (e.g., designated time to collaborate, forum for reflection, 
authentic to my curriculum or students, focus on one thing over time), (b) outcomes of the 
professional development (e.g., change in teaching practices), and (c) mechanisms that were inherent 
in the professional development that may have led to perceived outcomes (e.g., focus on students’ 
mathematical thinking, focus on students’ prior knowledge, accountability for implementation, use of 
animations to represent practice). Students’ prior knowledge and students’ mathematical thinking 
were related, and, indeed overlapped on occasion, but teachers were more likely to refer to students’ 
prior knowledge when discussing lesson planning and students’ mathematical thinking when 
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describing making sense of student ideas retrospectively (e.g., when reflecting on videos). 

Table 1: Significant Aspects of the Professional Development by Teacher and Year 
Theme Year Teacher 1 Teacher 2 Teacher 3 Teacher 4 Teacher 5 
Designated time to 
collaborate 

1 X X X X X 
2  X X X X 

Authentic to my 
curriculum or students 

1 X X   X 
2  X    

Focus on one thing over 
time 

1 X   X  
2   X X  

Forum for reflection 1      
2   X X X 

Change in teaching 
practices 

1 X X X X X 
2 X X X X X 

Focus on students’ 
mathematical thinking 

1 X X X X X 
2 X X X X X 

Use of animations to 
represent practice 

1 X X X X X 
2  X  X  

Students’ prior 
knowledge 

1 X  X  X 
2 X  X  X 

Accountability for 
implementation 

1   X X X 
2     X 

Note: Themes addressed in this paper are in bold. An “X” in the cell at the intersection of that teacher and the year 
within a theme, indicated that the theme was mentioned by that teacher at least once during the interview. 

 
There were two themes that were mentioned both years by every teacher: (a) change in teaching 

practices (an outcome of their participation) and (b) focus on student mathematical thinking (a 
mechanism inherent in the learning experience that may have contributed to the outcome). A third 
theme, designated time to collaborate, was mentioned by every teacher in year 1, and by all but one 
teacher in year 2. A fourth theme, use of animations to represent practice, was also a potential 
mechanism for allowing change to occur, and was noted by every teacher in year 1 and reiterated by 
three of the teachers in year 2. We discuss each theme in more detail below and provide examples of 
teacher utterances that are representative of how teachers expressed each idea. Although a fifth 
theme, accountability for implementation of the new lesson, was not mentioned by all teachers, the 
three who did mention it were adamant about the importance of this factor in accounting for the 
effectiveness of the professional development. Results are organized by the two research questions. 

Significant Aspects of the Professional Development 
Teachers uniformly valued a focus on student mathematical thinking, and one justification for 

that choice was its role in sparking change in practice. There was also broad agreement on the value 
of designated time to collaborate, although justifications were a bit more diffuse. The use of 
animations was frequently cited and valued for its effect on the process.  

Focus on students’ mathematical thinking. The teachers named a focus on students’ thinking 
as a beneficial aspect both years, and they attributed that value to video analysis, more so than to the 
animations. Teachers justified that a focus on student mathematical thinking was significant due to 
three main factors: (a) focusing on the student’s role in instruction was novel to them, and it was 
something they did not believe was a focus of their teacher preparation programs; (b) listening to 
student thinking helped teachers understand why students respond as they do so that they can act on 
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that information; and (c) knowledge of student thinking sparked changes in their practice. In the 
excerpts below, teachers’ justifications are highlighted (in italics) within their claims about the 
significance of a focus on student mathematical thinking. The year during which the claim was made 
is identified after the teacher number (e.g., year 1 is represented as Y1). Further details about changes 
in practice are detailed in a subsequent section. 

Teacher 1 (Y1): But I think the discussions that helped me the most were when we broke 
down what the kids did… That to me was huge, because, like I said, I’ve never thought about 
that part of it. I’ve never thought about the kids being part of the process. I thought about 
“I’m the teacher, I know everything.” You know, so I thought that was the biggest thing 
there. When we really analyzed the kid’s thought process that was huge. 

Teacher 2 (Y1):  So, [I think the goal of the study group was] to help support me as a teacher 
to create those [problem-based tasks] and then from there then look at the student thinking to 
help create better tasks or help improve that specific task. 

Teacher 4 (Y1):   The beneficial aspect is when we’re sitting around the table and we’re 
analyzing, so we’re trying to get into the students’ shoes and try to figure out what they’re 
thinking during it. And then, it’s not just how I think they’re thinking, but I get to hear 
everyone else’s thinking that they’re [the students are] thinking. So it kind of broadens my 
perspective of what I’m thinking about students’ thinking. 

Teacher 1 (Y2):  And then if you go to the discussion on the student thinking, that was such a 
foreign concept. Like I said before, nobody talks about that. You’re the teacher. I’m going to 
impart my wisdom on you and you’re going to absorb it in like a sponge. And, unfortunately, 
that’s the way a lot of education classes were. You were taught in the way the professors 
were taught in the way they were taught in the way they were taught. And it was all just 
teacher is the expert; they lecture; you get the material; you test over the material; you move 
on. It was never, there was never discussions about, “Well why did this kid do this first? 
Let’s look at their paper. Let’s look at the their steps.” 

Teacher 3 (Y2):  But it’s still good to hear how students are thinking differently. So then as a 
teacher I can be aware of how my students might approach problems. So, that can either 
change how I teach it or just when I’m working with them and I see them doing this I can 
think, “Oh, maybe this is how they’re thinking I need to redirect them that way.” 

Teacher 5 (Y2):  I feel like as a professional, we, other than this study group, we’ve never 
necessarily just sat down and been like, “Let’s look at student work and try to think of what 
they were thinking?” You never get time to practice that…. And generally you’re just 
thinking Johnny’s crazy and has no idea what he’s doing. But maybe secretly he just has a 
different frame of reference. And what he’s saying actually makes sense to him. And in his 
frame of reference makes sense. But you’re so clueless to his frame of reference that you just 
think he just doesn’t make sense. And I feel like that misunderstanding between student and 
teacher, is sometimes what turns kids off of math altogether. 

Designated time to collaborate. All teachers indicated that they valued having a designated time 
to collaborate with other professionals, specifically geometry teachers. The teachers justifications 
were (a) they were able to see other teachers in action via excerpts of video-recorded lessons that 
were shared during the study group, and (b) they provided an opportunity to share ideas. In the 
excerpts below, teachers’ justifications are highlighted (in italics) within their claims about the value 
of teacher collaboration. At times, teachers attributed their growth to collaborations, specifically, and 
these instances are highlighted, as well. 

Teacher 1 (Y1):   Because to me that’s the biggest advantage of things like this is when you get 
to steal ideas from people that are specifically doing what you’re doing. 



Inservice Teacher Education/ Professional Development 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

451 

Teacher 2 (Y1): I just think overall it was a really great experience, especially being able to 
talk to other teachers that are teaching geometry but in other buildings, I think was really 
valuable. 

Teacher 3 (Y1): That’s how I feel like I have been able to grow the most professionally is just 
through the collaboration with other professionals. 

Teacher 4 (Y1): I feel like having to talk about specifics like as far as teaching geometry on 
like a regular basis has been really good for me and keeping me kind of like inspired, to fix 
things and do more and whatever. Because I feel like a lot of times when you are kind of like 
on your own, you kind of get in a rut and you start teaching the same things and you kind of 
no one really stirs the pot or makes you think, you know, unless you’re like super self-
motivated, like, to do that [laughter]. So it’s kind of nice to be able to get together with 
professionals who are not necessarily at my school but are teaching the same concepts, same 
standards. And be able to bounce ideas off and see what other people are doing has been very 
good for … the teaching act. It’s … kept a lot of my stuff fresh. 

Teacher 5 (Y2): But then it was also giving each other ideas of … you know because it’s the 
same problem they did in their class, and they probably ran into the same misconception. But 
they handled it differently than I did. And it was nice to see different people handling them in 
different ways. And I feel like that’s part of practicing is seeing it done different ways, but 
you never get to see each other’s classrooms like that. So, it was just really neat to see. 

Use of animations to represent practice. Teachers noted two reasons that animations were 
valuable: (a) it was more comfortable to critique the practice of an animated, cartoon image of a 
teacher, rather than a real teacher, because the anonymity of the teacher created a safe space for 
honest dialogue; and (b) there were fewer distractions (e.g., background noise, student offhand 
comments, or off-task behavior) than would be inherent in a video of real people. 

Teacher 1 (Y1):  At first I was like, “Are you kidding me?” But I think the good thing about it 
was you weren’t looking at a specific real person. It made you focus, it made me focus on the 
content. Because it was a cartoon setting and you knew it was scripted. So, you weren’t 
looking at “Okay, how did the teacher say this?” You were looking at what did they say and 
how did the kids receive it and what did they say. So, it really made me focus on what was 
being taught and what was being heard and what was being learned, rather than “What kids 
were talking in this corner?” and “What was the teacher doing?” and that kind of thing. 

Teacher 4 (Y1): I think those are really helpful because I think what happens there is the focus 
is… you’re not like … as a teacher or as a classroom you don’t feel at all defensive because 
it’s not like… you’re not being analyzed. You’re analyzing a student’s thinking. So, it’s 
easier to be more open and share that information. 

Teacher 5 (Y1):  You know, you’re looking at it and it’s a cartoon guy. So you don’t feel, you 
feel very free to kind of like have criticism of it. You know what I mean? It’s like, you don’t 
feel like your watching your buddy teach and you’re like, “Why did you do that? That makes 
no sense.” You know what I mean? So it’s like… it’s not as personal. 

Teacher 2 (Y2):  Well first, the [animated] vignettes, I think, provided a good opportunity. We 
didn’t use them as much. But, it provides a good opportunity to look at something without the 
bias of certain groups of students or looking at the teacher or … It kind of takes away more 
of the personal aspect of it, when you’re just looking at the vignettes. So I think that was kind 
of nice. Especially as would like at the beginning when we were kind of getting to know each 
other or starting to kind of feel out what this process whole… was all about. 

Accountability for implementation. Although only three of the teachers addressed this issue, 
we found it compelling and have included it here. Teachers stated that a significant aspect of the 
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professional development was the fact that there was accountability for implementing a practice (i.e., 
teaching the collaboratively developed lesson) that was a product of the study group. Often, this 
claim was made in response to a question in which teachers were asked to compare the study group 
with other professional development experiences. Teachers justified this claim by stating that being 
forced to attempt something new meant that they could not easily ignore the ideas that arose in the 
study group, as they might otherwise do after a professional development. 

Teacher 3 (Y1): So, like, and the fact that it’s like I’m held accountable for it. It’s not like I’m 
sitting in some like even a full day, a full professional development day maybe by my district 
or whatever. And like we could come up with some good ideas, like “we could do this and 
that.” And maybe we’ll throw something in the air, but sometimes like once teaching…Like 
once the year starts, once the… we kind of can fall back into that same old grind. 

Teacher 5 (Y1): So it’s like very much like, “Here’s some skills, now we’re going to put them 
into practice. And, I’m coming to your school on Tuesday to see it being done.” And you’re 
like “Okay.” So it like forces you to like really do things. Whereas a lot of PD is like, “They 
paid me to do this, here’s a bunch of stuff, and I’m never going to see you again. So, use it or 
don’t use it. I don’t care.” And then it’s like not as effective. There’s no follow up.” 

Teacher 5 (Y2): And then they hold you accountable because they’re coming to your room 
with cameras! So you can’t just tell them you’re going to do it and then go and not do it. 
You, like, you gotta do it! 

Changes in Teaching Practices 
Teachers identified several specific changes in practice, even though study group facilitators 

focused specifically on helping teachers analyze students’ prior knowledge, and not on any of the 
participants’ teaching practices. Changes in practice that were cited were (a) increased focus on how 
to launch a problem (b) increased focus on effective implementation of wait time, including 
anticipating student responses and formulating next steps; and (c) increased skill in implementing 
problem-based tasks or discovery activities. Launches were mentioned more often by teachers in year 
1, which was the year during which they were a focus of the study group. Although a common 
launch was developed during group planning, during implementation, teachers tailored their launches 
to their own talents and knowledge base or to what they perceived would be more motivating for 
their students. The excerpts illustrate the types of changes teachers reported in their practices. 

Teacher 1 (Y1): One of the things that I think I’ve taken from this is that, we talked about a 
lot, kind of like launching a problem, and kind of how you’d build up a problem at the 
beginning. And, often times, I just kind of roll through, “Alright let’s go, here’s the paper, 
here’s the materials, make it happen.” Where I don’t necessarily think about how to build that 
up or how to get those kids involved or kind of hook the students. And so, that piece, kind of 
made me think overall, in my other courses, too, how can I try to get the hook involved more. 

Teacher 1 (Y1):  I think it goes back to thinking about what kids bring to the table. It made me 
stop and think about that when I was planning things, when I was presenting things, when I 
was doing my wait time, y’know. “Don’t just ask a question and wait. Think about their 
response, and formulate the next questions.” So, I think just forcing me to think about what 
kids bring to the table was the biggest positive. 

Teacher 5 (Y1):  I feel like it’s made me more thoughtful in how I go about presenting topics. 
Especially something like in the first time. Like, how do we discover this? How should I 
present it? What’s the launch gonna look like? 

Teacher 2 (Y2):  And then I think I’m starting to do a better job of kind of managing that 
bigger group, bigger task ideas. And then, I want to do more of just creating more of these 
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task oriented. So that’s my goal. I’m not there yet…. I think what I really appreciated and I 
think will benefit most from my teaching is really looking at if it’s more of these hefty 
problems, like what are the anticipated responses? And then kind of game planning how I 
might do that. 

Teacher 4 (Y2): I mean, so you are thinking about the way the kids are thinking about it which 
changes the way that you’re writing the lesson. 

Discussion 
Teachers identified several significant aspects of the learning experiences, situated both in their 

classrooms and in a context removed from those classrooms, that were consistent with claims in the 
literature about effective professional development. Specifically, teachers valued the opportunity to 
participate in a discourse community (Putnam & Borko, 2000), especially when members of that 
community were teaching peers. Teachers’ justifications about the value of those discourse 
communities were fairly general (e.g., share ideas, seeing other teachers in action), and they may not 
have recognized the affordances of collaborating in that way. Putnam and Borko (2000) claimed that 
having the support of a discourse community can support the risk taking that is necessary changing 
practice. Although none of the teachers made explicit claims connecting their changes in practice to 
the discourse community, they did claim to have made such changes. The teachers did argue that 
accountability requirements of participation in the study group enabled them to take the risk of 
implementing a lesson that they may have otherwise left unimplemented. Perhaps this need for 
accountability could also be characterized as a disruptor to the teachers’ existing practice (Putnam & 
Borko, 2000). 

The teachers stated that they valued a focus on student thinking, rather than on teaching. 
Teachers noted that understanding students’ logic (even if it was not correct) was an impetus for 
changes in teaching practice. Although this may seem counterintuitive, creating the need for change 
by seeing classroom events through the students’ eyes was a more powerful motivator, and perhaps 
less intimidating than having a direct focus on the actions of the teacher. As one teacher implied, 
there is a tendency to be defensive, when one’s work is the object of scrutiny. Thus, protecting 
teachers from a perceived vulnerability, by limiting discussions of teaching to those based on 
animated representations, encouraged dialogue and may have built the trust that was needed to 
sustain interactions later in the study group process, when videos from participating teachers 
classroom were analyzed. 

Finally, the changes in teaching practice reported underscored the value of a focus on students’ 
mathematical thinking in the study group. The changes reported (e.g., focus on the lesson’s launch, 
increasing wait time, or listening carefully to what students say before responding) were indicative of 
an increased interest in student-centered learning. Thus, a focus on making sense of students’ prior 
knowledge, encouraged teachers to reflect on how to modify their practice to find more opportunities 
to listen to students. 

Overall, identifying characteristics of professional development programs that teachers find 
valuable is important because teachers may persevere in long-term, or time-consuming professional 
development if they see the inherent value. In our case, the teachers established the importance of 
having authentic experiences connected to their students and their curriculum. At the same time, the 
opportunities to collaborate with teachers from other schools and districts prompted them to discuss 
important problems of teaching. Resources used in the program such as the animations served as 
important vehicles for helping the teachers extend and connect their knowledge of their context (e.g., 
the geometry curriculum and their students) and their knowledge of teaching. The teachers’ analyses 
of student mathematical thinking opened the door to examination of their own practices and moved 
them closer to the goal of effecting robust mathematical understandings in their students. 
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This study describes the data from a series of national surveys of mathematics teachers in their first 
three years of teaching. The initial, pilot survey was created by a team of researchers and educators 
from 13 universities and four K-12 school districts and involved a year long study of 41 teachers. 
The final survey, devised as a result of data gleaned from the pilot, was administered in December of 
2016, with 141 participants responding. The main objective of the final survey was to gather 
information about how these teachers perceive they were being supported and inform initiatives 
aimed at improving teacher retention rates. The survey focuses on what types of professional 
activities and communities in which teachers are participating, their perceptions of these activities, 
and how practice is influenced. Additional questions focused on administrative and university 
support, job satisfaction, and anticipated longevity in the field. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Teacher Beliefs; Teacher Education-
Inservice/Professional Development; Teacher Education-Preservice  

Significance/Purpose of Study 
We are in the midst of a crisis in math teacher education that has a critical effect on how prepared 

our students are to be successful in high school, college and beyond. Half of all teachers leave the 
profession within the first five years, and this rate is highest for math positions in high poverty 
schools (Goldring et al, 2014; Fantilli & McDougall, 2009). Furthermore, with half of all current 
teachers in the U.S. retiring in the next five years (Foster, 2010) and enrollment in many teacher 
preparation programs declining, the teacher turnover is expected to cost $7.3 billion annually 
(National Math + Science Initiative, 2013).  

Theoretical Framework 
Research has defined key components of a more cohesive and effective system of mathematics 

teacher preparation and development that facilitates teacher growth and retention. Our theory of 
action focuses on one of these components: ensuring early-career mathematics teachers have high-
quality, content-specific professional support. Targeted mentoring by experienced teachers, for 
example, especially as part of a long-term arc of teacher learning, has a dramatic impact on a new 
teacher’s beliefs, practices, effectiveness, reflectiveness, satisfaction, and likelihood to stay in the 
profession (Ingersoll & Strong, 2011; Oh, Ankers, Llamas, & Tomyoy, 2005; Ronfeldt & Reininger, 
2012; Walkington, 2005), and ultimately affects student achievement (Strong, 2006; Strong, Villar, 
& Fletcher, 2008). Effective support is especially critical and impactful in a teacher’s pre-service 
year before entering the classroom full-time, and in his or her first few years of teaching (EdSource, 
2014). Additionally, when teachers participate actively in professional learning communities, the 
likelihood they remain in the teaching profession and become more effective at teaching mathematics 
increases (Fulton, Yoon, & Lee, 2005). 

Methodology 
In 2016, STRIDES researchers designed a pilot survey of early-career secondary mathematics 

teachers to identify potential mismatches between the kinds of support research has shown are 
important for early-career teachers and the support early-career teachers are actually receiving. The 
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researchers distilled three change ideas with which they developed a revised survey and an early set 
of interventions. These ideas were:  

1. Build professional learning communities (PLCs) of early-career mathematics teachers. 
2. Ensure early-career mathematics teachers and mathematics teacher PLCs have effective 

mentors.  
3. Bolster administrative support for early-career mathematics teachers and teacher PLCs. 

The STRIDES researchers developed the “Reflection on Professional Activities” survey in 
iterative cycles of survey design, implementation, and data analysis, including a year-long pilot with 
41 early-career mathematics teachers. The survey was designed to gather semi-annual information 
about the three change ideas that would support the researchers implementing the change ideas more 
effectively. 

Participants 
The pre-service and early career teacher participants were solicited via electronic means by 

MTEP partnership university faculty. Twelve percent of the respondents designated themselves as 
pre-service teachers, twenty-six percent in their first year, twenty-six percent in their second year and 
thirty-six percent in their third year of teaching. An overwhelming number (94%) of these teachers 
were serving in public secondary schools in rural (13%), suburban (32%), and urban (23%) settings, 
and teaching in a full range of classes from 6th grade general math through calculus. The schools 
they were serving were characterized by their teachers as low-SES (26%) and high-SES (9%). Most 
(72%) of the pre-service and early career teachers surveyed stated that between five and twenty 
percent of the students they were teaching had Individual Educational Plans (IEPs), fifty-nine percent 
stated that between five and twenty percent of their students were designated as English Language 
Learners (ELLs) and fifty-five percent of them reported that between forty to one hundred percent of 
their students qualified for free and/or reduced lunch. The map below shows the locations of the 
teachers who participated in this study.   

Findings 
Several questions were posed to participants that asked them to select their answers from a given 

list of choices. These questions focused on career choice, job satisfaction, anticipated longevity in the 
field, and estimated weekly time spent on teaching, planning, and professional activities. Other 
questions asked participants to choose professional activities in which they had recently participated 
and select to what extent those activities impacted their enthusiasm for teaching. The final 
quantitative questions asked participants who supports them, the depth of that support, and what type 
of support they get from those people.  

Initial data analysis shows that most of the pre-service or early career teachers surveyed (81%) 
"certainly" or "probably" would become a teacher "if (they) could go back and start college again" 
and nearly half (46%) of them would remain in teaching "as long as (they) were able". The majority 
of teachers (53%) say that they spent between one and two hours a week involved in professional 
learning activities and another eighteen percent say they spend three to five hours a week. Teachers 
reported spending a large chunk of their weekly time planning with colleagues (56% spend 1-2 
hours, another 27% say 3-5 hours) and another large amount of time planning alone (35% spend 6-10 
hours, another 30% say 3-5 hours). Sixty three percent of respondents claim to spend more than 20 
hours a week teaching. With regard to professional learning activities that "increase their enthusiasm 
for teaching mathematics", working/communicating with a mentor or coach rated the highest among 
all choices (83% responding that it was either moderately or very influential). In terms of support 
from administrators in a variety of areas (curriculum, classroom management, course assignments, 
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assessment, instruction, collaboration and affirmation), the respondents relied to a much larger 
degree on those who were on-site (principals and assistant principals) rather than university 
professors and district office personnel. The three graphs below depict some of our findings.  

When teachers were asked what they wish was different about their job, the words that were 
mentioned the most frequently were support, non-teaching duties, class size, collaboration, student 
behavior, and pay. Participants also reported that the most used online forums for professional use 
were blogs and Twitter. When asked to describe a professional learning opportunity the teachers 
participated in that had a positive effect on their ability to facilitate student learning, teachers 
described a huge variety of activities, some of which were embedded in formal or informal 
professional learning communities. For example, one teacher described a community of first-year 
teachers the school district created, and many described their departments as versions of PLCs that 
supported their teaching practice. Few teachers described formal professional learning communities 
created or facilitated by their university teacher preparation program or school district, but many 
teachers reported access to mentors or coaches (e.g., “I am currently participating in an Algebra 1 
blended learning pilot being conducted by the state department. I meet bi-weekly with an coach 
online to discuss teaching practices and strategies.”). The “positive effect” of the support teachers 
described tended to be either related to a change in a planning or teaching strategy, move or structure 
(e.g., [I learned] “the regal look - a look you give your students when you want them to be quiet”) or 
to feeling generally “prepared” to teach. Few teachers described changes in student learning related 
to changes in teaching supported by professional learning communities, mentors, or administrators.  

Lastly, participants were asked to describe how a professional learning activity increased their 
enthusiasm for teaching mathematics. The majority of the responses fell into two categories. The first 
category is teachers who are inspired and rejuvenated by working with someone who has an 
infectious, enthusiastic attitude about teaching. Participants described listening to a presenter who 
was like this, reading testimonials online, or working with colleagues such as math coaches or 
department members who have this passion for teaching. For example, one participant wrote, “I 
participated in a conference call with colleagues from across the nation.  Every time we chat, I am 
reminded of why I love to do what I do.  Their enthusiasm definitely rubs off on me.” The second 
category of responses was enthusiasm gained by trying out new ideas in the classroom and seeing 
their students succeed with them. Teachers learned of new activities via conferences, blogs, meetings 
with colleagues and various other ways and described how invigorating it was to customize these 
ideas to fit the needs of their students, try them on using their own teaching style, and see their 
students succeed.  

Conclusions 
The MTEP STRIDES team is not comfortable at this time to draw conclusions or suggest 

possible interventions based on this initial data. Our one-year study is only halfway complete, with 
the second survey administration set to happen in April of 2017. Once these same teachers complete 
the survey a second time, detailing how they were supported for a full school year early on in their 
career, the research team will meet in the summer to fully analyze the data and propose interventions. 
These targeted interventions will be implemented during the 2017-2018 school year with a goal to 
expand meaningful support for early career mathematics teachers and to increase teacher retention at 
large, serving as proof of principle for more wide-scale efforts.  
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While professional development (PD) provides an opportunity for teachers to cultivate skills that are 
consistent with best practices in the field, it is their buy-into the PD that ultimately determines the 
effectiveness of the PD. We examined how teacher buy-in affected the classroom habits and practice 
of four elementary teachers who took part in a district wide PD. Using baseline and first-year 
implementation video recordings, in conjunction with frameworks for discourse analysis, cognitive 
demand, and tools built specifically to measure PD implementation, we found that varying 
combinations of teachers’ beliefs served as a mitigating factor for PD implementation.  

Keywords: Teacher Education-Inservice/ Professional Development, Teacher Beliefs 

In this report, we explore the effect of teachers’ buy-in for a high-quality, sustained, district-wide 
professional development (PD), Mathematics Studio PD (Foreman, 2013), on improving their 
classroom habits and practices. Systematic change requires coordination and cooperation between the 
system (school and PD program) and the participants (teachers). Without high buy-in, teachers will 
likely implement little of what they learn in even the strongest of PD programs. We present four 
divergent cases to illustrate the relationship between the exhibited level of buy-in and how it affected 
their mathematics teaching practice in their elementary classrooms. 

Background and Theoretical Framing 
Field-endorsed best practices for PD often exist at the program level with recommendations like 

“intensive, ongoing, and connected to practice; focuses on the teaching and learning of specific 
academic content; is connected to other school initiatives; and builds strong working relationships 
among teachers” (Darling-Hammond et. al, 2009, p. 5). We challenge that program level 
recommendations are insufficient without looking at individual participating teachers. As PD 
represents an appeal to change, the inclination of a teacher to making said changes in their teaching 
practice is an important factor in the success of the PD. We capture this inclination using the 
construct of buy-in from the management and leadership field (Thomson et al., 1999). We adopt 
Thomson et al.’s two types of buy-in: intellectual and emotional, where intellectual captures the 
degree of understanding and emotional the degree of commitment.  We treat belief alignment 
between teacher and PD as an (intellectual) indicator of buy-in, and seeing a need for change as an 
(emotional) indicator of buy-in.  

Teacher Beliefs and Classroom Practice 
To address belief alignment, we both identified teacher beliefs from their discussion 

contributions in PD sessions and explored related factors of their classroom practice. In this context, 
our focus is on beliefs about mathematics, teaching, and learning. The principles underlying the PD 
focus on mathematics as a sense-making activity where are all students are capable of deep 
engagement in meaning-making via justifying and generalizing. To explore belief relationships and 
their classroom practice we used cognitive demand and patterns of discourse. Henningsen and Stein 
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(1997) defined cognitive demand as, “The kind of thinking processes entailed in solving the task as 
announced by the teacher and the thinking processes in which students engage” (p. 529). When 
teachers engage students in high cognitive demand tasks, it is an implicit reflection of a belief that 
students can do highly demanding mathematics and that mathematics is richly connected (Wilhelm, 
2014). A second way beliefs may manifest in observable classroom actions can be seen in patterns of 
discourse. We leverage Scott, Mortimer, and Aguiar’s (2005) interaction and authority framework to 
address the balance of student and teacher engagement in doing mathematics. In this report, we focus 
on the authority dimension where discourse is classified as authoritative or dialogic. An authoritative 
classroom has only one acceptable solution path and correct answer versus a dialogic classroom 
allows for multiple solution paths.  

Critical Components and Measuring Fidelity of PD Implementation 
We also examined teacher’s classrooms for explicit implementation of the PD measured as 

degree of implementation to capture “the extent of change that has occurred at some particular time 
toward full, appropriate use of the target innovation” (Scheirer & Rezmovic, 1983, p. 601). We 
analyzed the critical components (O’Donnell, 2008) of our PD and developed a classroom 
observation tool, The Mathematically Productive Habits and Routines (MPHR) to measure the 
implementation of the PD components in classrooms (see Melhuish & Thanheiser, 2017).  

Methods 
Data for this project was taken from a large-scale study aimed at discerning the efficacy of a 3-

year PD program in an urban school district in the Northwestern United States. Our data consist of 
classroom video recordings (two lessons before PD and two lessons after PD), as well as video 
recordings and detailed field notes from five PD sessions across the year at two schools.  

Identifying Teacher Buy-In 
Researchers observed and video-recorded all PD sessions taking detailed field notes which were 

analyzed using thematic analysis (Braun & Clarke, 2006). The themes were informed by the need to 
identify important factors that relate to the efficacy of the PD program. We identified four case study 
teachers to further analyze. They were selected based upon their variations in terms of belief 
alignment and perceived need to grow. 

Analyzing Classroom Change 
Each year, two lessons were recorded for all participating teachers. For our case study teachers, 

we focus on their baseline videos (prior to any PD) and their year 1 videos (after a year of PD). To 
facilitate in the process of scoring and coding, each video was segmented into episodes; each episode 
representing a portion of the lesson where the curricular goal/aim was consistent throughout. Each 
episode was then scored and coded according to the frameworks for the discourse analysis and 
cognitive demand analysis (i.e. 1-memorization, 2-procedures w/out connections, 3-procedures w/ 
connections, 4-doing math). Each lesson was given an overall degree of PD implementation score 
based on the MPHR. 

Results & Discussion 
In this section, we provide an overview of our four case study teachers and focus more 

extensively on our most extreme cases: Cora and John. The buy-in level was based on two factors: 
perceived need to grow in teaching practice and belief alignment with the PD. A summary of the four 
cases in terms of: (1) 2 factor buy-in, (2) belief and classroom practice alignment, and (3) PD 
Implementation can be found in table 1. For a more nuanced discussion of their buy-in see Fasteen, 
Melhuish, and Thanheiser (2015). 
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Table 1: Degree of Implementation Growth and PD Buy-In for Case Study Teachers 
Case Teacher John (Low) Nina (Mid) Kim (Mid) Cora (High) 

Belief Alignment with PD No No Yes Yes 

Need to Grow in Practice No Yes No Yes 
Beliefs Aligned with Classroom 
Practice  Yes Yes Inconsistent No 

PD Implementation No Yes No Yes 

Case 1 & 4: John (Low-level buy-in) & Cora (High Buy-In) 
Cora and John were at opposite end of their careers. John was preparing to retire while Cora was 

in her second year of teaching. During the PD, Cora displayed indicators of high-level emotional and 
intellectual buy-in while John displayed low levels of both. 

Baseline lessons. Prior to involvement with our PD, Cora’s classes had a high number of student 
contributions, but the tasks were often low-demand (see Table 2). Her lessons tended to include 
majority authoritative discussions. In John’s baseline lessons, his class had minimal student 
interaction with most interaction consisting of pro forma call and response leaning heavily 
authoritative. The task demand was low with heavy focus on procedures (see Table 2). John’s 
traditional beliefs aligned with his classroom practice. In contrast, Cora’s beliefs that students are 
capable and that mathematics is a rich subject was reflected only in her students having opportunities 
to contribute while the mathematics remained procedural. 

Table 2: Cora & John’s Lessons in Terms of Cognitive Demand and Discourse 
Lesson / Teacher Cognitive Demand (% of time High) Authority (% of time Dialogic) 

Cora John Cora John 
Baseline 1 Varied (40%) Low (0%) Authoritative (32%) Authoritative (0%) 
Baseline 2 Low (12%) Low (12%) Authoritative (31%) Authoritative (32%) 
Post-PD 1 Varied (40%) Low (0%) Dialogic (72%) Authoritative (12%) 
Post-PD 2 High (85%) Low (13%) Dialogic (85%) Authoritative (31%) 

 

After one year of PD. After involvement with the PD, Cora’s classroom came into closer 
alignment with her beliefs. The level of cognitive demand increased. The discourse moved from 
authoritative to largely dialogic reflecting the acceptance and discussion of multiple strategies and 
viewpoints. The nature of John’s class changed little after the PD. His lessons remained 
predominately low cognitive demand and authoritative in nature (see Table 2). Cora’s 
implementation of the PD rose after a year of sustained support. This growth reflects her students 
engaging in mathematical habits of mind and interaction and her use of teaching habits and teaching 
routines. The tools provided through the PD may have allowed Cora’s beliefs and classroom actions 
to more closely align. As John had low buy-in for the PD, and had beliefs that may limit growth both 
in terms of his own need to grow, student capabilities, and the nature of mathematics, his degree of 
implementation score did not rise despite a year of PD. 

Conclusion 
A teacher’s beliefs and disposition towards the subject area, learning, and their own practice play 

an important factor promoting teacher change through PD. We use the buy-in construct to explore 
alignment or misalignment of these beliefs and the PD’s principles. The literature has established that 
teacher beliefs and classroom actions are related, but the relationship is often complex. Our cases 
illustrate some of the complexities. Cora’s case is particularly compelling as she has aligned beliefs 
(and subsequently high buy-in to the PD), but prior to the PD intervention, the beliefs alone were 
insufficient to promote high level reasoning in her mathematics classroom. When provided with the 
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tools, Cora’s classroom became more in-line with her beliefs. John, who did not perceive a need to 
grow, implemented little work from the PD into his teaching. Cora and John each represent very 
different types of teachers that may participate in PD. As providers of development and researchers 
on innovation, attending to beliefs and belief-alignment in classroom actions, may provide a starting 
ground for addressing the variance in individual PD participants.  
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This study explores mathematics teachers’ participation in a series of virtual sessions focused on 
implementation of new state mathematics standards and promoting more equitable learning 
opportunities for students. Our findings indicate that teachers’ preferred the use of text-based chat 
features for interactions. Further, their emerging participation practices focused on task 
implementation, student work, and mathematical content.     

Keywords: Teacher Education-Inservice/Professional Development, Technology, Standards 

Introduction and Background 
Mathematics education researchers have built a strong body of research that continues to move 

the fields of both research and teaching forward; however, a divide continues to exist between 
research and practice (Battista, 2007; Cai, et al., 2017) and issues of implementation at scale (Cobb 
& Jackson, 2011). Responding to this challenge, researchers and funding agencies are encouraging 
research-practice partnerships where researchers and practitioners work together to iteratively design 
and research problems of practice (Kane, 2016; Penuel & Farrell, in press). 

As part of a statewide research-practice partnership between a state education agency, district 
leaders, teachers, and mathematics education researchers at several institutions, our work draws upon 
Design-Based Implementation Research (DBIR) (Fishman et al., 2013) as an approach to facilitate 
the design of intervention efforts related to new state mathematics content standards and efforts to 
promote more equitable learning opportunities for students. These efforts include many spaces for 
engagement, one of which is a weekly virtual session designed to be “just in time” regarding the new 
standards and related mathematics topics addressed in each of the three integrated and sequenced 
high school mathematics courses, Math 1, Math 2, and Math 3. 

Theoretical Perspective 
Central to a DBIR approach are key principles of drawing upon multiple stakeholders’ 

perspectives; collaborative and iterative design; a commitment to developing both theory and 
knowledge; and developing sustainable practices (Fishman et al., 2013). The focus of this paper is 
the design-research efforts related to the nature of mathematics teachers’ participation in the virtual 
sessions. We conceptualize virtual sessions as an affinity space (Gee, 2005) where teachers come 
together to engage in the common activity of sense making around statewide implementation of new 
mathematics content standards in ways that promote more equitable teaching and learning. Viewing 
the virtual sessions as an affinity space is helpful because it frames both the design of the space and 
the ways in which participants interact with both the space itself and with one another. 

Fundamental to affinity spaces are the constructs of what Gee (2005) calls a generator, portals, 
and internal and external grammar. A generator represents the focus of the space; portals represent 
the various ways in which participants can engage in the space; internal grammar represents the 
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design of the space; and external grammar represents the ways in which participants behave and 
interact. In this study, the generator is a statewide effort to support teachers in student-centered 
implementation of new mathematics content standards through weekly virtual sessions. The portals 
for this space include registration (which provides access to documents to be shared in the session), 
attending, chatting using a text-based feature, and speaking aloud. Using a DBIR approach to this 
work, we iteratively design the internal grammar of the space while studying the external grammar of 
the ways in which participants engage within the space. Specifically, our research is guided by the 
questions: (1) In what ways do teachers use the portals for participation within the space? and (2) 
What is the nature of teachers’ participation evidenced by their external grammar within the space? 

Design of the Affinity Space 
The online platform used to conduct the virtual sessions, GoToWebinar 

(https://www.gotomeeting.com/webinar), was the contracted platform of the state agency partner. 
Only teachers were invited to take part in the space, as we hoped to create a safe place for open 
discussions. The platform allows for participants to chat via a text feature and speak aloud for those 
with microphones. The sessions ran approximately one hour each and were offered the first three 
Thursdays of each month in the order of Math 1, Math 2, and Math 3. The design of the sessions was 
initially informed by our initial learning conjectures and joint design work with teacher and state 
agency partners, and was continuously revised based on our ongoing analysis and teacher feedback 
within the space and through surveys. Over the first few iterations a “typical” session design 
emerged. Sessions were typically hosted by two teachers/leaders with a focus on implementation of a 
task related to the mathematics standards of focus for that month and included samples of student 
work.  

Methods 
Qualitative methods were used to understand the nature of mathematics teachers’ participation in 

the Math 1, Math 2 and Math 3 virtual sessions. Participants in this study included teachers across the 
state who taught Math 1, Math 2, or Math 3. All teachers were invited to participate through email 
announcements and at state, regional, and district level face to face meetings. Twelve virtual sessions 
were held and approximately 350 teachers participated at least once over the course of the semester. 
Participants represented 70 school districts (out of 115) spread across the state, with many being 
from rural areas.  

Data for this study includes text of participants use of the text-based chat feature and video 
recordings of virtual sessions. Video recordings were viewed by members of the research team and 
all participants’ talk was transcribed verbatim. To understand the ways in which teachers were 
participating, frequencies related to portal use were calculated. To understand the nature of teachers’ 
participation, all chat and verbal transcripts were open coded to identify themes. We used a constant 
comparative method (Strauss & Corbin, 1998) to identify emerging categories and refine these 
categories as they contrasted with data.  

Findings 
The ways in which teachers participated in the virtual sessions varied from month to month and 

across courses. There were four portals within the virtual session platform: 1) registering provided 
access to the tasks that were the focus of each session; 2) attending in which participants could listen 
to (and read) the interactions of others; 3) chatting in which participants could interact through text; 
and 4) speaking aloud during the session. A summary of the use of each portal appears in Table 1. 
Attendance in the sessions decreased each month across all three courses, with the Math 1 sessions 
having significantly higher attendance than the other two courses. The most common mode of 
interaction during the sessions was the use of the chat feature. This suggests that the chat feature was 



Inservice Teacher Education/ Professional Development 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

465 

the easiest or most comfortable mode of interacting within the session platform. In addition, the 
amount of interaction among participants increased, as is seen by the increased trend of growth in the 
ratio of attendees to total chats until the drop off in attendance in December.  

Table 1: Virtual Session Portal Use 

 
 
Analysis of participants’ chat text and transcribed talk revealed that interactions fell into the 

following categories: general about students (i.e. comments about students in general, not specific to 
the context of the task being discussed), general about teaching (i.e., about teaching unrelated to the 
task being discussed), general about standards tools (i.e., about other project spaces and tools), task 
discussion (i.e., focused on the mathematics of the task itself), pedagogical decisions related to task 
(i.e., focused on suggested pedagogical decisions, shared pedagogical ideas, or pedagogical questions 
related to the task of focus), student thinking (i.e., analysis of student work or anticipation of student 
thinking), and technical issues (technological issues with the virtual session platform). Below we 
discuss the most commonly used codes to illustrate the nature of the participants’ discussions. All 
examples are pulled from the text-chat data as they tended to be more succinct.  

Focusing on Task Implementation (43.3% of all quotations) 
When participants discussed pedagogical decisions related to the implementation of the task their 

contributions included questions about implementing the task or suggesting questions to pose to 
students (e.g., “I might ask: Do you see a pattern with the change in time leaking?”). However, the 
majority of their contributions regarding pedagogical decisions related to sharing ideas with one 
another for implementing the task. For example, when multiple examples of student work had been 
shared, a teacher used the chat feature to conjecture an instructional decision to support students’ 
mathematical engagement in the task, stating, “The student whose work is currently shown should be 
paired with the previous student. They should discuss how their tables are connected.” Additionally, 
while listening to one teacher sharing a task another teacher chatted, “This is a good place to discuss 
inverse relationships.”  

Focusing on Student Thinking (23.4% of all quotations)  
When discussing student thinking participants tended to anticipate student thinking when 

presented with an instructional task. For example, “I think students may struggle with the three 
variables (price, # of boxes, and revenue) when they are only used to an input/output, and identifying 
which is the input and output.” In addition, when presented with student work samples the 
participants showed evidence of critical analysis of that work. For example, as a sample of student 
work was shared one teacher noted, “This table doesn’t completely show understanding of the 
repeated multiplication aspect of exponential functions, just that they know they are multiplying 
answers by 3.”  
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Focusing on Mathematics (21.9% of all quotations)  
Each session was designed around a specific mathematical task that allowed for a focus on 

mathematics related to the new standards. Within the virtual sessions participants discussed ways that 
the task addressed the new standards (e.g. “It seems to fit nicely with the set of G.CO group. Ideas 
about transformations, congruence, similarity, changes in area and space.”) and 
characteristics/purpose of the task itself (e.g. “I think that the task really allows students with 
different methods to solve the problem. They can use the properties studied. They can use models. 
They can use tools such as rulers, protractors, and folding paper.”). Furthermore, in each session 
there was evidence of discussion around the specific mathematics related to the task. This included 
asking other participants for help with the mathematics (e.g., “Can you re-explain how you 
developed the quadratic to solve for the min?”) and sharing their own solution strategies (e.g., “I see 
that the rate of change in the table is not constant, but it has linear scatter plot. So, use the model to 
see if the y-intercept is 400?”).  

Conclusion 
The purpose of the virtual sessions was to provide a space for mathematics teachers across a state 

to engage with new state mathematics standards and a pedagogy centered on student thinking. The 
virtual sessions were successful in that approximately 350 teachers chose to enter the space at least 
once. These teachers were mostly from rural areas of the state, which is important as they often noted 
that they did not have others to interact with at their schools. While it is promising that participants’ 
interactions focused on important instructional issues, we are also encouraged by the mathematical 
nature of their interactions. Teachers not only discussed mathematics, but also some went as far to 
admit uncertainty and ask for help. Overall, we feel as if the design of the space is meeting teachers’ 
needs, however, the drop off in attendance and focus on the use of the chat feature suggests that 
revisions are needed.  

Creating spaces in which teachers feel safe to take mathematical and pedagogical risks is 
important for teachers as they work toward implementing mathematics standards in ways that 
provide more equitable learning opportunities for students. As we consider the conference theme, 
“Synergy at the Crossroads”, we are confident that research-practice partnerships can provide a 
productive and fruitful space for researchers and practitioners to work together on challenging issues 
of implementation at scale and the development of theories of implementation.  
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DEVELOPING FORMATIVE ASSESSMENT TOOLS AND ROUTINES 
FOR ADDITIVE REASONING 
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This early-stage design and development project combines formative assessment, learning 
trajectories, and professional development to improve mathematics teaching and learning in grades 
K-3. Formative assessment items relating to addition, subtraction, and number have been developed 
based on current research, learning progressions, and the Common Core State Standards. These 
items are being piloted by teachers and validated to determine the utility of items in eliciting student 
thinking and informing instruction. Early analyses of piloted items have revealed the effectiveness of 
items in revealing a range of student strategies and levels of understanding, as well as challenges in 
capturing the thinking of very young learners.     

Keywords: Assessment and Evaluation, Elementary School Education, Learning Trajectories (or 
Progressions), Number Concepts and Operations 

Introduction 
This project is an early-stage design and development study extending the Ongoing Assessment 

Project (OGAP), a project that combines formative assessment, learning trajectories, and professional 
development to improve mathematics teaching and learning in elementary and middle school. OGAP 
has previously focused on multiplicative reasoning, proportional reasoning, and fractions for grades 
3-8; the goal of the current project is to broaden this focus to include formative assessment tools and 
routines for addition, subtraction, and number for grades K-3. These tools and routines include: (1) a 
collection of formative assessment items that vary by characteristics such as problem context, 
situation, number complexity, and representation of operation; (2) a set of frameworks for addition, 
subtraction, and number that illustrate a progression of student strategies that increase in depth of 
understanding and sophistication of strategies; and (3) grade-level professional learning communities 
(PLCs), in which teachers collaborate to examine student work on formative assessment items, 
analyze students’ strategies, and determine next instructional steps based on the learning trajectory 
frameworks. The OGAP formative assessment system lies at the crossroads of theory and practice by 
distilling research in early number and operations into illustrative frameworks and formative 
assessment items that allow teachers to make research-based instructional decisions on an ongoing 
basis. This paper will focus on the formative assessment item bank development and validation 
process. 

Conceptual Framework 
Classroom formative assessment is a process in which information is gathered regularly from 

students to provide feedback and inform the adjustment of teaching and learning (Black & William, 
1998). The formative assessment item bank development and validation process employed in this 
project is shown in Figure 1.  

The item bank development process began with a review of the research on the three areas of 
focus for the project—addition, subtraction, and number (e.g., Baroody, 1987; Carpenter, 1985; 
Clements & Sarama, 2009; Cross, Woods, & Schweingruber, 2009; Fuson, 1988, 1992; Ginsburg, 
1983). The existing research, learning progressions, and common core standards on these topics were 
utilized to create an item bank blueprint. The item bank blueprint includes content, concepts, problem 
structures, number complexity, strategies, and representations for the three topics across grades K-3. 
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Frameworks illustrating the learning progressions for addition, subtraction, and number were also 
created based on the research and standards review. 

 
Figure 1. Formative assessment item bank development and validation process. 

Formative assessment items were developed based on the item bank blueprint. The items are 
written tasks that can be administered to a whole group, small group, or individual. Items were 
created to address each of the characteristics identified in the item bank blueprint for the three 
content areas. Typical developmental level of a child in the grade in which a topic is taught was 
considered when writing problems. For example, a kindergarten counting problem would be written 
in simple, brief language and may contain a counting situation that could be represented easily with a 
small number of objects or a drawing, while a third grade problem could contain an addition situation 
involving distance that would lend itself to a number line representation. 

Items were then distributed to teachers to implement in classrooms. Teachers collected their 
students’ work and used the framework to sort the work by strategy use. In PLCs, teachers 
collaboratively sorted student work using the framework and determined next instructional steps 
based on the strategies and understandings demonstrated in the work.  

The item validation employed in this project focuses on Stobart’s (2012) recommended area of 
emphasis for validation in formative assessment: “Validity is based on the purpose(s) of an 
assessment and how effectively the interpretation and use of the results serve each 
purpose…effective formative assessment will do this and the ‘threats to validity’ are those things that 
get in the way” (p. 233). Through both PLCs and student work sorts conducted by the researchers, 
items were validated based on how students performed on the items, whether the items elicited a 
range of student strategies, and if the items provided information that would be useful to teachers in 
guiding future instruction. Sorting and discussing student work has informed both item refinement 
and framework development. 

The first round of item development, validation, and refinement has been completed, and we will 
continue to validate and refine items in preparation for field testing of the fully developed item bank 
in a larger number of schools in year 2 (2017-2018). After field testing is complete, the item bank 
will be mapped back to the item bank blueprint to ensure that all characteristics and learning targets 
of the three content areas have been sufficiently addressed in the item bank. 

Research Questions 
The research questions guiding the development and validation of the formative assessment item 

bank are as follows: (a) What information is elicited by the formative assessment items? (b) What 
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information is not revealed by the formative assessment items? (c) What characteristics make 
items useful for formative assessment? 

Pilot Data Collection and Analysis 
Formative assessment items have been piloted by 21 teachers in 5 public schools located in a city 

in the Mid-Atlantic region of the United States during year 1 of the project. Student work has been 
collected for 103 items. Items on addition, subtraction, and counting/number have been collected 
across grades K-3. Items have been piloted in two ways: in schools where teachers meet regularly in 
PLCs to sort and discuss items, and in schools where teachers are not implementing PLCs. In 
addition to the student work sorts that have been conducted in PLCs, the research team has been 
sorting student work to validate items and inform framework development. The data that have been 
collected in year 1 include student work on formative assessment items, PLC summary records, and 
researchers’ notes on student work sorts. The data have been analyzed by reviewing the student work 
and sort records to determine whether students were able to answer the question, whether a range of 
strategies was elicited, and whether the student responses were useful for making subsequent 
instructional decisions. 

Early Results from Item Bank Validation 
In initial analyses of the data collected in year 1, two types of information elicited by the items 

have been identified: addition/subtraction/number strategies and concept understanding. On problems 
that can be solved in a variety of ways, such as an add to problem with a missing addend, a range of 
solution strategies was generated. These strategies can be mapped to the framework to determine 
subsequent instructional steps. Concept problems assess understanding of an idea relating to addition, 
subtraction, or number (e.g., the commutative property of addition). Though student strategies on 
these problems cannot be mapped to the framework, these problems reveal understanding—or lack 
thereof—of key concepts and properties.  

Data analyses have also revealed that some information is not being elicited by the formative 
assessment items. Metacognition—or awareness of one’s own thought process, self-regulation, and 
beliefs about mathematics—is a cognitive behavior that is developing in children (Schoenfeld, 1987), 
making it challenging for children to identify and represent mental solution strategies. When a single 
piece of student work contains multiple solution strategies, it may not be evident which strategy was 
used by the student to solve the problem. A particular challenge has revealed itself during piloting of 
items in kindergarten classrooms—for children who are in the process of learning to read, write, and 
draw, representing a solution strategy, or even writing an answer, can be a difficult task. 

Three primary characteristics that make an item useful for formative assessment have been 
revealed through item bank validation. First, an item must draw out student thinking. For example, if 
an item can be answered easily with a known fact such as a double addition fact, the item may not 
generate much student thinking, whereas an item that incorporates a “near double” or “double +1” 
allows students to demonstrate whether they can use the known fact to solve a related problem, 
thereby calling for more complex thinking. Second, an item should generate a range of strategies. If 
most students in a class solve a problem similarly (e.g., most students accurately use the U.S. 
addition algorithm), the information obtained from the student work may not help the teacher to 
make instructional decisions, indicating that the item may not be an appropriate formative assessment 
item (or perhaps not appropriate for that grade level or time of year). On the other hand, if a problem 
generates a limited range of strategies that differ significantly in sophistication (e.g., an addition 
problem that generates only the counting all strategy and the addition algorithm), this may indicate 
that intermediate strategies that facilitate students’ development of understanding of the topic should 
be introduced through classroom instruction. The framework plays an important role in helping 
teachers identify appropriate transitional strategies based on evidence of understanding present in the 
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students’ work. The third characteristic that makes an item useful for formative assessment is 
accessibility. The structure and number complexity of an item needs to be appropriate for the grade 
level and time of year, the item context should be familiar to students, and the language and 
vocabulary contained in the item needs to be clear and easily understood by students.  

The Future of OGAP 
We will continue to develop and validate items with the following questions in mind: (1) When a 

problem does not generate a range of student strategies, does this indicate that the problem is not 
valid and should not be used in the item bank? Does this indicate that the problem is not appropriate 
for the grade level/time of year/group of students but would produce a wider range of results in 
another context? Does this indicate a need for instruction on intermediate strategies so that students 
can move from using early counting strategies to transitional strategies and eventually to additive 
strategies? (2) Is there a way to collect written information from young children, or do we need to 
add a verbal component or observation checklist to our formative assessment items? We will then 
move from item development and validation to field testing, in which teachers will use formative 
assessment items in their daily instruction. 
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RESPONSIVE TEACHER-STUDENT INTERACTIONS IN ELEMENTARY CLASSROOMS 
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Learning to respond to student thinking in the moment is challenging precisely because 
responsiveness cannot be scripted in advance. In this study, I situated teacher learning opportunities 
within teachers’ daily instruction to support learning to respond during teacher-student interactions. 
This embedded professional development - side-by-side coaching - was found to have a significant 
positive impact on teachers’ ability to respond to and advance students’ mathematical thinking in the 
moment through the practice of conferring.  

Keywords: Classroom Discourse, Teacher Education-In-Service/Professional Development 

Ambitious teaching practices are difficult to learn because they often require responsiveness to 
student thinking in the moment that cannot be pre-planned. Professional learning opportunities often 
focus on learning in the absence of students, for example, in workshops or collaborative planning. 
But teachers need opportunities to learn to respond to student thinking as it emerges. In this study, I 
examine the effects of using side-by-side coaching, a professional development structure situated 
directly in teachers’ practice, to grow teachers’ capacity to respond to student thinking in the moment 
in ways that advance students’ thinking.  

Prior Literature 
Responding to student thinking in the moment requires teachers to orchestrate a variety of skills, 

capacities, and knowledge. While teachers can prepare for such moments by anticipating student 
thinking in advance, they cannot plan how these instructional moments will unfold. In previous work 
(Munson, 2016, 2017), I have described a type of responsive instructional interaction – conferring – 
in which teachers and students work together to uncover and advance student thinking. Conferring 
requires two essential types of instructional work: eliciting student thinking and then nudging that 
thinking along a productive avenue. A nudge is an instructional response to the elicited student 
thinking which advances that thinking while maintaining sense-making. Nudging is challenging; 
teachers who start by eliciting student thinking do not always nudge that thinking forward. In a 
previous study of teachers who were learning to confer, I found that fully two-thirds of the time they 
began to confer by eliciting student thinking, they did not end up nudging. Others have similarly 
found that opening questions are easiest to learn, while advancing the instructional conversation 
beyond initial elicitation is far more challenging (Franke et al., 2009). However, when teachers did 
nudge, advancement of students’ mathematical thinking, engagement in mathematical practices, or 
productive collaboration was evident in the discourse (Munson, 2016, 2017). Given the instructional 
advantage of nudging, how can teachers learn to engage in this responsive practice?  

Teacher educators have developed pathways for teachers to learn in, through, and from teaching, 
where these complex moments of instruction emerge (e.g., Ball & Cohen, 1999; Lampert et al., 
2013). Grounding teacher learning in the particulars of practice allows teachers to grapple with 
particular challenges, such as specific misconceptions or individual student needs, rather than 
speaking in generalities. One possible platform for locating teacher learning directly in practice is 
coaching. Gibbons and Cobb (in press) identified several “potentially productive coaching activities,” 
one of which, co-teaching, is a fruitful activity situated in instruction. When the coach and teacher 
are side-by-side during instruction, opportunities to reflect, seek input, and make decisions can be 
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created. Further, both modeling and observing and offering feedback have been shown to be effective 
coaching activities. In side-by-side coaching, leadership of instruction can be handed off between the 
teacher and coach in the moment, rather than fixing each in the role of teacher and observer for an 
entire lesson, so that modeling and feedback can be embedded in the activity. Opportunities for 
teacher learning can then be as responsive as the instruction they aim to promote. In this study, I ask, 
can side-by-side coaching support teachers in learning to respond to student thinking when 
conferring? 

Methods 
Participants 

The teacher participants included three elementary classroom teachers (grades 1, 2, and 4) from 
the same school in an urban area of northern California. The school serves predominantly bilingual 
Latino and Pacific Islander students from a low-income neighborhood. The teachers are part of a 
larger, teacher-initiated research-practice partnership, and were selected based on their interest in 
engaging in coaching and learning to confer. Through participant observation, the author served as 
the coach and shaped the coaching provided in partnership with the teachers.  

The teachers all taught by launching each lesson with a task for which students were actively 
developing strategies. Students worked in partnerships for the bulk of the lesson, with the teacher 
supporting student work through conversations. Typically, lessons would end with a whole class 
discussion of the strategies or mathematical ideas that emerged during worktime.  
Data Sources and Collection 

Data was collected in three periods: pre-coaching, during coaching, and post-coaching. For the 
purposes of this analysis, I focus on comparing the pre- and post-coaching data. Pre-coaching, I 
videoed 4-6 math lessons, of approximately one hour each, over a two-week period for each 
participating teacher; post-coaching, I recorded a similar number of lessons for each teacher. The 
camera was positioned high and in one corner of the classroom. The teacher wore a lavalier 
microphone and a back-up audio recorder; the audio, thus, followed the teacher as she moved 
interacting with students.  
Side-by-side Coaching Model 

The coaching period for each teacher lasted approximately four weeks. During each week, the 
teacher and I conferred with students side-by-side for two days. Each teacher received 7-8 days of 
coaching in total. On each coaching day, I spoke with the teacher before each lesson about the 
students’ mathematical goals and the teacher’s own learning goals for the day. We negotiated how 
we wanted to work together based on these goals.  

Coaching took place during the students’ worktime. During this time, we would approach 
students at work to confer together. Conferring unfolded as co-facilitated by the teacher and the 
coach, with each taking the lead at different times during the interaction. During most interactions, I 
would pause the conversation at some point and ask the teacher to think aloud with me about what 
she was noticing about student work, how she interpreted what she noticed, and how she might 
respond. These time outs were brief and served to create space for reflection and decision-making in 
the moment. At times, the teacher would ask me to lead the interaction so she could observe. After 
each conferring interaction, we would reflect briefly on the course and outcome of the conversation 
and consider anything we could learn from it before moving on to confer with the next group. At the 
end of each lesson, the teacher and I would debrief the lesson overall and consider next steps for 
students and for the teacher’s own learning.  
Analysis  

Video records of each lesson were analyzed in Studio Code, a qualitative video analysis software. 
In each pre- and post-coaching lesson, I identified conferring interactions based on the following 
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criteria: (1) the interaction took place during student mathematics worktime; and (2) included 
elicitation of student thinking. Such interactions exclude exchanges regarding simple directions, 
materials, or matters of classroom management.  

Each conferring interaction was then coded as either including a nudge or not. Nudges, a series of 
talk turns within conferring that advance student thinking, were defined based on prior research 
(Munson 2016, under review) as fulfilling four criteria: (1) initiated by the teacher to advance 
students’ mathematical understanding, engagement in mathematical practices, or productive 
collaboration; (2) contingent on elicited student thinking; (3) taken up by students; and (4) 
maintained student ownership and sense-making of the work. If a conferring interaction contained a 
series of talk turns after eliciting student thinking that met these criteria, the interaction was coded as 
a conferring interaction with a nudge. All other conferring interactions were coded as conferring 
interactions without a nudge. These two types of interactions were then counted in the pre- and post-
conferring periods for each teacher. 

To determine the effects of coaching on getting to a nudge in conferring interactions, I analyzed 
the pre/post data using a linear mixed-effects regression (LMER) using the lmer4 package version 
1.1-12 in R (Bates, Maechler, Bolker, & Walker, 2015). Interactions (n=105) were nested within 
teachers (n=3), with fixed slope and random intercepts to address the variation in initial teacher 
practice. Binary variables were coded as follows: condition: pre-coaching= -1, post-coaching = 1; 
interaction: conferring interaction without a nudge= 0, conferring interaction with a nudge= 1. I 
obtained a p-value for the regression coefficient using the lmerTest package version 2.0-33 in R 
(Kuznetsova, Brockhoff, & Bojesen, 2016). 

Results 
Conferring interactions that included a nudge, and thus advanced student thinking, significantly 

increased after coaching. The total number of conferring interactions in the pre- and post-coaching 
period varied by teacher, but a meaningful shift from interactions without a nudge to interactions 
with a nudge can be seen in Table 1.  

Table 1. Number of Conferring Interactions With and Without a Nudge, By Teacher, Pre- and 
Post-Coaching 

 Teacher 1  Teacher 2  Teacher 3 
 Pre Post  Pre Post  Pre Post 

Conferring Interactions (No Nudge) 
 

21 0  9 3  15 2 

Conferring Interactions (With Nudge) 1 7  5 17  15 10 
 
Overall change can be seen by examining the proportions of conferring interactions with and 

without a nudge for each of the three teacher participants pre- and post-coaching, as shown in Figure 
1. Condition (β=0.25, SE=0.04, t=5.79, p<0.001) had a significant effect on nudging. The slope 
indicates that the likelihood of conferring with a nudge after coaching increased by a full 50%. 
Increases in the rate of nudging were seen across the three teacher participants, as can be seen in 
Figure 1.  
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Figure 1. The proportion of conferring interactions that include a nudge, pre- (light gray) and post-

coaching (dark gray) by teacher. 

Significance 
This study has implications for both research and practice by providing a promising intervention 

and by offering an underexamined way coaches can support teacher learning. Ambitious practices, 
particularly those demanding in-the-moment responsiveness such as conferring, are challenging for 
teachers to learn. Some strategies have shown promise in promoting such learning, typically outside 
of instructional time. This study shows one new pathway for embedding professional learning of 
responsive practice directly within teaching and adding to the potentially productive coaching 
activities (Gibbons & Cobb, in press).  

How did side-by-side coaching achieve these effects? Ongoing analysis indicates that by 
surfacing teacher thinking in the moment, considering alternate interpretations together, and co-
constructing a response, the coach and teacher can grow instruction as it happens. Additional 
research is needed to unpack how the coach and teacher co-constructed moments of teacher learning 
while engaged in the act of teaching. Side-by-side coaching is a promising avenue for future research 
in in-service teacher professional development of ambitious teaching practices.  

References 
Ball, D. L., & Cohen, D. K. (1999). Developing Practice, Developing Practitioners: Toward a Practice-Based 

Theory of Professional Education. In G. Sykes & L. Darling-Hammond (Eds.), Teaching as the Learning 
Profession: Handbook of Policy and Practice (pp. 3–32). San Francisco: Jossey-Bass. 

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal 
of Statistical Software, 67(1), 1–48. http://doi.org/10.18637/jss.v067.i01 

Franke, M. L., Webb, N. M., Chan, A. G., Ing, M., Freund, D., & Battey, D. (2009). Teacher Questioning to Elicit 
Students’ Mathematical Thinking in Elementary School Classrooms. Journal of Teacher Education, 60(4), 
380–392. 

Gibbons, L. K., & Cobb, P. (in press). Focusing on Teacher Learning Opportunities to Identify Potentially 
Productive Coaching Activities. Journal of Teacher Education. 

Kuznetsova, A., Brockhoff, P. B., & Bojesen, R. H. (2016). lmerTest: Tests in Linear Mixed Effects Models. 
Retrieved from https://cran.r-project.org/package=lmerTest 

Lampert, M., Franke, M. L., Kazemi, E., Ghousseini, H., Turrou, A. C., Beasley, H., … Crowe, K. (2013). Keeping 
it complex: Using rehearsals to support novice teacher learning of ambitious teaching. Journal of Teacher 
Education, 64(3), 226–243. http://doi.org/10.1177/0022487112473837 

Munson, J. (2016). Making Responsiveness Explicit: Conferring in the Elementary Mathematics Classroom. In M. 
B. Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings for the 38th Annual Meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1357–1360). 

Munson, J. (2017). Responsiveness in (Inter)action: Conferring in the Elementary Mathematics Classroom. 
Manuscript submitted for publication.  

4.5%	

35.7%	
50.0%	

100.0%	 85.0%	 83.3%	

0%	
20%	
40%	
60%	
80%	
100%	

Teacher	1	 Teacher	2	 Teacher	3	



Inservice Teacher Education/ Professional Development 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

475 

HOW URBAN MATHEMATICS TEACHER SELECTION, TRAINING AND INDUCTION 
AFFECT RETENTION 
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Selective alternative teacher certification programs like the New York City Teaching Fellows 
(NYCTF) have trained thousands of mathematics teachers for urban school districts. This study 
draws survey and administrative data to examine the retention of 620 selective route mathematics 
teachers who entered teaching through the NYCTF program in 2006 or 2007. It uses logistic 
regression to estimate how teacher selection, training, and induction in NYCTF shapes mathematics 
teacher retention in New York City schools. 

Keywords: Teacher Education-Inservice/Professional Development 

Selective Alternative Teacher Certification Programs 
Selective alternative teacher certification programs (ATCPs) like the New York City Teaching 

Fellows (NYCTF) actively recruit high-achieving graduates from the nation’s most selective colleges 
and admit very few applicants (Clark, Chiang, Silva, McConnell, Sonnenfeld, Erbe, & Puma, 2013). 
These programs currently recruit thousands of teachers in dozens of U.S. districts In New York City 
alone since 2000, approximately three-quarters of all new secondary mathematics teachers in the 
city’s public schools have entered through selective ATCPs. There is much to learn from selective 
ATCPs in spite of the mixed record (see Clark et al., 2013; Darling-Hammond, Holtzman, Gatlin, & 
Vasquez Heilig, 2005; Meagher & Brantlinger, 2011).   

Research Methods 
We adopt a teacher preparation program perspective to examine how mathematics teacher 

turnover is influenced by the major components of selective ATCPs, namely, their: (1) selection, (2) 
training, (3) first schools, and (4) induction. This perspective reflects research on teacher preparation 
by Humphrey and Wechsler (2007), Susan Moore Johnson and her colleagues (e.g., Johnson & 
Birkeland, 2003) and Richard Ingersoll (e.g., Ingersoll & May, 2012). Informed by this perspective, 
the study uses logistic regression to examine how the features of these program components shape 
mathematics teacher turnover in urban schools.  

Research question. What is the association between SMTF turnover and their selection (i.e., 
teacher characteristics), training, and induction as part of NYCTF? 

Participants. The study includes data on 620 prospective secondary mathematics Teaching 
Fellows (SMTFs) who entered teaching through NYCTF in either June of 2006 or 2007. SMTFs 
attended one of four NYCTF university partners for secondary mathematics certification. 

Data. We linked data from three sources. Survey data on participant backgrounds and first-year 
induction support collected in three waves: 2006-07, 2007-08, and 2016. Service history data from 
the NYCDOE that provided information on how long individual SMTFs worked in their first school 
and also in the district through the spring of 2015. And, first school data (i.e., school climate and 
demographic data) for every school in the NYC school district is collected and published annually by 
New York state and the NYC Department of Education. 

Logistic Regression. To explain how the major components of selective ATCPs affect secondary 
mathematics teachers district and school retention, we calculated the coefficients of four logistic 
regression models (Table 1). These models were estimated as: 
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𝑙𝑛
𝑝

1 − 𝑝
= Β! +  Β!Χ! +  Β!Χ! + Β!Χ! + Β!Χ!  

The coefficients Bi are in log-odds units and predict the retention outcome (i.e., the natural log of 
the odds ratio) for each participant provided measures of their teacher (selection) characteristics (X1), 
university-based training (X2), first school contexts (X3), and induction (X4).  

Results 
The descriptive statistics (not shown) show that the majority of the SMTFs were white, young, 

and graduated from a selective college and most were outsiders to the district (as judged by their high 
school). Fewer than one-in-six majored in mathematics or had completed the equivalent in 
coursework prior to beginning NYCTF. Approximately 26.8% of the SMTFs leave their first school 
within a year of starting teaching and, of these, about half (13.1%) move to another district school. 
Just over half have left the district within five years and less than 15% remain in their first school for 
eight years or more. These rates are much higher than national averages (Goldring, Taie & Riddles, 
2014; Ingersoll & May, 2012).  

Math teacher selection significantly shapes retention. Different SMTF characteristics became 
salient in explaining school retention in different Table 1 models. Graduates of the most selective 
colleges had the worst district retention. When compared with SMTFs from the most selective 
colleges, those SMTFs from other selective institutions were estimated to be 2.1 times more likely 
than those from the least selective colleges remain in the district beyond eight years. Where SMTFs 
went to high school (as students) was predictive of their district and school retention. Specifically, 
SMTFs who graduated from an NYC high school were estimated to be at least 1.5 times more likely 
than other SMTFs to remain in the district over time. 

University training was predictive of SMTF retention. SMTFs trained at UnivB had the best 
estimated odds of retention. As shown in Brantlinger and Smith (2013), UnivB (and UnivD) training 
included a focus on mathematics teaching methods whereas UnivA and UnivC did not. Moreover, 
school characteristics like student race and poverty levels shape turnover, but school leadership also 
was impactful. In particular, SMTFs were estimated to be much more likely to return to placement 
schools with the most supportive principals and, surprisingly, less likely to remain in placement 
schools led by principals who were seen as particularly effective managers. 

First-year induction also mattered. In particular, the quantity of professional interactions that 
SMTFs had with (1) mentors, (2) administrators, and (3) other math teachers during the first-year 
significantly influenced their school and district retention. For example, SMTFs who received the 
most mentoring (i.e., 13 professional interactions or more with their mentor during the first year) 
were estimated to be 9.1 times more likely to remain in their placement school for eight or more 
years than those who received least (i.e., 4 or fewer interactions during the first year) and 4.8 times 
more likely to remain in the district for eight or more years.  

Discussion 
This study illustrates how the major components of such programs combine to shape secondary 

mathematics teacher turnover in urban schools. We believe findings about secondary mathematics 
teacher training and selection are applicable to other programs that prepare mathematics teachers to 
teach in urban schools. The results also point to several things district and program leaders can do to 
improve the retention of secondary mathematics. In particular, the use of college selectivity as a 
screen for teacher selection, a hallmark of selective ATCPs, does not fare well in this study. Second, 
if retention is the goal, mathematics teacher training in selective ATCPs should include a greater 
focus on mathematics content and mathematics teaching methods. Third, the induction results have 
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clear implications for how urban district and school leaders could provide better support to early-
career teachers. 

Table 1: Log Odds Estimates of SMTF Retention in NYC Public Schools 

 District  
8 Years 

School  
8 Years 

School  
3 Years 

School  
1 Year 

Analytic Sample 456 456 456 456 
Constant 0.139** 0.033** 0.219* 2.296 
Entry Age 24-27 Years (21-23 Years) 1.314 1.505 1.370 2.388* 
Entry Age 28+ Years (21-23 Years) 1.395 2.158* 1.177 0.559 
Asian (White) 0.762 1.017 0.749 0.800 
Black (White) 1.479 0.579 1.703 1.584 
Hispanic (White) 0.515 1.829 1.021 0.752 
Attended HS Near NYC (In NYC) 0.543* 1.479 0.769 0.394* 
Attended HS Far (In NYC) 0.467** 0.558 0.841 0.651 
Selective College (Most) 2.114** 1.526 1.181 1.599 
Less Selective College (Most) 1.433 1.388 1.251 0.870 
Training at UnivD (UnivB) 0.783 0.996 0.908 0.392 
Training at UnivC (UnivB) 1.093 0.346∆ 0.497 0.307* 
Training at UnivA (UnivB) 1.349 1.447 0.860 0.190* 
Certificate - High School (Middle) 0.940 0.880 0.727 0.330** 
First School in Brooklyn (Bronx) 1.386 1.51 1.517 2.707 
First School in Manhattan (Bronx) 0.976 1.447 1.46 1.135 
First School in Queens (Bronx) 0.925 0.703 1.021 1.219 
Student Attendance – Below 80% 1.080 0.203** 0.475* 0.531 
Student Attendance – Above 94% 0.975 0.806 1.976 1.487 
Free-Reduced Lunch – Below 61% 1.255 0.896 0.726 0.595 
Free-Reduced Lunch – Above 96% 0.293** 0.147 0.328** 0.630 
Under-Repres. Minority – Below 65% 1.700 3.671** 1.723 5.107** 
Under-Repres. Minority – Above 98% 1.149 1.030 1.188 0.757 
Teachers Not High Qual. – Below 6% 0.534 0.394 0.703 0.618 
Teachers Not High Qual. – Above 27% 0.522 0.209* 0.397* 0.293** 
Teacher Safety Respect Score - Low 0.58 1.795 0.769 0.634 
Teacher Safety Respect Score - High 0.689 1.132 1.033 1.409 
Principal Effective Manager - Low 1.418 2.237 3.840* 2.433 
Principal Effective Manager - High 1.062 0.342 0.672 0.414 
Principal Support Score - Low 0.993 0.356 0.295* 2.199 
Principal Support Score - High 1.024 2.028 1.754 1.877 
Induct: 5-12 Mentor Interactions (0-4) 3.007* 4.580 1.821 2.328∆ 
Induct: 13+ Mentor Interactions (0-4) 4.846** 9.101* 2.246 2.243 
Induct: 5-12 Admin. Interactions (0-4) 1.432 0.483 1.868 1.591 
Induct: 13+Administrator Ints. (0-4) 0.944 0.661 2.327 5.868** 
Induct: Some Math Tcher Intrctns (Few) 0.871 1.009 0.834 1.723 
Induct: Frequent Math Tchr Ints. (Few) 1.292 1.127 1.382 2.789* 
Clustered Assignment (Individual) 0.987 1.058 1.048 0.770 

(*p<0.05, **p<0.01) 
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We share the case of one teacher engaged in professional development (PD) designed to improve 
collective argumentation. We present an analysis of two lessons in her classroom, one before and 
one after her engagement with the professional development. Findings show that the classrooms 
differ across both teacher support for collective argumentation (requesting ideas and elaboration vs. 
requesting facts and methods), and student contributions (justifications vs. procedures and facts).  

Keywords: Teacher Education-Inservice/Professional Development, Instructional Activities and 
Practices, Classroom Discourse, Reasoning and Proof 

Objective 
In this paper, we explore the change in one teacher’s classroom after participating in a 

professional development (PD), Mathematics Studio PD (Foreman, 2013), designed to improve 
collective argumentation in the classroom. More specifically we examine the question: “How does 
engagement in Mathematics Studio PD play out in one individual teacher’s classroom?” 

Background and Theoretical Framing 
We leverage frameworks related to contributions from students and supportive questions and 

actions from teachers for collective argumentation to make sense of the totality of a lesson. The PD is 
designed to address these constructs using mathematically productive habits and routines. We begin 
by describing the underlying principles of the PD and describe each construct. 

Underlying Principles of the Studio PD 
The Studio PD advocates for student-centered classrooms where all students engage in and 

contribute to discourse that focuses on mathematical sense making, justifying, and generalizing 
mathematical ideas. A constructivist theory of learning (Von Glasersfeld, 1995) underlies these 
tenants where students are meant to engage in cognitively demanding tasks (Smith & Stein, 1998) 
providing opportunities for productive disequilibrium leading to deep mathematical learning. All 
students are viewed as capable mathematical thinkers with the PD’s focus on growth mindset 
(Dweck, 2007). In this way, mathematics is not treated as a set of rules, but rather as an 
interconnected and logical structure (Hiebert, 1986) and the authority lies within the mathematics 
rather than the teacher or the textbook.  

Teacher Support of Collective Argumentation.  
Teachers support such mathematics by orchestrating the classroom discussion towards collective 

argumentation focused on justification and generalization. We use the construct of collective 
argumentation to describe discussions which “involve[s] multiple people arriving at a conclusion, 
often by consensus.” (Conner, Singletary, Smith, Wagner, & Francisco, 2014, p. 401). Teachers 
facilitate collective argumentation through their questions (requests of action or information) and 
other supportive actions (directing, promoting, evaluating, informing, and repeating). The quality of 
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these questions and support impacts the students’ contributions to collective argumentation occurring 
in the classroom. 

Contributions Types 
We use the term contribution to define statements made by the students in support of collective 

argumentation. In the PD, student contributions are categorized into procedures and facts (PF), 
justifying (J), and generalizing (G) (Foreman, 2013) (see Figure 1 for a description of each category). 
To engage in meaningful mathematical discourse contributions should include justifications and/or 
generalizations.   

 

 
Figure 1. Contribution types. 

Methods 
The setting for this study is an elementary school in a mid-sized school district in the Pacific 

Northwest. This school has an enrollment of approximately 580 students with a 73% minority 
enrollment and 79% of children enrolled in free and reduced lunch. At this school 53% of 5th graders 
were meeting the math standards. The school is participating in a 3-year district-wide professional 
development program focused on improving instruction in mathematics. This PD uses the Studio 
Model of PD combined with summer workshops on best practices for teaching mathematics 
(Foreman 2013). Data collected includes 2 lessons videotaped at the end of each year, starting with a 
baseline video (Year 0) before engagement with PD as well as after the completion of each full year 
of the PD (Years, 1, 2, and 3). In addition, researchers observed and video recorded each PD session 
and took detailed field notes.  

For this study, we focus on one fourth-grade teacher (Hannah – all names are pseudonyms) and 
analyze two lessons, one from before her engaging with the PD (Year 0) and one after (Year 3). We 
highlight the changes in her classroom and share some of Hannah’s reflections throughout the PD to 
give insight into her engagement with the PD. Hannah was a participating teacher in the PD in Year 
1, and the studio teacher in Years 2 and 3. Each lesson analyzed was transcribed and watched by two 
researchers multiple times.  

To code student contributions and support for collective argumentation, talk turns supporting or 
contributing to collective argumentation were identified in the transcript. Each talk turn was coded as 
a direct contribution or question/supportive action. Direct contributions were coded as procedures 
and facts, justification, or generalization (see Figure 1). For example, a student working on the claim 
that 24/42 > ½ stated, “she divided 42 divided by two and she got 21. And since 24 is greater than 
21, than it's over- the half. It's greater than half.” This statement was coded as a justification as the 
student was “reasoning with meanings… of math properties” (Figure 1). Questions and other 
supportive actions were coded with the framework in Table 1. For example, the teacher asking a 
student “How do you write ten cents?” was coded as requesting a factual answer as the request only 
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included a how. The teacher question “Why does it work mathematically?” was coded as requesting 
elaboration as it requested the student to elaborate further on their response, justifying their answer 
using mathematical reasoning. For supportive actions, a talk turn including the teacher statement 
“OK guys, let's see if they fixed it in the right way,” was coded as evaluating as it centered on the 
correctness of the mathematics.  

Results & Discussion 
Hannah’s lessons in Year 0 and Year 3 differed across the constructs listed above. Next, we 

discuss these observed changes and connect them to Hannah’s statements throughout the PD, 
illustrating her intentional engagement with the PD. 

Collective Argumentation.  
From Year 0 to Year 3 a shift occurred in terms of teacher questions and supportive actions, 

captured by the collective argumentation framework (Conner et al. 2014). In Year 0 most teacher 
questions focused on requesting facts (58%) or methods (21%). In Year 3 most of the teacher 
questions focused on requesting ideas (24%) or elaborations (58%) (see Table 1). In terms of teacher 
supportive actions, promoting actions increased (1% to 30%) while evaluating actions decreased 
(32% to 4%). Additionally, we saw an increase in informing actions (20% to 26%) and a decrease in 
repeating actions (24% to 5%) (see Table 1). 

Table 1. Categorization of Teacher Questions and Teacher Supportive Actions 
Teacher Questions Teacher Supportive Actions 

 Year 0 Year 3  Year 0 Year 3 
Requesting Fact 58% 3% Directing Action 23% 35% 
Requesting an Idea 4% 24% Promoting Action 1% 30% 
Requesting a Method 21% 8% Evaluating Action 32% 4% 

Requesting Elaboration 12% 58% Informing Action 20% 26% 

Requesting Evaluation 5% 7% Repeating Action 24% 5% 
 
The change in focus is correlated with changes in the quality of student contributions. In Year 0 

most of those contributions were categorized as procedures and facts (96%) while in Year 3 42% 
were categorized as justification (see Table 2). 

One of the foci of the PD is on questioning to research children’s mathematical thinking so the 
teacher can build on their understanding. At the beginning of her engagement with the PD, Hannah’s 
questioning did not model this focus. In the initial year she began as the studio teacher (Year 2, 
Studio 1) she reflected on questioning, stating the realization that “The questions are [asked] to give 
you [the teacher] ideas where they [the students] are at and not to teach them. That is something I 
never thought of.” In Year 2, Studio 3 Hannah responded to the prompt What are key elements of 
your professional learning from today’s collaborative inquiry? Her response included “Plan on 
asking specific questions during conferring [with the students] – research first and then advance their 
thinking.” In Year 3, Studio 2 Hannah responded to the prompt What is it that you know about the 
HOM now that you didn’t know at the beginning of studio? Hannah responded, “Pushing students to 
show their thinking rather than just having a correct answer.” Additionally, she shared that she 
“found it interesting because I started to use more visuals when I started training with the math studio 
model. Math Studio really brought more of the visual, justifying with the visual.”  
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Table 2. Categorization of Contributions from students (columns represent 100%) 
Contributions Year 0 Year 3 

P/F 96% 58% 
Justification 4% 42% 
Generalization 0% 0% 

Conclusions/Take-Away 
In the context of this three-year PD, Hannah made significant changes, bringing her teaching in 

line with the goals and philosophy of the PD. Throughout the PD, Hannah’s reflections, goals for 
next steps, and remarks made during the studio days captured her intentional implementation of this 
PD. These comments align with observed changes from Year 0 to Year 3. The focus in the classroom 
shifted from mostly focusing on procedures and facts to including justifications. Students were 
credited with (re)inventing mathematics and student strategies were shared with the class. Being able 
to justify was the ultimate authority. This change is exemplified in the following excerpt from the 
Year 3 lesson analyzed for this paper. 

Hannah: How do you know that this is right? 
Student:   Because I am smart 
Hannah: That is not math reasoning. Math reasoning is the authority in this classroom. I am 

smart does not tell me anything. I am smart tells me that you think too much of yourself. So 
mathematically why does this make sense? And what strategy did you use to solve it? 

Hannah: [to S's partner] you hold him accountable to explain to you. 

These changes in Hannah’s teaching practices and in her students and their contributions are an 
inspiring example of changes that can occur in a long-term PD. Her example of growth illustrates the 
many strengths of this PD and informs teacher educators, PD providers, and school administration 
and leadership of the potential benefits of a PD of this nature. 
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INTERACTION OF PROFESSIONAL DEVELOPMENT SUPPORT ON CO-TEACHING 
HIGH QUALITY MATHEMATICS TASKS 
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We illustrate a professional development design focused on infusing high quality mathematics tasks 
within inclusive elementary mathematics classrooms. Our design supported teams of general 
education and special education teachers with integrating tasks and differentiation strategies into 
co-taught mathematics lessons to meet the unique needs of all students. We highlight the interaction 
between the professional development activities and the actions of the teachers. Analyzing, creating, 
and implementing tasks was the process used with teachers with thoughtful consideration for 
differentiation and co-teaching strategies.  

Keywords: Teacher Education-Inservice/Professional Development, Equity and Diversity, 
Instructional Activities and Practices, Elementary School Education 

Rigorous standards and a heterogeneous student population are characteristics in today’s 
classrooms that make continued professional development essential for high quality mathematics 
teaching. National organizations expect equitable, accessible, and quality instruction for all students 
(e.g. NCTM, AMTE, CEC, TODOS), yet without professional development and on-going support 
teachers may struggle to meet the needs of students with varying instructional needs as noted in the 
persistent achievement gap between typically achieving students and students with identified 
disabilities (NCES, 2015). It is critical that general and special education teachers collaborate and 
develop a common vision for effective and equitable instruction that requires teachers to eliminate 
the “one size fits all” approach (Gregory & Chapman, 2002; Tomlinson, 2003). Meaningful learning 
of mathematics includes a shift from procedural instruction to instruction focused on understanding 
and reasoning. This instructional shift creates a crossroads of uncertainty, as teachers may not be 
prepared for changes in content and practice. Teachers are often dependent on textbook scripts and 
controlled formulas for solving problems, and their content knowledge may be lacking (Ma, 1999). 
To assist teachers with this shift, professional development and support of teachers’ instructional 
practice are necessary.  

Professional Development Design 
To provide the needed support to establish and maintain effective collaboration between general 

and special education teachers, we designed a longitudinal professional development plan based on 
Guskey’s (2000) recommendation for effective professional development that included infusing 
multiple formats of professional development delivery. Our design included both synchronous (face-
to-face) and asynchronous (independent) opportunities with on-site coaching sessions to enhance 
instruction in inclusive elementary mathematics classrooms. Our hybrid approach addressed 
teachers’ beliefs, misconceptions, and practices regarding high quality mathematics teaching, co-
teaching, and differentiated instruction in order to positively influence instructional practices and 
student learning. Intentional planning based on teachers’ needs, goals, and interests was a key 
component of the hybrid professional development, in lieu of a prescribed, one-dimensional design. 
The current description highlights the integration of high quality mathematics tasks into instruction, 
which was one aspect of the larger professional development project designed for co-teaching teams 
of general and special education teachers. 
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Teacher Application and Actions of High Quality Tasks 
Recognizing the difficulty in the shift from typical problems to high quality tasks, planning was 

very deliberate within the professional development. High quality tasks require a high cognitive 
demand from students and are an essential staple in good mathematics teaching (Stein, Smith, Silver, 
& Henningson, 2001). Therefore, teachers must focus on building conceptual understanding through 
problem solving which requires providing an instructional environment to develop the behaviors 
presented in the Standards for Mathematical Practices (CCSSM, 2010), instead of using rote 
memorization tasks that only require procedural knowledge. 

Differentiation of the task is also critical for successful implementation in inclusive mathematics 
classrooms. Differentiation can be thought of as a pedagogical approach in which teachers modify 
and adapt curricula, instructional practices, support, and assessments in order to maximize learning 
based on student needs (Algozzine & Anderson, 2007; Tomlinson et al., 2003). The progression of 
high quality task support within our professional development was carefully planned and scaffolded 
to ensure effective understanding and application. The sequence of support followed these steps: 
analyzing sample tasks, creating tasks from simple word problems, and implementing high quality 
tasks in a co-taught setting. 

Analyzing Tasks   
One of the first sample tasks presented to teachers was Danny Dinosaur’s Designer Coat (see 

Figure 1). Teachers worked individually and then in teams (co-teaching partners: at least one general 
education and one special education teacher) to analyze and solve the Danny Dinosaur’s Designer 
Coat task in ways that made sense to them; this included some teachers using manipulatives, such as 
color tiles, some drawing pictures or tables, and a few using symbolic representations. Group 
discussions on how the problem was solved provided opportunities for teachers to share ideas and 
learn from their peers. This discussion generated discourse around this open task with multiple 
solution paths.  

 

Danny Dinosaur’s Designer Coat 
Danny Dinosaur’s designer coat is missing 5 buttons. How many ways can you use blue and red buttons to 

fix is coat? 

Figure 1. Examples of high quality mathematics task. 

Next, we posed the question about how to differentiate the task to students with varying learning 
styles and ability levels. Teachers generated adaptations and modifications, and used differentiation 
strategies to implicate how this single task could be used in a variety of grade levels and settings. 
Teachers suggested: requiring a red button to be first, incorporating patterns, and changing the 
number of buttons from five to ten. Thinking ahead to more advanced mathematics, we explained 
how this task can be extended by asking how many different patterns of blue and red buttons can be 
created where the order matters, which builds the knowledge of permutations and combinations. 
Next, teachers brainstormed how to implement the task in a co-teaching setting. Teams discussed 
how the use of tasks would be put into action in their classrooms, with conversations about the roles 
of each adult, the flow of a lesson built around the task, as well as specific differentiation strategies 
to use with their students in their actual mathematics classrooms. By providing time for each team to 
discuss how they would use the Danny the Dinosaur task, teachers were able to relate the general 
instruction from the professional development sessions into a specific plan for classroom 
implementation. 

Creating Tasks   
Teachers were given examples of word problems and tasks to classify in order assist them in 

recognizing the differences between the two and the differences in cognitive demand required by 
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students to solve them. Problems and tasks were selected from Stein et al., (2001, p. 9) classifying 
activity. Next, teachers selected one of the word problems from the classifying activity to revise and 
transform into a high quality task, focusing on the level of cognitive demand needed for the solving 
process. Teacher teams pasted the original task on chart paper and then wrote their newly created 
task. Once teams were finished and chart papers were posted around the room, teachers individually 
gave feedback on each teams’ work (see Figure 2).  

 

Original Tasks 
The cost of a sweater at J.C. Penney’s was $45.00. At 
the “Day and Night” sale it was marked 30% off the 
original price. What was the price of the sweater during 
the sale? Explain the process you used to find the sale 
price. 

Rylee donated $45 to Children’s Miracle Network, 
Morgan and Katie each donated $12 a piece. How 
much more money did Rylee donate than Morgan and 
Katie? 

Revised Tasks 
Erin wants to buy a red Christmas sweater on Black 
Friday. The sweater is originally $80, but Erin has only 
$50 to spend. She has 4 coupons in her pocket; she can 
only use 2. How many different combinations of 
coupons can Erin use to get her at, or below, her $50 
budget?  

 

 

Rylee, Morgan, & Katie donated $75 together to the 
Children’s Miracle Network. Each girl gave different 
amounts, but no girl gave more than $50.00. Use the 
table below to show possible amounts for each girl 
gave. 
  

 Possibilities 
 1 2 3 4 

Rylee     
Morgan     

Katie     
TOTAL 

 
    

 

Feedback 
• Good job! I love that students will have to 

think hard on this! 
• Great application! Maybe include a chart to 

show the combinations vs. just asking how 
many ways.  

• Good use of coupons. 
• Awesome! Love the real life application! 
• Wow! Nice job using % and $ off.  

• Love the table. 
• Nice use of High Quality Task. 
• Excellent. 
• Graphic organizer! 
• I LOVE the table! 
• Students have to work around limitations. 

Great job! 
• Excellent due to different possibilities and 

diagram.  
Figure 2. Creating tasks. 

Implementing Tasks  
As teams became more comfortable with analyzing and creating tasks, they began to implement 

tasks into their classroom instruction. A group of fourth-grade teachers (two general education and 
one special education teachers – two teams of teachers) developed and implemented a task to focus 
on addition, subtraction, and multiplicative thinking called “Chartable Giveaway.” In this task, small 
groups of students were awarded different amounts of money to “help purchase toys for children in 
need.” Students worked together to decide which toys (from a sheet designed with various toys and 
prices) to purchase and how many of each toy they wanted to purchase, while keeping in mind how 
much money they had spent and had left over to spend. Student groups recorded their selections on a 

$15 off 
 purchas
e 

20% off 
 purchas
e 

40% off 

30% off              
original price 
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teacher created table to show their decision-making process throughout the task. Differentiation was 
a key component in the successful implementation of this task. Students were purposefully grouped 
together to support one another and meet the needs of all learners. Student groups received monetary 
values ranging from $500 to $20,000. As the students worked, both the general education and special 
education teachers together monitored students’ progress and provided prompts to support student 
thinking and learning. Monetary values were changed as needed. For instance, one group of students 
successfully completed working with $1,000 and was then given a larger amount of $5,000 in order 
to provide students with an extension. After the lesson, the teachers reflected on the successes 
implementation of the lesson, including positives about the mathematics instruction, differentiation 
strategies used, and co-teaching components. The teachers believed this was a highly successful 
lesson with all of their students and expressed that incorporating more task-based lessons would be a 
goal of their future instruction.  

Summary 
The implementation of this professional development design created a positive and visible 

interaction between the teacher learning and instructional practices creating a synergy between 
general education and special education teachers. This project took the theoretical model of best 
practices of professional development and put it into meaningful practice focused on the 
differentiation of high quality tasks in inclusive mathematics classrooms.  
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This exploratory study examines how leaders across a state take up and engage in webinars designed 
to build leadership capacity to support teachers’ implementation of new mathematics standards. 
Leaders Helping Leaders monthly webinars served as a space through which the community 
embodied mutual engagement, joint enterprise, and shared repertoire. Findings indicated that 
tensions among the design principles undergirding the webinars surfaced, raising questions about 
how to prioritize limited resources for continued support of leaders. 

Keywords: Design Experiments, Policy Matters, Standards 

Introduction 
Statewide implementation of new mathematics standards is no small feat. Successful 

implementation that promotes mathematics teaching focused on students’ thinking requires concerted 
efforts by classroom educators and educational leaders alike. Indeed, district leaders (Lawrence et al., 
2011), principals (Desimone, 2000), and instructional coaches (Neufeld & Roper, 2003) are all 
critical to implementing and sustaining instructional change. This study addresses a gap in the 
literature about how to cultivate leadership capacity amongst district mathematics leaders, principals, 
and instructional coaches for implementation of new high school mathematics standards. 
Specifically, the North Carolina Collaborative for Mathematics Learning (NC2ML) partnership 
described below used a design-based implementation research (DBIR) (Fishman et al., 2013) 
approach to iteratively design and study the implementation of capacity-building opportunities for 
leaders related to the new standards.  

North Carolina Collaborative for Mathematics Learning 
NC2ML is a statewide research-practice partnership involving the state education agency, 

educational researchers from multiple universities, teachers, and leaders from across the state 
engaged in a complex research endeavor to examine and learn from the implementation of North 
Carolina’s new high school mathematics standards. NC2ML engages and supports multiple 
constituencies, including teachers, educational leaders, and parents/community members. This paper 
focuses on educational leaders and examines the ways in which they participate in an online 
community of practice (CoP) – a “space where learning takes place and [sic] where learning is the 
practice itself” (Savard, Lin, & Lamb, 2017, p. 42). This paper examines the use of monthly Leaders 
Helping Leaders (LHL) webinars and is guided by the questions: (1) What can be learned from 
patterns of participation in LHL? (2) What are participants’ perceptions of LHL? and (3) How do 
leaders take up and engage in a CoP around implementation of high school new mathematics 
standards? 

Conceptual Framework: Communities of Practice 
Three dimensions of practice characterize what brings coherence to a CoP – mutual engagement, 

joint enterprise, and shared repertoire (Wenger, 1998). Mutual engagement signifies that 
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communities are developed and maintained through engagement in a shared set of practices valued 
by a community. Respectively, joint enterprise and shared repertoire denote communal goals and 
viewpoints, and use of a shared set of tools. CoPs can work to solve problems of interest to the 
group, foster best practices, and develop skills; serve to build members’ capacities and create and 
exchange knowledge; and are bound not by formal membership structures but rather by affinity.  

Methodology 
NC2ML draws upon DBIR (Fishman et al., 2013) as an approach to facilitate the design of 

implementation efforts related to new state mathematics content standards. DBIR transcends 
traditional research-practice barriers by applying design-based principles to address and study 
problems of practice. The four core principles of DBIR include: 1) attention by teams of researchers 
and practitioners to persistent problems of practice; 2) use of iterative, collaborative design; 3) 
development of knowledge and theory through systematic inquiry around learning and 
implementation; and 4) emphasis on cultivating sustained change at scale. The focus of this study is 
on how educational leaders engage in a CoP within the Leaders Helping Leaders space.  

Design of the Affinity Space 
Leaders Helping Leaders (LHL) is a monthly virtual session hosted by the NC2ML team, with 

agendas informed by an advisory board comprised of math leaders from across the state. LHL 
sessions were facilitated by members of NC2ML and focused on three overarching objectives: 1) 
Provide support to math leaders as they support teachers; 2) Provide space for leaders to share and 
problem solve together (collaborate); and 3) Cultivate community amongst math leaders. LHL 
agendas were informed by the interests and stated needs of participants and guided by a consensual 
set of norms. LHL sessions typically consisted of a review of the norms, a community-building 
activity, and focused on a specific topic (e.g. parent resources for mathematics learning, tools to 
support teacher learning and instructional planning). 

Methods and Analysis 
The NC2ML team analyzed three datasets for the September 2016, October 2016, and November 

2016 LHL webinars: webinar analytics (registration, attendance, and participation data), post-
webinar survey results, and webinar transcripts and chat comments. Participant perceptual data were 
collected via an online survey tool. The response rate for each survey was low: 18.5% in September 
(n = 10/54), 5.7% in October (n = 2/35), and 11.1% in November (n = 3/27). As such, it is important 
to keep in mind that these data are unlikely to be representative of the full population of LHL 
attendees. We conducted content analysis of transcript and chat data, leveraging open and deductive 
coding. 

Findings 

Participation Patterns: Leaders Helping Leaders Webinar Analytics 
Overall, 116 leaders attended the sessions, representing 40 (34.8%) of the 115 districts across the 

state. Attendance fell each month from September (54) to October (35) and November (27). Active 
participation, defined as speaking or using the chat feature, was highest in September and 
inconsistent across months. High level activity, defined as speaking or using the chat feature multiple 
times, while also inconsistent across months, was highest in November, when attendance was lowest, 
raising the question whether settings with fewer participants allow more space for high level activity. 

Attendance patterns across sessions. Of the 54 participants who attended in September, 30 
(55.5%) did not return (Disengagers), while 11 (20.4%) attended all three fall sessions (Stayers). 
Seventeen participants were new in October and eight were new in November (Entrants). These data 
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reflect the idea that even with a substantial number of Disengagers, the Stayers and Entrants fostered 
a viable CoP that can sustain over time, suggesting that the CoP can remain viable even as attendees 
differ.  

Participant’s Perceptions: Post-Webinar Survey Results 
On a 1-5 Likert scale for four items regarding respondents’ perceptions of the LHL webinars,  

means increased from the September session (3.6 across items) to October (5.0) and November (4.7). 
There are multiple possible explanations for the apparent increase in perceived quality from the first 
to second/third sessions: LHL sessions became more polished and fine-tuned with experience. Also, 
it appears that LHL webinars benefit from having a focused topic(s) that includes explicit 
resources/tools that leaders can use in their districts. Noteworthy is the disconnect between plans to 
attend future sessions and aforementioned data regarding high numbers of Disengagers versus 
Stayers. This suggests that the moniker Disengagers might be a misnomer. Perhaps it is less a desire 
or decision to disengage and more a function of other factors, such as schedule conflicts or 
competing demands on leader attention and time.  

Open-ended survey items indicated that respondents find collaboration, networking, and the 
focused specific topics/tools most helpful. A few respondents indicated that providing input on future 
sessions would be helpful. Specifically, respondents would like future webinars to provide space for 
sharing ideas regarding implementation of the new standards, collectively identifying solutions to 
challenges, and finding ways to help teachers with standards and pacing guides. Overall, respondents 
have positive views of LHL webinars, plan to attend future webinars, prefer the live version, and 
seem to appreciate a focus topic/tool for each webinar. 

How Leaders Take Up and Engage in a CoP: Webinar Dialogue 
In this section, webinar dialogue – spoken comments and use of the chat feature – is examined 

using the concepts of mutual engagement, joint enterprise, and shared repertoire. 
Mutual engagement. This construct involves ways in which participants engage with one 

another and interact. At the beginning of each webinar, facilitators shared a community-building 
prompt. In each webinar, 11-12 participants responded to these prompts. During the November 
session, 12 of 27 (44.4%) of participants responded.  

Mutual engagement, however, also involves “implied competency” (Savard, et al., 2016), the 
notion that participants have expertise that allows for interactions that are thoughtful and meaningful. 
Participants have responded to prompts by facilitators that ask participants to share experience and 
examples from their school/district related to the topic. For example, during the October session, 
participants shared what they are doing to inform parents about the implementation of the new 
mathematics standards. For example, one participant shared:  

I love what some high school mathematics teachers are doing …creating videos to answer 
questions that students send them!  We have teachers who are considering this concept in our 
district.  

This example illustrates sharing out as well as considering implementing ideas, and it also 
represents the type of affirming comments that are common in LHL sessions. In response to the 
aforementioned comment, a participant responded, “great idea.” These comments contribute to 
mutual engagement.  

Joint Enterprise. Also common to the chat conversation are posts through which participants 
networked and collaborated with one another. For example, during the September session, one 
participant asked the group, “Is there anyone creating benchmarks that would be willing to co-author 
them with other districts??”  Several other participants responded in the affirmative to this request. 
During the same session and based on the robust conversation amongst participants, the facilitator (a 
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state department of education math coordinator) offered to send out an initial group email to those 
interested that could then be used as an informal listserv by which leaders could communicate 
directly with one another. Twenty-seven participants asked to be included on the email and continue 
to communicate with one another. In these ways, participants are engaging in joint enterprise: They 
collaborate on shared interests, learn from one another, and go beyond these to develop a collective 
sense of shared practice and work.  

Shared repertoire. CoPs coalesce around tools, artifacts, ideas, and routines. A number of the 
tools discussed and used within LHL were created by collaborative writing teams facilitated by the 
state agency partner, including a pacing guide and curriculum guide that expands upon the 
mathematics standards, provides aligned mathematics tasks, and offers instructional ideas related to 
mathematics teaching and student learning. As previously detailed, some leaders from LHL worked 
together to create common assessments aligned to the new standards. During the October session, 
which focused on informing parents about the implementation of the new math standards and 
building bridges with parents, five participants chatted about the ideas they wanted to try in their own 
school/district, such as: “Looking forward to sharing these videos via Facebook – parents will check 
out Facebook.”  Their shared repertoire is a reflection of – as well as a means of – knowledge-sharing 
and learning within the CoP.  

Conclusions 
While the data collected thus far are limited, they provide valuable insights for iterative design 

through DBIR. First, while participation in LHL webinars fell markedly with each webinar, and 
participation rates have been uneven across sessions, these findings do not mean that the CoP is 
anemic. Wenger (1998) argues that participants may move in and out of the CoP through its porous 
periphery and move towards and away from the core at different points. The richness of the CoP 
itself can be maintained or even expanded. The data suggest that the leaders’ CoP embodies the key 
constructs of mutual engagement, joint enterprise, and shared repertoire.  

As we continue our efforts in supporting stakeholders in implementation of new mathematics 
standards, we are excited about the possibilities of research-practice partnerships and CoPs, and we 
see DBIR as a productive approach to jointly working on problems of implementation at scale and 
developing theories that lay the groundwork for future crossroads or intersections between theory, 
research, and practice. 
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As part of a larger project aiming to develop a framework of competencies for mathematics teacher 
educators by utilizing a Delphi approach, the purpose of this study was to investigate what a group 
of experts think about the competencies that mathematics teacher educators should possess. The data 
were collected in a workshop with 10 experts coming from mathematics teacher education programs 
and non-governmental organizations. Findings revealed a set of competencies about the works and 
identities of university-based mathematics teacher education faculty as teachers, researchers, and 
community leaders. 

Keywords: Instructional Activities and Practices, Teacher Beliefs 

Despite the efforts to define competencies of qualified teachers throughout the world, studies 
regarding the competencies of teacher educators who play a key role in training teachers and 
researchers are limited (Goodwin & Kosnik, 2013). In recent years, a few institutions throughout the 
world attempted to identify the competencies that qualified teacher educators should possess. While 
some of these efforts encompass the competencies for all teacher educators (e.g., Association of 
Teacher Education [ATE], 2008; Koster, Dengerink, Korthagen, & Lunenberg, 2008), some are 
focused on competencies within specific disciplines competencies (e.g., see Association of 
Mathematics Teacher Educators [AMTE], 2002 regarding qualifications for mathematics education 
doctoral students).  

Given the importance of reflective inquiry in developing as a mathematics teacher educator, 
studies focusing on mathematics teacher educators’ professional education and development are rare 
and those available are mostly self-studies of university-based teacher educators (e.g., Chauvot, 
2009; Williams, Ritter, & Bullock, 2012). Lack of a framework for the professional knowledge base 
and competencies that mathematics teacher educators should possess might be useful for the 
education and professional development of teacher educators and to assess the effectiveness of 
teacher education programs. It would also be useful to identify the mathematics teacher educator 
competencies using a research based empirical approach. Thus, the purpose of this study was to 
investigate what a group of experts involving mathematics teacher educators and representatives of 
educational non-governmental organizations think about what competencies mathematics teacher 
educators should possess.  

Even though the term “teacher educator” might refer to those who are involved in training 
prospective teachers and/or practicing teachers (Even, & Krainer, 2014; Krainer, Chapman, & 
Zaslavsky, 2014), in this study, it is conceptualized from a broader perspective as comprising those 
who also do research, train prospective teacher educators (i.e., graduate students), and are engaged in 
institutional and community work. Moreover, within this study the term “competencies” is used 
when referring to the knowledge, skills, attitudes, motives and personal characteristics that 
mathematics teacher educators should possess in order to act effectively in a particular situation 
(Spencer & Spencer, 1993). 
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Method 

Context and the Participants of the Study 
The study reported here is part of a larger project aiming to (i) identify the competencies that 

mathematics teacher educators in Turkey should possess; (ii) investigate the self-efficacies of 
mathematics teacher educators in meeting these competencies. The data reported in this paper were 
collected from a three-day workshop which was the first step of a four-step Delphi method (Landeta, 
2006) utilized in order to develop a develop a framework of competencies for mathematics teacher 
educators. The participants of the workshop were 10 experts representing middle school and high 
school mathematics teacher education programs from six different universities and four different 
educational non-governmental organizations.  

Data Collection and Analysis 
Prior to the workshop and on the first day, the participants/experts were briefed about the larger 

project, the purpose of the workshop and what is expected from them during the workshop using 
situations and vignettes designed to help them think about the qualifications a competent 
mathematics teacher educator should have. The two overarching questions that the participants were 
asked to answer were as follows: “What duties and responsibilities do mathematics teacher educators 
have?” and “What knowledge, skills and attitudes do they need to have in order to fulfill these 
responsibilities?” The participants were divided into two groups and worked separately. In each 
group, a researcher acting as moderator and a research assistant for taking detailed notes of the 
deliberations were present. The groups worked to produce a draft list of competencies in the first two 
days. In the third day, the two groups joined together and made presentations of their draft 
competency lists. They further discussed the similarities and differences between the frameworks that 
came from the two groups. 

For data analysis, in addition to field-notes, video and audio-recordings of the discussions in the 
two groups were coded and then compared in order to highlight the participants’ emerging thoughts 
about competency areas and competencies. 

Results 
Focusing on qualifications they would seek when hiring a mathematics education faculty for a 

hypothetical open position, Group-1 suggested the following competency areas: Mathematical 
Knowledge and Skills; Knowledge for Teaching the Subject (i.e., Mathematics); Professional 
Development and Social Responsibility (Service); General Pedagogical Knowledge; Mentorship; 
General Knowledge; Attitudes and Values; Knowledge of Programs for Mathematics Teacher 
Education and Faculty Development. Somewhat different from Group-1, Group-2 focused on duties 
and responsibilities of a university-based mathematics teacher educator and identified the following 
competency areas: Teaching; Academic Work, and Service to Society. 

One of the major issues participants discussed during the workshop was the definition of a 
mathematics teacher educator. After intense debates about who a mathematics teacher educator is, it 
was decided that a mathematics teacher educator is someone who received his/her doctorate in 
mathematics education, have continuing scholarly work in mathematics education and/or teach 
courses on mathematics education. On the other hand, particularly in Group-2, one of the initial 
concerns was whether the competencies should aim for the minimum or a higher level of 
competencies. Through deliberations, they decided that the competencies should be descriptive of a 
mathematics teacher educator who is capable of educating qualified mathematics teachers. 

Another issue that was the subject of long and dense debates in both groups was the extent of 
mathematical content knowledge that a mathematics teacher educator should have. Knowledge, 
skills, and attitudes related to mathematics and its teaching were discussed as essential components 
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of mathematics teacher education competencies. In Group-1, it was decided that a mathematics 
teacher educator should at least have the knowledge and skills to be able to analyze mathematical 
concepts in the school mathematics curricula and their connections to the connected concepts and 
topics at the post-secondary level mathematics. On the other hand, Group-2’s dilemma was whether a 
mathematics educator should be competent enough to be able to teach all of the undergraduate level 
mathematics courses. Their conclusion was that having such level of advanced mathematical 
knowledge is not realistic for all mathematics teacher educators and thus there needs to be a 
boundary depending on the similarities and differences between mathematicians and mathematics 
educators. Similar to Group-1, they adopted the idea that a mathematics educator should possess 
sufficient knowledge of mathematics in order to be able to make connections among concepts and 
topics in school mathematics. According to Group-2, a mathematics teacher educator must have deep 
knowledge of mathematics taught from kindergarten to the first year of university (K-13). They also 
argued that having experience in teaching mathematics would contribute to a deeper understanding of 
mathematics; thus, having teaching experience would be desirable and be considered as an indicator 
of mathematical content knowledge.  

Another important discussion point was about who would be responsible for teaching 
mathematics (content courses) to the teachers. In Group-2, while some participants indicated that it is 
mathematicians’ responsibility, others argued that it should be mathematics teacher educators’ 
responsibility because the ultimate purpose in teaching mathematics to teachers is directly related to 
teaching how to teach the content. Group-2’s major emphasis was on the fact that the nature of 
mathematical knowledge of a mathematics teacher educator should be different than that of a 
(research) mathematician in the sense that it should focus on how to teach it or help students learn it. 
This view led to another discussion that the knowledge about learning and understanding 
mathematics is as important as the knowledge of mathematics and content knowledge for teaching 
mathematics. Thus, the ability to produce knowledge regarding teaching and learning of mathematics 
should be an integral part of mathematics teacher educator competencies.  

Another topic of discussion in Group-2 was about in-service teacher education. While some of 
the participants argued that in-service teacher education is a direct responsibility of mathematics 
teacher educators and thus it should go under the competency area “Teaching”, others argued that 
such activities are not among official requirements and duties of the universities or related 
governmental bodies and thus it needs to be under “Service to the Society”. After some discussion, 
even though all agreed that in-service mathematics teacher education is among the responsibilities of 
a mathematics teacher educator, it needs to be considered as part of “Service to the Society”. A 
similar discussion was held in Group-1. They concluded that whether mathematics teacher educators 
feel responsible or not, they should be competent in designing and managing in service teacher 
training programs and they thought it fell under “Mentorship.” 

Discussion 
Involving a group of professionals/experts into a process of active discussion, and establishing 

consensus using Delphi procedures with a focus on mathematics teacher educators’ competencies 
make the present study different from the other studies focusing on standards and competencies of 
teacher educators. Findings showed that developing a framework of professional competencies for 
mathematics teacher educators is a challenging task and different parties would have their own 
priorities. Based on the findings of this study in the Turkish context, the priorities are addressed from 
the perspective of professional identities of university-based mathematics education faculty mainly as 
teachers and researchers. This implied that a balance between research and teaching is needed as part 
of being a competent mathematics teacher educator. Additionally, the extend of mathematical content 
knowledge that a mathematics teacher educator should have and who would be responsible for 
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teaching mathematics (content) courses to prospective teachers seemed to be important in defining 
the duties and responsibilities of mathematics teacher educators and the competencies they need to 
have. 

We believe that this study contributes to the international debate in professional development of 
(mathematics) teacher educators. It is important for other contexts for stimulating teacher educators 
towards reflection. It is considered that the results of this study, as part of developing a framework 
for mathematics teacher educator competencies, would provide mathematics teacher educators with 
opportunity to reflect on, serve as a guide for understanding the development of professional 
competencies, and provide insights into the nature of mathematics teacher educators’ expertise. 
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This study draws on critical pedagogy to frame and interpret the investigation of a teacher’s 
implementation of quantitative literacy in a middle school mathematics classroom after taking a 
graduate education course on numeracy. We provide a brief overview of elements of critical 
pedagogy and discuss how we used this theory to explore how a middle school teacher implemented 
quantitative literacy instruction in her classroom. Finally, we present the first theme, authentic 
application of mathematics concepts, which emerged from the data. 

Keywords: Teacher Beliefs, Equity and Diversity, Instructional Activities and Practices 

Theoretical Framework 
Critical pedagogy was first used by Henry Giroux in 1983 (Wink, 2011) and involves identifying 

and naming power structures and examining the role schooling plays in reproducing hegemony 
(Allen & Rossatto, 2009). Critical pedagogies posit that the goal of education is to train every student 
to be a productive member of a democratic society (Erikson, 2016). This is accomplished through 
valuing students’ lived experiences and voices (Cho, 2010). The goal for social institutions is to 
reform systems based on predetermined principles such as equality, democracy, emancipation, 
common good, social justice, and equal rights (Cho, 2010). Critical pedagogy closely relates to 
quantitative literacy (QL) instruction in middle school. Literacy is a form of power that “naturally 
breaks down barriers of time, space, and culture” (Wink, 2011, p. 70). Literacy goes beyond just 
reading and writing and includes multiple types of literacies, such as academic, functional, 
constructive, critical, financial, and quantitative (Wink, 2011). QL instruction empowers students in 
that it operates only in the context of real-world applications and, therefore, provides students the 
ability to draw upon their own real-world experiences to problem solve.  

Background and Purpose 
QL is different than typical school mathematics. School mathematics tends to focus on abstract, 

procedural knowledge with little problem-based, investigative thinking. In contrast, QL involves the 
use of mathematics in the context of real-world scenarios. QL is supported by the National Council 
of Teachers of Mathematics (NCTM, 2014) and the National Governors Association Center for Best 
Practices and Council of Chief State School Officers (2010), who have established national standards 
that advocate for use of “real-world” mathematics. However, “real-world” mathematics is typically 
implemented in the form of story problems that involve hypothetical stories rather than authentic 
tasks (Wiest, Higgins, & Frost, 2007). For true implementation of QL, students must apply 
fundamental mathematics to genuine, real-world, interdisciplinary situations (Yarnall & Ranney, 
2017). 

Unfortunately, many people do not fully understand how mathematics relates to the real world 
(Erikson, 2016). For example, pre-service teachers tend to exclude real-world information, such as 
tax in solving shopping problems, and thus preference non-realistic answers to real-world problems 
(Verschaffel, Greer, & DeCorte, 2000), indicating that pre-service teachers tend not to approach 
problems from a QL standpoint. Further, Gutstein (2006) found than many teachers do not appreciate 
the practical utility of the mathematics they teach. Moreover, in a survey of 62 teachers found that 
teachers reported giving real-world examples, rather than engaging students in tasks with real-world 
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data (Gainsburg, 2008). Gainsburg recommends professional development to address teachers’ lack 
of appropriate QL implementation.  

Tunstall et al. (2016) supports this post-secondary need stating “the value of QL (QL) for college 
graduates is well documented…to empower students to feel confident in quantitative situations (p. 2). 
This lack of confidence, due to a lack of training and experience, for teachers might result in teachers 
limiting or omitting QL topics in their instruction. Thus, mathematics education for teachers should 
include exploration of QL to increase implementation of QL instruction in K-12 education (Garii & 
Okumu, 2008). Given the lack of teachers who implement QL and the connections between 
training/education and implementation, this study explored the implementation of QL in one 
teacher’s classroom instruction.  

Context and Methods 
The teacher selected for this research was chosen because she was a middle school mathematics 

teacher who was enrolled in a QL course, Critical Numeracy Across the Curriculum (offered at a 
land grant university located in the western United States). She had taught mathematics for four 
years, was in her second year teaching middle school, and was in her first year teaching at her current 
school. The teacher had earned a bachelor’s degree in discrete mathematics, a master’s degree in 
applied mathematics, and a secondary teaching license program, and she was currently enrolled in a 
doctoral program in mathematics education. The teacher taught at a small parochial school with an 
enrollment of 288 students, including 35 eighth graders. The teacher’s math class took place three 
days each week for a total of five hours. Twenty-two of the eighth graders were enrolled in algebra 
and were taught by this teacher. These students were 12 to 13 years old and included 12 female and 
10 male students. Most were from middle-to-upper-class families, and all were Caucasian. 

Initially, we conducted an interview with the teacher, asking her to describe QL. Additionally, 
the teacher was asked to identify ways she implements QL in the classroom. We then observed the 
classroom instruction three days a week for two months, conducting observations as described by 
Florio-Ruane (1999), mapping the classroom, making a classroom log, and collecting field notes. 
After the observations, we conducted a second interview to ask questions prompted by the 
observations. Additionally, lesson plans and assignments were collected and analyzed for consistency 
with the observations of teaching and the teacher’s reports of quantitative-literacy implementation in 
the classroom.  

We employed grounded theory for data analysis (Glaser & Strauss, 1967) and simultaneously 
collected and analyzed data (Lichtman, 2011). The analysis was a part of the research design with the 
coding of the first data set serving as a foundation for future data collection and analysis (Corbin & 
Strauss, 2008). We adjusted additional data collected based on analysis of the first data set (Corbin & 
Strauss, 2008) by deriving the interview questions on analysis of the initial data. We proceeded 
through the coding process by analyzing the data line by line and paragraph by paragraph and then 
coding the deconstructed fragments (Lichtman, 2011). Codes were compared, renamed, added, or 
deleted as we constantly compared them (Corbin & Strauss, 2008). We constructed conceptual 
categories based on multiple re-readings and re-coding of the data. “This ‘checking back’ is a method 
of confirming or disconfirming that ensured that the categories were grounded in the theory rather 
than ‘flights of fancy’ or pet ideas” (Lichtman, 2011, p. 63).  

Results 
The results are categorized into the following themes: authentic experience, connection to 

mathematics standards, teacher knowledge, and student engagement. This paper reports on the first 
theme, authentic experience.  
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Authentic Application of Mathematics Concepts 
The teacher reported a goal of using mathematics authentically as her primary reason for 

implementing QL in her teaching. She stated that it was important that her students know how to 
research real data, represent it using graphs and charts, and analyze it. Further, she indicated that it 
was important for her students to know mathematics rules and have the ability to apply them in their 
daily mathematics encounters, saying, “I use QL in my class because it is important for students to be 
able to apply their mathematical skills to the real world. Applying their knowledge to solve a 
problem in a different context involves a deeper level of thought.”  

 This perception of authentic instruction was supported frequently in the teacher’s teaching. 
The teacher’s lessons, homework assignments, and assessments could be categorized into four levels: 
  

1. Students research authentic data to analyze and respond to a question(s). 
2. Students are provided authentic data to analyze and respond to a question(s). 
3. Students use hypothetical data to respond to a question(s) set in a real-world context. 
4. Students use no QL. 

The majority of the lessons fell into categories 1-3. Lessons that were not based on QL occurred 
only on days that were dedicated to review for a state assessment and one day when technological 
problems prevented the planned lesson from being implemented.  

The teacher had students use laptop computers to research authentic data and provided instruction 
on identifying reputable Web sources. Many lessons required students to find their own data to 
analyze. For example, in one lesson students were asked to apply their knowledge of graphing 
systems of equations to research the cost of two gym memberships, create equations for both, graph 
the system of equations, and write a conclusion regarding which membership they would choose and 
why. When the students were not researching their own data, they were frequently analyzing 
authentic data provided to them, such as data on the average unemployment rates and salaries of 
individuals with different levels of educational attainment.  

The assessments and homework assignments, however, tell a different story. No assessment was 
given during this study that evaluated any QL skill or task. Further, the only required written QL 
homework assignments were incomplete class work that students were asked to complete as 
homework. Typical homework included worksheets of algebra problems. The students also had 
electronic homework on a class web page. Approximately one-quarter of the online assignments had 
a QL component, requiring the students to discuss or comment on the QL activities that were 
completed in class. 

Discussion 
These results indicate that taking a teacher education course in numeracy increased this teacher’s 

QL instruction in her middle school mathematics teaching. This supports the call for QL instruction 
in college (e.g., Tunstall et al., 2016) and, in particular, teacher education (e.g., Garii & Okumu, 
2008). Further, the teacher asserted that the course was practical in terms of QL implementation, 
stating that she used complete lesson plans and lesson plan ideas directly from the course. This might 
help inform design of an effective teacher education course in QL. The role of a specific course in 
QL rather than increased requirements in mathematics is supported by Gutstein’s (2006) plea that 
teachers need to learn how to read and write the world with mathematics in addition to possessing 
both disciplinary mathematics content knowledge and pedagogical content knowledge. 

Although the course provided the teacher who participated in this study with the resources to 
implement QL instruction in her classroom, she did not conduct QL assessments. When asked about 
this in a follow-up interview, the teacher indicated that she was not sure how to assess this 
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knowledge and did not feel she needed to assess QL since it was not a required standard. Lack of 
assessment in QL is noted by Pugalee, Hartman, and Forrester (2008), who state, “Despite the 
importance of such skills, assessment of QL has not been a focus in education and there is a lack of 
assessment tools that specifically address these skills” (p. 35). There is both a need for research and 
development in the area of formalized QL assessment and a need for explicit instruction on informal 
classroom QL assessment in teacher education courses.  
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SCAFFOLDING GENERATIVE FEEDBACK WITH TECHNOLOGY IN ONLINE 
PROFESSIONAL DEVELOPMENT 
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This study examined 21 practicing teachers’ participation in an online community-based 
professional development course. This study integrated a web-based assessment environment into the 
online course. The tool was designed to scaffold a virtual boundary encounter with the Math Forum. 
Teachers’ interactions mediated by the tool and the discussion board (DB) was examined. Results 
indicate that the web-based tool scaffolded participants’ development of feedback in qualitatively 
different ways than participants developed feedback in the DB. In the DB participants shared and 
compared ideas when providing feedback and scaffolded by the web-based tool participants 
challenged colleagues to refine their mathematical explanations.  

Keywords: Teacher Education-Inservice/Professional Development, Technology 

Introduction 
Research and policy demand ambitious goals for mathematics instruction, which include calls for 

problem-based learning, peer-to-peer argumentation and formative assessment practices (NCTM, 
2000). Professional development (PD) is crucial for achieving these goals and supporting teachers’ 
instructional change. Community-based PD, in particular, provides context for the collective 
development of mathematical and pedagogical content knowledge, opportunities for teachers to 
reimagine their instructional practice, and has shown to support teachers’ instructional change 
(Vescio, Ross, & Adams, 2008). There are shortcomings to school-based communities; for example, 
it is often difficult for teachers to fit community into their daily schedule and local school districts’ 
norms for instruction typically do not align with those called for by research and policy. Online 
communities can address these shortcomings as teachers are not constrained to collaborate while at 
work and norms that emerge in alternative contexts are transferable into teachers’ instruction (Vescio 
et al., 2008). There is a lack of research on teachers’ participation in online communities. To fill this 
gap, the following research question was posed: How does a web-based assessment environment 
impact teachers’ feedback practices in online community-based PD? 

This study is framed by the conceptual framework communities of practice (Wenger, 1998) and 
conceptualizes mathematics teacher PD as participation in boundary encounters, which is an 
interaction between communities of practicing teachers and teacher educators (Sztajn, Wilson, 
Edgington, & Myers, 2014). Sztajn et al. (2014) regard this as a boundary encounter because teachers 
and teacher educators engage qualitatively different practices, particularly when engaging with 
students’ ideas. This study extends the idea of mathematics teacher PD as a boundary encounter and 
conceptualizes of a virtual boundary encounter, which is a boundary encounter mediated by a web-
based assessment environment designed to scaffold activities that are consistent with the practices of 
the Math Forum ⎯ a leading group for mathematics education in the United States (Shumar, 2009) 
⎯ and enhance the process of developing feedback. The tool supports user’s focus on the details of 
written mathematics work and grounding analysis within these details. In particular, the web-based 
environment includes design features that scaffold highlighting or “quoting” the details of 
colleagues’ written mathematics work and then developing comments that are linked to these 
highlighted details. After participants engage these activities they share their highlights and 
corresponding comments with colleagues in the form of feedback. In this way, the assessment 
environment mediates participants’ engagement in collective mathematical activity. These activities 
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are also consistent with the Math Forum’s evidence-based feedback practices. Thus, the tool is 
designed to act as a proxy for participation in PD with the Math Forum.  

Methods 
This study investigates 21 practicing teachers’ participation in an online community-based PD 

course. The content-based course engages teachers in reasoning covariationally (e.g. see (Carlson, 
Jacobs, Coe, Larsen, & Hsu, 2002)) about quantitative scenarios. The assessment environment was 
integrated into this course to mediate participants’ interactions around their mathematics work. 
Participants also communicated about mathematics in a non-scaffolded environment, the course 
discussion board (DB). The analysis in this study examined teachers’ interactions in these two 
environments. A grounded theory approach was applied through open and axial coding procedures 
and the iterative analysis of themes (Glaser & Strauss, 1999).   

Findings 
The analysis of participants’ interactions on the course DB and EE found that teachers provided 

feedback to colleagues in qualitatively different ways according to the mediating environment. 
Mediated by the web-based tool, participants frequently challenged one another to refine their 
mathematical explanations. Mediated by the DB, participants shared and compared their thinking 
when providing feedback. The following analysis will briefly examine an example of feedback 
developed in each environment and then will discuss the significance of these results.  

The examples are in the context of the class’s examination of quantitative relationships. Our 
ongoing work indicates that the class was participating in an emerging social norm for mathematical 
activity in which we refer to as explaining why, that is it was becoming normative amongst the class 
to provide reasons for why functions graphs look a particular way (Matranga, 2017). The first 
example is a discussion on the DB, where a participant, Hank, developed an initial post where he 
argued that the graph that resulted from tracking the covariation between two quantities could not be 
categorized as a parabola. In doing so, Hank referenced the “geometric” definition of a parabola in 
order to explain why the function graph could not be regarded as a parabola. In response to this initial 
post, Ava and Cindy develop posts that primarily share and compare their thinking. Consider the two 
posts: 

Ava to Hank: I have never heard the geometric definition of a parabola... or maybe I have and its 
been a long time... anyway, thanks for sharing as it made me think about parabolas and gave 
me a deeper understanding! 

Cindy to Hank: Hank, I thought the way you explained and reasoned your answers was very clear 
and precise. Also in my response, I said I wasn't sure if it was correct to say that the rate of 
change was constant as the car moved. You did an excellent job explaining why this is. And 
what an interesting way to think about the graph! 

In this example, Ava appears to have compared her thinking to Hank’s when she noted that she 
never heard of the particular definition of a parabola Hank referenced. In this sense, Ava commented 
on the comparison of the extent of their mathematical knowledge. Cindy’s post was similar as she 
shared information when she seemed to evaluate Hank’s idea (“your explanation was clear and 
precise”) as well as when she appeared to praise Hank’s explanation (“You did an excellent job 
explaining”). Cindy also compared the correctness of her thinking with Hank’s when she said, “in my 
response I wasn’t sure if this was correct…” Taken together, while Hank initiated a thread that 
introduced and argument for why a parabola was insufficient for making sense of the quantitative 
scenario, Ava and Cindy shared and compared information as they praised Hank’s explanation, 
made evaluative comments, compared the correctness of their responses, and compared the extent of 
their mathematical knowledge.  



Inservice Teacher Education/ Professional Development 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

501 

The next example illustrates the way in which participants developed feedback to their colleagues 
mediated by the web-based assessment environment. The example is an occasion where a participant 
does not explain why a function graph looks a particular way. The feedback is interpreted as an 
occasion of challenge as Paul pushes Nina to explain why. The feedback has a particular structure 
that is a result of the scaffolding of the web-based tool. In particular, the structure includes a 
particular detail of Nina’s work and a comment that is connected to that particular detail. Consider 
the interaction where Nina attempted to explain why the sine function has a particular look: 

Paul’s selection from Nina’s work: You wrote: This graph appears as it does because of the Unit 
Circle. Essentially as the values of sin(x) make their way around the circle, they start again at 
zero. 

Paul’s comment to Nina: ...and I wonder... if you could elaborate on this concept more. Why do 
the values start again at zero? Why does the graph have hills and valleys? 

In the above example, Paul highlighted a particular aspect of Nina’s work that does not explain 
why the graph of y=sin(x) has a particular look. While Nina noted, “the graph appears as it does 
because...” her reason lacks detail as well as specificity. In Paul’s comment to Nina, he pushed Nina 
to explain why: “Why do the values start again at zero?” “Why does the graph have hills and 
valleys?” The first ‘why question’ asked Nina for more detail regarding something she explicitly said 
in her solution. The second ‘why question’ explicitly pushed Nina to explain why the graph has 
particular visual features (“hills and valleys”). Thus, it appears that Paul was challenging Nina to 
refine her mathematical explanation. 

The above examples illustrate the difference in feedback according to the environment in which 
it was generated. Mediated by the DB, participants shared and compared information where their 
feedback did not contribute to the mathematics being discussed. Scaffolded by the web-based tool, 
participants developed feedback that challenged colleagues and was generative in regard to pushing 
colleagues to expand and refine their mathematical explanations. This finding indicates that the web-
based assessment environment likely contributed to participants’ engagement in more generative 
feedback practices. In particular, the web-based tool scaffolded the structure of participants’ 
feedback, that is the way in which the tool scaffolded highlighting aspects of colleagues’ work and 
providing comments linked to that highlighted detail. This structure was illustrated in the example 
above as the feedback essentially included a “quote” (e.g. Paul’s selection) and a comment linked to 
that quote (e.g. Paul’s comment). Thus, it appears that scaffolding the examination of colleagues’ 
work by highlighting details and making comments on those details contributed to participants 
beginning to challenge their colleagues to refine their mathematical explanations.  

Discussion 
The above analysis showed that the web-based tool likely contributed to teachers’ development 

of more generative feedback. Research indicates that in online asynchronous discussions, teachers 
overwhelmingly share and compare their ideas Yücel & Usluel, 2016; Zhang et al., 2017). 
Gunawardena, Lowe, and Anderson (1997) developed a framework for examining the social 
construction of knowledge in online discussions and argued that questioning and challenging is a 
more generative form of interaction than sharing and comparing information. This suggests that the 
web-based tool scaffolded participants’ development of more generative feedback practices that 
broke down typical norms for teachers’ interactions in online discussions. Teachers’ engagement in 
more generative feedback has implications for the emergence of generative and productive online 
communities of teachers as well as the potential for such feedback practices to transfer into teachers’ 
instruction.  
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Conclusion 
This study conceptualized mathematics teacher PD as a virtual boundary encounter. At the core 

of the notion of a virtual boundary encounter is the design of technology that can scaffold activity 
consistent with a community’s practices. The results of this study show promise for the potential of 
this conceptualization of mathematics teacher PD as participants used the tool for its designed use 
(e.g. they highlighted aspects of colleagues’ work and made comments on these highlighted details) 
and this activity contributed to their development of more generative feedback. In this sense, it was 
teachers engaged in practice mediated by technology that impacted their feedback. This indicates the 
potential scalability of this design for PD as technology begins to expand the outreach of teacher 
educators through scaffolding participation in community’s of teacher educator’s practice. Future 
research is needed to further investigate the role of the web-based assessment environment in 
teachers’ development of feedback. 
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SECONDARY MATHEMATICS/ SCIENCE TEACHERS’ CHALLENGES IN 
DESIGNING COGNITIVELY DEMANDING TASKS 
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In this study, we examined the design of mathematical tasks at different levels of cognitive demand. 
There are four levels of cognitive demand by Stein et al., (2000) memorization, procedures without 
connections, procedures with connections, and doing mathematics. 55 secondary mathematics and 
science teachers were asked to design tasks at each level of cognitive demand and 13 were 
interviewed. We found that teachers had issues designing tasks at the higher levels. We also found 
the challenges of designing such tasks: teacher related challenges, students’ related challenges, and 
selecting/modifying vs. designing tasks. 

Keywords: Mathematical Knowledge for Teaching, Teacher Education-Inservice/Professional 
Development, Teacher knowledge  

Objectives 
Smith and Stein (1998) have argued that a selecting and creating good tasks are important to keep 

students engaged in the task and develop their problem-solving abilities. In this study, we examined 
the design of mathematical tasks at different levels of cognitive demand. We were interested in the 
teachers’ creation of their own mathematical tasks to analyze their understanding of cognitively 
demanding tasks (CDT). This study addresses the following research questions: (a) How do 
secondary math and science teachers design tasks at different levels of cognitive demand?; (b) What 
are the main challenges secondary math and science teachers experience while designing tasks at 
different levels of cognitive demand? 

Theoretical Framework  
We used the construct of cognitive demand by Stein, Smith, Henningsen, and Silver (2000) to 

frame this study. Stein et al. (2000) have defined cognitive demand regarding mathematical tasks as 
“the kind and level of thinking required of students to successfully engage with and solve the task” 
(p. 11). There are four levels of cognitive demand by Stein et al., (2000) memorization, procedures 
without connections, procedures with connections, and doing mathematics. In this framework, the 
first two are considered a low-level and the last two are considered high-level of cognitive demands. 
Level 1 (memorization) is about reproducing formulas, rules, or facts without a procedure. For 
example, remembering a formula or a definition. Level 2 tasks (procedures without connection) are 
algorithmic such as substituting values in a formula. There are no connections to other concepts and 
does not require an explanation. Level 3 tasks (procedures with connections) require students to have 
a deeper understanding of the procedures to solve the task. Finally, the last and highest level of 
cognitive demand is level 4 (doing mathematics). This level is non-algorithmic and requires students 
to go beyond a procedure by exploring the concepts.  

Modes of inquiry  

Participants  
This study was conducted as part of a larger project that took place during three years (2013-

2015). It was a series of professional development workshops from the state-funded Teacher Quality 
grant.  The workshops took place in a university located on the U.S.-Mexico border. The secondary 
school mathematics and science teachers met for three hours every other week as part of a 
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professional development workshop. N=55 teachers from all the main districts in the region 
participated in the study.  

Data Sources 
First, teachers discussed in teams the meaning of cognitive demand, then they learned about the 

four levels of cognitive demand and had a group discussion about the topic. After that, teachers were 
asked to fill out a survey titled the cognitive demand survey. One part of the survey was aimed to 
measure whether teachers could design tasks at different levels of cognitive demand on topics 
relevant to secondary school mathematics and science curriculum. Individual interviews with a 
purposefully selected sub-sample of 13 teacher-participants were conducted. As part of the activities 
of the teacher quality grant, teachers had to develop a lesson to be presented to their peers. This 
activity was observed to assess the level of cognitive demand presented during their classroom. 
Similarly, as in the lesson during the workshop, teachers were observed during one class session to 
examine the level of the task presented in practice.  

We conducted one semi-structured interview with each participant. We selected the participants 
for interviews based on the following criteria: a) teacher(s) who know different levels of cognitive 
demand but cannot implement CDT neither in the workshop nor in the classroom setting; b) 
teacher(s) who know the levels and can apply CDT in the workshop but not in the classroom setting; 
and c) teacher(s) who know the levels and can apply CDT in both the workshop and classroom 
settings. The interviews lasted in average approximately 35 minutes. 

Data Analysis  
The part of the cognitive demand survey about designing tasks at different levels was analyzed 

and graded by the researchers based on the following criteria: a score of 1 was assigned if the task 
was not designed at the desirable level or a teacher didn’t provide any task, a score of 2 - if the 
designed task was partially correct, and a score of 3 - if the task was designed at the required level. 
Teachers were not provided with the total score on the survey in order to not impact their interview 
responses. The semi-structured interviews were coded to look for instances in which the teachers 
talked about the design of mathematical tasks. Emergent themes were extracted using linguistic 
analysis and meaning coding techniques (Kvale & Brinkmann, 2009) and placed into the following 
categories: teacher related challenges, students’ related challenges, and selecting/ modifying vs. 
designing. Several meetings were held between the two researchers in order to reach consensus on all 
the codes from the interviews. All the names that appear in this study have been changed to 
pseudonyms.   

Results  
Table 1 shows the percentages of teachers rated on the tasks they designed at each level. As we 

can see from the table, the majority of the teachers were able to design tasks at level 1 and 2 but had 
issues with designing tasks at levels 3 and 4 with less than a quarter being able to design tasks at the 
high levels. In the case of the level, 3 task more tasks were rated as a 2 (47.3%) while for level 4 
more tasks were rated as a 1 (51%).  

In the designing survey, participants were given a topic, and then they had to design their tasks at 
each of the levels. Also, they were also required to provide a solution to the task they developed as 
well as an explanation of why they think that task is at that level. 83.6% of participants designed a 
task at level 1. Most of their tasks were about remembering a formula. Participants wrote as an 
explanation, “because it can be recalled without meaning or understanding” or “student doesn’t need 
to apply any solution.” Those who did not design a level 1 task created a level 2 task because it was 
more procedural than memorization. The majority of participants (94.5%) were able to design a task 
at level 2. One participant designed a task with a proportion and one missing value and then wrote: 
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“must find x using cross multiplication, then division, very procedural no connection.” The few 
participants that did not design a level 2 task designed a task that was unfinished or left that part 
blank.  

Less than a quarter of the participants (23.6%) correctly created a task at level 3. One participant 
created the following task “what is the maximum area of a rectangle if the perimeter is 20” and 
explained that it was a level 3 task because “it requires to use prior knowledge of area and 
perimeter.” The following task was rated a level 2 task when the participant intended to write a level 
3 task. “Find the amount needed to double or triple a recipe.” Less than third of the participants 
(27.2%) were able to design a task at level 4 correctly. There were a few participants that created a 
level 2 or level 3 tasks instead of a level 4 task since the raters found them as more procedural. One 
participant that successfully designed a level 4 task on the topic of “Area of a triangle” created the 
following task “derive the formula for area of a triangle” and said, “they are doing mathematics 
because there must be deep understanding of concepts.” 

In the interviews, teachers stated that there are some challenges when designing tasks that are 
cognitively demanding. Through interview analysis, we identified the following emerging themes 
that addressed difficulties expressed by teachers: teacher related challenges, student related 
challenges, and selecting/modifying vs. designing tasks. The first emerging theme from the 
interviews was teacher related challenges because some teachers mentioned having issues 
understanding the higher levels of cognitive demand. Derek had challenges at designing a task at 
level 4 in the survey. When we talked to him during the interview, he confirmed this by saying  

Derek: the first three are probably really confident just the last one maybe not so much. I 
remember I was like yeah I can do the first three easy and ten the fourth one I took some 
more time to think about it.  

Level 4 was challenging for him and took some time to create a task at that level. Another teacher 
expressed confusion between the levels because  

Monica: They're sort of, I think they are sort of confusing, like it could be a grey area with them 
it’s not just ok this is level three, and this is level four, I think they can kind of, could overlap, 
so that’s why I think that’s where the confusion is.  

Another emergent theme was addressing teachers’ concern that the students are not ready to 
solve cognitively demanding tasks. Teachers feel that if they design a task that is at very high-level 
students will not be able to understand the task and therefore to solve it. Level 4 tasks have rigor and 
require students to discover mathematics and science concepts. Some teachers feel insecure engaging 
students in level 4 tasks claiming that students need guidance in working with this kind of tasks. For 
example, Anna said, said: “if students struggle with the concept a little bit as a teacher I feel like I 
want to give them all the tools they need and all the guidance instead of just kind of letting them 
work solving.” Another teacher mentioned the level and language of the students and how she 
doesn’t believe that they will be ready for a task that is too cognitively demanding,  

Isabel: Because my kids, if I bring an activity that is at a very high level… if you show a very 
difficult problem to a kid that is performing at a third-grade level and that English is not their 
primary language they probably won’t do anything.  

During the interviews and the workshops, the majority of the teachers expressed that they would 
rather select tasks that they want to implement in the classroom and then modify them instead of 
designing it. Cesar said in an interview,  
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Cesar: I’m not that creative so coming up with my own stuff like I said most of the lesson that I 
have I borrowed from other teachers and modified, I am good at modifying things but 
actually creating my own, unique, individual lessons and problems, not as good at that. 

Teachers said that they either take the tasks from the internet or other teachers and then they modify 
them to fit their classroom. 

Table 1: Distribution of Teacher Responses on the Task Design Survey  
Levels L-1 L-2 L-3 
Not correct 7.3% 3.6% 29.1% 
Partially correct 9.1% 1.9% 47.3% 
Correct 83.6% 94.5% 23.6% 

Scholarly Significance 
The significance of the study is twofold: from the scholarly lens, it attempts to address the issue 

of task design through the construct of teacher challenges, and from a practical perspective, it leads 
to understanding the issue of equal learning opportunities through cognitively demanding teacher 
preparation and professional development. More specifically, we engaged teachers in learning the 
four levels of cognitive demand and then designing their mathematical tasks at each level. Designing 
mathematical tasks is not an easy assignment for teachers. Most teachers had issues designing tasks 
at the higher levels of cognitive demand. Many created tasks that were at a procedural level instead 
of level 3 or 4. It is important to examine teacher’s understanding of cognitive demand so we can 
better understand what kind of tasks they consider as cognitively demanding. Some teachers might 
think that a task requires more cognitive demand than what it requires. We have seen that there are 
different challenges for teachers to design mathematical tasks thus investigating these challenges 
further can help researchers understand the implementation of cognitively demanding tasks in 
mathematics and science classroom.  
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This report shares the initial results from research of a model designed to support Precalculus 
adjunct instructors. The model is based on the organization and coordination of Precalculus along 
with sustained professional development in the form of a professional learning community. The 
initial results for instructional practices and job satisfaction show that instructors found access to a 
course-coordinator and participation in a PLC beneficial. 

Keywords: Post-Secondary Mathematics, Teacher Education-Inservice/Professional Development 

Objectives 
Research suggests that students’ persistence in pursuing STEM degrees is influenced by their 

experiences in their first year mathematics courses (Hutcheson, Pampaka, & Williams 2011; 
Pampaka, Williams, Hutcheson, Davis, & Wake, 2012). In this regard, the quality of pedagogy can 
make a big difference in the retention of STEM students beyond beginning mathematics. Moreover, 
there is a growing trend that higher education institutions are increasingly employing part-time, non-
tenure track faculty, such as adjunct instructors (Mason, 2009; Curtis, 2014). Between 2001 and 
2011, the number of part-time faculty employed in degree-granting institutions increased by 35% 
(Snyder & Dillow, 2015). This trend points to a need to better understanding how institutional 
policies and practices, including the availability of professional development (PD), can improve part-
time instructors’ experiences (Kezar & Sam, 2013).  

While there is a growing body of research aimed at providing PD for graduate teaching assistants 
(DeLong & Winter, 2001), much needs to be done with respect to the growing population of adjunct 
instructors (Austin & Sorcinelli, 2013). The current study focuses on the adjunct instructor 
population because of our own institution’s increased reliance on this group, especially in our 
introductory mathematics courses. We are currently developing and refining a model to help adjunct 
instructors implement best practices for learning and instruction through professional development 
and course coordination. This model incorporates instructor supports backed by research and 
provides course coordination of Precalculus. Our course coordination includes a course coordinator, 
Precalculus tutors, a common pacing guide, syllabus, assessments and rubrics for all instructors. In 
addition, we provide a summer workshop for new Precalculus adjunct faculty and tutors, during 
which participants receive a comprehensive training on the adapted curriculum. This workshop is 
part of a larger PD effort that continues throughout the semester through online weekly meetings led 
by a full-time faculty member or graduate student. These meetings form the foundation of a 
professional learning community (PLC) focused on providing content and instructional support. 
Adjunct faculty highly regard such supports as they help improve teaching and integrate adjuncts into 
their institutions (Lyons, 2007; Bowers, 2013).  

In this brief research report, we present some of the preliminary findings of our study where we 
investigate how the adjunct instructors view challenges and supports for this course. 

Background 
Our study is guided by research on policies and practices for supporting adjunct instructors. All 

faculty members are important to an institution and must be supported to fulfill their academic 
responsibilities (Gappa, Austin, & Trice, 2007). Training and development programs for part-time 
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faculty are important because proper training and support can ensure that instructors improve their 
practice (Leslie & Gappa, 2002). Part-time instructors should feel involved and appreciated within 
the institutional community. The schedules of part-time instructors often do not allow them to 
interact with regular staff because of specific class schedules, classrooms in different buildings, and 
lack of proper office space within the department. In addition, a faculty member who is on campus to 
teach just one or two courses may have different professional growth interests than a full-time, 
tenure-track faculty member (Gappa et al., 2007).  

To respond to the diverse needs of faculty members, many institutions have developed innovative 
approaches to PD. For example, some universities and colleges, in recognition of the time 
constraints, are providing online and in-person PD opportunities such as series of workshop sessions, 
one day retreats, and online programs (University of Central Florida); late-afternoon and early 
evening sessions including a light meal, a stipend and a certificate of completion (University of 
Louisville); or an orientation with mentoring and online PD (Ivy Tech Community College (ITCC)) 
(Lyons, 2007). 

There is no single model that can fit the needs of all the institutions therefore institutions need to 
develop specific programs that cater to their own needs (Austin & Sorcinelli, 2013). New approaches 
to adjunct PD need to be established to flourish within organizations (Austin & Sorcinelli, 2013). 
One way of providing support and development to the faculty is a focus on collaboration both inside 
and outside the institution (Austin & Sorcinelli, 2013). Collaboration in the form of Professional 
Learning Communities (PLCs) has been proven to be a beneficial model for K-12 teachers, as 
teaching has been shown to be more effective, and student achievement improves, when teachers 
develop strong PLCs in their schools (Fulton & Britton, 2011). In an overview of the research on 
PLCs in higher education, Roth (2014) found that engagement from faculty in these communities 
also led to more effective teaching and improved student learning. In fact, all faculty members, 
regardless of their appointment type, can benefit from participating in PLCs (Gappa et al., 2007).  

Methods 
This brief research report presents the findings using a subset of data from a larger study. Our 

initiative aims to measure the impact of course coordination and support on adjunct mathematics 
instructors’ knowledge, instructional practices, and job satisfaction. The transcription data from the 
interviews is being analyzing using thematic analysis. Through this analysis, we seek to discover 
emerging themes focused on changes in their class room practices, beliefs about teaching and 
learning mathematics, expectations of students, and persistent challenges of their role as adjunct 
instructors.  

The study is taking place at a Ph.D. granting public institution in the northeastern United States. 
The current participants are 8 adjunct instructors implementing a research-based Precalculus 
curriculum. The instructors were interviewed in person at the beginning and end of the semester, and 
all the participating adjunct instructors had previously taught one or two Precalculus classes. The 
interview data has been initially analyzed and coded for emerging themes. This data will support 
results from our larger data sources including classroom observations, content assessment and belief 
survey to provide us with additional evidence of the impact of the course coordination and adjunct 
support. Our specific research questions for this report are as follows: 

1. What challenges do adjunct instructors face when implementing a research-based Precalculus 
curriculum?  

2. What supports do the adjunct instructors find more beneficial when implementing a 
researched-based curriculum? 
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Results 
Based on our initial analysis, various themes emerged about the ways in which our adjuncts’ 

instructional practices changed due to the challenges they faced as well as the supports they found 
beneficial. We hypothesize that these supports may lead to increased job satisfaction. 

The reported challenges mostly focused on factors necessary to implement the curriculum well 
and the supports adjunct instructors would need in order to overcome these challenges. The 
instructors identified what specific supports were more beneficial to them, and reported back to us on 
how those supports and resources could be improved. In addition, the instructors’ initial experiences 
with the curriculum allowed them to develop a plan of what changes they would need to make to 
their own instruction, pacing schedule, and other course planning.  

Challenges 
The first challenge stemmed from instructors’ prior experience teaching Precalculus as either an 

adjunct instructor or high school teacher. Most of the adjunct faculty had several years of experience 
teaching Precalculus at the college level, with the exception of one instructor who was teaching the 
course for the first time. Some instructors were concerned about the fast pacing that covered the 
broad range of content in the new curriculum. They were afraid that as a result, their students may 
not be well-prepared to take the first Calculus course the following semester. The main reason behind 
such concern was the fact that the content they had covered when they had taught this course 
previously focused primarily on procedural techniques rather than conceptual understanding of the 
topics.  

In addition, some instructors were not comfortable planning lessons and implementing the 
curriculum due to its novelty. Based on their past experiences, they had built a repertoire of 
techniques in terms of planning and delivering their lessons in class, and therefore had felt more 
confident in providing examples to the students because of this familiarity with the content. Many 
instructors were also concerned about bringing students onboard with the new curriculum, which 
focuses on conceptual learning and understanding. Based on their responses, it was clear that adjunct 
instructors had already started experiencing challenges in involving students in working through 
specific investigation modules throughout the course. This experience proved to be a source of 
dissatisfaction for the teachers both in the classroom and while planning for their lessons. They also 
found it challenging to communicate with students about the reasons the new curriculum required 
greater class participation.  

Finally, structural issues like classroom size, set-up, traditional furniture and lecture style halls 
proved to be a challenge to implementing a new research-oriented Precalculus curriculum focusing 
on discourse. 

Supports 
Our second research question specifically talked about the supports that our adjunct instructors 

found beneficial when implementing the curriculum. While not surprising, we found it interesting 
that none of our adjunct instructors had ever received any form of mentoring as an adjunct instructor. 
While they may have received mentoring as a student teacher or during their first year teaching at the 
K-12 level, they had never been involved in any form of mentorship or professional development at 
the college level. They appreciated the online PLC meetings and having access to a course 
coordinator. The PLC meetings gave them a platform to learn about the ways in which the students 
should be guided through the investigations as well as a place to share their concerns and ask their 
questions. Similarly, having access to a course coordinator allowed them to share their concerns and 
get some direction. They found the common exams and the pacing guide that were designed by the 
course coordinator most beneficial. The exams and the pacing guide, as well as having a course 
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coordinator as a go-to person opened up time for other activities like designing projects for students, 
developing online videos etc. 

Our adjunct instructors also collaborated with each other in smaller informal groups and 
continued to engage in these collaborations along with the online PLC. The nature of these informal 
meetings was impacted by the curriculum as well as the discussions during the formal PLC meetings. 
The informal PLC conversations focused on content and pedagogy instead of logistical issues. This 
focus was a result of the logistical concerns being taken care of by the course coordinator. 

Conclusions 
The results presented here are part of a larger research effort to measure the impact of course 

coordination and support on adjunct mathematics instructors’ knowledge, instructional practices, and 
job satisfaction. Our findings from the analysis of the initial interview data with the instructors focus 
on their instructional practices and job satisfaction. Moving forward we plan to extend our analysis to 
delve deeper into the ways in which supports, like weekly online meetings and access to a course 
coordinator, impacts our instructors. We are also interested in investigating how instructors’ content 
knowledge might be impacted by these efforts. Our hope is that these findings will make a significant 
contribution towards the scant literature on supporting mathematics adjunct instructors. 
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This study reports on learning through Chinese lesson study (LS) by three elementary school 
teachers in the US. Three cycles of LS were facilitated by knowledgeable others to make sense of 
comparison subtraction through problem solving. Data consisted of lesson plans, videotaped 
research lessons, post-lesson debriefings, and reflection reports. The lesson improved regarding: 
using number talks to activate relevant knowledge; smooth transfer from acting out to using 
manipulatives to symbolizing the comparison model; and student outcomes. Teachers voiced they 
grew professionally and gained knowledge about content, pedagogy and student learning. 

Keywords: Number Concepts and Operation, Learning Trajectories, Problem Solving    

Introduction  
Implementing common core mathematics standards in classrooms has been a nationwide effort 

since 2010 (CCSSI, 2010). Principles to Actions (NCTM, 2014) describes eight practices for 
research-based, effective teaching. However, it is still a daunting task for many teachers to teach in 
this way. Lesson study (LS) can be effective in helping them implement CSSM (Lewis & Takahashi, 
2013) and improve their learning and students’ learning outcomes (Huang & Shimizu, 2016). A team 
of mathematics teacher educators and mathematics specialists has developed and implemented a 
hybrid model of professional development (PD) for K-6 teachers consisting of an extensive summer 
institute, demonstration lessons and coaching or LS. Twelve of 48 participants in a PD project 
voluntarily participated in LS. Four LS groups completed the cycle of LS: designing a lesson, 
teaching/observing the lesson, debriefing, re-teaching the lesson, and re-debriefing and reflection. 
This paper reports on one of the LS groups which focused on comparison subtraction at grade 1 to 
address the research questions: (1) How did the research lesson improve through the LS process? (2) 
What did teachers perceive of and learn from LS?  

Literature and Theoretical Framework 

Chinese Lesson Study  
Lesson Study, a practice-focused, collaborative, student-focused PD model, has been recognized 

as powerful for improving teaching and promoting student learning (Huang & Shimizu, 2016; Lewis, 
2016). Similar to Japanese LS structurally (Lewis, 2016), Chinese LS emphasizes repeated teaching 
of the research lesson and knowledgeable others’ input (Huang & Han, 2015). In the context of 
Chinese LS, Han and Paine (2010) found that improving teaching of mathematics as deliberate 
practice gave teachers an opportunity to refine their core instructional practice. Thus, Chinese LS can 
provide a way to improve instruction and professional expertise. 

Teaching Mathematics Based on Learning Trajectory and Variation Pedagogy  
Two theoretical frameworks guided the design of and reflection about lessons throughout the LS: 

learning trajectory (Clements & Sarama, 2004) and variation pedagogy (Gu, Huang, & Gu, 2017). 
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Learning trajectories (LT) have been proposed as a foundation for classroom instruction (Clements & 
Sarama, 2004; Simon, 1995). A hypothetical LT is a pathway on which students might proceed as 
they advance learning toward the intended goals, which describes children’s thinking and learning in 
a specific mathematical domain and a conjectured route through a set of instructional tasks (Clements 
& Sarama, 2004). Variation pedagogy (VP) arises from the Chinese mathematical teaching tradition, 
and focuses on using deliberate and systematic variation in mathematics tasks to help students 
develop new concepts and problem solving abilities (Gu et al., 2017). The key idea is to emphasize 
the importance of constructing patterns of variation and invariance to create necessary conditions for 
mathematics learning.  

Teaching and Learning of Subtraction with Whole Numbers  
According to CCSSM 1.OA. A.1 (CCSSI, 2010), first grade students should learn to use addition 

and subtraction within 20 to solve word problems involving situations of adding to, taking from, 
putting together, taking apart and comparing by using objects, drawings, and equations. Three 
models for interpreting subtraction are: taking away, missing addend, and comparison (Sowder, 
Sowder, & Nickerson, 2014; Van de Walle, Karp, & Bay-Williams, 2016). The first two are based on 
the part-part-whole model which can be presented visually using a part-part-whole mat (Van de 
Walle et al., 2016). The comparison model involves the difference between two distinct sets or 
quantities, and can be represented visually by counters or cubes.  However, “it is not immediately 
clear to students how to associate either the addition or subtraction operation with a comparison 
situation” (Van de Walle et al., 2016, p. 177). The dominating part-part-whole model may negatively 
impact students’ understanding of the comparison model of subtraction. Researchers (Van de Walle 
et al., 2016) have suggested that when discussing the difference between bars, asking “how many 
more” may help students to generate the subtraction equation. Research further suggests that using 
physical actions to match concrete manipulatives in a one-to-one fashion leads to visualized objects 
being matched in the same manner, and finally to the development of number sentences using 
mathematical symbols (Zhou & Lin, 2001). The studies reviewed suggest that teaching the 
comparison model of subtraction should follow a hypothetical LT with five levels: (1) physically 
acting out comparison subtraction (how many more or how many fewer) within a daily context; (2) 
using manipulatives (counters or cubes) to model comparison subtraction concretely; (3) drawing 
diagrams to represent the model visually; (4) creating mathematical equations; and (5) varying 
problems regarding different unknowns (i.e., difference, larger or small quantities).  

Method 

Lesson Study Group 
The LS took place in a school system in a mid-size city in a southeastern state in the USA. An 

expert team of three mathematics educators, two from the mathematics department and one from the 
college of education at a large public university in the city, and one mathematics specialist from the 
school system oversaw all LS activities. This included facilitating lesson planning and post-lesson 
debriefing meetings and commenting on lesson plans. The LS group included three first grade 
teachers from three schools, similar in terms of social-economic status and academic achievement. 
Table 1 contains information on the teachers. 

Table 1: Background Information of the Participating Teachers in the Lesson Study  
Name Gender Highest Degree Teaching experience Licensure 
Ms. Luna F Master of Arts – Reading Education 6-10 K-6 
Ms. Schultz F Bachelor of Science – Early Childhood Education 0-5 K-3 
Mr. Murphy M Master of Education >20 K-4 
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Data Collection and Analysis 
The LS included one lesson planning meeting, three research lessons on the same topic, and three 

post-lesson debriefings. After completion of the LS process, teachers submitted a reflection essay 
guided by several questions. The three lesson plans, videotaped research lessons (including student 
work) and debriefing meetings, and reflection essays constitute the data set for this study.  

Based on the framework of LT and VP, the three research lessons (videotaped) were analyzed 
with a focus on whether the LT was reflected and how the tasks were aligned with VP. The effect of 
each lesson was evaluated based on classroom observation and examination of exit tickets. 
Debriefing meetings were analyzed to reveal factors leading to changes in the lessons. Reflection 
essays were analyzed using NVivo to ascertain teachers’ perceptions of the LS process and what they 
learned.  Results are presented in alignment with research questions. 

Results 

The Major Changes across the Research Lessons and Key Causal Factors  
Each of the three teachers taught the research lesson once. The goal was to develop students’ 

understanding of comparison subtraction through solving word problems. Immediately after each 
lesson, there was a debriefing session on strengths and weakness of the lesson and suggestions for 
changes. Table 2 has major changes from initial to final lesson and associated casual factors.  

Table 2: Major Changes between the Initial Lesson and the Final Lesson   
Phases Initial lesson Final lesson Changes 

Number talk (Activating 
relevant knowledge, 
leading to new topic) 

11+7=18;  7+?=11 
Focus: Part-part-whole and 
missing addend subtraction 

5+2=7;  7-2=5;  5-3=2 
Focus: How many more and 

subtraction equation 

Activating relevant 
knowledge closely 
related to new topic 

Acting out comparison 
(match up boy and girl) 

Matchup physically 
(9 and 14) 

Matchup physically (9 and 11). 
Modeling with linking cubes. 

Drawing diagrams to match up. 
Setting equations. 

Transferring from 
physical to visual to 

symbolic 
representations 

Modeling and 
symbolizing (using 

linking cubes, diagrams 
and equations) 

Task 1: Word problem 
without a picture (13-8=5). 

Task 2: Word problem 
without a picture (7-3=4). 

Less appropriate tools. 

Task 1: Word problem with 
a picture (7-4=3). 

Task 2: Word problem without 
picture (13-8=5). Using linking 
cubes, diagrams, and equation. 

Progression from 
simple to complex.  

Used multiple represent-
tations. Removed part- 

part-whole mat. 
Challenging task Task 3: If A is more than B 

and A+B=15, find A and B. 
N/A Removed 

Exit Ticket N/A Task: Word problem without 
picture. Request: use diagram 
number line, equation. 

Added 

Learning outcomes 15% mastered comparing 13 
with 8 

63% mastered comparing 
15 with 7 

 

Participant Teachers’ Perception of the Lesson Study and Their Perceived Learning  
Each teacher expressed enthusiasm for the LS process and product as illustrated by Ms. Schultz, 

“I was proud of our work on the compare lessons and enjoyed learning and participating in watching 
these lessons change, evolve, and enhance the learning of the children involved in this project.” The 
teachers perceived their teaching skills and knowledge of content, pedagogy, and student thinking 
increased. Mr. Murphy reflected, “over the course of the LS we were able to make the necessary 
changes and see our students grow their mathematical thinking of word problems.” They have 
already and will continue to implement what they learned from the LS in their classrooms. Ms. 
Schultz said, “I feel far more capable in my abilities to design a lesson trajectory that would better 
serve my students’ learning. I now find myself to be more intentional in observing and reflecting 
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upon my students’ thinking to more thoughtfully write and revise my lesson plans so that I may 
better support the success of their learning.” They also indicated the opportunity for discourse on 
mathematical practices was beneficial to their professional growth. 

Discussion and Conclusion 
This study demonstrated how the Chinese LS approach inspired by LT and VP can help teachers 

improve a lesson that promotes students’ conceptual understanding of comparison subtraction. 
Meanwhile, the teachers not only deepened their understanding of the concept of comparison 
subtraction, but also increased specific pedagogical skills such as selection of appropriate tools, 
sequencing of tasks, transfer from concrete to abstract, and analysis of student thinking, which has 
impacted their daily teaching. Each teacher acknowledged both the process (enactment and 
reflection) and product (final lesson) of the LS as being beneficial. This study suggests that part-part-
whole should not be used for exploring comparison subtraction (Van de Walle et al., 2016). It also 
suggests that beginning with the physical action of matching sets in a one-to-one fashion, then 
moving to using linking cubes for matching, and finally using diagrams for matching can help 
students develop equations for comparison subtraction problems (Zhou & Lin, 2001). Since the 
highest level of variation problem regarding different unknowns was eliminated from the lesson after 
the first teaching, exploration regarding the scaffolding needed for students to successfully 
investigate this challenging but mathematically rich task is needed.  
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This study examines three junior high school teachers’ questioning practices of English learners 
(ELs). We build on prior research demonstrating the utility of questioning for developing 
mathematical discourse and apply it to the novel endeavor of having teachers use questioning 
purposefully as a means to engage ELs in mathematics discourse. Using qualitative methods, this 
pilot study examines three teachers’ questioning practices prior to participating in professional 
development, how the teachers’ practices differed for ELs versus non-ELs, and how the teachers 
explored expanding their questioning practices during professional development as they prepared to 
teach a cognitively demanding mathematics lesson. 

 
Keywords: Teacher Education-Inservice/Professional, Equity and Diversity, Middle School 
Education 

Objectives  
This study’s objective is to examine three junior high mathematics teachers’ questioning 

practices of English learners (ELs). This paper builds on prior research that demonstrates the utility 
of questioning for developing mathematical discourse and applies it to the novel endeavor of having 
teachers use questioning purposefully as a means to engage ELs in mathematics discourse, providing 
potential pathways for ELs to access and engage with mathematics content and language in 
meaningful ways. In this pilot study, we examine the following research questions: What does 
questioning look like in teachers’ classrooms? How do the teachers’ questioning practices differ for 
ELs versus non-ELs? How do teachers explore expanding questioning in professional development 
(PD) as they prepare to teach a cognitively demanding mathematics lesson? 

Perspectives  
We ground our work using four key principles for supporting ELs in mathematics classrooms: 

providing cognitively demanding mathematics tasks, building on and understanding students’ 
resources, providing language rich opportunities, and understanding students’ language demands 
(Roberts, Bianchini, Lee, Hough, & Carpenter, 2017). We see these as important for working with 
teachers and for teachers working with their ELs. 

With these four key principles, this study focuses on questioning that develops, attends to, and 
elicits higher-order thinking. Such questioning has myriad functions. Teachers can use their 
questioning to access student thinking and to gain important knowledge about possible trouble spots 
or misconceptions their students have with regards to particular content (NCTM, 2014). Ideally, 
questioning allows teachers to support students to listen carefully and to develop a fruitful exchange 
of ideas with rich and purposeful mathematics discussions (Imm & Stylianou, 2012). We focus on 
using high cognitive demand questions to create an environment of inquiry for ELs. 

Such questioning requires teachers to move beyond close-ended questioning, where teachers use 
questions for information gathering only or getting to a desired procedure or conclusion, which 
allows for little veering from a limited desired path (NCTM, 2014). Instead, this study seeks to press 
ELs to “communicate their thoughts clearly, and … to reflect on their thoughts and those of their 
classmates” (NCTM, 2014, p. 37) through teacher questioning.  
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Methods  
This study took place in California at a junior high school with an enrollment of almost 450 

students, with approximately 45% of these students classified as ELs, 34% as FEP, and 18% 
redesignated as FEP. The majority of ELs (>85%) at the school were Spanish-speakers. The teacher 
participants were three White teachers with 2.5-5 years of teaching experience and included a 
bilingual Spanish speaker and a bilingual Vietnamese speaker. The teachers reported that 20-60% of 
their classes were designated as ELs. 

The teachers participated in initial hour-long interview that focused on the their pre-participation 
questioning practices. The research team also videotaped a single lesson of each teacher to capture 
how they questioned students, in particular ELs, prior to participating in PD. Finally, the research 
team video- and audio-recorded a two-hour professional development meeting focused on teacher 
questioning, and collecting written work and reflections.  

During the PD, we used a cognitively demanding mathematics task, “Orange Fizz Experiment” 
(Georgia Department of Education, 2016), as a focal point for organizing teachers’ questioning of 
ELs in their mathematics classrooms. Following discussions of the four core principles for 
supporting ELs in mathematics (Roberts et al., 2017) and some examples of questioning from the 
literature, we provided teachers with an opportunity to solve this mathematics task. Because teachers 
previously rarely used such tasks and in depth questioning, we provided teachers with time not only 
to solve the task but also to develop questions to use with the task as they planned their lesson around 
the task. 

We analyzed the teachers’ use of questioning across data sources using open coding (Strauss & 
Corbin, 1990). In order to identify consistencies and inconsistencies across the research questions, 
we generated themes within and across each question. 

Results and Discussion 

RQ#1: What does this questioning look like in teachers’ classrooms?  
The first theme that we noted when we looked within each teacher’s classroom and across the 

teachers’ classrooms was that the teachers tended to use fairly close-ended questioning with their 
students. This is likely linked to the type of mathematical work that they usually used with their 
students. In their interviews and in the professional development, the teachers talked about the fact 
that they used mostly direct instruction with their students and they rarely used tasks. For example, 
Teacher 1 explained, “I use a mixture of drill and kill….and [I have students] look for a number 
answer.” Teacher 1 asked such questions as, “What are some quantities? What else are you seeing? 
Do we know how many some is?” Teacher 2 described using acronyms to help students remember 
particular mathematical processes, sharing, “I don’t, like, just to tell them. [I ask them,] What is the 
acronym?...How can we use this?” Teacher 2 focused on students memorizing particular processes, 
and her questioning attended to reminding students of these procedures. Teacher 3 also focused his 
questioning on procedural mathematics, telling us, “I will often ask what the next steps are. What do 
we need to be careful of?.... I ask a lot of times is this positive or negative.” These close-ended 
questioning strategies in many ways mirror what Cazden (2001) refers to as an Initiate-Respond-
Evaluate (IRE) sequence, with a teacher providing a question such as, “Is this quantity negative?” A 
student would respond, “yes” or “no.” And then a teacher would then evaluate the correctness of that 
response.  

Our classroom observations helped to triangulate the teachers’ self-reporting of these IRE 
sequences. While the teachers did not lecture the whole time, we had seen them do so in previous 
visits to the school. Teachers 1 and 2, on the day of our observations, used the same activity, a 
“speed-dating” activity in which students worked in pairs to solve one- and two-step equations. 
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When the teachers asked questions, the students had to describe the steps they took for solving the 
equations. Teacher 3 did a different activity in which students had to complete a worksheet where 
they had to identify how to write an equation. He asked such questions as, “How do we use these 
numbers to write an equation?” “Do we see $39 in the equation?” “How many friends did he take to 
the movies?” The teachers were focused on questions that generally elicited one-word answers and 
demanded lower-level cognitive demand. Teachers were using questioning that was close-ended, and 
we linked this questioning with the mathematics tasks the teachers were using, which required less in 
depth questioning. 

RQ#2: How Do Teachers’ Questioning Practices Differ for ELs Versus non-ELs?  
Overall, the three participating teachers commented that their questioning practices were 

generally the same with their ELs and their non-ELs. Teacher 1 explained, “Yeah. It’s not much 
different.” However, there were some instructional practices that the teachers shared that they used 
when they were describing their questioning work with ELs. Teacher 2 shared in both her interview 
and the PD that she used sentence starters and often provided them for all students. Teacher 3 
described, “I also code-switch and use some words in Spanish,” explaining that he gave some 
mathematics vocabulary in Spanish and English and then used connecting words in Spanish to 
support students in understanding the new mathematics vocabulary in English. All three teachers 
used general support strategies for working with ELs and did not generally alter their questioning 
strategies when working with ELs versus non-ELs. 

RQ#3: How Do Teachers Explore Expanding Questioning in Professional Development (PD) as 
They Prepare to Teach a Mathematics Lesson? 

Our answers to the first two research questions helped us to recognize that we needed to provide 
some foundational experiences for the teachers in their first PD. We decided that providing 
cognitively demanding learning experiences for ELs would ground the work for our questioning 
work with the teachers. Without a good task, we found that the teachers had little to ground their 
questioning. We also knew from prior research that ELs often have less access to cognitively 
demanding work for myriad reasons. We had a cognitively demanding task serve as a crossroad for 
the teachers and the questioning work we could do in the professional development as they prepared 
for their future questioning. The teachers solved a task together that came from optional district 
curricular materials, the “Orange Fizz Experiment” (Georgia Department of Education, 2016). They 
planned a lesson and created supporting questions to enact during their upcoming unit on ratio and 
proportion. This problem has students use ratios to figure out which soda formula has the best tasting 
flavor, comparing three different formulas of orange concentrate and carbonated water. 

The teachers all noted that this problem was different than the type of problems they usually used 
in their day-to-day instruction, because it was not a standard lecture-practice type of lesson. All three 
teachers noted that the Orange Fizz Experiment problem afforded them the opportunity to ask 
different types of questions than they might have asked typically. Teacher 3 shared, “I'm going to try 
to ask higher-level questions of my students.” Teacher 2 also explained: 

I plan to work on my questioning in this lesson by creating more open-ended questions that 
require more depth of knowledge than procedural questions (i.e. asking the students to discuss 
what we were comparing vs. saying ‘we are comparing part to whole, so what's the ‘part’ and 
what’s the ‘whole’?’). 

Teacher 1 had the biggest change in her planned questioning, because she anticipated having her 
students explain more of their thinking. Her questions included: “Which formula has the most 
‘orange’ taste? How do you know?” However, she also included procedural questions like, “What 
rules do we know we can use to work through ratio tables?” 
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We pushed teachers to consider their questioning specific to ELs. Teacher 3 explained that 
questioning, “can support ELs by having them use more language that's specific.” Teacher 2 went 
into more depth and drew on her students’ prior knowledge: “Questioning can support ELs by giving 
them opportunities to voice their existing knowledge and enabling them to recognize that they have 
valuable prior knowledge that can be applied to the problem at hand.” Finally, Teacher 1 found 
questioning with ELs to be an instructional tool that created space for students to share their thinking: 
“Questioning can support ELs because it starts with the student's thinking. It provides space for 
students to reflect and connect knowledge through their past or others. Questioning also has students 
reflect and justify their thinking.” Even though the teachers acknowledged ELs in our prompts, we 
found that we need to engage them more thoroughly in thinking about how they can use questioning 
to engage ELs in mathematical discourse. 

The teachers noted that they were looking forward to more opportunities to learn about and to 
develop their fluency with questioning. For example, Teacher 3 explained, “Today I learned what 
higher level questions are. I've been struggling with understanding what questioning…meant in a 
very practical way, and today helped me with that.” Teacher 2 was particularly interested in working 
toward specifically “preserv[ing] mathematical rigor while meeting the needs of our EL students” 
using questioning. Going forward, the professional development we provide is going to have to meet 
both teacher and student needs. 

Conclusions 
Cognitively demanding tasks provided a crossroads in this project on teacher questioning with 

ELs. Tasks provided an inroad for our work with teachers in helping them to understand and 
appreciate how to develop questioning practices that support ELs’ discourse practices. We were able 
to see marked differences in the types of questions teachers were asking and their approaches to 
questioning through the use of a different type of task. We believe that this work on questioning lays 
the foundation for future work on developing rich discourse opportunities for ELs in mathematics 
and creating and studying PD for teachers in executing such practices.  
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THE INFLUENCE OF DAILY REFLECTION ON A MIDDLE SCHOOL TEACHER’S 
PRACTICE 
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This report describes a framework used as a communication tool to reflect and adapt instruction to 
support student learning. Specifically, this framework was used as a bridge for collaboration 
between the classroom teacher and the researcher to reflect on daily lessons. The goal of this 
preliminary project was to adapt teaching and tasks to support seventh-grade students’ learning of 
algebraic expressions and equations. The framework was used to document and summarize what 
occurred during the lesson on a daily basis and to identify learning goals for the subsequent lessons. 
The reflection process was helpful for the teacher to trace where students had been in their learning 
and to make decisions about how to foster learning in the following lessons. The framework served 
useful and made it easier for the teacher to adjust her instructional practices to support student 
learning in the classroom.  

Keywords: Instructional Activities and Practices, Teacher Education-In-service/Professional 
Development, Middle School Education 

Students’ learning is influenced by how teachers design and implement lessons and assess 
student learning to make instructional decisions. A learning trajectories approach to teaching 
involves thinking about the goals and tasks, anticipating what students might do, and adjusting 
instruction and future tasks based on what students do and understand (Clements & Sarama, 2009). 
Research (Constantino & De Lorenzo, 2001; Danielson & McGreal, 2000; Glickman, 2002; Lambert, 
2003) confirms the benefit of reflective practice in order to provide professional growth for teachers. 
Our goal was to understand how daily reflections on teaching algebra influenced the instructional 
practices of a middle school teacher. In doing so, we developed a reflection framework that 
documented what happened on a daily basis during the math lessons and what the teacher wanted to 
occur with respect to anticipated student learning in subsequent lessons. The framework served as an 
intersection point between the researcher and teacher to influence classroom teaching through a 
reflective process. 

Theoretical Framework 
 The theoretical framework for this study was based on Danielson’s (2009) four modes of 
educator thinking (Figure 1). 

Mode of 
Educator 
Thinking 

 
 
Thinking based on: 

Formulaic: prepackaged knowledge from external source 
Situational: decisions made on information gathered during a specific time in a specific context 
Deliberate: seeking more information than the immediate context provides 
Dialectical: deliberate thinking to gain understanding of a situation and generate solutions 

 Figure 1. A summary of the modes of educator thinking (adapted from Danielson, 2009).  

An educator that thinks formulaically is grounded in general policies and rules that are part of the 
school culture and centers on standardized instructional decisions regarding curriculum. Situational 
thinking involves dealing with in-the-moment occurrences during teaching such as student 
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dispositions. In deliberate thinking, an educator seeks to understand why or why not a method of 
instruction is successful. If the educator engages in finding a solution to the scenario during the 
deliberate thinking stage, then he/she is thinking dialectically.   
 The framework created and tested in this study was purposely designed for teacher reflection 
that was both deliberate and dialectical. Dialectical reflection in this case involved a logical 
discussion between the teacher and researcher; sharing ideas and opinions. One definition of 
dialectical thinking is to be concerned with or acting through opposing forces. The Reflection 
Framework sought to identify and understand the opposing forces within the classroom context 
during lessons over time. The daily reflection questions were developed to lead the educator through 
the trajectory of formulaic to dialectic reflection (see Figure 2). The framework began with 
mathematical meaning or the objective of the lesson. The teacher was asked to think about 
misconceptions generated and what may have caused this within the context of the lesson.  
Incorporating student comments from the lesson elicited deliberations regarding what it might be like 
to be a learner in the context. Finally, focusing on next steps provided a dialectical space to generate 
solutions. 
 

Mathematical 
Meaning that 
you wanted 
to happen 

Errors/Misconceptions 
that occurred for the 
students 

What situation 
or activity led 
to this 
misconception? 

Student 
comments/reflections  

What did you 
change and 
why? What are 
you going to 
do for the next 
lesson? 

 Figure 2. The Reflection Framework that was used daily by the teacher.  

Context and Methods 
The teacher selected for this research was chosen because she had recently graduated with her 

doctorate in mathematics education, had 22 years of elementary teaching experience, and was in her 
first year of teaching seventh grade mathematics. The teacher taught at a public middle school in the 
western United States with an enrollment of 600 students, most from lower-to-middle-class families, 
and the majority of students were Latino/a or native. The teacher taught three seventh-grade 
mathematics classes with about 35 students in each class, ranging from 12 to 13 years old. The 
researcher in this study holds a doctorate in mathematics education, is a former middle school 
mathematics teacher, and met the teacher during her doctoral studies. 

This research project evolved from a discussion between the researcher and the teacher regarding 
the teacher’s transition from elementary to middle school. The teacher identified that she was 
struggling with taking time to reflect on her teaching, the students’ understanding, and how to adjust 
her lessons based on student learning. After this discussion, the researcher and teacher created the 
Reflection Framework (Figure 2) on a shared Google Doc. Using the framework, the teacher 
reflected on teaching an algebra unit to her seventh-grade classes everyday for two weeks. Once the 
teacher wrote her reflection for each part of the framework, the researcher made comments and 
suggestions about how to adjust the lessons and address student misconceptions. At the end of the 
two weeks, the researcher and teacher individually answered the following questions prompted by 
their observations of using the framework: 

1. Is the framework useful in general and why? 
2. Why is this framework suitable for middle grades? 
3. Did the framework help the teacher to shift her instructional practices? If so, in what ways? 
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To explore how the teacher reflected on her thinking using the Reflection Framework and how 
she adjusted her teaching based on these reflections, we read and examined the teacher’s reflections, 
the researcher’s comments and suggestions, and the answers to the questions for constructs, themes, 
and patterns. We then coded the themes using a constant comparative method (Strauss, 1987). 
Following the analysis, we were able to recognize three main themes regarding the benefits of the 
Reflection Framework.  

Results 

A lens for whole class learning of content 
The process of reflecting on lessons everyday using the Reflection Framework allowed the 

teacher to focus on the mathematics content that the students’ were learning. The teacher 
commented: 

In 7th grade, I teach roughly 120 students math each day. As a new teacher to this grade, it has 
been difficult to get a sense of what each student needs. This framework allowed me to analyze 
the lesson overall for the 7th graders. In accounting for their misconceptions and their 
understandings, I was able to address the learning of the group as a whole. This is very different 
from the elementary model where you focus on 30 students all day long and are quickly able to 
see the whole child as a learner in many different ways.  

The teacher also revealed that feedback from a colleague gave her a new and different 
perspective on why the students might not understand the mathematics. For example, Figure 3 shows 
the teacher’s reflection on students’ misconceptions and suggestions and comments from the 
researcher.    

 

 
Figure 3. This is an example of the teacher’s reflections on student learning and comments made by 

the researcher to offer suggestions on how the teacher could address these misconceptions.  

Shifts in Instruction 
The practice of reflecting using the framework made the teacher aware of what she needed to re-

emphasize during the next class session. She wrote: 

In third period the algebra manipulatives were the most difficult for me to use. The students have 
poor self control and my initial perception was that this work was too easy. As I reflected on this 
each day, I realized that for most of this group, they did NOT understand what was happening. 
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This shifted my approach as a teacher. Instead of expecting one assignment finished in one day, I 
allowed several days for completion continually providing those that were done with extensions. 

By allowing extensions, several of the students took time to ask questions to help them make 
sense of the mathematics, rather than giving up. The teacher realized that she had to allow more time 
to scaffold her students’ understanding.  

Focus on Student Dispositions 
As the teacher initially reflected using the framework, she focused on student dispositions in the 

class because she noted that their behaviors were inhibiting the whole class’ learning of the 
mathematics (Figure 4).  

 

 
Figure 4. This is an example of the teacher’s frustrations with student dispositions and a suggestion 

made by the researcher on how to motivate the students. 

The teacher recognized student dispositions and changed the lesson to make it less boring or 
more challenging to help her students focus. By taking student dispositions into account over two 
weeks, the teacher could see as a whole what had happened during the unit in terms of student 
learning and motivation. 

Discussion 
In our research, the Reflection Framework was used as a tool for keeping track of student 

learning and being able to identify the relationship between student learning and instruction to make 
more targeted teaching decisions. For the teacher and researcher, the framework served as the 
intersection for making sense of what happened in the classroom during a lesson and how to reflect 
on the teaching and learning that occurred. The framework should be explored further with 
inexperienced and experienced teachers to investigate if it supports them to make decisions when 
practicing a learning trajectories approach to teaching (Clements & Sarama, 2009) and changes their 
instructional practices to target students’ learning needs. 
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In this paper, we examine what teacher-researchers talk about and do as they engage with the idea 
of positioning in the context of study group discussions and cycles of action research. Using open 
coding, we analyze study group discussions and other artifacts across a five-year time span and 
examine how their talk and action changes over time. Broadly, we found that the teacher researchers 
were, at first surprised and unsure about how to positively influence positioning in their classrooms, 
then moved to a focus on the positioning of mathematics. As they adopted new curriculum materials, 
goals, and classroom norms, their talk and action shifted to focus on students’ perspectives, voice, 
and issues of bias in their interactions with students. Such a longitudinal study can provide insights 
into how ideas like positioning might be used by teachers to work toward more equitable practices in 
mathematics classrooms. 

Keywords: Classroom Discourse, Teacher Education-Inservice/Professional Development 

We take it as central that the theoretical constructs we use matter most when we use them with 
teachers to see what is helpful to improving their practice toward their own ends of supporting 
student learning. In this way, we align ourselves with the views of crossroads as being an 
“intersection point” and see our collaborations with teachers as a “place of community” within which 
we (as mathematics education researchers and teacher educators) must learn. Here we examine the 
discussions and action research of a group of mathematics teachers the first author has collaborated 
with for five years to understand how the teacher researchers both talk about and use the idea of 
“positioning.” Positioning refers to the “ways in which people use action and speech to arrange social 
structures” (Wagner & Herbel-Eisenmann, 2009, p. 2). In mathematics classrooms, words and 
actions carry implicit and explicit messages about who students are as learners, what they are capable 
of, and what it means to know/do mathematics. It has been shown that when particular positionings 
are repeated over and over, they can impact students’ identity (Anderson, 2009) and disposition 
(Gresalfi, 2009) development. The results influence students’ perceptions of themselves and others 
and are important to pay attention to, particularly in collaborative work with teachers. Thus, our goal 
is to answer the following question: When mathematics teachers talk about positioning across a five-
year collaboration involving action research, what do they focus on and how do they report using it 
to improve their practice and student learning? 

Positioning and Its Operationalization for Professional Development 
Positioning theory is the “study of local moral orders” based on ongoing shifting patterns of 

“mutual and contestable rights and obligations of speaking and acting” (Harré & van Langenhove, 
1999, p. 1). Important to issues of equity is that positioning theory does not assume that everyone in 
an interaction has equal access to rights and duties to perform any action (Harré, 2012). Although the 
theory focuses on local interactions (rather than the transcendental), it also shows the centrality of 
storylines and the communication acts that are employed in any interaction. Storylines are the 
ongoing repertoires that are already shared culturally or that can be invented as participants interact.  
We have described communication acts as the socially determined meaning taken from a 
communication action, which can be words, gestures, and physical positions and stances (Herbel-
Eisenmann, et al., 2015). All three of these constructs--positionings, storylines, and communication 
acts-- mutually shape and constrain each other during an interaction.  This theory has been 
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increasingly used in the past decade of mathematics education research, with most of the articles 
appearing since 2009 (Herbel-Eisenmann, Meaney, Bishop Pierson, & Heyd-Metzuyanim, 2017). 
Very little of this work, however, actually involves collaborations with mathematics teachers to see 
what from the theory might be interesting and useful enough for them to change their practices. Our 
previous work that investigated theoretical constructs within the context of collaborations with 
teachers has illuminated how teachers make sense of the ideas and find them useful in their work but 
also has allowed us to reconceptualize the constructs in ways useful to practice (see Herbel-
Eisenmann & Wagner, 2010; Wagner & Herbel-Eisenmann, 2014). 

In the context of the collaborative work, we have used the Mathematics Discourse in Secondary 
Classrooms (Herbel-Eisenmann, et al., 2017) professional development (PD) materials to introduce 
the idea of positioning (and other constructs, which we do not focus on here) as a theoretical lens that 
can be used to interpret particular teacher discourse moves. In these PD materials, there are a series 
of “touchstone” readings that are used to formally introduce key concepts and tools of classroom 
discourse, one of which focuses on positioning.  This touchstone document includes a focus on the 
positioning of people and the positioning of mathematics, which we describe very briefly here. In the 
positioning of people, teachers’ attention is drawn to: (a) interactions between/among students and 
issues of status (Cohen, 1994), smartness (Featherstone, et al., 2011), and voice are highlighted and 
(b) interactions between the teacher and students, within which aspects of authority, agency, control, 
and competence are articulated. The positioning of mathematics highlights how the various activities, 
tasks, and words we use in relationship to the doing of mathematics shapes what students come to 
think it means to know/do mathematics. (We recognize that the positioning of mathematics is really 
about calling into question the storyline of typical school mathematics and not really about 
positioning. We decided to identify this as a type of positioning so that we did not have to bring in 
the additional idea of storyline.) Prior to reading the touchstone document, the teachers talked about 
ideas related to positioning by reflecting on videos, transcripts, and other practice-based artifacts. 
After they read the touchstone, the idea of positioning becomes a conceptual lens for considering 
how a range of specific discourse moves might be influencing students’ opportunities to learn 
mathematics. 

Context and Methods 
The teacher research collaboration currently involves eight mathematics teachers who are 

working in a culturally, linguistically, and racially diverse school district and the first author of this 
paper, who works at a university near the district. The main school in which the majority of the 
teachers teach has about 800 students, across grades 6-8. Six of the eight teachers have been involved 
in the work for 4-5 years; two just joined the group when they were hired last year to teach 6th grade. 
Although the teachers have all taught at the middle school at some point in time, currently most of 
the teachers teach grades 6-8 mathematics and algebra, one teaches high school geometry, and one 
teaches multiple sections of 4th grade mathematics.  

Our work is grounded in critical, sociocultural, and sociolinguistic perspectives, and as such, we 
see learning as related to how one participates in the discourse practices of a community. Our 
primary data source includes audio recordings of discussions from the study group meetings, which 
took place twice a month across the 5 years of the collaboration (approximately 16 sessions each 
year, one 4-hour meeting during the school day and another 1.5 hour meeting after school). We also 
examined the artifacts and information the teachers provided about their action research projects 
throughout the various cycles over the past four years. This included, for example, powerpoint 
presentations the teacher researchers did at a mathematics education conference, emails and journals 
they wrote about their action research projects, and a book chapter they co-authored with the first 
author of this paper that focused on how they use positioning in their teaching and action research. 
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We began by creating timelines of the work using agendas and field notes from the study group 
meetings. This information helped us reduce the amount of data by identifying where positioning-
related discussions may have taken place. After narrowing the project discussion times, we used open 
coding (Esterberg, 2002) to code the nature of the focus of the discussions (e.g., whether they 
focused more on issues of authority or student status) as well as the various types of action the 
teachers reported taking related to positioning. We started with more recent meetings and worked 
backwards to see how the ideas appeared in previous years. 

Preliminary Findings 
Because we were still in the stage of open coding when this report was due, we share here 

broader scale findings about the changes in foci over time. We describe what they focused on about 
positioning but also some of the actions they described taking to focus on influencing student 
positioning. When we do our presentation, we will have more specific and finer grain sized findings 
to report. Generally, the year 1 discussions of positioning indicate that the teachers had not 
considered positioning in the ways described in the touchstone documents. They reported being 
aware of issues of social status related to things like popularity, but that they had not thought as much 
about this in relationship to mathematics learning. Their talk centered on their uncertainty about 
actions to take to counter positionings that they thought were not supporting student learning.  

As they moved into their first cycles of action research in year 2, the talk about positioning 
focused on the positioning of mathematics. The teachers grounded these discussions about what 
kinds of tasks and activities they offered to students as well as what they expected students to do 
(e.g., how they would engage but also expectations for producing high quality explanations and 
justifications). Their action focused primarily on designing and finding high cognitive demand tasks 
to use with students. Toward the end of year 2, the talk about the positioning of mathematics shifted 
toward a slightly different kind of action: they identified the kinds of norms they could put in place, 
articulated a common set of goals they would work on, and planned for piloting new curriculum 
materials that would offer richer learning experiences for students (see Busby, et al. (2017) for more 
information). In year 3, all teachers used the same set of norms and goals and the teachers in grades 6 
and 7 started to use the new curriculum materials. The shift in year 3, then, seemed to be away from 
the positioning of mathematics and more about issues of teacher authority (and the struggles 
associated with giving up control) and student agency (how they could get students to become more 
active participants).  

By year 4 (2016-17), all of the teacher-researchers began to think about distributing authority 
more and focused on trying to get students to talk most of the time during whole group discussion. 
They continued to struggle, however, with the giving up of control and with some of the ways 
students seemed uncomfortable with being more active learners. Students’ being uncomfortable with 
participating in more active ways, in fact, seemed to be especially acute in the 6th grade where 
students had come from much more traditionally structured mathematics classes in the elementary 
schools. Three of the teacher-researchers began to develop instruments they could use to gather 
information from students about their experience, which included Likert scale items about how 
students felt about various learning activities and with the mathematics. The items also included 
information about students’ developing agency for their mathematical thinking. Two teacher-
researchers also began to give weekly reflections that required students to write about something they 
had learned from other students in the class discussions, which helped the teacher-researchers 
understand status in their classrooms. Although year 5 is still underway, the teacher-researchers 
continue to create structures to support students to have more space and voice in the classroom. One 
teacher-researcher has students in front of the room and co-facilitating parts of some of the activities. 
Three others have decided to focus centrally on how bias might be impacting their expectations of 
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various groups of students along gender and racial lines. Thus, some of the shifts in attention to 
positioning in immediate classroom interactions have raised the prominence of student perspectives 
as well as how broader systems of privilege and oppression might be impacting the ways teacher-
researchers interact with and support student learning. 
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TEACHING FOR STUDENTS WITH SPECIAL EDUCATION NEEDS  
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In this study, we investigate the impact of mathematics elementary school teachers’ and special 
education specialists’ participation in professional development regarding how to conduct 
mathematics-specific consultations to improve mathematics learning opportunities for students with 
special education needs (SEN). We found that engaging in this professional development increased 
the participants’ confidence in their abilities to (a) engage in future mathematics-specific 
consultations, (b) engage in consultations in other content areas, and (c) differentiate mathematics 
instruction for students with SEN.  

Keywords: Elementary School Education, Instructional Activities and Practices, Teacher Education-
Inservice/Professional Development 

Study Purpose and Research Questions 
Concern for equitable learning opportunities for students with special education needs (SEN) has 

resulted in strong commitments for inclusive education from organizations worldwide (e.g., 
Australian Disability Discrimination Act, 1992; Individuals with Disability Education Act (IDEA), 
2004; UNESCO, 2009). Explicating its vision of mathematics teaching and learning, the National 
Council of Teachers of Mathematics lists Access and Equity as the first essential element of 
excellence and states, “An excellent mathematics program requires that all students have access to a 
high-quality mathematics curriculum, effective teaching and learning, high expectations, and the 
support and resources need to maximize their learning potential.” (2014, p. 59). Unfortunately, 
access to equitable mathematical learning opportunities is not available to many students with SEN. 
This lack of access, in turn, impacts their mathematical learning and performance as evidenced in 
their low performance scores compared to their peers without SEN on national representative 
assessments (e.g., NCES, 2013). 

The need to provide access and equitable learning opportunities for students with SEN requires 
general education teachers to meet the learning needs of these students. However, it is unrealistic to 
expect teachers, who must become experts in content areas, to also know how to meet all the widely 
varying needs of students with one or more special education need. In order to help teachers better 
manage the demands of meeting needs of each of their students, we conducted a pilot study involving 
six elementary teachers of mathematics, two special education specialists, and an instructional coach 
at Hawthorn Elementary School (all names of participants and schools are pseudonyms). The 
teachers, specialists, and coach were asked to engage in mathematics-specific consultations 
(described below). The purpose of our study was to investigate the following research question: How 
does participation in professional development on mathematics-specific consultations impact 
elementary school teachers’ and specialists’ perceptions of their ability to meet the mathematics 
learning needs of students with SEN?  

Theoretical Framework 
Collaborations between mathematics teachers and special education specialists are one attempt to 

assist teachers in meeting the mathematics needs of students with SEN. These collaborations can be 
powerful as they bring together the specialized mathematical knowledge for teaching of the 
mathematics teacher with the expert knowledge of teaching students with SEN of the special 
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education specialist (van Ingen, Eskelson, & Allsopp, 2016). Consultations between general 
education teachers and special education specialists are one form of teacher collaboration that can be 
used to support teachers in providing learning opportunities for students with SEN. Teacher 
consultations can take varying forms and can follow different models (e.g., Richards, Hunley, 
Weaver, & Landers, 2003; Truscott et al., 2012; Wesley & Buysse, 2004). While these models differ, 
they do share some common elements. Previously, we created a synthesized model of the common 
consultation elements (van Ingen, Eskelson, & Allsopp, 2016); this served as the consultation model 
for this study. This model consists of: (a) initiate rapport building, (b) negotiate consultation 
relationship, (c) identify the problem, (d) develop recommendations, (e) finalize recommendations 
and solidify plan, (f) implement the plan, (g) evaluate the plan, (h) learn from results, (i) check back, 
and (j) re-engage. 

Methods 
The participants choose to participate in this study in conjunction with their voluntary 

participation in professional development which we provided at the school. Our professional 
development team, composed of two mathematics teacher educators and one special education 
teacher educator, met with the teachers, special education specialists, and mathematics coach to 
provide professional development regarding how to conduct mathematics-specific consultations 
about the learning needs of students who struggle with mathematics. The professional development 
consisted of an introductory session, two weeks of implementation (practice) with authentic 
consultations, a second session, and then additional weeks of implementation. 

During the first session, we introduced the concept of mathematics-specific consultations and 
modeled how inservice elementary teachers of mathematics and their special education counterparts 
might engage in consultations. We provided the participants with templates that prompted them to 
ask the types of questions and/or provide the types of responses that would allow for maximum 
sharing of their respective specialized knowledge bases. The participants were given time to work in 
pairs or trios to plan when and how they would engage in the consultations. During this first session, 
participants also completed a questionnaire in which they identified their confidence level in their 
own ability to engage in consultations related to mathematics instruction and consultations related to 
reading instruction. We asked about their experiences and perceptions related to reading 
consultations as multiple teachers had experience with these previously and we wanted to use these 
as a comparison to the mathematics consultations. The participants also described any prior 
experiences they had engaging in consultations (regardless of content area), as well as what they felt 
were key aspects of successful mathematics consultations. At the end of the first session, participants 
were asked to engage in authentic consultations during the following two weeks. 

During the second professional development session, we asked the participants to talk about their 
experiences engaging in the mathematics consultations. We also discussed next steps they could take 
to continue to work together to meet the needs of the students with SEN they had identified and who 
were the focus of their consultations. During this session, the participants completed a second 
questionnaire similar to the first asking about their confidence in their abilities to engage in 
consultations related to reading and mathematics instruction. It also asked them to explain the extent 
to which this experience did or did not develop their thinking/skills related to teaching mathematics 
to students with special learning needs and consulting with a special education specialist or 
elementary teacher of mathematics. They were again asked to identify the key aspects of engaging in 
a consultation. 
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Data Analysis 
Participants completed questionnaires related to their confidence in their abilities to engage in 

consultations using a Likert scale with responses of 1 = Strongly Disagree to 5 = Strongly Agree. 
Although there were not sufficient participants to run statistical analyses on these data, we did 
compare the means of the data from the first and second questionnaires to identify possible patterns. 
The remaining questions were open-ended. We looked for similarities and themes across participants 
and between the two surveys in these responses.  

 Results 
As seen in Figure 1, the participants strongly agreed on both the pre- and post-professional 

development questionnaires that consultations between mathematics teachers and special education 
specialists play an important role in meeting the mathematics needs of students with SEN. Their 
confidence in their ability to engage in mathematics-specific consultations and in differentiating 
instruction to meet the mathematics needs of students with SEN increased after participating in the 
professional development. Interestingly, although the professional development focused solely on 
mathematics-specific consultations, participants’ confidence in their ability to engage in 
consultations related to reading instruction also increased.  

 

 
Figure 1. Mean scores of pre- and post-professional development self-reported data on perception of 

ability to meet the needs of students with SEN. 

During the second professional development session, the participants reported on the impact of 
their participation in the mathematics consultations. They spoke positively about the experience and 
identified several ways in which they would use the same consultation process in the future and how 
the process helped them to meet the mathematics needs of students with SEN in their classes (see 
Table 1). 

Table 1. Teachers Self-Report on the Impact of Participation in Mathematics Consultations 
Effects on Ability to Engage in Productive 

Mathematics Consultations  
Effects on Ability to Meet Math Learning 

Needs of Student with SEN 
• A better understanding of questions to ask 
• A clear plan of how to prepare for and 

engage in consultation 
• Awareness of resources available 
• Awareness of the need to consider how a 

• Greater understanding of how to support the 
mathematical practices when working with 
students with SEN  

• Thinking across grade levels and math 
content areas  
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student’s overall learning issues may affect 
math learning in particular 

• Gained a deeper understanding of the 
specific needs of a student and how to set 
attainable goals 

• Time to think about the specific needs of a 
student with SEN 

• An opportunity to create a specific action 
plan 

Discussion and Significance 
Meeting the mathematical learning needs of students with SEN can be extremely difficult for 

teachers of mathematics, yet they are under increasing pressure to do so. This study serves as a first 
step in exploring the impact of helping mathematics teachers to engage in mathematics-specific 
consultations with special education specialists. We found that that engaging in professional 
development that provides teachers and specialists guidance on how to participate in such 
consultations as well as the opportunity to do so was beneficial for both the mathematics teachers and 
special education specialists. As the teachers’ and specialists’ confidence in their own abilities to 
engage in these consultations and in providing differentiated instruction increase, we suggest that 
they will be more likely to have such discussions with one another and to focus on the mathematics 
needs of all their students, including those with SEN.  
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A JOURNEY IN TEACHING MATH FOR SOCIAL JUSTICE WITH YOUNG CHILDREN 
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University of South Florida 
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As a developing early childhood mathematics teacher educator, the area of Teaching Math for 
Social Justice (TMfSJ) was relatively new to me. Given the diverse nature of children and families at 
our school and within the community, TMfSJ offered a space for children to become immersed in 
learning centered around both mathematics and social justice goals (Gutstein, 2006). With this goal, I 
engaged in an autoethnography which explored the question of: What are the experiences of an early 
childhood educator working towards teaching mathematics for social justice?  

Drawing from critical praxis and sociopolitical norms for mathematics (Gutiérrez, 2013), I used 
an autoethnographic approach (Ellis, 2004) to challenge the idea that young children may not engage 
in this work. To do so, I taught four and five-year-old during a summer enrichment experience. As 
the school engages in Project Approach as a method of inquiry, lessons built off of topics the 
children were currently exploring, or demonstrated interest in the classroom through observation of 
informal conversations during elongated play. These included topics such as: access to public play 
spaces in our community, child hunger, and financial inequities. Data collected in a reflective 
journal, videotaped lesson implementation and children’s work samples were examined to construct a 
narrative account of my experience. During narrative construction entries and videos were closely 
reexamined as notes were taken to weave into my narrative) and provide points for departure as I 
question my experience In this way, the narrative constructed represents a truthful and authentic 
account of the experience TMfSJ accounting for elements of story and attention to criteria for 
quality. 

Based upon my experience, I offer points to consider when engaging in this work. During my 
lessons, issues of power and control emerged. These centered around management considerations, as 
I was focused initially on the children “behaving” and using tools appropriately, and questioning who 
had control over the lessons and thinking within the lesson. Having a focus on myself as the person 
constructing the lessons and sharing the knowledge, I fell into using deficit discourse to discuss the 
children and teachers at the school. While this occurrence was humbling, it led to my reexamination 
of the Funds of Knowledge children were bringing to the lesson as I reframed focus to highlight what 
children could do.  

Furthermore, within the experience I began to reexamine my own beliefs about what young 
children were capable of mathematically. Children were successful in not only discussing social 
justice issues, but demonstrating connections between the social justice issues and mathematics 
topics often taught at upper elementary levels. These begins to challenge pre-existing ideas that 
mathematical learning at the early childhood level be solely organized by developmental age 
progression.  
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Research (e.g., Fennema et al., 1993, Smith et al., 2001) has found that teachers who can observe 
student performance and respond by adjusting both content and methods empower diverse learners to 
succeed in doing mathematics. However, learning these kinds of ambitious instructional practices are 
challenging endeavors, but are manageable when collaboratively worked on with common materials 
(Lampert et al., 2011). Therefore, in this study, five third grade teachers and their students 
participated in a 20-week design experiment focusing on how to implement number talk instructional 
activities within their classrooms. The purpose of this design experiment was to implement a theory 
about how the pedagogies of enactment and investigation (e.g., McDonald et al., 2013) provide rich 
learning opportunities that would move teachers into roles where they prepared students to talk about 
mathematical ideas. To this end, this study aims to answer the following research question: how does 
the cycle of enactment and investigation support in-service teachers in learning about number talk 
instructional activities? 

In order to answer the research question, video recordings of the teacher workgroup and 
enactments of number talks within teachers’ classrooms were collected and analyzed. Transcripts of 
the teacher workgroups were coded for both the pedagogies of enactment and investigation and then 
for episodes of pedagogical reasoning (Horn, 2010) to gain understanding about how the teacher 
workgroup provided opportunities for teachers to make sense of both mathematics instruction and 
student learning. Additionally, classroom number talks were coded for levels of math talk learning 
communities (Hufferd-Ackels et al., 2004) in order to provide insight into how professional learning 
enables teachers to foster discourse within their classrooms.  

Findings suggest that the pedagogies of enactment and investigation provide teachers with 
opportunities to interact with colleagues facilitating rich learning about how to promote mathematical 
talk with students. Moreover, analysis of classroom enactments suggest that the teachers’ role in 
number talks shift from being the source of mathematical ideas to a role of facilitator, providing 
increasing opportunities for students to talk meaningfully about mathematics.	
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Teaching is an affective practice, demonstrated by teachers’ interactions with students, 
relationships with parents, and the shared communities of practice established with other educators 
(Hargreaves, 1998). This atmosphere affects teachers’ feelings of confidence, which we define as 
“part of an individual teacher’s ways of learning through experiencing, doing, being, and belonging” 
(Graven, 2004, p. 179). The crossroads between the affective and cognitive aspects of teaching are an 
under-explored and therefore invisible phenomenon that requires further research. Our study makes 
visible teachers’ emotions of confidence and insecurity and explores: what are mathematics teachers’ 
lived-experiences of confidence and insecurity in classroom teaching? 

To explore the affective component of the mathematics teaching profession, we conducted 
phenomenological interviews (Moustakas, 1984) with seven practicing mathematics teachers, 
ranging from elementary through secondary level. This phenomenological study allowed for an in-
depth exploration of the feelings of confidence or insecurity teachers encountered during 
mathematics instruction. Our interview sessions utilized Van Manen’s (2015) approach, where we 
focused on teachers’ innermost feelings and viewpoints regarding specific phenomenon. 

Our teachers expressed feelings of confidence through a range of experiences: (i) student 
characteristics and interactions (e.g., knowledge of student backgrounds, students’ abilities to help 
one another), (ii) knowledge and experience gained through teaching (e.g., curriculum familiarity, 
ability to engage students), and (iii) fostering mathematical connections with the real world and 
previous and future schoolwork. These teachers expressed feelings of insecurity along similar content 
lines including: (i) student characteristics and interactions (e.g., working with high-ability or poorly 
motivated students), (ii) interactions with authority (e.g., administration, policy), and (iii) 
negotiations of knowledge (e.g., teaching new subjects, lack of autonomy). 

This study contributes to the body of research on teacher emotion in mathematics education, as 
well as implications for teacher professional development. It suggests an intersection point—a place 
where teachers’ confidence and insecurity collide with their knowledge, experience, and authority—
demonstrating the value of studying the affective realm of teachers’ practice. 
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Addressing problems of practice and implementation at scale is an issue that continues to 
challenge mathematics education researchers and practitioners (Cobb & Jackson, 2011). As part of a 
statewide research-practice partnership, we are currently using a design-based implementation 
research (Fishman et al., 2013) approach to organize the collaborative design of a multifaceted 
intervention for new state mathematics standards and the promotion of more equitable classroom 
learning opportunities for students and teachers. These efforts include common spaces and tools for 
teachers, leaders, and parents including: a closed webspace for teacher engagement, face to face 
professional development sessions, leader support tools, and parent outreach materials. The focus of 
this presentation in on the closed webspace for teachers seeking to promote the use of research on 
teaching and learning as teachers implement new state mathematics standards. 

A review of the literature identified a number of characteristics of effective online learning 
environments that we drew upon to build our design principles for the webspace. Most importantly, 
opportunities for collaboration play a central role in both building community and the overall utility 
of online environments (Duncan-Howell, 2009). Therefore, a key design principle for the 
development of a common virtual space for teachers was the opportunity for teachers to collaborate 
with their colleagues around the new mathematics standards, their implications for mathematics 
teaching, and research on teaching and learning. In doing so, we conjecture that this space will foster 
collaboration and provide teachers with an asynchronous setting for learning and reflection at their 
own pace and tailored to their own needs (Clay, Silverman, & Fisher, 2012). 

In this presentation, we will present aspects of our iterative design for creating a virtual space for 
teacher learning. We will describe our design conjectures for learning within this space and how they 
changed through findings from teachers' participation and feedback throughout the design process. 
We will outline aspects of the space and how we seek to create opportunities for teacher learning 
related to research on teaching and student learning. Finally, we will present preliminary results of 
research on teacher learning within the virtual space. 
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The National Council of Teachers of Mathematics’ (NCTM) Principles to Actions: Ensuring 
Mathematical Success for All [(PtA, NCTM, 2014)] acknowledges the critical role of mathematics 
coaches in enhancing teacher capacity and positively influencing teacher beliefs. While PtA calls on 
mathematics coaches to “take action,” coaches need guidance to meet the challenges of enacting the 
eight research-based teaching practices in their unique school contexts. To lower potential barriers to 
implementation, we designed a Decision-Making Protocol for Mathematics Coaching (DMPMC) 
which recognizes ranges of coaching contexts, focuses on mathematics content, and empowers 
school communities to surmount obstacles as identified in PtA.  

The DMPMC provides a reflective four-phase cycle of coaching actions to support classroom 
teachers in building more opportunities for student reasoning and sense-making. Guiding questions 
allow coaches to purposefully bridge content considerations, research-based teaching practices and 
high leverage coaching practices (Gibbons & Cobb, 2012). After evaluating their contexts and 
defining a content focus, coaches establish goals, select appropriate coaching and teaching practices, 
and engage in collaborative debriefs of classroom enactments to inform further actions. 

In semi-structured interviews with two novice coaches and one veteran coach, we explored initial 
reactions and subsequent descriptions of enacting the DMPMC with selected teachers. Emergent 
themes were the potential of the DMPMC to formally structure interactions with teachers and to 
informally support in-the-moment decision making. The guiding questions of the protocol elicited the 
purposeful selection of coaching practices aligned with teaching practices prior to engaging in 
coaching situations. For one coach, the four DMPMC phases also became working knowledge that 
she drew upon during informal conversations with teachers.  

While all participants situated their contexts within the DMPMC, the novice coaches frequently 
sought affirmation of their actions from the researchers. Participants shared the advancement of their 
coaching practice through consistent interplay between coaching and teaching practices, which 
enabled a simultaneous focus on relationship building and making instructional shifts. Future 
research includes focus groups for coaches to share their perspectives and experiences with the 
DMPMC. We seek to further our contextual understanding of how this protocol can build coaching 
effectiveness through structured consideration of content, practices, and relationship building in 
tandem. 
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Researchers have found that students and teachers often maintain insufficient meanings for 
function and their graphs (e.g., Montiel, Vidakovic, & Kabael, 2008; Moore, Silverman, Paoletti, & 
LaForest, 2014; Oehrtman, Carlson, & Thompson, 2008). Several of these researchers have noted 
that students maintain function meanings that are restricted to particular representations (e.g., the 
Cartesian coordinate system with the independent quantity represented by x on the horizontal axis). 
For example, Montiel et al. (2008) identified students applying the vertical line test, a common 
procedure in U.S. curricula, to determine if a graph represented in the polar coordinate system 
represented a function. As a second example, Moore et al. (2014) described pre-service teachers’ 
responses to tasks in which hypothetical students provided mathematically correct work that did not 
follow conventions common to school mathematics (e.g., graphing the function y = 3x with x on the 
vertical axis and y on the horizontal axis). Many of the pre-service teachers did not recognize that the 
hypothetical student’s solution was correct, or identified that although the hypothetical student 
accurately represented the relationship defined by y = 3x, the student’s solution was mathematically 
incorrect because he or she did not maintain conventions.  

Extending Moore et al.’s (2014) work with pre-service teachers, we provided in-service teachers 
tasks similar to those by Moore and colleagues in pre and post course online surveys. The 
participants were enrolled in a fully online graduate mathematics course designed specifically for in-
service teachers. The participants were geographically distributed across the U.S. and all had one to 
five years teaching experience. We coded their responses using a semi-open coding scheme, with the 
students’ activities described by Moore et al. (2014) serving as the basis for an initial coding scheme. 
We adapted this initial scheme to capture the teachers’ responses. We did this through an iterative 
process of analyzing teachers’ responses, discussing commonalities across the responses, and 
adapting or creating new codes to satisfactorily capture the responses. In this poster, we present our 
coding of teachers’ responses and compare our results with those reported by Moore and colleagues. 
Additionally, we compare differences in teachers’ responses before and after a course designed to 
support their reasoning about relationships between quantities. Finally, we highlight differences 
between our results and those of Moore and colleagues that may stem from the methodological 
difference of collecting data from online surveys versus in-person interviews. 
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Professional development (PD) programs aim to change teachers’ current practices and positively 
impact student outcomes. In this poster, we present a preliminary model investigating the effect of 
teachers’ participation in sustained PD on student achievement. 

Background and Data 
This poster reports on a study looking at the efficacy of a 3-year PD program for 3rd-5th grade 

teachers in a mid-sized, urban school district. The PD (Foreman, 2010) is focused on a set of core 
mathematical habits for students and teachers that promote high-level reasoning and productive 
discourse (e.g. Stein, Engle, Smith, & Hughes, 2008) in mathematics classrooms. Student 
achievement was measured by mathematics scores on standardized assessments at the end of each 
grade. Over four years, 239 teachers spanning 34 schools participated in the study for a total of 
10,076 students and 14,750 student assessment scores. Each school was either part of a sustained 
year long PD (Studio), or part of the summer sessions only (BP-only). 

Model  
To investigate the relationship between student achievement and teachers’ participation in the 

PD, we developed a hierarchical linear model (HLM) with three levels to address students, teachers, 
and schools. Since over the years, students are not nested within teachers, we used a cross-classified 
random effects model with levels: (1) time series data of student scores (normalized), (2) row-factor: 
students; column-factor: teachers, and (3) schools as clusters. 

Results and Discussion 
Our preliminary HLM model suggests that our PD program had a positive impact on student 

outcomes as measured by end of the year standardized assessments. We found that by the end of the 
second year of being in a studio school, students scored .08 standard deviations higher (𝑝 = 0.019) 
than their counterparts. This result is reflecting a positive impact of a multi-year participation to the 
PD.  This impact is robust remaining significant and positive when other variables such as free and 
reduced lunch at school and student level, student ethnicity, teachers’ MQI scores, and hours of 
participation in the PD are added to the model. 
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Mathematical modeling is especially well poised to be successful in closing the opportunity gap 
for ELL students since it offers the opportunity to tackle “big, messy, realistic problems, helps 
students connect mathematics to life and empowers them to use their mathematics to solve relevant 
problems” (GAIMME Report, 2016, p. 23). High concentrations of ELL students, when immersed in 
classrooms where they are engaged in small group work involving authentic problem solving, 
showed significant gains on mathematics achievement, not only in computation, but also problem 
solving and language acquisition, two important components of mathematical modeling. However, 
many teachers have no formal preparation in teaching mathematical modeling.  

The Study 
The research featured in this poster is from a small, funded professional development project for 

teachers in rural western United States in which science and mathematics teachers were engaged in 
utilizing and creating mathematical modeling problems and enacting them in all classes through 
highly interactive classroom environments. It consisted of a two-part summer institute augmented 
with three additional workshops throughout the year. The emphasis of this professional development 
was, in part, on fostering language and content development of ELLs through mathematical modeling 
and also cultural responsive pedagogy as means of closing the opportunity gap for ELLs.  

This study sought to address two research questions: (1) How does mathematics and science 
teachers’ conception of teaching mathematical modeling in ways that foster content learning and 
language development for ELLs emerge; and (2) what challenges do mathematics and science 
teachers face, as they experience year-long professional development focused on mathematical 
modeling. This study used a mixed-methods design with focus group interviews, classroom 
observations, surveys, and lesson plans.  Data collection is currently ongoing but preliminary data 
suggests that although students seem to benefit from well-designed mathematical modeling tasks, 
teachers’ beliefs about pedagogical practices are very hard to change.  Also, teaching mathematical 
modeling in ways that foster language development for ELLs can be challenging to implement due to 
time constraints since teachers are on a prescribed curriculum that they have to follow.  This is 
significant because as we connect research to practice consideration should be made in terms of 
revising the curriculum to allow opportunities for teachers to implement pedagogical practices such 
as mathematical modeling, that help their diverse students access higher level mathematics. 
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Mathematics graduate student instructors (GSIs) teach hundreds of thousands of undergraduate 
mathematics students each semester, yet typically lack guidance and support to teach undergraduate 
students effectively (Rogers & Steele, 2016; Speer & Murphy, 2009). GSIs’ initial teaching 
experiences represent a crossroad between how they teach in the short term in graduate school and in 
the long term as potential future faculty members (Lortie, 1975). To address this concern, we 
developed and implemented a peer-mentoring program at two universities in the US whereby 
experienced GSIs mentor first- and second-year GSIs (novices).  

After a semester of being trained in ways to effectively serve as a peer-mentor, nine experienced 
GSIs mentored three or four novices on teaching similar content. Mentors facilitated bi-weekly small 
group meetings with novices as part of an NSF-funded peer-mentorship grant (IUSE #1544342 & 
1544346). During these discursive meetings, mentors provided context-specific support, resources, 
and guidance to novices using practices that augment productive discourse (Smith & Stein, 2011). 
Within small groups, novices determined specific teaching and learning topics they wanted to 
discuss. Topics also included concerns mentors and novices raised later in the semester, or adapted 
from ideas other small groups discussed. We examined: What topics from small-group peer-
mentoring meetings did novices value?  

To answer our research question, we applied a social constructivist lens within each small group 
to identify how the small group topics were valued. Participants included 30 novices and nine 
mentors from two universities. At the end of one mentoring semester, novices rated how (a) valuable 
they found each topic discussed during their small group meetings and (b) interested they would have 
been in discussing topics from other small groups. Discussion topics were objective (e.g., Grading 
Practice and Determining Assessment Questions) and subjective (e.g., Work-Life Balance and 
Qualities of a Good Teacher). We first qualitatively coded data as either within a group or from other 
groups. We then quantitatively analyzed each novice’s ratings of their own small-group meetings. 
From this analysis we identified topics that novice GSIs value and topics that their peer-mentors may 
struggle to facilitate well. Topics valued by novices that were facilitated well by mentors included (a) 
Managing Time During Class, (b) Presenting Mock Lessons, and (c) Incorporating Formative 
Assessments. Topics valued by novices that were not facilitated well by mentors included (a) Writing 
a “Good” Exam, (b) Dealing with Overbearing Students, and (c) Incentivizing Group Work. 
Moreover, these results offer insight and synergy between educating GSIs and improving 
undergraduate mathematics teacher pedagogy. 
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Over the last 17 years researchers have been investigating the features of effective professional 
development (PD) that affect teacher’s knowledge and skills, and lead them to changes in classroom 
practice (e.g., Garet et al., 2001). Based on results from face-to-face PD, Garet and colleagues (2001) 
proposed six characteristics of high-quality and effective PD, in which opportunities for active 
learning is highlighted as a core feature of effective PD. Active learning denotes the extent to which 
PD affords opportunities for teachers to become engaged in meaningful discussion, collaborative 
work, planning, and reflection regarding their practice (Garet et al., 2001; Borko, 2010). Massive 
Open Online Courses (MOOCs) have generated notable disruption in higher education, and MOOCs 
as venues for teachers’ PD are a relatively new field of study. There is a need to thoroughly 
understand which opportunities for active learning are present in MOOCs designed for effective 
teachers PD.  

Context, Data and Methods 
The context of this study is a MOOC offered by a large American university that has been 

designed for statistics teachers. This study aims to build answers to the research question: What are 
the opportunities for active learning depicted in MOOCs designed for effective professional 
development of statistics teachers? Qualitative research methods of content analysis were used to 
identify and describe opportunities for active learning as enacted in a MOOC designed for PD in 
statistics teaching. Data comprised 2370 forum posts distributed across 546 discussion threads. 

Results and Implications 
Results showed that by engaging in forums, teachers had opportunities to (a) interact with each 

other regarding the MOOC content, (b) share their experiences regarding statistics content and their 
practice of teaching, and (c) reflect on their practice. For example, teachers experienced the process 
of evaluating different statistics tasks according to a framework for statistical investigations, and 
subsequently engaged in discussion forums, sharing their perspective about how those tasks would 
promote productive statistical habits of mind and how these tasks could foster students’ learning. The 
process of analyzing, reflecting, and suggesting improvements in the tasks produced meaningful 
opportunities for participants’ active learning as stated in the literature. Implications from this study 
show the relevance of the connections and the network established by teachers in MOOCs. It 
indicates that future MOOCs for teachers’ PD should be designed to nurture participants’ 
connections and to help them in establishing virtual communities for shared practices. 
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In our poster we will report on our effort to support middle grades teachers to develop the content 
knowledge, pedagogy, and self-efficacy necessary to support students to learn about statistical 
inquiry through authentic data investigations. There is a growing consensus that “every high school 
graduate should be able to use sound statistical reasoning to intelligently cope with the requirements 
of citizenship, employment, and family and to be prepared for a healthy, happy, and productive life” 
(Franklin et al., 2007, p. 1). This acknowledgement is represented in various content standards for 
mathematics at the K-12 level (CCSSM, 2010; NCTM, 2000). However, many practicing teachers 
have not experienced sufficient preparation to facilitate students' development of statistical literacy, 
and research has shown that most teachers do not have a deep understanding of the foundational 
concepts related to statistical inference (Franklin et al., 2015).  

Thus, we have designed an innovative approach to supporting teachers through the integration of 
1) a summer institute, 2) professional learning communities (PLCs), and 3) a Massive Open Online 
Course for Educators (MOOC-Ed). During the summer institute, teachers will meet together for a 
week-long professional development. The summer institute will focus on developing deep 
understandings of statistical concepts and exploring the ways students might engage with these ideas. 
We will use tasks from the research-based Data Modeling curriculum during the institute (Lehrer, 
Kim, & Schauble, 2007) to expose teachers to the need for statistical inference by exploring 
questions in the midst of widespread variability in data and explore different sources of variability 
and will discuss the conceptual principles of scale, interval, grouping, and order in visual displays of 
data. The MOOC-Ed, Teaching Statistics Through Data Investigations (Friday.institute/tsdi), was 
designed by Hollylynne Lee to develop teachers’ knowledge of teaching statistics through the 
statistical investigative cycle (Franklin et al., 2007).  

Our poster will report on the design framework for integrating Data Modeling resources and the 
MOOC-Ed to support sustained teacher support and to build collaborative communities. The poster 
will also report on early data about how new concepts and teaching practices travel across these 
different settings. 
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In this poster, we share details of a statewide Design-Based Implementation Research project’s 
efforts supporting teachers’ implementation of new state secondary mathematics standards. This 
includes design of project spaces and tools and preliminary results related to teacher interactions 
and learning.  

Keywords: Teacher Education-Inservice/Professional Development, Design Experiments, Standards 

Mathematics education researchers have built a strong body of research that continues to move 
the fields of both research and teaching forward; however, a divide continues to exist between 
research and practice and issues of implementation at scale (Cobb & Jackson, 2011). Responding to 
this challenge, researchers and funding agencies are encouraging research-practice partnerships 
where researchers and practitioners work together to iteratively design and research problems of 
practice (Penuel & Farrell, in press). 

As part of a statewide research-practice partnership between a state education agency, district 
leaders, teachers, and mathematics education researchers at several institutions, our work draws upon 
Design-Based Implementation Research (DBIR) (Fishman et al., 2013) as an approach to facilitate 
the collaborative design of an intervention related to new state mathematics content standards and 
efforts to promote more equitable classroom learning opportunities for students. These efforts include 
common spaces and tools for teachers, leaders, and parents including: a closed webspace for teacher 
engagement, face to face professional development sessions, leader support tools, and parent 
outreach materials.  

In this poster presentation, we will present DBIR as an approach to this work and share the ways 
in which we draw upon both communities of practice and boundaries to conceptualizing teacher 
learning (Wenger, 1998). We will describe the design process for both boundary encounters and 
boundary objects for which communities of high school mathematics teachers, teacher leaders, and 
parents/community members can collaborate and engage around research on teaching and student 
learning of mathematics. Finally, we will present preliminary findings on research related to 
interactions and learning within the spaces.  
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Research has shown that mathematicians may struggle implementing a new curriculum without 
support (Speer & Wagner, 2009; Wagner, Speer, & Rossa, 2007). Further, research has shown how 
summer workshops and online forums aid mathematicians in sustaining instructional change 
(Hayward, Kogan, & Laursen, 2015). However, new technology exists in which faculty collaboration 
can take place (e.g., online video calls). Research is underway that explores diverse ways to engage 
mathematicians and support them in reaching their goal for instructional change. This work is part of 
an ongoing project to support mathematicians’ instructional change. This study focuses on one 
participant, Dr. J., and seeks to find links between his experiences in the online faculty collaboration 
and his instructional practice. The poster will address the following research question: How does one 
mathematician’s instructional practice develop while participating in a faculty collaboration for 
inquiry-oriented differential equations? 

Methods 
Data for this case study (Yin, 2013) comes from observations of the faculty collaboration online 

meetings, Dr. J’s classroom observations, and audio recordings of three interviews with Dr. J. 
Analysis of the classroom instruction uses the inquiry oriented instructional framework (Kuster, 
Johnson, Andrews-Larson, & Keene, n.d.). Analysis of the transcripts of the faculty collaboration 
uses a priori coding to explore Dr. J.’s changes in participation. Lastly, analysis of interview 
transcripts will be open in nature and serve as triangulation of data. 

Preliminary Results 
Analysis is ongoing but preliminary results seem to indicate that Dr. J.’s implementation of the 

IODE materials was influenced by his participation in the OWG. Although the interviews indicate 
that his desire to make changes in his instruction began prior to participation in the online working 
group, he uses the language and ideas of the inquiry-oriented instructional components presented in 
the project as a way to focus his teaching, offer feedback to other participants, and otherwise 
participate in the discussions. Further work will describe the connections and offer ideas to other 
facilitators of faculty online instructional support groups. 
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Professional noticing of children’s mathematical thinking is a sense-making activity specific to 
the profession of teaching (Jacobs, Lamb, and Philipp, 2010).  It distinguishes itself from other 
noticing conceptualizations in two ways: by including teachers’ in-the-moment decision-making, and 
by focusing on children’s mathematical thinking.  Additionally, it is an essential part of instruction 
that builds on and responds to students’ ideas. Herein we consider the professional noticing of 
students’ mathematical thinking of 18 practicing secondary mathematics teachers in the domain of 
proportional reasoning (Lobato & Ellis, 2010).  

Participants were a part of a larger professional development1 aimed at supporting secondary 
mathematics and science teachers to improve in their practice and become leaders of their teaching 
communities. At the time of data collection, 13 participants had received 2.5 years of sustained 
professional development around students’ mathematical thinking, and 5 had just begun.  Each 
participant considered three samples of student work about proportional reasoning, and responded to 
the three professional noticing prompts (Jacobs et al., 2010): (1) Describe in detail what each student 
did. (Attending); (2) What did you learn about the students’ mathematical understandings? 
(Interpreting); and (3) Pretend you are the teacher of these students. What problem might you pose 
next, and why? (Deciding how to respond).  

The authors then coded participants’ responses according to the amount of evidence 
demonstrated of considering the students’ mathematical thinking: robust, limited, or a lack of 
evidence (Jacobs et al., 2010). Percentages of scores can be seen in Table 1.  In sum, we find more 
evidence that improvement in professional noticing of students’ mathematical thinking requires 
sustained professional development around students’ mathematical thinking 

Table 1: Percentages of Initial and Advancing Participants’ Codes Per Component-Skill 
 Attending Interpreting Deciding how to Respond 
 Initial Advancing Initial Advancing Initial Advancing 

Robust 40% 38% 0% 31% 0% 31% 
Limited 40% 62% 80% 69% 20% 31% 

Lack 20% 0% 20% 0% 80% 38% 

Endnotes 
1This research was supported in part by a grant from the National Science Foundation (DUE-

1240127). The opinions expressed in this article do not necessarily reflect the position, policy, or 
endorsement of the supporting agency. 
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Critical incidents (Goodell, 2006) in mathematics teacher education have historically focused on 
teaching as a practice of problem solving. This poster describes findings from a collaborative self-
study on the impact of this “problems of practice” perspective on ourselves as knowers in 
mathematics teacher education. Instead of continuing to ritually make use of critical incidents to 
explore such “problems of practice,” we sought to explore whether critical incidents could function 
in more positive and sustaining ways.  

Early, reflective analyses of our conversational transcripts revealed that our initial sharing of 
critical incidents provoked largely negative activating and deactivating emotions. Our discussions of 
the critical incidents as “problems of practice” and how to solve these problems left us feeling mostly 
defeated. Previous mathematics education scholarship (Confrey, 1995; Forgasz & Clemans, 2014) 
has discussed the marginalization of emotion as a separate and inferior form of sense-making than 
cognitive perspectives of knowledge. We sought to challenge this historic tendency in our field and 
looked for ways to discuss practice that provoked positive activating emotions. We began crafting 
and discussing critical incidents that were at the crossroads of cognition and positive activating 
emotion.  

Thematic analysis of 6 narratives of critical incidents and transcripts of 11 of our 30- 90 minute 
conversations over 5 months evoked by the incidents, resulted in several findings. For example, an 
analysis of one of the transcripts revealed that expressions of vulnerability that were brought to the 
group (such as: “If I can be really vulnerable…” and, “someone else positions us in such a way that 
we’re blindsided into being vulnerable”) suggest that vulnerability may be an important characteristic 
for mathematics teacher education development that allows the sharing of critical incidents to 
become productive. Interpretation of additional transcripts indicates that this discussion of 
vulnerability and our own willingness to open ourselves to be vulnerable with each other contributed 
to a re-storying of our work and ourselves in more positive ways (Brown, 2006). Further analysis of 
transcripts revealed ways in which the emotional terrain constructed during the experience of 
articulating critical incidents and re-storying served an epistemic role.  Emotions allowed us to make 
sense of the incidents in new ways. We assert that a critical friends group and the sharing of positive 
incidents has the potential to provoke and sustain explorations of mathematics teacher educator 
practice without concomitant negative and deactivating emotions that had been provoked by 
explorations through a “problems of practice” lens. 
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The current effort to implement the Common Core State Standards for Mathematics (CCSSM) is 
the latest in a series of mathematics standards implementation efforts in the United States over the 
last half century.  When implemented, previous standards efforts have either failed or been less 
successful than anticipated for a variety of reasons.  Two oft-cited reasons are a lack of a shared 
understanding about what the standards are and how to incorporate them effectively at various levels 
of an existing education system, and perceived and/or real flaws in the standards themselves. 

With this past in mind, as well as requests for studies of this type from the mathematics education 
research community (Heck, Weiss, & Pasley, 2011), this study sought to document whether and to 
what extent these problems exist within Michigan’s education system as the state implements the 
CCSSM.  More specifically, this study sought answers to two research questions: To what degree is 
there alignment between Michigan Department of Education (SDE) officials’, regional professional 
development providers’, and elementary teachers’ views of the goals of CCSSM implementation?  
Also, do those outside MDE charged with the implementation feel adequately supported in effecting 
their part of the transition to the CCSSM? 

MDE officials, regional professional development providers, and elementary teachers were 
surveyed and interviewed as part of this mixed methods study in order to gather their thoughts on 
what they believe the goals of the CCSSM to be, what they believe their roles in the implementation 
effort are, and how they are supported in that effort.  Responses were analyzed for commonalities 
and differences in the perceptions of individuals at the varying levels of the state’s education system. 

While elementary teachers were confident in their abilities to implement the CCSSM effectively, 
they still desired more professional resources related to the CCSSM and were generally unfamiliar 
with several resources others in Michigan’s education system were promoting.  Furthermore, as the 
CCSSM became a political issue that was widely discussed outside the education community, each of 
the three stakeholder groups that participated in this study were affected by and dealt with that 
development in different ways.  These responses can be compared and contrasted with the findings of 
McDonnell and Weatherford (2016) as well as Polikoff, Hardaway, Marsh, and Plank (2016). 
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Borko (2004) outlined four elements of a professional development (PD) experience (i.e., the PD 
program, teachers, facilitators, and context), and suggested three phases of research to investigate the 
interactions between these elements: (1) focusing on an individual PD experience at a single site, (2) 
expanding the study to a single PD experience enacted by more than one facilitator at more than one 
site, and (3) comparing multiple PDs at multiple sites. Garet et al.’s (2001) survey of teachers 
highlighted desirable core characteristics of PD experiences (i.e., focus on content knowledge, 
opportunities for active learning, coherence with other learning activities) and structural features (i.e., 
form of activity, collective participation of teachers from the same school, grade, or subject; duration 
of the activity).  

In this poster, we report on a three-year phase 2 PD experience across four universities involving 
60 middle school and secondary mathematics teachers. The project aims to enrich teachers' 
knowledge and skills for teaching algebra. Here, we investigate the ways in which PD for middle 
school and secondary mathematics teachers may be evaluated in order to give a holistic view of the 
PD experience. Eight objectives (e.g., collaborate to locate and develop algebra activities, engage 
students in solving rich algebra tasks) were set at the beginning of the program with six planned 
instruments to measure progress towards achieving those objectives. The following data sources were 
used to measure the progress of the project: a knowledge for teaching algebra assessment, lesson 
plans, PD and critical friend reflection forms, action research projects, and students’ state 
standardized test scores.  

Most compelling of our preliminary results has been the benefits of multiple data sources to 
provide a broad picture of teachers’ development. Giving a pre- and post-test in knowledge for 
teaching algebra provides one lens for evaluating the PD, while the lesson plans and reflection forms 
give insight to how the teachers implemented PD foci (e.g., mathematics teaching practices) and 
illustrate teachers’ creativity. Critical friend reflection forms show growth in teachers’ ability to 
provide feedback to peers in ways that support algebraic thinking, and PD survey data indicate that 
teachers find value in the PD work itself and the ability to collaborate with their colleagues. Action 
research projects are individualized or collaborative and allow us to gain insights into the teachers’ 
needs and how they perceive their progress. Collectively, these items give us a holistic view of the 
PD experience. 
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A STUDY OF PRE-SERVICE TEACHERS USE OF REPRESENTATIONS IN THEIR 

PROPORTIONAL REASONING 

Kim Johnson 
West Chester University 
Kjohnson2@wcupa.edu 

Proportional reasoning is important to the field of mathematics education because it lies at the 
crossroads of additive reasoning in the elementary school and multiplicative reasoning needed for 
more advanced mathematics.  This research reports on the representations used by pre-service 
teachers (PSTs) as they responded to tasks involving proportional reasoning. The findings highlight 
three common difficulties that were prevalent among participants’ responses.  An analysis of the 
representations used by participants revealed that the representations that PSTs created in their 
effort to solve the problems often enabled them to overcome these difficulties. Prior research is used 
to hypothesize explanations of the extent to which different forms of representations were useful and 
productive for the participants. Implications include ways that use of these multiple representations 
could aid in the teaching of proportional reasoning. 

Keywords: Mathematical Knowledge for Teaching, Rational Numbers, Modeling 

Proportional reasoning is important to the field of mathematics education because it lies at the 
crossroads of transitioning from additive reasoning in the elementary school to multiplicative 
reasoning necessary for proportional reasoning and more advanced mathematics. Lesh, Post, and 
Behr (1988) describe the importance of proportional reasoning, saying that it is “widely recognized 
as a capability which ushers in a significant conceptual shift from concrete operational levels of 
thought to formal operational levels of thought” (p. 101). This shift in understanding can lead to 
advanced mathematical thinking and is paramount in achieving success in higher level mathematics 
courses. 

Pre-service teachers (PSTs) enter college with prior assumptions about mathematics and 
mathematical concepts.  Often PSTs have many deep-rooted misconceptions about the multiplicative 
relationships involved in proportional reasoning and struggle with solving tasks that involve these 
concepts (Simon & Blume, 1994; Smith, Silver, Leinhardt, & Hillen, 2003; Sowder, Armstrong, 
Lamon, Simon, Sowder & Thompson, 1998).  The question becomes: What mathematical knowledge 
do PSTs have in relation to proportional reasoning? Understanding this knowledge is important in 
helping them develop the specialized content knowledge necessary for teaching.  And how do PSTs 
use representations to deepen their understanding of proportional relationships?  This report focuses 
on particular tasks that were used to elicit proportional reasoning of PSTs, the misconceptions that 
surfaced and how PSTs used representations in their problem solving to overcome these obstacles. 
These findings can help improve mathematics teacher education, as we can gain a better 
understanding of how PSTs think about proportional reasoning. 

Conceptual Framework 
While the definition of representation in mathematics education vary, most researchers 

differentiate between external and internal representations where external representations are 
embodiments of ideas or concepts such as charts, tables, graphs, diagrams, etc., and internal 
representations are cognitive models that a person has (e.g., Janvier, Girardon, &  Morand, 1993). In 
this study, representations are external mathematical embodiments of ideas and concepts that provide 
the same information in a drawing, picture, table or graph. 
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According to Dufour-lanvier et al. (1987) the role of representations in mathematics education 
has several characteristics: (1) Representations are an inherent part of mathematics, (2) 
Representations provide a concrete example of a concept, (3) Representations are used locally to 
mitigate certain difficulties and (4) representations are intended to make mathematics more 
interesting.  It is this third role that this report will illustrate in terms of PSTs proportional reasoning.  
In particular this study focuses on the use of representations to overcome difficulties and 
misconceptions. 

The use of multiple representations is advocated by many mathematics educators and supported 
by the National Council of Teachers of Mathematics (NCTM) Standards (NCTM, 2000). It is 
suggested that multiple representations provide an environment for students to abstract and 
understand major mathematical concepts. Constructivist theory also suggests that we need to 
understand students' thinking processes in order to facilitate their learning in more empowering ways 
(Steffe, 1991). Therefore, it is necessary for mathematics teacher educators to understand how PSTs 
use representations, not only to understand their thinking, but to develop a repertoire of useful 
representations for teaching and discussing proportional reasoning. The results of this report will 
provide mathematics teacher educators with multiple representations that are productive in the 
teaching and learning of ratio and proportion. 

Methodology 
Twenty-five elementary and secondary math education PSTs were selected for this study at the 

beginning of their first mathematics methods courses at a large research university. A nine-problem 
questionnaire was developed and used to ascertain each PST’s current level of understanding about 
proportional reasoning. (See Johnson, 2013 for more details on questionnaire). The responses were 
coded and participants were divided into four groups based on the analysis of their responses.  Group 
1 was distinguished by having a high level of proportional reasoning while Groups 2 and 3 showed 
moderate levels of proportional reasoning and group 4 gave evidence of little to no proportional 
reasoning.  Eleven individualized interview schedules were created in order to challenge the PST 
understandings and misconceptions about proportional reasoning that surfaced from the 
questionnaires; the interviews were implemented, videotaped, transcribed and annotated. Individual 
interview data was coded and analyzed to create descriptions of the nature of the participants’ 
understanding of proportional reasoning. A group of trained graduate students also coded the data 
and these codes were then discussed and revised to provide a higher degree of validity and reliability 
(Johnson, 2013).  Another pass through the analysis showed patterns that emerged within each of the 
four groups in terms of their use of representations and it was noted that there were stark differences 
between those students in Group 1 and the students in the other groups.  This report discusses and 
illustrates how PSTs in Group 1 utilized representations in solving these proportional problems 
during the interview and why these representations were important for them in overcoming certain 
challenges.  Additionally, I will contrast these representations with those created by participants who 
were less successful in reasoning proportionally about these problems. 

How Did Pre-Service Teachers Use Representations When Given Tasks Focused on 
Proportional Reasoning? 

For this study tasks were designed to address distinct aspects of PSTs’ difficulties with 
proportional reasoning that surfaced from the questionnaire. Three of these misunderstandings were: 
(1) The epistemological obstacle of linearity (Brousseau, 1997), (2) confusion between ratio and 
fraction (Karplus, Pulos, & Stage, 1983), and (3) inability to reason quantitatively (Thompson, 1994).  
Below, I illustrate how these particular tasks were designed to challenge PSTs’ prior assumptions and 
how PSTs used representations to reason proportionally. 
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Difficulty #1: Epistemological Obstacle of Linearity.  
Modestou and Gagatsis (2007) studied students’ improper proportional reasoning as an 

epistemological obstacle of linearity. An epistemological obstacle is NOT one in which there is a 
lack of knowledge, but one in which a piece of knowledge is appropriate only within particular 
contexts. The epistemological obstacle often generates false responses outside that context 
(Brousseau, 1997). These responses are recurrent, universal, and resistant to a variety of forms of 
support aimed at overcoming the problem (De Bock, Verschaffel, Janssens, Van Dooren, & Claes, 
2003). For example, problems involving proportionality are often characterized as an epistemological 
obstacle in linearity. Missing value problems often include the basic structure of four quantities (a, b, 
c and d) of which, in many cases, three are known and one is unknown. Additionally, many 
proportional problems involve the context of speed. The Bike problem is this type of scenario; it 
involves students riding their bikes to school at the same speed. It provides PSTs with three numbers 
and asks them to find the fourth (see Figure 1). 

 

 
Figure 1. Bike problem designed to elicit the obstacle of linearity. 

Despite the structure of a missing value problem and context of speed, this problem does not 
involve a proportional relationship between the quantities. Research has found that this structure and 
context evoke a strong tendency of students to use direct proportions even if it does not fit the 
problem (DeBock, et al., 2002; Van Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2005).  
64% of the PSTs answered the bike problem incorrectly which demonstrates that students are drawn 
to the illusion of linearity in this problem and desire to solve it by setting up a proportion and cross 
multiplying even though there is not a proportional relationship.  Verschaffel, Greer and DeCorte 
(2000) claim it takes a radical conceptual shift to move from the uncritical application of this simple 
neat mathematical formula to the modeling perspective that takes into account the reality of the 
situation being described.   It is not surprising that the 36% of the PSTs interviewed who correctly 
used additive reasoning to solve this problem all created a diagram as part of their reasoning.  The 
diagrams all illustrated the context of the problem (see figure 2). 

 
 

 
 

 
 
 
 
 

Figure 2. Representations created by PST to solve the Bike problem and overcome the obstacle of 
linearity. 

It was the use of the diagram that helped them to situate and solve the problem as well as 
overcome the obstacle of linearity.  Their representations modeled the additive reasoning necessary 
to solve the task despite its context and structure that led most PSTs to overextend the concept of 
proportions.  These PSTs used the representation to illustrate that the two boys ride at the same speed 
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then meet and travel together meaning that Ben rides his bike 3 more blocks than John.  It is through 
modeling the context of the problem that meaning is achieved. 

Difficulty #2: Confusion between Ratio and Fraction.   
A link between fractions and ratio is often not made explicit in mathematics textbooks or 

classrooms.  The difficulties surface if ratio and fraction are understood as equivalent mathematical 
terms when they are fundamentally different. Even though there are similarities in representations of 
ratio and fraction (i.e., fraction 2/3; ratio 2/3), the interpretations of those representations differ in 
important ways. In the case of ratio both the numerator and the denominator can represent parts (i.e., 
2 parts to 3 parts); this is not the case with fractions.  The Dog/Cat problem (see figure 3) was meant 
to elicit this type of difficulty in reasoning by PSTs. The correct interpretation of the situation is a 
part-to-part relationship. The numbers were chosen so that regardless of whether the participant 
interprets the ratio as a part-whole relationship or a part-part relationship, the solution will be an 
integer.  

 

 
Figure 3. Dog/Cat problem to elicit understanding of part to part ratios. 

This problem was given on the initial questionnaire and a third of the PSTs interpreted 2:3 as 
2/3rds and arrived at an incorrect solution of $80,000 to the Cat home and $160,000 to the Dog 
home.  When interviewed these students who were asked to explain their reasoning and some were 
able to recognize that 2:3 is a part to part relationship, not a part whole relationship.  In order to 
explain this relationship, these PSTs utilized representations to find the solution, either in a table or a 
model.  For example, Eve started by doing an easier problem of 100 thousand dollars and created a 
pie chart to show the distribution of money. She then used a similar pie chart to determine the 
distribution for the 240 thousand dollars in the problem (see figure 4). 

 
Figure 4.  Eve’s representation of her solution to the Dog/Cat problem. 

Her representations illustrate a deep understanding of the part-to-part relationship presented in 
this problem.  However, many of the PSTs who did answer this problem correctly on the 
questionnaire were unable to explain the procedure they used to find the solution.  When asked how 
they solved the problem they would re-iterate the steps in the procedure (i.e. you add the two 
numbers given in the ratio, then you create two fractions 2/5 and 3/5 and multiply by them by the 
240) but when asked to explain why it makes sense, replied, “I don’t know, this is what I was taught 
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to do when solving this type of problem, I don’t know what it means or why it works.”  In order for 
these students to develop the specialized content knowledge needed for teaching proportional 
reasoning a discussion of illustrations such as Eve’s would be beneficial. The pie chart can provide 
an understanding of what part-to-part relationships represent and why their procedure finds the 
solution. The slices of the pie show the number of pieces in the whole created by adding the two 
parts together and provide a visual representation as to why 2/5 times 240 (i.e. it is 2/5ths of the 
whole) results in the amount of money the Dog home receives. 

Difficulty #3: Inability to Reason Quantitatively 
PSTs in this study struggled with proportional reasoning situations that involved the distinction 

between quantitative reasoning and computation. Quantitative reasoning is making sense of 
relationships among measureable attributes of objects in a situation (Thompson, 1994) while 
computation is the result of an arithmetic operation to evaluate quantities. In general, reasoning about 
quantitative situations involves conceiving of circumstances in terms of quantities by constructing 
networks of quantitative relationships. For example, PSTs often set up proportions but do not 
understand what the ratios represent in the context of the situation. 

The Lemon/Lime task was used to challenge the PSTs’ misconception about quantitative 
reasoning and computation (see figure 5). In this task, participants were asked to compare two 
different lemon/lime mixtures (3 lemon:2 lime and 4 lemon:3 lime) to determine which was more 
lemony, without doing ANY calculations but by representing the mixtures with green and yellow 
unifix cubes. The request to not use calculations posed a high degree of difficulty for most of the 
PSTs interviewed, because it forced them to reason quantitatively and conceptually rather than 
computationally.  

 

 
Figure 5. Lemon/Lime Problem. 

60% of the PSTs interviewed used an additive relationship when they reasoned without 
calculations, claiming that there was “one more cup of lemon in each mixture so the mixtures were 
the same.” However, when allowed to utilize calculations, these same PSTs created a multiplicative 
relationship (i.e. 3/2 = 1.5 and 4/3 = 1.333) by dividing the quantities in order to compare the decimal 
representations of the mixtures. Their calculation of the relationship caused them to reevaluate the 
original statement that the mixtures were the same and state that the 3 lemon:2 lime mixture had 
more lemon taste than the 4 lemon:3 lime mixture.  But why did the PSTs not recognize the 
multiplicative relationship when reasoning quantitatively (without calculations)? What is surprising 
is how the PSTs used the cubes when they initially reasoned about the situation.  The 40% of the 
PSTs who utilized multiplicative reasoning ALL created models where the green and yellow cubes 
were separated (see figure 6), while the 60% who reasoned additively all created models with the 
green and yellow cubes attached (see figure 7). 

Separating the lemon from the lime allowed the PSTs to recognize the multiplicative relationship 
between the two quantities and not focus on the fact that there is one-cup difference between the two 
mixtures. In contrast, those representations created by the PSTs where the lemon and lime remained 
attached seemed to force the PSTs’ focus on the fact that there was one more cup in each mixture. 
The reason may be because the attached cubes resemble lines that would have length. Kaput and 
West (1994) found that there was a strong tendency to adopt additive reasoning when problems 
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involved linear measurements. So by, separating the cubes by color the PSTs were able to attend to 
both quantities multiplicatively because their prior assumptions about length would not have been 
brought forward as strongly by the representation.  Knowing this distinction we can create powerful 
discussions about the quantitative reasoning necessary for solving proportional problems. 

 
Figure 6. Examples of PSTs representation of the Lemon/Lime problem that utilized 

multiplicative reasoning. 
 

 
Figure 7. Examples of PSTs representatoin of the Lemon/Lime problem that utilized additive 

reasoning. 

Conclusion 
In all of the cases presented in this report, PSTs used representations to clarify and explain their 

proportional reasoning.  Whether they used tables, drawings, pie charts, or unifix cubes, the models 
that represented the context and particular situation of the tasks led to reasoning that had deep 
meaning.  Lo (2004) suggests that providing pre-service teachers with mathematical tasks that are 
rich in context and encouraging them to develop drawings and representations that convey the 
meaning of their solution methods to other students deepens their mathematical reasoning. The use of 
representations when teaching proportional reasoning can provide opportunities to distinguish 
between proportional and non-proportional situations, explain part to part relationships involved in 
ratios, and support students’ multiplicative reasoning necessary for the development of deep 
proportional reasoning. Lobato and Ellis (2010) discuss the use of representations in many of their 
proposed essential understandings of ratio and proportion; however, the role of representation in 
developing and modeling reasoning is not given the priority it warrants.  

This study suggests that greater importance should be given to representations that students 
produce while solving proportional problems and that the use of multiple representations while 
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teaching about ratio will lead to deeper understanding of the concept of proportion. Representations 
allow individuals to attend to important aspects of their reasoning, including the two quantities 
involved in the ratios, the context of the problem, and the multiplicative relationship needed in 
proportional reasoning. Yetkiner and Capraro’s (2009) research summary for National Middle 
School Association stated that until teachers can develop specialized content knowledge in 
multiplicative and proportional reasoning, they would struggle to provide students with multiple 
representations that can address the different learning styles found in their classroom.  As 
mathematics teacher educators we should begin to address the difficulties PSTs have with 
proportional reasoning by providing multiple representations in our own classrooms and discussing 
their benefits.  This report illustrates several representations of proportional reasoning that proved to 
be useful. 
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The interpretive cross-case study focused on the examination of connections between teacher and 
student topic-specific knowledge of lower secondary mathematics.  Two teachers were selected for 
the study using non-probability purposive sampling technique. Teachers completed the Teacher 
Content Knowledge Survey before teaching a topic on division of fractions. The survey consisted of 
multiple-choice items measuring teachers’ knowledge of facts and procedures, knowledge of 
concepts and connections, and knowledge of models and generalizations. Teachers were also 
interviewed on the topic of fraction division using questions addressing their content and 
pedagogical content knowledge. After teaching the topic on division of fractions, two groups of 6th 
grade students of the participating teachers were tested using similar items measuring students’ 
topic-specific knowledge at the level of procedures, concepts, and generalizations. The cross-case 
examination using meaning coding and linguistic analysis revealed topic-specific connections 
between teacher and student knowledge of fraction division. Results of the study suggest that student 
knowledge could be reflective of teacher knowledge in the context of topic-specific teaching and 
learning of mathematics at the lower secondary school.    

Keywords:  Teacher Knowledge, Rational Numbers, Mathematical Knowledge for Teaching 

Purpose of the Study 
In the last several decades, research on teacher knowledge initiated by work of Shulman (1986) 

has focused on teacher knowledge as a major predictor of student learning and achievement.  Since 
then the field benefited from numerous studies that substantially advanced the conceptualization of 
teacher knowledge. Scholars (e.g., Chapman, 2013; Izsak, Jacobson, & de Araujo, 2012) examined 
different facets of teacher knowledge without explicitly emphasizing its connection to student 
learning. Studies also stressed the importance of the kind of knowledge a teacher possesses because it 
impacts his/her teaching (Steinberg, Haymore, and Marks, 1985). Another line of research (e.g., Hill, 
Rowan, & Ball, 2005; Baumert et al, 2010; Author, 2011) specifically targeted the effects of different 
types of teachers’ knowledge on student achievement.  

Recently, scholars have advanced the field by examining teacher knowledge in variety of 
domains including number sense (Ball, 1990), algebra (McCrory et al., 2012); geometry and 
measurement (Nason, Chalmers, & Yeh, 2012), and statistics (Groth & Bergner, 2006). However, the 
field lacks research that provides an in-depth analysis of the various facets of teacher knowledge and 
its connection to student knowledge at a topic-specific level.  To know what kind of teacher 
knowledge impacts student learning in the topic-focused context is an important issue worth of 
studying. Considering the importance of topic-specific knowledge, this study was guided by the 
following research questions: (1) Does what a teacher knows matter in regard to her students’ topic-
specific knowledge and performance? (2) What is the nature of topic-specific connections between 
teacher and student knowledge? 
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Conceptual Frame: Topic-Specific Content Knowledge 
Division of fractions is one of the topics in lower secondary school mathematics curriculum for 

grade 6th in Russia (Ministry of Education and Science of Russian Federation, 2004) where the study 
was conducted. Scholars (Ball, 1990; Ma, 1999) found that the teachers have limited topic-specific 
content knowledge and they lack conceptual understanding of the topic. One of the main reasons is 
that the topic of division of fractions is traditionally taught by using the “flip and multiply” or “cross-
multiply” procedure (e.g.,   invert-and-multiply algorithm) without helping learners to understand 
why it works (Siebert, 2002).  

Although some teachers consider the traditional algorithm as one of the efficient procedures to 
divide fractions, they lack understanding of its connection to the inverse nature of division and 
multiplication (Flores, 2002; Lamon, 1999). Moreover, profound understanding of division of 
fractions requires connections to other topics such as measurement and sharing/ partitioning 
interpretations of division (Ball, 1990; Flores, 2002). Other important meanings of fraction division 
are “finding a whole given a part”, “missing factor problem” interpretation of fraction division 
(Flores, 2002), and “the common-denominator algorithm” (Sharp and Adams, 2002).  

In order to develop students’ knowledge and comprehension of fraction division teachers 
themselves need to understand underlying meanings of the algorithms and procedures (Ball, 1990) to 
make their mathematical knowledge connected and conceptual (Ma, 1999). To be connected topic-
specific teacher knowledge should address different cognitive types:  knowledge of facts and 
procedures, knowledge of concepts and connections, and knowledge of models and generalizations 
(Author, 2011).  

Analyzing cognitive types of teacher knowledge and its connection to student knowledge within 
a topic-specific context will contribute to the field of mathematics education and provide tools to 
enhance teacher education and professional development in order to improve student learning.   

Methodology 
The interpretive cross-case study (Merriam, 1998) focused on the topic-specific connections 

between teacher and student knowledge of lower secondary mathematics. Two teachers were selected 
for the study. Teachers completed the Teacher Content Knowledge Survey (TCKS) before teaching a 
topic on division of fractions. The TCKS consisted of 33 items measuring teachers’ knowledge of 
facts and procedures, knowledge of concepts and connections, and knowledge of models and 
generalizations. Teachers were also interviewed on the topic of fraction division using questions 
addressing their content and pedagogical content knowledge. After teaching the topic on fraction 
division, students of the participating teachers were tested using similar items measuring students’ 
knowledge of procedures, concepts, and generalizations. The cross-case examination was performed 
using meaning coding and linguistic analysis techniques (Kvale & Brinkmann, 2009) to report 
connections between teacher and student knowledge of fraction division. 

Participants  
The study participants were selected using non-probability purposive sampling technique based 

on the following set of criteria: 1) selected teachers should represent upper and lower quartiles of the 
total scores on the TCKS; 2) selected teachers should have similar teaching experience; 3) selected 
teachers should have similar teaching assignments; 4) selected teachers should teach at similar school 
settings.  

The TCKS was administered to the initial sample of lower secondary (grades 5-9) mathematics 
teachers (N=90) in Russia (Author, 2015) and then the sample was subdivided by quartiles using 
teachers’ overall TCKS scores. The maximum teacher score on the TCKS was 27 (out of 33) and the 
minimum score was 13. With regard to the first criteria, the overall sample of teachers was reduced 
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to 43 teachers: 17 of which represented the upper quartile with the range of total TCKS scores 24-27 
and 26 teachers represented the lower quartile with the range of total TCKS scores 13-18. After 
applying the remaining set of criteria 2)-4) we identified two teachers who met the requirements of 
the purposive sampling (names of the teachers are changed to keep the data anonymous) - Irina (with 
a total score of 25 on the TCKS) and Marina (with a total score of 17 on the TCKS). Both selected 
subjects are experienced lower secondary mathematics teachers and both of them are females of the 
same ethnic origin. Irina has 33 years of teaching experience and Marina - 21 years of teaching 
experience. Participants have similar teaching assignments - 5-8 grade mathematics with content 
addressing the following main objectives: Arithmetic, Algebra and Functions, Probability and 
Statistics, and Geometry. They both teach at urban public schools with similar student population 
concerning its’ ethnic distribution and SES level.  

We purposefully selected two contrasting cases with regard to teachers’ mean scores on different 
cognitive types of content knowledge to closely examine the impact of teacher topic-specific 
knowledge on student performance while solving a set of problems related to division of fractions. 
The cluster sample of N=55 6th grade students of participating teachers (29 students in Irina’s group 
and 26 students – in Marina’s group) was used for collecting student level data after they studied a 
topic on division of fractions. The topic was a part of the chapter on operations with rational numbers 
placed in the 6th grade mathematics curriculum at the beginning of the fall quarter (Ministry of 
Education and Science of Russian Federation, 2004). Additionally, both Irina and Marina were 
teaching mathematics to the participating cohorts of students for the second consecutive year starting 
at 5th grade. Therefore, one may say that they established a certain teaching and learning “history” 
with these students.    

Data Sources 
The study used the following data sources: 1) TCKS to collect data on cognitive types of teacher 

knowledge; 2) structured teacher interviews on the topic of division of fractions; and 3) student data 
on solving three tasks related to the topic of division of fractions.   

TCKS is the instrument that was designed to assess teacher content knowledge based on the 
cognitive types identified above.  The survey consisted of multiple choice-items addressing main 
topics of lower secondary mathematics: Arithmetic, Algebra and Functions, Probability and 
Statistics, Geometry and Measurement. Specification table along with item analysis was performed 
to ensure content and construct validity of the TCKS along with its’ reliability measured by the 
Cronbach alpha coefficient at .839 (Author, 2011).  

Teachers were interviewed using two sets of questions related to the topic of fraction division. 
First set of questions was aimed at tapping into teachers’ pedagogical content knowledge whereas the 
second set was focused on different cognitive types of teacher content knowledge. 

Students’ written work on solving three tasks related to similar questions on division of fractions 
was collected and analyzed to examine connections to teacher knowledge. We purposefully used 
similar questions for teachers and students in order to trace linguistic, procedural, and conceptual 
traits in their reasoning as well as to analyze non-parametric quantitative trends in student topic-
specific knowledge.        

Data Analysis  
For the qualitative phase of analysis, the teacher interviews were audio recorded and transcribed. 

Student written work was collected after the completion of the unit on division of fractions. In order 
to respond to the research questions we conducted meaning coding and linguistic analysis (Kvale & 
Brinkmann, 2009) of teacher narratives as a primary method of analysis. The data-driven meaning 
coding technique was used for the purpose of “breaking down, examining, comparing, 
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conceptualizing and categorizing data” (Strauss & Corbin, 1990, p. 61). The linguistic analysis 
technique addressed “the characteristic uses of language, … the use of grammar and linguistic forms” 
(Kvale & Brinkmann, 2009, p. 219) by participating teachers and students within the topic-specific 
domain of lower secondary mathematics. The meaning coding and linguistic analysis was performed 
and cross-checked by two of the co-authors of this paper. 

Considering ranked nature of the quantitative data collected in the study, we employed non-
parametric technique (Chi-square test of goodness of fit) to detect group differences using frequency 
data in student responses. 

Results 
In this section, we will present major findings of the study starting with teacher responses on 

pedagogical content knowledge questions. Then we will report data on questions and tasks focused 
on teacher content knowledge and student knowledge of fraction division. Finally, we will present 
results of the quantitative analysis of students’ performance on selected tasks.   

In the qualitative phase of the study, we conducted structured interviews with two of the study 
participants – Irina and Marina. Irina’s mean scores on the TCKS items are as following: score on 
items measuring knowledge of facts and procedures – 80%, items measuring knowledge of concepts 
and connections – 46%, and items measuring knowledge of models and generalizations - 30%. 
Irina’s total TCKS score is 51%. Marina’s mean scores on the TCKS are as following: knowledge of 
facts and procedures – 90%, knowledge of concepts and connections – 69%, knowledge of models 
and generalizations – 70%, and total score – 75%.  

The qualitative phase of the study included two stages: (1) teacher interview and (2) student 
problem solving. The teacher interview consisted of the following two sets of questions: a) the subset 
of questions 1)-2) tapping into teachers’ pedagogical content knowledge and aiming at teachers’ 
understanding of learning objectives for the topic of fraction division; and b) the subset of questions 
3)-6) focusing on teachers’ possession of cognitive types of content knowledge. The first subset 
included the following questions: 1) When you teach fraction division, what are important 
procedures and concepts your students should learn? 2) What is the meaning(s) of division of 
fractions?  

The second subset consisted of the following questions: 3) What is the fraction division rule? 4) 
Divide two given fractions 1 3/4 and 1/2. 5) Construct a word problem for the fraction division from 
the previous question. 6) Is the following statement 

bd
ac

d
c

b
a

=÷  (a, b, c, and d are positive integers) 

ever true? 
Responses were audio recorded and teachers were provided with a scratch paper. We used open 

coding followed by axial coding technique (Strauss & Corbin, 1998) applied to the transcribed 
narratives to analyze meaning expressed and language used in teachers’ responses. Below we present 
teachers’ narratives to the first two pedagogical content knowledge questions. 

Teachers’ Responses to Pedagogical Content Knowledge Questions 
Participants’ responses to the question 1 is transcribed below. Based on Irina’s response to the 

first question, it is evident that she capitalizes on her procedural knowledge with little or no attention 
to concept development. There is a slight indication of applying the rule in “standard situations” 
(lines 8-9 of Irina’s interview excerpt for the question 1) with no further clarification on the nature of 
this application. Whereas Marina extends the application of the fraction division rule to the “non-
routine problem solving situations” (lines 6-7 of Marina’s interview excerpt for the question 1). Also, 
we thought that Irina’s reference to “factorization of polynomials” in teaching fraction division was 
not further elaborated by her and, therefore, was confusing.    



Mathematical Knowledge for Teaching 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

563 

 IRINA MARINA 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
 

Before introducing the fraction division, I 
would like my students to recall the topic on 
factoring a polynomial, recall the rule of 
fraction multiplication, and recall 
reciprocals. After the lesson on fraction 
division I expect my students to know 
fraction multiplication and division rules, 
acquire skills to use these rules in standard 
situations [emphasis added], as well as 
apply factorization of polynomials. 

When I teach fraction division, first of all, I expect 
students to learn fraction division rule as it applies to 
the case of common fractions. Then, I expect them 
to know how to apply the rule to mixed fractions. 
Further, students need to understand how to use the 
fraction division in routine and non-routine problem 
solving situations [emphasis added]. Pedagogy wise, 
I always support students' motivation through 
engaging students in small group work and 
classroom discussion. 

Responding to the question 2, Irina used the part-to-whole interpretation of fraction division 
whereas Marina offered two different but somehow related interpretations of the meaning for 
division of fractions. 

 
 IRINA MARINA 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Well… there are two main 
problems in school 
arithmetic: finding a part of a 
whole and finding a whole 
knowing its’ part. Said that, 
the meaning of fraction 
division is finding a whole 
knowing its’ part [emphasis 
added]. 

 

From my perspective… There are at least two meanings for 
division of fractions. First meaning is based on the interpretation of 
division as operation opposite to multiplication [emphasis added]. 
In other words… to divide a fraction A by a fraction B means to 
find a fraction C such as A=B x C. For example, 5/6 divided by 1/6 
means that there is a fraction C such as 5/6 = 1/6 x C. Or 5/6 ÷ 1/6 
=5. On the other hand, division is kind of “sorting” [emphasis 
added]. For instance,1/2 = 1/4 + 1/4 = 1/4 x 2 meaning that 1/4  
goes 2 times into 1/2 whereas 1/2 goes 1/2 times into 1/4. Hope it 
makes sense… [smiles]       

Teachers’ Responses to Content Knowledge Questions 
Irina’s response to the question 3 further confirmed that she has well-established procedural 

knowledge of the fraction division rule.   
1 
2 
3 
4 
5 

IRINA: 
 
 
INT: 
IRINA: 

The rule of fraction division is reduced to the rule of fraction multiplication. 
Therefore, you need to multiply the first fraction [emphasis added] by the reciprocal 
of the second one [emphasis added].  
What do you mean by reduced to fraction multiplication? 
As students say, cross multiply [emphasis added] fractions. 

 
Marina’s response to the question 3 is depicted below. Surprisingly, Marina used a similar 

conclusion connecting fraction division to multiplication as Irina did in her response to the same 
question. 

 
1 
2 
3 
4 
5 

MARINA: 
 
 
 

In order to divide fractions, you need to multiply dividend [emphasis added] by the 
reciprocal of the divider [emphasis added]. For example, 

2
25

3
10

4
15

10
3

4
15

=×=÷  

(writes on a scratch paper). Generally speaking, fraction division "boils down" to 
multiplication. 
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Irina’s response to the question 4 consisted of the solution only (she wrote it on a scratch paper) 
without any commentary: 5.3

2
7

1
2

4
7

2
1

4
31 ==×=÷ . 

Unlike Irina, Marina supported her response to the question 4 with step-by-step comments. 
 
1 
2 
3 
4 
5 

MARINA: 
 
 
 

First, we convert given mixed fraction 1 3/4 to common one 7/4. Notice, here the 
numerator is larger than denominator. Then, we replace division by multiplication 

reversing the divider [emphasis added]. Hence, 
2
7

1
2

4
7

2
1

4
31 =×=÷ (writes on a 

scratch paper). 

With regard to the question 5, it took a while for Irina to think about the problem. Then Irina 
clarified whether she can write down the word problem she came up with on a scratch paper.  

 
1 
2 
3 
4 

IRINA: 
INT: 
IRINA (writes on 

a scratch paper): 

May I write down the problem on the paper? 
Yes, of course. 
Area of a rectangle is equal to 1 3/4 cm2, its length is equal to 1/2 cm. 
Find width of the rectangle. 

Irina was consistent in applying the part-to-whole interpretation in her response, more 
specifically – using “the missing factor problem” as a meaning for division of fractions (Flores, 
2002).  

After some thinking, Marina offered the following word problem in her response to the question 
5. 

 
1 
2 
3 
4 
5 
 

MARINA: 
 
 
INT: 
MARINA: 

Here is my word problem: an automated machine packs butter in 1/2 kg bricks. How 
many bricks one can make out of 1 3/4 kg of butter? 
May I draw a picture!? 
Sure. 
(draws a picture on a scratch paper) 

We noticed that Marina herself offered drawing a picture to illustrate her word problem.  
In Irina’s answer to the question 6, she basically repeated her response to the question 2.  
 
1 
2 
 

IRINA: The given statement is not correct. In order to divide fractions you need to multiply 
the first one [emphasis added] by a reciprocal of the second one [emphasis added]. 

 
Question 6 was the most challenging to Marina. Nonetheless, she confessed that she liked it. 
1 
2 
3 
4 
5 
6 

MARINA: 
INT: 
MARINA: 
 
INT: 
MARINA: 

I like this question. It makes me think. 
Good. 
Alright, notice that in order to solve this problem ac/bd should be equal to ad/bc. 
Right?  
So… 
Therefore, c/d = d/c. This is possible only if c = d. 

Students’ Responses to Fraction Division Questions 
At the stage of student problem solving, we asked groups of 6th grade students of participating 

teachers (Irina's group had n=29 students and Marina's group n=26) to solve a subset of questions 
corresponding to different cognitive types of content knowledge similar to those presented to 
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teachers: 1) Divide two given fractions. 2) Construct a word problem for fraction division from the 
previous question. 3) Is the following statement 

bd
ac

d
c

b
a

=÷  (a, b, c, and d are positive integers) ever 

true?  
Questions were presented to students after they completed a chapter on the basic operations with 

fractions. Student wrote down their responses on a paper and student work was collected for further 
analysis. The number of correct students’ responses on questions 1-3 along with the chi-square 
statistic comparing student performance between groups on each question is presented in the table 1 
below.  

Table 1. Chi-Square Analysis’ Results of Student Responses on the Fraction Division Questions 
 Question 1 Question 2 Question 3 
Irina’s Group (n=29) 28 12 1 
Marina’s Group (n=26) 25 15 10 
Chi-square and p-value 
(df=1)  

χ2=.41 
p=.522 

χ2=.88 
p=.348 

χ2=8.43 
p=.0037 

 
As we mentioned before, questions selected for the student problem solving session reflected 

different cognitive types of content knowledge on the topic of division of fractions.  

Discussion: Does What a Teacher Knows Matter? 
The most important finding of the study was the evidence collected and analyzed in support of 

the first research question: what a teacher knows matters in regard to his/her students’ topic-specific 
knowledge. As we expected based on similar teachers’ scores on cognitive type 1 items (measuring 
knowledge of facts and procedures), there was no difference observed between student performances 
in two groups on the procedural question 1. There was some difference, not significant though, 
observed on the question 2 measuring knowledge of concepts and connections (in favor of students in 
Marina’s group). The most evident difference between student performance in two groups was 
observed on the question 3 (measuring knowledge of models and generalizations) was statistically 
significant (χ2=8.43, p=.0037). We were surprised by the partially-correct student’s response from 
Irina’s group considering the fact that Irina herself was not able to correctly solve the question. 
Overall students' responses were reflective of their teachers' knowledge: student performance in 
Marina’s group was stronger than in Irina’s group, particularly in solving questions 2 and 3 with 
difference in responses to question 3 being statistically significant. 

The data collected and analyzed to respond to the second research question - What is the nature 
of topic-specific connections between teacher and student knowledge? – revealed that teacher’s 
mastery of cognitive types of content knowledge is associated with the students’ topic-specific 
knowledge. Thus, findings of this study contribute to the body of research claiming that teacher 
content knowledge is critical for student learning (Hill, Rowan, & Ball, 2005; Baumert et al., 2010). 
Teacher interviews and students’ problem solving helped us to closely look at the nature of the 
relationship between teacher knowledge and student performance.  

We are cognizant that the study had its limitations such as teacher sample size, multiple-choice 
format of the teacher content knowledge survey, to name a few. Following on the discussion about 
complexities of assessing teacher knowledge (Schoenfeld, 2007), we are aware of the limitations of 
the multiple-choice format in test construction and assessment of teacher knowledge (p. 201). 
Therefore, we included the qualitative phase of the study to zoom further into teacher knowledge and 
understanding. We are also cognizant that classroom observations could be another source of data in 
this study.  However, to explicitly address the research questions we purposefully focused the study 
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on the link “teacher knowledge-student performance” in the topic-specific context. Considering these 
limitations, we are sensitive enough to not overgeneralize the results obtained in the study. The major 
findings of this study open an opportunity to discuss the importance of different cognitive types of 
the topic-specific teacher knowledge and its potential impact on student knowledge and learning.  
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ESTRATEGIAS DIDÁCTICAS Y CONOCIMIENTO ESPECIALIZADO DE PROFESORES 
DE MATEMÁTICAS. UN CASO EN ÁLGEBRA ESCOLAR  

 
TEACHING STRATEGIES AND MATHEMATICS TEACHER’S SPECIALIZED 

KNOWLEDGE. A CASE IN SCHOOL ALGEBRA 
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Presentamos los resultados del análisis de los conocimientos puestos en acción por una maestra de 
matemáticas de secundaria en su práctica en el aula. Éstos toman forma y se despliegan como 
estrategias didácticas específicas para gestionar su clase cuando incorpora Computer Algebra 
Systems. A partir de observaciones no participantes de clases cotidianas y entrevistas, encontramos 
que los conocimientos de esta maestra (matemáticos, didácticos y tecnológicos) son movilizados en 
varios momentos y a través de diversas estrategias didácticas. Ello depende de una amplia 
diversidad de factores entre los que destacan el objetivo de la planeación, el momento específico de 
la clase, las participaciones de los estudiantes y el uso de la herramienta tecnológica. En esta 
complejidad la maestra aplica sus estrategias didácticas de manera flexible y logra controlar e 
incluso modificar la gestión de su clase. 

Palabras Clave: Conocimiento Matemático para la Enseñanza, Álgebra y Pensamiento Algebraico, 
Educación Secundaria, Technology 

Introducción  
Para acercarse al conocimiento profesional del profesor de matemáticas y sus prácticas han 

surgido diferentes marcos de análisis, metodologías y propósitos que aún siguen en refinamiento y en 
discusión al interior de la propia comunidad (Ball, Thames y Phelps, 2008; Ponte y Chapman, 2006; 
Gaeber y Tirosh, 2008). Ponte y Chapman (2006) sugieren tomar en cuenta la estrecha relación de 
este tipo de conocimiento y la práctica, las condiciones de trabajo y los objetivos explícitos e 
implícitos de dicha labor. Por su parte, Davis (2014) señala que el conocimiento necesario para un 
profesor de matemáticas es una red compleja en la que interactúan “una mezcla de varias 
asociaciones/instanciaciones de conceptos matemáticos y una conciencia de procesos complejos en 
los cuales se producen las matemáticas” (p. 155). De hecho, el conocimiento del profesor es 
“enactuado (puesto en acción/To be enacted) e implícito” (p. 155).  

La investigación sobre el uso de Tecnologías Digitales (TD) para la enseñanza de las 
matemáticas es amplia. Se ha encontrado que la incorporación de Computer Algebra Systems (CAS) 
a los salones de clases generan cambios en las prácticas matemáticas (Pierce y Stacey, 2004) y que el 
profesor es central para proveer condiciones que ayuden a los estudiantes a su comprensión 
matemática, con uso de estas herramientas (McFarlane, Williams y Bonnett, 2000). 

Elegimos el tema de la enseñanza del álgebra con CAS debido a que una de las ventajas de esta 
herramienta es que puede usarse para proveer de significado a las transformaciones y expresiones 
algebraicas. Numerosas investigaciones han mostrado evidencia sólida de que la tecnología puede ser 
un elemento activo en la construcción de significados de los conocimientos algebraicos. (Puig & 
Rojano, 2004; Hitt y Kieran, 2009; Kieran y Drijvers, 2006; o bien por Solares y Kieran, 2013.) 
Nuestro estudio se ubica en esta línea, centrándose en el estudio de los conocimientos y las prácticas 
docentes en clases cotidianas de álgebra con CAS. Buscamos profundizar en la comprensión de cómo 
los profesores movilizan estos conocimientos (matemáticos, didácticos y tecnológicos) y les dan 
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sentido en términos de sus prácticas (Ponte y Chapman, 2006). Específicamente buscamos responder: 
¿Cómo los conocimientos didácticos y matemáticos se ponen en acción durante una clase en la que 
se usa CAS? y ¿cómo estos conocimientos se manifiestan por medio de las estrategias didácticas? 

Perspectiva Teórica: Conocimiento Especializado del Profesor de Matemáticas 
Nos interesa identificar los conocimientos puestos en acción por un profesor cuando enseña 

álgebra con el uso de CAS a partir del análisis de sus estrategias didácticas. Para considerar la 
especificidad de este conocimiento respecto a la enseñanza del álgebra escolar y para efectos de 
análisis partimos del modelo del conocimiento especializado del profesor de matemáticas (MTSK 
por sus siglas en inglés) (Carrillo, Climent, Contreras,  & Muñoz-Catalán, 2013). 

Este modelo se refiere al conocimiento específico (en su conjunto) del profesor de matemáticas el 
cual se compone de dos dominios: Conocimiento Matemático (MK) y Conocimiento Didáctico del 
Contenido (PCK). El primer dominio está compuesto de tres subdominios: Conocimiento de los 
Temas, de la Estructura de la Matemática y de la Práctica Matemática. El segundo, el Conocimiento 
Didáctico del Contenido, está compuesto por: Conocimiento de la Enseñanza de las Matemáticas, de 
las Características del Aprendizaje de las Matemáticas y de los Estándares de Aprendizaje de las 
Matemáticas. 

Por las características de nuestro objeto de investigación, nos centramos en el segundo dominio 
(PCK). A continuación, describimos brevemente en qué consiste cada uno de los tres subdominios 
que lo componen. El conocimiento de la enseñanza de las matemáticas (KMT) está vinculado con 
estrategias y teorías de enseñanza, materiales y recursos vinculados con el contenido a enseñar; el 
conocimiento de las características del aprendizaje de las matemáticas (KFLM) incluye asuntos 
sobre cómo se aprenden ciertos conceptos, intuiciones, errores y formas como los alumnos 
interactúan con cierto contenido matemático y, finalmente,  el conocimiento de los estándares de 
aprendizaje de las matemáticas (KMLS) se refiere a lo qué es esperable (en términos del propio 
currículo) en un nivel escolar determinado incluyendo también las indicaciones y formas de aprender 
dicho contenido desde un “referente estandarizado” (p. 598). 

Lo anterior da cuenta de la complejidad en la que está inmersa la tarea de enseñanza de un 
profesor al momento de impartir su clase. Sin embargo, no todos los conocimientos se adquieren en 
instancias institucionales, muchos de ellos se construyen en la práctica de aula, en el intercambio con 
otros colegas y en el propio contexto donde se realiza la tarea de enseñar. Desde nuestra perspectiva 
los conocimientos de los profesores para la enseñanza de las matemáticas se ponen en acción y 
toman forma específica como estrategias didácticas que ellos modifican al momento de gestionar su 
clase. 

Metodología 
Los tres investigadores participamos en el análisis de los videos de las clases de una maestra de 

matemáticas de secundaria en México (voluntaria) con experiencia en el uso de tecnología y con 
disponibilidad para ser grabada. Esta maestra participó previamente, junto con otros profesores, en 
un taller de 20 horas sobre CAS con la calculadora (TI-82). De manera general, el taller trató sobre 
cómo resolver problemas algebraicos usando las funciones factorizar, desarrollar, resolver y 
evaluar. La discusión en el taller estuvo centrada en las diferentes maneras en las que se puede 
resolver un problema algebraico con calculadora, así como cuándo es adecuado usar CAS en una 
clase, cómo y para qué. Decidimos observar y grabar dos clases regulares de la maestra, sin que los 
investigadores determináramos el tema y tratamiento didáctico  al mismo. La maestra durante el 
taller mostró tener conocimiento de las reglas del CAS y su uso con la calculadora, así como, 
habilidades para explorar nuevas situaciones relacionadas con las reglas propias de esta herramienta 
y proponer nuevos usos a sus alumnos. Cabe señalar que se han reportado resultados de otro estudio 
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(García-Campos & Rojano, 2008) en el que se menciona que para que el uso de CAS logre impactar 
en la práctica docente es necesario brindar mayor acompañamiento a los profesores, pues a corto 
plazo éstos no logran incorporar CAS de manera cotidiana en el aula. 

En este reporte nos centraremos en los resultados del análisis de la práctica de la maestra 
Clementina, de quien sabemos que en el momento de la investigación tenía más de 20 años de 
experiencia dando clases en secundaria, dominaba los contenidos a enseñar y conocía las 
componentes de la calculadora que permiten tener, de manera simultánea, distintas representaciones 
para los objetos algebraicos (tablas, gráficas y expresiones algebraicas), y las instrucciones para 
resolver ecuaciones. 

Para el análisis de los datos se hizo una transcripción de los episodios que los tres investigadores 
seleccionaron al haber identificado conocimientos didácticos del contenido expresados a través de las 
siguientes estrategias didácticas.  

Estrategias Didácticas como un Acercamiento a Aspectos del Conocimiento Didáctico del 
Contenido Matemático 

Los autores proponemos estas tres estrategias didácticas como resultado de un estudio más 
amplio en el que se ha estado trabajando mediante el análisis de videos de clases de más profesores 
de matemáticas de secundaria (incluso telesecundaria). En dichas clases hemos identificado estas 
estrategias, las cuales dan cuenta además de algunos de los conocimientos especializados que los 
profesores generan y movilizan al momento de impartir sus clases (To be enacted) como lo señala 
Davis (2014). Los resultados de tal investigación serán comunicados ampliamente en un futuro. 

En el análisis de los videos de las clases de Clementina identificamos que su conocimiento 
especializado se manifestó en tres estrategias didácticas: 

• Mantenimiento de la planeación de la clase. Consiste en la toma de decisiones para 
mantener el desarrollo de la clase de tal manera que se cumplan los propósitos de 
aprendizaje que planteó el profesor considerando el contenido del currículo a enseñar y 
los recursos a su disposición. Estas decisiones son, por ejemplo, elección de soluciones, 
procedimientos y errores para discutir o mostrar con el grupo completo, recapitulaciones, 
balances, formalizaciones, etc. En esta estrategia se hace énfasis en los conocimientos del 
profesor en los subdominios KMT y KMLS. 

• Rol otorgado a los estudiantes. Un mismo profesor puede promover distintas formas de 
participación en sus estudiantes en una misma clase (KMT). Por ejemplo, que exploren 
sus soluciones y las expongan, que pasen al pizarrón o usen CAS (con el TI presenter) 
para explicar sus procedimientos, soluciones o hipótesis, o que simplemente sigan las 
instrucciones.  

• Usos de las herramientas tecnológicas. Los profesores proponen el uso de los recursos 
tecnológicos disponibles para verificar resultados, explorar procedimientos y soluciones, 
aplicar técnicas, entre otras. (KMT y KFLM) 

En este reporte nos centraremos en los resultados del análisis de la práctica de una maestra que 
llamaremos Clementina. De la entrevista, sabemos que en el momento de la investigación 
Clementina tenía más de 20 años de experiencia dando clases en secundaria, dominaba los 
contenidos a enseñar y conocía las componentes de la calculadora que permiten tener, de manera 
simultánea, distintas representaciones para los objetos algebraicos (tablas, gráficas y expresiones 
algebraicas), y las instrucciones para resolver ecuaciones. 
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Análisis y Discusión. El Caso de Clementina 
A continuación, presentamos resultados del uso de las estrategias para dar cuenta del tipo de 

conocimiento que Clementina moviliza en la clase. Este análisis nos permite describir la dinámica de 
cómo las componentes del MTSK se entretejen. La maestra tiene una planeación detallada y precisa 
de su clase usando CAS. Ha preparado un problema específico. Al parecer, ella misma lo redactó o 
hizo la adaptación correspondiente. Tanto en la planeación como en el desarrollo de la clase se 
evidencian dominio y experiencia en el manejo de las ecuaciones de primer grado (KMLS), cómo 
enseñarlas (KMT) y las diferentes posibilidades de sus alumnos para abordar la tarea propuesta 
(KFLM).  

Breve Descripción de las Acciones de la Maestra en la Clase 
Al inicio de la sesión, la maestra dicta el problema, el objetivo y da instrucciones de cómo 

trabajar en la clase, como se muestra en el siguiente fragmento. 

Maestra: Tema: Ecuaciones lineales. Propósito general: Despejar literales en diferentes tipos de 
fórmulas. Relacionar una fórmula con la tabla de datos que genera y con su gráfica. 

Problema: En una tienda se compran 9 paquetes de libros, el cual tiene un precio adicional de $75 
[sic]. ¿Cuánto cuesta cada paquete si en total se pagan $1400? 

Maestra: Leer el problema. Ya que lo tengas planteado, puedes usar la calculadora para 
resolverlo. Lo pueden resolver entre tres o dos o uno, los que sean en cada mesa. 

[Fragmento 1, sesión 1] 

A pesar de que sus clases son muy estructuradas y se desarrollan de acuerdo a la planeación 
definida, se observa que en su práctica siempre da un momento de reflexión y lectura del problema, 
seguido de uno de exploración con los recursos y estrategias que los alumnos decidan. Los alumnos 
usan la calculadora libremente y levantan la mano para preguntar dudas a la maestra. Ella recorre el 
salón, pasando entre los equipos y aclarando las dudas que surgen. Consideramos que ésta es una 
manifestación de su conocimiento sobre cómo se aprende este contenido (KFLM). 

Un Problema Didáctico no Previsto en la Planeación 
Un problema didáctico que emerge en la clase está vinculado con la palabra “adicional” usada en 

la redacción del enunciado del problema. Los estudiantes tienen problemas para interpretar a qué se 
refiere y, espontáneamente, comienzan a explorar con valores numéricos específicos. Entonces la 
maestra interviene de la siguiente manera. 

Maestra: Tu compañera dice que cuando se emplea el término adicional se está refiriendo … 
Alumna: A que le tienes que aumentar. 
Maestra: En este caso, ¿cuánto le tienes que aumentar?  
Alumna: 75  
Maestra: ¿Cómo quedaría tu ecuación? […] ¿En qué consiste el problema? Tú vas a elaborar una 

tabla [se dirige a una estudiante] ¿En base a qué vas a elaborar la tabla?  
[Fragmento 2, sesión 1] 

En el fragmento 2 podemos identificar dos intervenciones de la maestra. La primera es para 
ayudar en la traducción del problema al lenguaje algebraico. La palabra adicional se traduce como 
aumentar o sumar. La segunda ayuda consiste en sugerir que se enfoquen primero en encontrar una 
ecuación que modele el problema. Además, les dice a sus alumnos que partir de la ecuación podrán 
hacer cuentas, encontrar valores y construir la tabla de variación correspondiente, al revés de lo que 
ellos están haciendo: explorar con valores numéricos para establecer la ecuación. Cabe señalar que en 
México es una práctica recurrente obtener primero la expresión algebraica y después la tabla o la 
gráfica. Esto se propicia desde el mismo programa de estudios (SEP, 2011). 
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Desde nuestra perspectiva, lo anterior es una manifestación de que la maestra aplica la primera 
estrategia: mantiene la planeación de la clase. Aunque los estudiantes exploran con ejemplos 
numéricos con objeto de establecer las relaciones dadas en el problema, Clementina interviene para 
orientar esos procedimientos y hallar la ecuación que modele el problema (KFLM y KMT). De esta 
manera, resuelve el problema didáctico que se le presentó y mantiene su planeación.  

Pero las dudas y confusión continúan. Entonces, la maestra hace una intervención grupal. Toma 
las dudas de uno de los estudiantes para discutirlas y aclararlas grupalmente. El estudiante ha estado 
probando con varios posibles valores para el costo de cada paquete. Al parecer, ha recurrido al 
ensayo y error (aproximaciones numéricas sucesivas) para ajustar los valores.  

Maestra: ¿Qué es lo que quiere saber tu problema? [inaudible] Quiere saber cuánto cuesta un 
paquete, ¿cuántos paquetes compró? 

Alumna 2: Nueve 
Maestra: Ese nueve qué le harías. Dice tu compañera que tiene que elaborar una tabla. Pero, 

¿cómo lo establecerías? […]   
Alumno 3: Mil cuatrocientos treinta y nueve (1 439)  
Maestra: Y entre qué lo vas a dividir, ¿y los adicionales? [Siguen discutiendo]  
Maestra: Otra vez, un paquete no te puede costar $75. Es adicional. Vamos a considerarlo como 

un aumento […] ¿Cómo te quedaría tu ecuación? Nuestro tema, ¿qué dice? [los estudiantes 
leen lo que la maestra dictó al inicio de la clase] por lógica tenemos que sacar una ecuación 
[...] Muchos ya se fueron a tabular, ¿qué vas a tabular?  Yo quiero ver nada más el 
planteamiento.  

[Fragmento 3, sesión 1] 

Las intervenciones de la maestra [fragmentos 2 y 3] orientan la clase hacia identificar la 
incógnita, las relaciones entre los datos y la incógnita, y la igualdad. Nuevamente, mantiene su 
objetivo principal para esta sesión: obtener una ecuación que modele el problema (KMLS). En este 
momento ella se enfrenta a otro problema didáctico, pues los estudiantes siguen obteniendo distintos 
resultados numéricos sin encontrar ninguna ecuación. 

Una de las alumnas encuentra una ecuación y la maestra le pide que pase al pizarrón. La alumna 
escribe “9x + 75 = 1400”. La maestra elige socializar en el grupo esta solución y, al mismo tiempo, 
deja sin discutir soluciones diferentes, como las numéricas obtenidas mediante ensayo y error. Así, la 
maestra privilegia la ecuación resultante de la traducción del problema (y su solución numérica), sin 
importar las técnicas que se puedan usar para resolver la ecuación, con lápiz y papel o con CAS 
(presencia de conocimientos KMT y KFLM).  

Después de planteada esta ecuación (objetivo principal de la clase), la maestra pide a los 
estudiantes que la resuelvan, dándoles libertad de tiempo y de elegir usar calculadora o lápiz y papel. 
Para Clementina, el uso de CAS es opcional. Se trata de la estrategia que define el uso que se da a la 
tecnología. 

Una vez resuelta la ecuación pasa a los equipos para presentar sus soluciones, en su mayoría son 
numéricas. Entonces elige a una alumna que resolvió la ecuación algebraicamente, paso a paso y con 
lápiz y papel. Esta solución se muestra en la Figura 2(a).  

Al percatarse de que la mayoría de los alumnos no están de acuerdo con el valor x = 147.22, 
pregunta qué soluciones encontraron. Aquí la maestra pone en marcha otra de sus estrategias: usa las 
producciones de sus estudiantes (rol de los estudiantes) para contrastarlas, confrontar errores y 
procedimientos (los últimos en este caso) y hacer aclaraciones (presencia de KFLM y KMT). 
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9x + 75 – 75 = 1400 – 75  
9x = 1325 
9x/9 = 1325/9 
x = 147.22 
147.22 x 9 + 75 = 1400 

(a) 

75 1400.00  725 /9 
= 80.55 (residuo 1)  
x 9 - 675.00  
675 0725.00 
  

R = 80.55 

(b) 
Figura 2. Soluciones propuestas (a) algebraica y (b) numérica  

Ante las dudas que siguen manifestándose, la maestra promueve que los alumnos expongan sus 
soluciones. Los estudiantes tienen claro que ella había pedido que plantearan una ecuación que 
modelara el problema, por eso preguntan “¿pero con ecuación?”. Entonces, la maestra elige a una 
alumna que obtuvo una solución numérica, la de la Figura 2(b). Al parecer, el procedimiento de la 
alumna es aritmético: deshace las operaciones. La maestra aprovecha esta solución para indagar, 
preguntando: “¿cada paquete dices que cuesta?” Y La alumna responde “$80.55”. Posiblemente, la 
maestra identifica que la diferencia entre los dos procedimientos está determinada por el lugar en que 
se pone el paréntesis. Es decir, las ecuaciones correspondientes a los procedimientos de la figura 2 
serían: 9x + 75 = 1400, la primera; y 9(x + 75) = 1400, la segunda. En esta intervención la maestra da 
muestra de su conocimiento de cómo los alumnos están interactuando con la ecuación y las ideas 
matemáticas (jerarquía de operaciones, asociatividad) que están detrás de estas propuestas (KLM). 
Quizás por ello, después de la explicación, pasa a la alumna que resolvió algebraicamente la ecuación 
para corregirla. Sin embargo, esta alumna agrega paréntesis a la comprobación: (147.22 x 9) + 75 = 
1400, para obtener la respuesta correcta. La maestra dice que no se trata de ver quién está bien, sino 
de quién tiene el procedimiento válido. En sus palabras: “¿Cuál de los dos procedimientos creen 
ustedes que conviene? Repito: no es por mayoría.”  

En las intervenciones de la maestra, se evidencia que está enfocada en la estrategia didáctica que 
le permite enfatizar el rol de los alumnos, promoviendo la comparación de las distintas 
interpretaciones de las relaciones entre los datos y la incógnita del problema que los estudiantes han 
hecho. Los alumnos se enganchan en esta comparación, dan argumentos tanto a favor como en 
contra. En nuestro análisis identificamos que la maestra hace explícitas y pone a discusión dos 
interpretaciones de la palabra “adicional”: 1) adicional por paquete, esto es, 9(x + 75); y 2) adicional 
por los nueve paquetes, 9x + 75.  

En términos de la riqueza de la discusión matemática que los alumnos desarrollan en esta parte 
de la clase, el problema ha sido fructífero: hay argumentaciones, comprobaciones, se usan los 
distintos medios tecnológicos y las distintas técnicas (CAS y lápiz y papel). Pero, en este momento, 
el tiempo de la clase prácticamente se ha agotado; así que el objetivo central de la clase ha quedado 
incompleto en lo que se refiere a “Relacionar una fórmula con la tabla de datos que genera y con su 
gráfica”. La maestra intenta hacer un cierre de la discusión preguntando lo siguiente: 

Maestra: ¿Cuál de los dos planteamientos o soluciones (procedimientos) consideran ustedes que 
es el correcto, de los problemas? 

Alumnos: Los dos.  
Maestra: Esto quiere decir que alguno de los dos está fallando [...] No necesariamente tienen que 

ser exactitos sin sobrar [...] Vamos a redondear [...], a uno le faltan dos centavos y al otro, 
cinco centavos […] Puedes perder décimas.  

 [Fragmento 6, sesión 1] 

Clementina explica que los dos procedimientos tendrían que dar el mismo resultado y que no es 
el caso. En su argumentación apela a la unicidad de la solución de una ecuación, tema que al parecer 
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no ha sido abordado en la clase. Tampoco es algo que haya sido considerado en su planeación 
(posible deficiencia en KMLS). 

Hasta antes de este momento, la maestra había entretejido las estrategias de mantener la 
planeación y la del rol de los alumnos (manifestaciones de KMT y KFLM). Sin embargo, en este 
momento toma la decisión de modificar la planeación de su clase adaptándola a las necesidades de 
sus alumnos, a sus interpretaciones generadas tanto con lápiz y papel como con CAS. En los minutos 
restantes permite que los alumnos usen estrategias de solución en las que se sienten más cómodos y 
confiados, no necesariamente los típicos algebraicos (como el despeje de la incógnita). Abre espacios 
para que la alumna que planteó la ecuación y la alumna que propuso la interpretación aritmética 
expongan nuevamente al grupo sus interpretaciones y cómo obtener la solución. La maestra le pide a 
la alumna del procedimiento “aritmético” (Figura 2 (b)) que explique, en el pizarrón. Esta alumna 
dice que con otra compañera llegaron a la conclusión de que su procedimiento es correcto. 

Alumna: Es que ahí en el problema no se comunicaba si eran 75 por cada uno o por todos. Y aquí 
ya comprobamos que si eran 75 por todos. Porque no puede ser por cada uno porque no 
queda, serían 1447.95 

[La maestra pide a varios equipos que le lean el problema a la alumna para aclarar si los 75 eran 
por todos por cada uno.] 

Maestra: ¿Habla [se refiere al enunciado] del paquete o de todo? 
Alumna: Al enunciado le hizo falta una palabra. 
Maestra: ¿Cuál sería? 
Alumna: Que te dijeran que son 75 pesos adicionales por cada paquete [...] 
Maestra: Para eso sirven los problemas, para ver cuando no están bien planteados, cada alumno 

lo va a resolver de diferente forma… Aquí de lo que se trata, hay que leerlo… 
Alumna: si yo fuera maestra este problema tendría dos objetivos… No sólo es leer sino establecer 

las relaciones entre los datos y la solución. 
[Fragmento 6, sesión 1] 

Grupalmente, los niños llegan al acuerdo que los 75 adicionales son por los nueve paquetes, y 
que entonces la ecuación correcta es: 9x + 75 = 1400. La maestra despliega un conocimiento de la 
enseñanza que le resulta efectivo en este momento: “cede” el control de la clase a sus estudiantes. 

Reflexiones Finales 
En el desarrollo de su clase, Clementina se enfrentó a un problema didáctico no previsto en su 

planeación debido a la redacción ambigua de la situación problemática planteada. Es por ello que 
hizo adaptaciones al objetivo de la clase, a su planeación y a la participación y los roles que tenía 
contemplados para sus estudiantes. Además, en este proceso, Clementina adaptó su propio rol, 
modificó sus expectativas, sus intervenciones e incluso cedió temporalmente el rol de “maestra 
hipotética” a una de sus estudiantes. Posibilitó el consenso entre el colectivo, cediendo el control de 
la clase a los estudiantes, y logrando establecer el significado de adicional y su implicación en la 
ecuación (9x + 75 = 1400). En el cierre de la clase retomó el objetivo planteado inicialmente, 
ubicándolo en el trabajo realizado y sin dejarlo a la deriva. Este tipo de adaptaciones de la 
planeación, del problema, de los objetivos, de las formas de participación de los estudiantes, pero 
también de las intervenciones y del rol mismo del profesor requieren de gran flexibilidad y 
adaptabilidad en los conocimientos especializados de los profesores. Consideramos que esta 
flexibilidad y adaptabilidad no son previsibles ni tematizables como contenidos a desarrollarse en 
programas de estudios de formación inicial. Para adquirirlos es necesario construirlos en la práctica. 
Indagar a mayor profundidad sobre estas estrategias y la interacción entre distintos tipos de 
conocimientos, puede tener implicaciones fructíferas para la formación de profesores, así como para 
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la propia investigación en el área. 
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We present results of the analysis of knowledge used by a secondary school mathematics teacher in 
her classroom practice. This knowledge takes shape and is displayed as specific teaching strategies 
in the management of her class when she incorporates Computer Algebra Systems. Based on 
observations of regular classes, we find that her knowledge (mathematical, pedagogical and 
technological) is put into action at various moments during the lesson and through a variety of 
teaching strategies. These strategies depend on many factors, such as the planned objective of the 
lesson, the specific moment in the class, student participation, and the use of technological tools. 
Within such complexity, the teacher applies her teaching strategies in a flexible way, and manages to 
control and even modify the course of her class. 

Keywords: Mathematical Knowledge for Teaching, Algebra and Algebraic Thinking, Middle School 
Education, Technology 

Introduction  
To approach the professional knowledge and practices of teachers of mathematics, several 

methodologies and frameworks for analysis have been suggested (Ball, Thames and Phelps, 2008; 
Ponte and Chapman, 2006; Gaeber and Tirosh, 2008). Ponte and Chapman (2006) propose the 
importance of considering the complexity of this sort of knowledge and its close relation with 
practice, working conditions and explicit and implicit objectives. Davis (2014) notes that the 
knowledge required by a mathematics teacher is a complex network where there is interaction 
between “a sophisticated and largely enactive mix of various associations /instantiations of 
mathematical concepts and an awareness of complex processes through which mathematics is 
produced” (P. 155). In fact, “the most important knowledge for teaching tends to be enacted and 
tacit” (p. 155).   

With respect to the research on the use of digital technology (DT) in the teaching of mathematics, 
incorporating Computer Algebra Systems (CAS) into classrooms has been discovered to generate 
change in mathematical practice (Pierce and Stacey, 2004), and the teacher has a key role in 
providing conditions that help students understand mathematics with these tools (McFarlane, 
Williams and Bonnett, 2000). 

We chose to study the teaching of algebra with CAS because it can be used to give meaning to 
algebraic transformations and expressions. Many investigations have provided solid evidence that 
technology can be an active element in building algebraic knowledge (Puig & Rojano, 2004; Hitt and 
Kieran, 2009; Kieran and Drijvers, 2006; or by Solares and Kieran, 2013.) We seek to understand 
how teachers mobilize this knowledge (mathematical, pedagogical and technological) and how they 
make sense of it in terms of their practice (Ponte and Chapman, 2006). We specifically want to know 
how pedagogical and mathematical knowledge is put into action during a lesson where CAS is used; 
and how this knowledge is revealed through teaching strategies.  

Theoretical Perspective: Mathematics Teacher’s Specialized Knowledge  
We have taken into account the Mathematics Teacher’s Specialized Knowledge (MTSK) model 

(Carrillo, Climent, Contreras & Muñoz-Catalán, 2013) as a starting point for analysis and in our 
consideration of the specificity of the knowledge that teachers put into action when they teach school 
algebra. 
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This model refers to the mathematics teacher’s specific knowledge, which consists of two 
domains: Mathematical Knowledge (MK) and Pedagogical Content Knowledge (PCK). The first 
domain is composed of three subdomains: Knowledge of Topics, of the Structure of mathematics and 
of the Practice of Mathematics. The second, Pedagogical Content Knowledge is composed of: 
Knowledge of Mathematics Teaching, of Features for Learning Mathematics and of Mathematics 
Learning Standards. 

We concentrated on the second domain (PCK) due to the characteristics of our research 
objective. Its three subdomains are briefly described as follows: Knowledge of Mathematics Teaching 
(KMT) is the integration of mathematics and teaching. “It is the kind of knowledge of resources from 
the point of view of their mathematical content or the knowledge of approaching a structured series 
of examples to help pupils understand the meaning of a mathematical item” (Carrillo et al, 2013, p. 
2991); Knowledge of Features for Learning Mathematics (KFLM) include theories and models of 
how student learn mathematics, that is to said, how certain concepts are learned, intuition, mistakes, 
and the way students interact with specific mathematics content; and finally, Knowledge of 
Mathematics Learning Standards (KMLS) refers of “curricular specifications, the progression from 
one year to the next, conventionalized materials for support, minimum standards and forms of 
evaluation […] We include objectives and measures of performance developed by external bodies 
such as examining boards, professional associations and researchers” (Carrillo et al, 2013, p. 2991).  

In our research, we focus on the knowledge that teachers display within classroom practice and 
that acquires a specific form as teaching strategies that they modify as they manage their lessons. 

Methodology 
Three researchers participated in the analysis of videos of a voluntary secondary school 

mathematics teacher in Mexico. The teacher had already participated in a 20-hour workshop on CAS 
with calculators (TI-82). In general, the workshop was about solving algebra problems using 
functions such as factorize, develop, solve and evaluate. The workshop discussion was centered on 
the various ways in which an algebra problem can be solved with a calculator, as well as when it is 
adequate to use CAS in the classroom, how and why. We decided to observe and make video 
recordings of two of the teacher’s regular classes, without a prior decision by the researchers about 
the topic and how it would be treated from a pedagogical perspective. During the workshop, it was 
clear that the teacher knew the rules for CAS, as well as the skills to explore new situations related to 
these rules and propose new uses to students. It should be mentioned that a previous study (García-
Campos & Rojano, 2008) states that in order for CAS to impact teaching practices, it is necessary to 
provide more support for teachers, because in the short term, they do not incorporate CAS on a daily 
basis in the classroom. 

In this report, we focus on the results of the analysis of the practice of Clementina, a teacher who, 
at the moment of our research, had more than 20 years of experience teaching at secondary school 
level, had good proficiency of the mathematical topics to be covered, and was familiar with the 
elements of a calculator that allow a variety of simultaneous representations of algebraic objects 
(tables, graphs, expressions), and the instructions to solve equations.  

Data analysis was developed using a transcription of the episodes selected by the three 
researchers once they had identified the pedagogical content knowledge expressed by means of the 
following teaching strategies.  

Teaching Strategies as an Approach to Aspects of Pedagogical Content Knowledge (PCK) 
We propose the following three teaching strategies that result from a broader study in which we 

have been working by analyzing videos of secondary school mathematics teachers. The strategies 
have been identified in these classes and account for some of the specialized knowledge that teachers 
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generate and enact when they are teaching. The results of this investigation shall be published in 
detail in the future. 

In the analysis of the videos of Clementina’s lessons, we identified that her specialized 
knowledge was clear in three teaching strategies: 

• Maintaining the lesson plan. This involves making decisions to keep the lesson going in 
such a way that the learning objectives determined by the teacher according to curriculum 
content and available resources are achieved. Examples of these decisions include: choice 
of solutions, procedures and mistakes to discuss or show to the entire group, summaries, 
assessments, formalizations, etc. The emphasis is on the teacher’s knowledge of the KMT 
and KMLS subdominions. 

• The role given to students. Teacher can promote various forms of participation in the 
same class (KMT). For example, students can be invited to explore and share solutions, 
to come to the board or use CAS (with the TI presenter), to explain procedures, solutions 
or hypothesis, or simply to follow instructions. 

• The use of technological tools. Teacher proposes the use of technological resources 
available to verify results, explore procedures and solutions, apply techniques, etc. (KMT 
and KFLM). 

Analysis and Discussion. The Case of Clementina 
The results of the use of teaching strategies to account for the type of knowledge promoted in 

class by Clementina, are presented below. Our analysis allows us to describe how the components of 
MTSK come together. The teacher has a detailed and precise plan for the use of CAS in her class. 
She has prepared a specific problem, which she apparently wrote herself. Both planning and progress 
of the class show proficiency and experience in the solution of linear equations (KMLS), how to 
teach them (KMT), and the various ways her students will approach the task proposed (KFLM).  

Brief Description of the Teacher’s Actions in The Lesson 
At the start of the session, the teacher dictates the problem and the objective of her lesson plan, 

and provides the instructions regarding how to work in the lesson, as shown in the following 
fragment.  

Teacher: Linear equations. General aim: Solving literal equations. Relating a formula to a table 
of data and its graph. 

Problem: We buy 9 packs of books that have an additional cost of $75 at a store [sic]. How much 
does each pack cost if the total price is $1400? 

Teacher: Read the problem. When you have posed it, you can use the calculator to find the 
solution. You can work on your own, or in groups of two, three or as many as there are at each 
table. 

[Fragment 1, Session 1] 

Although her classes are very well structured and they develop according to a well-defined plan, 
we observe that Clementina always provides their students a moment to read and reflect on the 
problem, followed by time to explore resources and strategies. Students use the calculator freely, and 
raise their hands when they have questions. The teacher goes around the classroom from one team to 
another, answering questions as they arise. We consider that this demonstrates her knowledge 
regarding how to learn this subject matter (KFLM). 

A Teaching Issue not Foreseen in Planning 
A teaching issue related to the use of the word “additional” in the sentence that formulates the 
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problem arises in the class. Students do not know how to interpret what the word refers to, and 
spontaneously begin to explore with specific numerical values. Then the teacher takes part in the 
following way: 

Teacher: Your classmate says that when you use the word additional, it means…  
Student: That you have to increase. 
Teacher: In this case, how much do you have to increase?  
Student: 75  
Teacher: What would your equation be like? […] What is your problem about? You are going to 

make a table [referring to a student] What is your table going to be based on?  
[Fragment 2, Session 1] 

In Fragment 2, there are two moments at which the teacher intervenes. The first is to help 
translate the problem into algebraic terms; the word “additional” means to increase or add as she 
helped the student to realize. In the second instance, she suggests that the students should focus first 
on finding an equation that models the problem. In addition, she tells her students that with the 
equation they will be able to do the numbers, find values and build a corresponding table, which is 
the opposite of what they were actually doing: exploring numerical values to establish the equation. 
It is worth noting that in Mexico it is often observed that students first get the algebraic expression 
and then the table or graph. This practice is promoted by the national curricular plans (SEP; 2011). 

From our perspective, the above shows that the teacher applies the first strategy: maintaining the 
lesson plan. Although the students explore the problem with numerical examples to establish the 
relationships posed by the problem, Clementina orients these procedures and to find the equation that 
models the problem (KFLM and KMT). In this way, she solves the teaching issue that arose and goes 
on with her lesson plan.  

However, the questions and confusion continue. The teacher then invites the students to a group 
discussion. She picks up on the questions of one of the students to discuss and clarify them together 
in a group. The student has been trying several possible values for the costs of the packs of books. 
Apparently, he is applying a trial and error strategy (successive numerical approximations) to adjust 
the values.  

Teacher: What does your problem want to find out? [inaudible] It wants to know how much a 
pack costs, how many packets did it buy? 

Student 2: Nine 
Teacher: What would you do to that nine? Your classmate says she has to make a table. But how 

would you do that? […]   
Student 3: One thousand, four hundred and thirty-nine (1439)  
Teacher: What will you divide it by? And the additional? [Discussion continues]  
Teacher: Once again, the pack can’t cost $75. That’s additional. Let’s consider it as an increase 

[…] What would your equation be like? What does the general aim of the lesson tell you? 
[Students read what the teacher dictated at the start of the lesson], we logically have to obtain 
an equation [...] Lots of you have started to make tables, what are you going to tabulate?    

[Fragment 3, Session 1] 

The teacher’s participations (Fragments 2 and 3) orient the class to identifying the unknown 
quantity, the relation between the data and the unknown quantity, and the equation. Again, she 
maintains the objective of her lesson: obtaining an equation that algebraically models the problem 
(KMLS). Now she faces yet another teaching issue as her students begin to obtain different 
numerical results and still haven’t found an equation. 

In spite of the students difficulties, one of them finds an equation and the teacher asks her to 
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come to the board. She writes “9x + 75 = 1400”. The teacher chooses to discuss this solution with 
the group while she ignores other solutions, such as those obtained by trial and error. Thus, the 
teacher favors the equation that results from translating the problem and its numerical solution, no 
matter the techniques that can be used to solve it, either paper and pencil or CAS (KMT and KFLM 
knowledge).  

Once the equation has been proposed (which was the main objective of the lesson), the teacher 
asks the students to solve it, giving them the time and freedom to choose a calculator or paper and 
pencil for this purpose. For Clementina, the use of CAS is optional. This is the strategy that defines 
the use given to technology for this lesson. 

When the equation has been solved, the teacher asks the teams to present their solutions, which 
are mostly numerical. She then chooses a student who solved the equation algebraically, step by step, 
with paper and pencil. The solution is shown in Figure 2(a).  

 

9x + 75 – 75 = 1400 – 75  
9x = 1325 
9x/9 = 1325/9 
x = 147.22 
147.22 x 9 + 75 = 1400 

(a) 

75 1400.00  725 /9 
= 80.55 (residuo 1)  
x 9 - 675.00  
675 0725.00 
  

R = 80.55 

(b) 
Figure 2. Proposed solutions (a) algebraic and (b) numerical. 

When the teacher realizes that most students do not agree with x = 147.22, she asks for the 
solutions they found. Here she puts into action another of her strategies: she uses what the students 
have produced (role of the students) to contrast, compare mistakes and procedures, and to clarify 
(presence of KFLM and KMT). 

As questions continue to arise, the teacher invites students to present their solutions. They 
understand that she had asked them to propose an equation that could model the problem, so they 
ask, “With an equation?”.  Then the teacher selects a student that obtained a numerical solution, 
shown in Figure 2 (b). Apparently, the student’s procedure is arithmetical: she did the operations 
separately, written both operations and results. The teacher uses this solution to ask “What is the cost 
of each pack?” And the student answers “$80.55”. It may be that the teacher identifies in this 
moment that the difference between the two procedures is the placing of brackets. In other words, the 
equation that corresponds to the procedure in Figure 2 (a) would be: 9x + 75 = 1400, while for Figure 
2 (b) it would be 9(x + 75) = 1400. Now the teacher shows she knows how the students are 
interacting with the equations and mathematical ideas (order of operations, associativity) that are 
behind these proposals (KMT). Possibly due to this, after explaining, she asks the student who came 
up with the algebraic solution to go the board and correct the equation. However, in order to obtain 
the correct answer, she adds brackets to the verification: (147.22 x 9) + 75 = 1400. The teacher adds 
that the point is not to see who is right, but who has come up with the valid process. In her own 
words: “Which of the two processes do you think is convenient? Let me be clear, it’s not a majority 
vote.”  

The teacher’s participation shows that she is focused on the teaching strategy that allows 
emphasis on the role of the students, causing them to compare the various interpretations they have 
made of the relations between the data and the unknown value of the problem. The students get 
caught up in this comparison, arguing for and against. In our analysis we identify how the teacher 
makes explicit and promotes the discussion of two different interpretations of the word “additional”: 
1) additional per pack, i.e., 9(x + 75); and 2) additional per nine packs, 9x + 75.  
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In terms of the richness of the mathematical discussion carried out by the students, the problem 
has given fruits: there has been reasoning, verification, use of different technological media and a 
variety of techniques (CAS, paper and pencil). Nevertheless, at this moment class time is almost over 
and the main objective of the lesson is not complete with regards to “relating a formula with the data 
table it produces and with its graph”. The teacher tries to close the discussion with the following 
question: 

Teacher: Which of the two approaches or solutions to the problem do you consider to be correct? 
Students: Both.  
Teacher: This means that one of the two is not right [...] They don’t necessarily have to be 

exactly the same [...] Let’s round off [...], one is missing two cents, and the other five cents 
[…] You might lose a few decimals.  

 [Fragment 6, Session 1] 

Clementina explains that both procedures should come up with the same result, and that this is 
not the case. She argues on the unicity of the solution of an equation, a topic that apparently has not 
been dealt with in class; it hasn’t been considered in the lesson plan either (a possible deficiency in 
KMLS). 

Until now, the teacher has intertwined the strategies for maintaining the lesson plan and the role 
of the students (manifestations of KMT and KFLM). However, she now makes the decision to 
modify her lesson plan and adapt it to her students’ needs and to the interpretations they have come 
up. In the remaining minutes, she allows students to use the solution strategies they feel most 
comfortable and confident with, not necessarily those typically algebraic. She allows the student who 
proposed the equation and the one who proposed an arithmetic procedure to show their 
interpretations to the class on how to obtain the solution to the problem once more. The teacher asks 
the student with the “arithmetic” procedure (Figure 2 (b)) to explain on the board. This student says 
that she and one of her classmates have concluded that her procedure is right. 

Student: The thing is that the problem didn’t state clearly if it was 75 for each one or for all of 
them. And here we proved that it was 75 for all of them. Because it can’t be for each one 
because it doesn’t work, it would be 1447.95 

[The teacher asks several teams to read the problem to the student to clarify if the 75 referred to 
all or to each one of the packs.] 

Teacher: Is the sentence talking about the pack or all of them? 
Student: The sentence is missing a word. 
Teacher: Which word? 
Student: It should tell us if it’s 75 additional pesos for each pack [...] 
Teacher: This is what problems are for, to see that if they are not stated well, each student will 

solve them in a different way… What this is about is, you have to read it … 
Student: If I was the teacher, this problem would have two objectives… It’s not just about 

reading, it’s about determining the relation between the data and the solution. 
[Fragment 6, Session 1] 

The children of the class agree that the additional 75 pesos are for the nine packets, so the correct 
equation would be: 9x + 75 = 1400. The teacher exhibits pedagogical knowledge that is effective at 
this moment: she “gives” control of the lesson to her students. 

Final Remarks 
During her class, Clementina faced an unforeseen teaching issue due to the ambiguous 

description of the problem situation. Consequently, she modified the class objectives, her lesson plan, 
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as well as the roles and participation she had planned for her students. In the process, she also 
adapted her own role, modified her expectations and participation, and even gave up her role as 
“teacher” to one of the students. She allowed the group to reach a consensus, giving control to her 
students and establishing the meaning of the word “additional“ and its implication in (9x + 75 = 
1400). At the end of the lesson, she went back to the initial objective, related it to the work done in 
class and gave it meaning. Such adaptations to the lesson plan, the problem, objectives, forms of 
participations of the students and even the role of the teacher require great flexibility and adaptability 
from teachers and their specialized knowledge. We believe flexibility and adaptability like this 
cannot be anticipated nor is it possible to include as a topic within a teacher training program; they 
can only be acquired through classroom practice. Inquiring more deeply into these strategies and the 
interaction between various types of teaching knowledge may have productive implications in the 
formation of teachers, as well as on research in the area. 
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In this study we extend our prior exploration focused on the extent to which middle school teachers 
appropriately identified proportional situations and whether there were relationships between 
attributes of the teachers and their ability to identify proportional situations. For this study, we 
analyzed both a larger dataset (n=32) and two dynamic scenarios in which participants were asked 
to consider aspects of the relationship shown in the diagrams. We found  teachers who were 
correctly able to discern that a situation was not proportional were more likely to use important 
knowledge resources to evaluate the tasks.  

Keywords: Teacher Knowledge, Rational Numbers, Mathematical Knowledge for Teaching 

Purpose and Background 
Proportional reasoning is an important mathematical concept in middle school mathematics. 

Despite its prominence in both the mathematics (National Governors Association & Council of Chief 
State School Officers, 2010) and science standards (NGSS Lead States, 2013), proportional 
reasoning has not enjoyed a rich history of research relative to its importance (e.g., Lamon, 2007). 
Research available on teachers’ understanding is sparse, but indicates that, like students, teachers 
struggle with proportions (e.g., Akar, 2010; Harel & Behr, 1995; Izsák & Jacobson, 2017; Orrill, 
Izsák, Cohen, Templin, & Lobato, 2010; Post, Harel, Behr, & Lesh, 1988; Riley, 2010). 

One necessary element of a robust understanding of proportions for teachers is the ability to 
distinguish those situations that are proportional from those that are not. Orrill et al. (2010) observed 
that the middle school teachers in their studies had trouble identifying situations as appropriate or 
inappropriate for using proportional reasoning. For example, when teachers were given a problem 
with three values and asked to find a missing fourth value, teachers tended to treat those situations as 
directly proportional even if the actual relationship was inversely proportional or linear. Teachers 
also struggled to apply proportional reasoning in a qualitative task (e.g., one that does not rely on 
manipulating numbers) that asked them to compare one pile of blocks to another pile, similar to those 
tasks used by Harel, Behr, Post, and Lesh (1992), instead they relied on additive reasoning. 

Such findings led us to wonder how pervasive these issues were, what kinds of situations might 
confuse teachers, and what knowledge teachers rely on to determine whether a situation is 
proportional. In this paper, we extend our earlier findings (Nagar, Weiland, Brown, Orrill, & Burke, 
2016) related to this topic by looking at data from more teachers and by expanding our task set to 
include a dynamic task that appropriately modeled a proportional relationship with a “thermometer” 
representation (see Figures 1 & 2). Specifically, we consider which knowledge resources were most 
frequent and what trends emerged among teachers who were able to differentiate proportional from 
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non-proportional relationships versus those who struggled to do this. This work is at the crossroads 
because it brings together theory and practice in a way that is expressly aimed at impacting practice. 
By understanding how teachers think about proportional situations, we are better able to create 
teacher professional development experiences that meet the teachers where they are, thus maximizing 
the potential for impacting students’ experiences with mathematics.  

Theoretical Framework 
We work from the knowledge in pieces perspective (diSessa 1988, 2006), which asserts that 

individuals develop understandings of various grain sizes that are used as knowledge resources in a 
given situation. These resources are connected, over time, through learning opportunities that lead to 
the refinement of the resources and the development of rich connections. More rich connections 
between knowledge resources allow them to be available in more situations. This is parallel to the 
research on expertise that has shown experts have both more knowledge and a different organization 
of knowledge than novices in their domain (e.g., Bédard & Chi, 1992). It is also aligned with Ma’s 
(1999) interpretation the need for teachers to have profound understandings of fundamental 
mathematics. By having a robust set of knowledge resources that are coherently connected, we posit 
teachers will be more able to access their understandings to apply them to a wider range of 
mathematics and teaching situations than others whose knowledge resources are less coherently 
connected. We refer to this richly connected collection of knowledge resources as being coherent and 
assert that more coherent teachers will be better able to support student learning (e.g., Thompson, 
Carlson, & Silverman, 2007). This approach differs from much research on teacher knowledge in that 
we are not trying to identify deficiencies in teachers’ understanding of mathematics, rather, we are 
trying to understand how teachers understand the mathematics they teach and how different 
knowledge resources are drawn upon for solving problems and teaching. 

Methods 
This study is part of a larger project investigating teachers’ knowledge of proportional reasoning 

for teaching. The participants included a convenience sample of 32 in-service, grade 5-8 mathematics 
teachers, whose teaching experiences ranged from one to 26 years. The participants were from four 
states. They taught at a variety of schools (public, private, and charter). Twenty-four of the teachers 
identified as female and eight identified as male. Six of the teachers identified as a race other than 
white.  

The data analyzed for this study were collected through a task-based clincial interview that was 
videotaped using two cameras trained on the participant’s hands to ensure we captured anything the 
participant wrote or pointed to in the interview. Each interview lasted about 90 minutes. Additional 
data were collected in the form of a written assessment of proportional reasoning that included the 
LMT Proportional reasoning instrument (e.g., Hill, 2008) augmented by additional questions focused 
specifically on whether participants could discern proportional situations from non-proportional 
situations.  

The qualitative analysis of the participant’s clinical interview responses was carried out by 
coding the participants’ utterances using a coding scheme that was developed using emergent coding 
focused on the knowledge resources participants used to reason about a variety of situations. This 
coding scheme, which included of 23 codes, relied on codes from the literature (e.g., Lobato & Ellis, 
2010) as well as from open coding (Corbin & Strauss, 2007). This approach of relying on both 
literature and emergent codes is consistent with certain grounded theory approaches (e.g., Charmaz, 
2014). To create the coding scheme, we coded several interviews, with 2-5 members of the team 
coding each interview until we were certain that the coding scheme included all the relevant 
resources we were observing. The full coding scheme included knowledge resources related to 
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reasoning about ratios and proportions, the relationship between fractions and ratios, the relationship 
between similarity and proportions, the use of representations to reason about proportions, and a few 
pedagogically-related code, such as one to capture those instances in which a teacher indicated she 
would ask the student for additional information. For the purposes of this study, we present only 
those codes that appeared across both studies (shown in Table 1) specifically relevant to proportions 
(e.g., excluding those for representations and pedagogy). Our coding relied on a binary approach in 
which each utterance was coded as a 1 or a 0 based on whether a particular knowledge resource was 
observed. Once the coding scheme was stable, each interview was coded by at least two researchers 
and 100% agreement was reached on all coding.  

Table 1:  Codes of Knowledge Resources Used in Thermometers Task 
Code Description 

Comparison of 
Quantities 

States that ratio as a comparison of two quantities.  

Multiplicative 
Comparison 

Participant sees that there is a way of describing the relationship of the quantities in the 
ratio that is multiplicative  

Covariance Recognizes that as one quantity varies in rational number the other quantity must covary 
to maintain a constant relationship.  

Unit Rate 
 

Uses the relationship between the two quantities to develop sharing-like relationships 
such as amount-per-one or amount-per-x. 

Equivalence Describes proportion as a relationship of equality between ratios or fractions. 
Constant Ratio Recognizing the invariant multiplicative relationship between two quantities. 
Scaling Up/Down Uses multiplication to scale both quantities to get from one ratio in an equivalence class 

to another.  
Horizon knowledge Demonstrates knowledge that extends into mathematics beyond proportions  
Rule Shares a verbal or written rule (e.g., Red = Blue - 2) stated in a way that conveys a 

generalizable relationship.  
 
For this analysis, we revisited the Thermometers task from our earlier study (Nagar et al, 2016). 

The thermometers task relied on a dynamic sketch presented to participants with two thermometers, 
one red and one blue, whose lengths could be varied by dragging a point on a number line (as shown 
in Figure 1 and Figure 2). Two scenarios were shown to participants (one at a time) and with each 
scenario participants were asked: (a) whether there was a relationship between the thermometers; (b) 
whether the relationship was proportional; (c) whether they could provide a rule and a story problem 
or real-world situation for that relationship; and (d) whether they see a scale factor involved in the 
situation. For the original study, we analyzed 13 participants’ responses to the first scenario in which 
the thermometers were designed to maintain a constant difference of two units in length of the lines 
as the point on the slider is dragged from left to right (Figure 1). This situation represents a non-
proportional linear relationship between the two thermometers. Our earlier findings showed that five 
of the 13 teachers initially misidentified the situation as proportional. In that analysis, we also found 
that two teachers (Group 3) remained convinced that the situation shown in Figure 1 was 
proportional, whereas the other three teachers (Group 2) started out thinking it was proportional, but 
then changed their mind. The eight teachers in Group 1 started out, and remained, convinced that the 
situation was not proportional. We then analyzed which knowledge resources the teachers relied on 
to determine that the situation was not proportional. Our analysis showed that teachers in Groups 1 
and 2 used Rules, Scaling Up/Down, and Equivalence to appropriately identify this Thermometers 
task as non-proportional. We also found that across all three groups, teachers used language that 
sounded very additive rather than relying on multiplicative reasoning language.  
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Figure 1. Screenshot of thermometers scenario 1 task. 

In the study reported here, we extend the earlier work in two ways. First, we now have our entire 
dataset analyzed for the Thermometers Scenario 1 task (Figure 1), therefore, we consider 32 
teachers’ responses to that item (this includes the 13 teachers in the original study plus 19 additional 
teachers). Second, we analyzed Scenario 2 in the Thermometers task, a situation in which the 
dynamic environment models a proportional relationship (see Figure 2).  

 

  
Figure 2. Screenshot of thermometers scenario 2 task. 

Results 
Our driving research question for this study was: what knowledge resources do teachers seem to 

rely upon in determining whether a situation is proportional or not proportional? We will first 
consider this question for Scenario 1 (the non-proportional situation), then for Scenario 2 (the 
proportional situation). In both scenarios, we focus on trends in the groups. All names reported in this 
section are pseudonyms. 

Scenario 1: Linear Relationship  
We began by separating the participants into groups the same way we had in the earlier study. 

The analysis of 32 teachers in the non-proportional Scenario 1 task showed that 19 teachers (59%) 
correctly identified the situation as non-proportional (Group 1). Seven participants (22%) first 
identified the situation as proportional but changed their mind during the interview to identify the 
situation as non-proportional (Group 2). And, six participants (19%) identified the situation as 
proportional (Group 3).   

As in our earlier study the subset of codes shown in Table 1 were used in making sense of the 
situation. The most notable trend in the dataset was that the Group 3 teachers relied very little on 
these knowledge resources to make their determination. In fact, only three members of Group 3 
(50%) used any of these resources. Peter used both Unit Rate and Equivalence while David used only 
Equivalence and Bridgette used Horizon Knowledge. In contrast, in Group 1, only four teachers 
(21%) did not use the knowledge resources included in this analysis. And, across the teachers there 
was much more variation with at least one person using each of the listed knowledge resources at 
least one time. For Group 2, two of the teachers (29%) did not use any of the resources.  
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Table 2:  Number of Occurrences of Each Code by Group for Each Scenario 
 Scenario 1 Scenario 2 

Code 
Group 

1 
(n=19) 

Group 
2 

(n=7) 

Group 
3 

(n=6) 

Total 
(n=32) 

Group 1 
(n=19) 

Group 2 
(n=7) 

Group 3 
(n=6) 

Total 
(n=32) 

Comparison of Quantities 1 0 0 1 3 1 0 4 

Multiplicative Comparison 0 4 0 4 13 2 4 19 

Covariance 3 1 0 4 5 1 1 7 

Unit Rate 2 0 1 3 5 3 0 8 

Equivalence 5 2 2 9 3 2 1 6 

Constant Ratio 4 2 0 6 11 1 3 15 

Scaling Up/Down 6 2 0 8 12 4 1 17 

Horizon knowledge 5 3 2 10 5 1 1 7 

Rule 21 6 9 36 12 4 1 18 

 
Consistent with our earlier study, Scaling Up/Down, Equivalence, and Rule were some of the 

most used knowledge resources on this task. We note that Scaling Up/Scaling Down was not used at 
all by Group 3. It was used somewhat consistently in Group 1 with five of 19 teachers (26%) using it 
a total of six times. In Group 2, only one teacher out of seven (14%) used Scaling Up/Down in her 
reasoning twice. Equivalence was used nine times across all the teachers for Scenario 1, making it 
the third most commonly used code. In Group 1, three (Diana, Greg, Larissa) of the teachers used 
Equivalence a total of five times. In Group 2, two teachers each used it one time, and in Group 3, two 
teachers used is one time each.  

Interestingly, the two most commonly used codes for this larger dataset on Scenario 1 were Rule 
and Horizon Knowledge. An example of Horizon Knowledge in this context would be recognizing 
that Scenario 1 is not a proportional relationship because the y-intercepts for the blue and red bars 
differ, as Alan did:  

Oh, as an eighth grade math teacher you’d say they have the same slope but a different Y 
intercept.  Yeah, I know it’s probably not what you’re thinking about but, yeah when you go all 
the way back here it’s, this is always going to be two ahead. So that starts a zero, this starts two, 
but then they grow at the same rate, so it’s always two ahead.  

The commonality of the Horizon Knowledge code is interesting as it suggests that having more 
formal understandings of mathematical structures to be able to generalize might matter in Scenario 1. 
It also suggests that understanding related mathematical topics may support teachers in invoking 
knowledge resources to better understand a given situation. 

The Rule code was the most frequently observed in this coding scheme for Scenario 1. In Group 
1, 14 of the teachers (74%) were able to generate a rule describing the relationship. For example, 
Diana said, “Red plus 2 would be blue.” In Group 2, this dropped to three of seven teachers (43%). 
However, Group 3 had four of six teachers (67%) able to generate a rule relate to the situation. This 
suggests that the teachers in Group 3 may not be connecting their knowledge resources for 
determining whether something is a proportion to their generalization of a mathematical situation. 
For example, Brianna (in Group 3) clearly stated that the relationship was, “Whatever red is plus 2 
would equal blue” but, she maintained that the relationship was proportional. This suggests that 
explicitly understanding the mathematical structure of the problem may not be necessary to generate 
a rule about the relationship presented. 
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Scenario 2: Proportional Relationship 
In Scenario 2 (Figure 2), we asked the same questions of our participants about a similar dynamic 

representation that showed a proportional relationship. Many more of the teachers got this task 
correct. In fact, only eight teachers (25%) gave wrong responses and two of those changed their 
response to be correct during the course of the interview (one in Group 2 and one in Group 3). Of the 
teachers who answered incorrectly and did not change to a correct interpretation, three were in Group 
1, one was in Group 2, and two were in Group 3. This is consistent with our earlier finding that 
teachers have an easier time recognizing situations that are proportional than those that are not 
proportional (Nagar et al., 2016).  

While Scaling Up/Down and Rule continued to be important in Scenario 2, Equivalence became 
less important and two new codes became more important: Multiplicative Comparison and Constant 
Ratio. Multiplicative Comparison was used only when an utterance demonstrated the participant 
understood a relationship between the quantities of the ratio as multiplicative. For example, 
understanding the blue thermometer is 5/3 as long as the red thermometer. While only one person 
(Kanita in Group 2) used Multiplicative Comparison as a resource for Scenario 1, in Scenario 2, 12 
participants (38%) used it one or more times. In Group 1, nine participants used this knowledge 
resource 13 times for Scenario 2. In Group 2, two participants used Multiplicative Comparison two 
times in Scenario 2. Only one member of Group 3 (Patricia) used Multiplicative Comparison four 
times. 

Constant Ratio was coded when participants indicated there was a fixed relationship between the 
two numbers in a ratio. It was not as precise as Multiplicative Comparison in that participants needed 
only to note the relationship existed without specifying the nature of that relationship (i.e. that it is 
multiplicative). In Scenario 1, six participants (19%) used this knowledge resource whereas 15 
participants (47%) used it in Scenario 2. In Group 1, this was used eleven times across nine 
participants (47%) in Scenario 2. For Group 2, it was used just one time, and in Group 3, it was used 
three times by one participant (Patricia). This trend in Constant Ratio and Multiplicative Comparison 
codes suggests that there is something different about the way many members of Group 1 use their 
knowledge resources than the members of Groups 2 and 3. We note that Patricia in Group 3 appears 
to be an outlier in terms of her use of knowledge resources. 

Generating rules was harder for teachers in Scenario 2 than in Scenario 1, but was still an 
important code with 18 instances across all three groups. For Scenario 2, six Group 1 teachers (32%) 
generated 12 rules, four Group 2 teachers (67%) generated four rules, and one Group 3 teacher 
(Patricia) generated one rule (17%). An example of one teacher’s rule was Ella’s, “So if I say the red 
bar is 3/5 of the distance to the blue bar, so the blue… so the blue bar… let me see if five… I don’t 
want to like change this up.  Five equals… so that would be like B=5/3R.” The relative struggle the 
participants experienced in identifying a rule is interesting given that teachers were more successful 
identifying the situation as being proportional and reinforces our assertion that teacher knowledge is 
shaped by the specific context. 

Conclusions 
Consistent with our earlier findings, this study showed teachers are better at determining whether 

a situation is proportional if it is actually proportional. In the current study, 13 of the 32 teachers 
started out believing Task 1 was a proportion and only seven changed their thinking to recognize that 
the situation was not proportional. In contrast, only eight teachers were unable to initially identify a 
proportional situation as such, with two of those eight figuring out the situation was proportional as 
they worked. This is consistent with research on students that also shows problems discerning 
proportional relationships from non-proportional ones (De Bock, Van Dooren, Janssens, & 
Verschaffel, 2002).  
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When this finding is combined with the particularly sparse use of relevant knowledge resources 
by teachers in Group 3, one reasonable assertion would be that teachers need more opportunities to 
apply their understandings and make connections between those understandings. For example, we are 
confident that middle school teachers understand ratios must be equivalent for a proportion to exist. 
However, few teachers applied this understanding, which could have helped provide evidence that 
Scenario 1 was not a proportion.  

We also note that there may be some need for additional development of knowledge resources. 
For example, Multiplicative Comparison, which is a critical understanding for reasoning about the 
relationships within a proportion, was seen in a relatively small number of utterances. In Group 1, 
almost 2/3 of the teachers used it, but in Groups 2 and 3 combined, the resource was used by only 
three teachers. This suggests that having the Multiplicative Comparison resource available may lead 
teachers to be more accurate in their ability to discern proportional relationships. It also suggests that 
several teachers are lacking, or failing to activate, a critical understanding of proportional reasoning.  

We assert that the lack of presence of Multiplicative Comparison may also explain the limited 
presence of the Rule code in Scenario 2, while it was very prevalent in Scenario 1. It may be that in 
teacher preparation and professional development teacher educators are over-emphasizing linear 
situations rather than multiplicative ones. It is also possible that the lack of comfort with the 
multiplicative relationship between quantities, implied by the limited use of the Multiplicative 
Comparison code, prevents teachers from seeing applications of proportional relationships in the real 
world. Perhaps focusing more on problem generation and the multiplicative nature of the relationship 
between quantities in a proportion would strengthen teachers’ abilities to recognize proportional 
situations.  

Combined, the findings of this study intersect theory with research to inform practice. By looking 
at teachers’ actual use of knowledge through the knowledge in pieces lens, we are able to suggest 
that professional development be sensitive to both knowledge resources development and the 
development of connections between and among those resources. Failure to address both of these 
approaches creates a situation in which teachers are unable to capitalize on the knowledge they have 
to support their students. 
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This paper describes seven in-service teachers’ interpretations of student statements about slope. The 
teachers interpreted sample student work, conjectured about student contributions, assessed the 
students’ understanding, and positioned the students’ statements in the mathematics curriculum. The 
teachers’ responses provide insight into their Knowledge of Content and Students (KCS) and 
Knowledge of Content and Curriculum (KCC). Results suggest these teachers value academic 
terminology related to slope, have limited perspectives on slope in real world contexts, and struggle 
to describe the extension of slope to precalculus. 

Keywords: Algebra and Algebraic Thinking, Mathematical Knowledge for Teaching, Teacher 
Beliefs, Teacher Knowledge 

Introduction 
Ball, Thames, and Phelps (2008) introduced the Mathematical Knowledge for Teaching (MKT) 

Model based on Shulman’s (1986) work as a means to consider the multifaceted knowledge that 
teachers need for their craft. MKT consists of two different types of knowledge: pedagogical content 
knowledge and subject matter knowledge. Pedagogical content knowledge has been outlined in terms 
of three domains: Knowledge of Content and Curriculum (KCC), Knowledge of Content and 
Students (KCS), and Knowledge of Content and Teaching (KCT). In this study, we focus on KCS, 
how students learn mathematics, and on KCC, where the mathematical topics students are learning fit 
in the curriculum. Subject matter knowledge also has been portioned into three domains. We will 
focus on Horizon Content Knowledge (HCK), which refers to understanding future mathematical 
topics and how the math at hand provides a foundation for those topics. We investigate these areas of 
MKT as related to the concept of slope, a key topic in the middle school mathematics curriculum 
upon which advanced mathematical (Moore-Russo, Connor, & Rugg, 2011) and statistical (Casey & 
Nagle, 2016; Nagle, Casey, & Moore-Russo, 2017) ideas are built. In addition to coverage across the 
curriculum, the multitude of ways in which students can reason about slope make it well suited for 
this study. 

 

Slope Network 
Nagle and Moore-Russo (2013a) proposed a network of five slope components, each with visual 

and non-visual as well as procedural and conceptual subcomponents (see Table 1).  
The slope network outlines the multi-faceted nature of slope, but research has not described how 

these subcomponents may interrelate and be leveraged to help students develop a connected 
understanding of slope. In this study, we consider teachers’ interpretations of student statements 
related to the various slope components (KCS) and their accounts for how they fit together across the 
secondary mathematics curriculum (KCC). Using this lens, we consider teachers’ perspectives on the 
relative sequencing of these components and gain insight into their valuation of the components. In 
particular, we investigate the following research questions: 

1. How do teachers interpret common student statements about slope? What notions of slope do 
teachers value in student thinking?  
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2. What are teachers’ perceptions of how the notion of slope is developed across the secondary 
curriculum? 

Table 1: Slope Network (adapted from Nagle & Moore-Russo, 2013a) 

 
  

Slope 
Component Description Subcomponents (shown as subscripts) 

v = visual, n = nonvisual, p = procedural, c = conceptual 

Ratio 

Slope viewed as a 
ratio; extends to 
explain why linear 
behavior results in a 
constant ratio. 

Rv,p:  rise/run or vertical 
change over horizontal 
change 

Rv,c: similarity of slope triangles yields a 
constant ratio of rise/run regardless of 
the position on the graph 

Rn,p: change in y over change 
in x; (y2-y1/x2-x1) 

Rn,c: constant rate of change between 
two covarying quantities; equivalence 
class of ratios thus a function 

Behavior 
Indicator 

Relates slope to the 
increasing or 
decreasing behavior 
of a linear function or 
graph; links sign of 
the quantity m with 
the function’s or 
graph’s behavior. 

Bv,p: increasing (or 
decreasing) lines have 
positive (or negative) slope 

Bv,c: positive (or negative) rise 
corresponds to positive (or negative) run 
for an increasing (or decreasing) line, 
yielding a positive slope   

Bn,p: value of m in the 
equation for a linear function 
indicates whether f is an 
increasing (m>0) or 
decreasing (m<0) function. 

Bn,c: If function f is increasing then f 
(x1)<f (x2) for every x1<x2, so                                    
[f (x2)-f (x1)]/(x2-x1)>0; similar 
generalization for decreasing function 

Trig. 
Conception 

Describes slope in 
terms of the angle of 
inclination of a line 
with a horizontal; 
extends to relate 
steepness to the 
tangent of the angle 
of inclination. 

Tv,p: steepness of a line; 
slope as the angle of 
inclination of the line with a 
horizontal 

Tv,c: the angle of inclination determines 
the rise/run; a steeper line has a greater 
rise per given run than a less steep line 

Tn,p: slope is calculated as 
tanθ where θ is the angle of 
inclination 

Tn,c: the angle of inclination determines 
the ratio of (y2-y1/x2-x1), which is 
equivalent to tanθ. 

Determining 
Property 

Property that 
determines if lines 
are parallel or 
perpendicular; 
property can 
determine a line if a 
point on the line is 
also given. 

Dv,p: parallel (perpendicular) 
lines have the same 
(negative reciprocal) slope; 
slope and point determine 
unique line 

Dv,c: parallel lines have the same vertical 
change for a set horizontal change; may 
be seen in terms of congruent slope 
triangles 

Dn,p: y2-y1/x2-x1 is equal for 
parallel lines and results in 
negative reciprocals for 
perpendicular lines; slope 
and a point determine a 
unique linear equation 

Dn,c: parallel lines have equivalent 
differences in y values for a set 
difference in x values, yielding 
equivalent slope ratios 

Calculus 
Conception 

Limit; derivative; a 
measure of 
instantaneous rate of 
change for any (even 
nonlinear) function; 
tangent line to a 
curve at a point 

Cv,p: slope of a curve at a 
point is the slope of the 
tangent line to the curve at a 
given point 

Cv,c: visual interpretation of secant lines 
approaching tangent line  

Cn,p: derivative f’ is used to 
calculate slope of function f 
at a particular point 

Cn,c:  f’(x) = lim∆!→!
! !!∆! !!(!)

∆!
 as the 

average rate of change over increasingly 
small intervals 



Mathematical Knowledge for Teaching 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

591 

Methodology 

Participants 
Participants included seven secondary mathematics teachers who elected to participate in a 

funded, year-long professional development cohort focused on promoting conceptual understanding. 
Of the seven participants, two had fewer than 5 years teaching experience, four teachers had between 
5 and 10 years, and one had over 10 years of experience. All teachers reported experience teaching 
introductory algebra, including the concept of slope.  

The Tasks 
Prior to the first professional development meeting, each teacher submitted responses to a series 

of tasks related to slope PCK. The task analyzed in this study is provided below. All teachers in the 
cohort were emailed the task and given three weeks to complete it. The student statements below 
were generated by the researchers as typical responses noted in past research. 

As an instructor, you asked each of the students in your class to make a statement about slope. 
For each student response [in Table 2], please answer all of the following.   

a. Provide a visual representation (a graph, an equation, etc.) that you would expect each 
student could easily have created to accompany her statement about slope. 

b. If each student had been asked to contribute a problem to a study sheet on slope, provide an 
example of a problem that each would have been most likely to submit.  

c. Using the scale [in Table 3], rate (and justify) each student’s understanding of slope.  

d. By which level of schooling would you expect each student’s response? Explain. 

 

Table 2: Student Statements Regarding Slope and Associated Slope Components 
Slope Component Student Statements Given to Teachers 

Ratio 

A: Slope is rise divided by run of a graph.  
B: Slope is found by taking the change in y values divided by the change in x 
values.  
D: Slope tells the rate of change between two variables, x and y. 
K: The slope of a line is constant regardless of which two points on the graph 
are chosen to calculate the value. 

Behavior Indicator J: Slope indicates if a line is increasing, decreasing, or constant. 
Determining Property I: Slope can be used to determine if lines are parallel or perpendicular. 

Trigonometric 
C: Slope describes the steepness of a line.  
F: Slope is related to a line’s angle of inclination with respect to a horizontal 
line.  

Calculus G: The derivative function tells the slope of a function at a particular time. 

Open – No specific 
component intended 

E: Slope is represented by m in equations and formulas. 
H: Slope can be used in real world situations. 
L: Slope refers to the straightness of a line; the fact a line doesn’t curve. 
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Table 3: Scale for Rating Each Student’s Understanding of Slope 
 1 - Strictly Procedural 2- Procedural with Limited 

Conceptual 
3- Emerging Conceptual 4- Robust Conceptual 

Understanding 

Description Demonstrates a strictly 
procedural focus on how to 
calculate slope through rote 
manipulation without any 
interpretation of the meaning 
of the concept 

Demonstrates a primarily 
procedural focus on how to 
calculate slope with very 
limited attention to 
interpreting the meaning of 
the concept 

Demonstrates an 
understanding of the 
meaning of slope in a 
particular situation or 
context 

Demonstrates a flexible, 
deep understanding of slope 
that allows for 
understanding in multiple 
situations or contexts 

Data Analysis 
Using the slope network (from Table 1), two researchers coded the teachers’ responses to parts a 

and b of the task for the slope components and the visual or non-visual subcomponent evidenced. A 
number of responses did not provide enough detail to code the conceptual versus procedural 
subcomponents, so this coding was omitted. The researchers also recorded each teacher’s rating of 
student understanding and recorded the level of schooling at which the teacher expected such a 
response. The schooling responses were categorized into PreAlgebra, AlgebraI/II, 
Geometry/Trig/Precalculus, and Calculus categories.  The researchers completed all coding 
independently before meeting to compare codes. When discrepancies were found, a third researcher 
was brought in to discuss the coding until a consensus was reached. When all the data had been 
coded, all three researchers looked for trends within and across teachers’ responses. 

Results and Discussion 
The teachers’ responses to the student statements are summarized in Table 4. For each student 

statement (A-L), the first column indicates the slope component(s) and subcomponent(s) illustrated 
in the teachers’ responses to parts a and b of the task. The data were combined for these parts of the 
task. Thus, only one slope component is recorded when the teacher used the same component for 
both the representation and example. When two slope components are listed, that means that the 
teacher included both slope components in both parts of the tasks or that the teacher included one 
component in part a and the other in part b.  

Table 4: Teacher Responses to Students’ Statements about Slope 

Tchr 
Hypothetical Student Statements 

A B C D E F G H I J K L 

1 Rv 1 
P 

Rn 1 
P 

Tv 2 
P 

Rv 2 
P 

Bn 1 
P 

Tv 4 
G 

Cn 4  
C 

Rv 3 
P 

Dn 4 
A 

Rv 1 
P 

Rn 4 
P 

Dv 
Rn 

2  
A 

2 Rn 
Rv 

1 
P 

Rn 
Rv 

2 
P 

Tv 2 
P 

Rv 3 
A 

Rn 1 
P 

Tv 3 
^ 

Cn 3    
^ 

Rn 
Rv 

3 
vr 

Dn 
Dv 

2 
A 

Bv 2 
P 

Rv 3 
A 

Rv 2 
P 

3 Rv 1 
P 

Rn 2 
P 

Tv 3 
P 

Rv 4   
- 

^ 1 
P 

Tn 
Tv 

3 
G 

Cn 
Cv 

4  
C 

^ 1   
P 

Dn 
Dv 

2 
A 

Bn 3 
P 

Rv* 2 
P 

- 3 
C 

4 Bv 
Rv 

1 
P 

Rn 1 
P 

Tv 1 
P 

Rn 1 
P 

Rn 1 
A 

Tv 3 
A 

Cn 1  
C 

^ 1   
A 

Dn 
Dv 

3 
A 

Bv 1 
P 

Rv 2 
P 

^ 1         
- 

5 Rv 1 
P 

Rn 1 
A 

Tv 3 
P 

Bv* 
Rn 

3 
A 

^ 1 
P 

Tv 3  
A 

Cn 4  
C 

Rn 3 
P 

Dn 2 
A 

Bn 2 
P 

Rv 1    
- 

- -         
- 

6 Rv 1 
P 

Rn 2 
A 

Tv 1 
P 

Rn 3 
A 

^ 1 
P 

Rv 3   
A 

Cn 1 
C 

Rn 3  
A 

Dn 2 
A 

Bn 1 
P 

Rn* 3 
A 

Rv 1      
P 

7 Rv 1 
P 

Rn 2 
P 

Tv 3 
P 

Rn 4 
P 

Rn 1 
P 

^ 3   
^ 

Cn ? 
C 

^ ?    
G 

Dn 
Dv 

2 
A 

Bv 2 
P 

Rv 2 
P 

^ ?       
A 

Key: P=PreAlgebra, A=AlgI/II, G=Geometry/Trigonometry/Precalculus, C=Calculus, vr=varies  

In a few instances, the researchers thought the response showed strong promise of indicating the 
conceptual subcomponent according to the slope network. In those cases, an asterisk is marked in the 
table. The second column reports teachers’ responses to part c regarding the procedural versus 
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conceptual rating (on the 1 to 4 scale). We distinguish between responses that did not align with any 
slope component (^), were left blank (-), or acknowledged uncertainty of how to interpret the given 
statement (?). Part d responses are below those to part c in Table 2. Consider the row 1 and column A 
intersection in the table. It reveals Teacher 1 responded to student statement A by providing a 
representation and example problem aligned with the Ratio (visual) component of slope, rated the 
statement as 1 (strictly procedural) and placed the statement in PreAlgebra. 

In the following sections, we report on teacher responses to the specific student statements in 
light of the anticipated slope components (from Table 2). 

Results for Ratio Components 
Statements A, B, D (Ratio component). All seven teachers’ responses to these statements 

included the Ratio component. Furthermore, all teachers included a visual interpretation of statement 
A and a non-visual interpretation of statement B, as expected. Interesting trends emerge across the 
various Ratio components. Although statements A, B, and D all express that slope is a ratio, 
statement A describes it visually, statement B does so non-visually, and statement D describes it as a 
rate of change. Despite the statements’ similarity, teachers interpreted them quite differently. All 
teachers rated statement A as strictly procedural and at the PreAlgebra level. Five of the seven 
teachers rated statement B (that had received Rn codes) as either more advanced in grade level or 
more conceptual (or both) than statement A (that had received Rv codes). Teachers 1 and 4 rated both 
statements as strictly procedural and at the PreAlgebra level. For the rest of these teachers, the visual 
approach seemed to be de-valued, as was apparent in many teachers’ written explanations. Teacher 2 
wrote, “B understands the idea of the slope as the change in the values, instead of just rise over run,” 
and Teacher 7 wrote, “B is using academic vocabulary that suggests that she has a basic 
understanding of slope.” Furthermore, six teachers reported that statement D was more conceptual or 
more advanced (i.e., grade level) than both the other ratio statements. Several teachers related the 
“rate of change” language of statement D to using slope in real world situations. Teacher 2 explained, 
“D has a firm grasp on how slope is applied in real life scenarios,” and Teacher 3 justified her rating 
of this statement as robust conceptual understanding by stating, “the student understands the concept 
and can relate it to everyday solutions.” These teachers are equating the phrase “rate of change” with 
slope applied to real world situations and conceptual understandings of slope. 

Statement K (Ratio component). Responses to this statement varied from strictly procedural to 
robust conceptual. Teachers tended to put it at the PreAlgebra or Algebra level. Teachers 3 and 6 
provided sample problems that the researchers felt showed promise of relating to the conceptual 
Ratio subcomponent, with Teacher 3 doing so with a visual emphasis while Teacher 6 did so in a 
strictly non-visual manner.    
Results for Other Components 

Statements C, F (Trigonometric component). Teachers’ responses to statement C were quite 
consistent. Despite the researchers’ interpretation of this statement as being open to visual and non-
visual sub-components, every teacher’s response emphasized a visual interpretation. These often 
included graphs of several lines with varying slopes, indicating that the line got steeper as the 
absolute value of slope increased. Interestingly, four teachers provided a real world context 
comparing two or more roads or roofs and making reference to steepness. Despite the potential to 
link steepness to the slope in these contexts, none of these teachers did so in a meaningful way that 
involved reference to the angle of inclination nor described steepness in terms of a ratio. All seven 
teachers saw statement C as a PreAlgebra interpretation of slope, with some variation in whether it 
was more procedural or more conceptual. Statement F was seen as emerging or conceptually robust 
by all teachers, and was categorized at the Algebra I/II level or later. Most teachers’ responses 
emphasized a visual interpretation. Teachers’ 6 and 7 responses suggested their inabilities to interpret 
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this statement or place it in the curriculum.  
Statement J (Behavior Indicator component). All teachers saw this as a PreAlgebra 

interpretation of slope, and six of the seven teachers’ responses illustrated the Behavior Indicator 
component split equally between visual and non-visual interpretations. Visual interpretations tended 
to show graphs of increasing, decreasing, and horizontal lines with positive, negative, and zero slopes 
labeled accordingly. Non-visual representations tended to give the equation of a linear relationship 
and described the relationship in terms of the parameter m in the equation. Teacher 1 provided a 
graph of a line and asked whether it was increasing, decreasing, or constant but never linked this with 
slope. Thus, this response could not be linked with any slope component. Teacher 1’s sample 
problem presented the graph of a horizontal line and asked what the graph represents. The research 
team interpreted this as asking for the equation of the line—which would not require use of the 
Behavior Indicator component. All but one teacher saw this statement as more procedural than 
conceptual (1 and 2 ratings).  

Statement I (Determining Property component). Teachers’ responses consistently evidenced 
the intended component. Non-visual representations generally presented two linear equations and 
asked whether the lines were parallel, perpendicular, or neither. Four teachers incorporated both 
visual and non-visual representations in their responses. Responses incorporating both 
representations included equations and graphs of the lines—showing how the relationship between 
the slopes was displayed graphically via lines that never intersected, intersected in right angles, or 
intersected in some other way. There was very little variation in the example problems and 
representations presented. All seven teachers agreed this notion of slope would appear in Algebra 
I/II, and most teachers rated this as a 2 (mostly procedural understanding), with one 3 and one 4 
rating.  Overall, the teachers were in agreement with where this fits in the curriculum.  

Statement G (Calculus component). It is interesting that with this open statement, only one 
teacher linked this to a visual representation of a function’s graph with tangent lines drawn at various 
points. Most teachers included f’(x) notation and provided an example involving finding the 
derivative of a polynomial. Six of the seven teachers unsurprisingly placed this conception as 
occurring in Calculus. There was, however, great variation in whether teachers viewed this as 
procedural or conceptual in nature. Two teachers rated this as strictly procedural and three teachers 
rated it as robust conceptual understanding, highlighting a very distinct mismatch. Teacher 7 
indicated that she was not sure how to rate this problem.   

Statement E (open - no component). Three teachers’ responses to statement E did not link any 
understanding of slope to the statement. Each gave a problem or representation that provided an 
equation in slope-intercept form and then labeled m in the equation as the slope with no indication of 
what m meant for the equation or its graph. Three of the remaining teachers linked this statement 
with Rn, acknowledging m in the equation y=mx+b and writing m=(y2-y1)/(x2-x1).  It is interesting 
that these teachers viewed these algebraic representations as related, especially since none showed 
how one formula could be manipulated to achieve the other. All teachers viewed this understanding 
as strictly procedural, and all but one placed it in PreAlgebra.   

Statement H (open - no component). The researchers expected this statement to elicit a variety 
of slope components in teachers’ responses, but the teachers’ responses were relatively uniform. Four 
of the teachers linked this statement to the Ratio component of slope, with two teachers focusing on 
non-visual aspects, one on visual aspects, and one on both. The link with the Ratio component was 
made via an equation or graph labeled with real world variables and a description of the slope in 
terms of the problem context. The final three teachers provided responses that could not be coded as 
indicating any slope understanding. For instance, Teacher 3 sketched a picture of a car driving up 
what appeared to be a hill with no indication of how slope was demonstrated. The others 
acknowledged that the statement itself did not indicate much about the student’s understanding. 
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Teacher 4 wrote: “H does not show much with this statement. Sure it can be used in real world 
situations but how? If she knows how, then we are getting somewhere.” Thus, this code does not 
mean that this teacher misinterpreted this student’s understanding, but acknowledged the lack of 
clarity in the statement itself. In terms of responses, the most interesting result may be the absence of 
the Trigonometric component. One of the fundamental uses of slope in real world situations is to 
consider steepness of physical objects (e.g., ramps). In the one instance where such a connection was 
hinted at, the connection stopped short of showing how slope was demonstrated. The ratings and 
grade levels for this statement varied greatly. Interestingly, the three teachers who did not attach this 
statement to any particular conception of slope ranked it as strictly procedural. The remaining four 
teachers, who had interpreted this statement as being linked with the Ratio component, all rated the 
statement as mostly conceptual. For those teachers who linked this to a Ratio component, they 
seemed to value the use of Ratio in a real world context as indicating a more robust understanding of 
slope. 

Statement L (open - no component). Statement L proved to be surprisingly difficult for teachers 
to interpret. Only three teachers provided codable responses, with two stating that they did not 
understand L’s statement and the remaining two providing vague responses that couldn’t be coded 
(e.g., a graph of a line and the graph of a curve with no mention or indication of slope on the graph). 
Of the three who did provide codable responses, two interpreted it using visual aspects by providing 
the graph of a line and describing in words or denoting on the graph that every time “you move right 
one unit on the graph, the corresponding vertical change on the graph is constant.” This was 
accompanied by statements such as “therefore the function will be a line.” Teacher 1 linked this 
statement with the Determining Property by asking how many lines can be drawn through a given 
point with a specified slope. She also asked whether three points lie on the same line, linking to Rn. 
Teachers’ responses regarding grade-level and knowledge rankings varied greatly, adding to 
evidence of their overall uncertainty about this statement.  

Implications 
The results reveal important insight into the teachers’ PCK in terms of their KCC and KCS. In 

particular, teachers’ responses revealed (1) their valuation of academic language, (2) the nature of 
real world problems for slope and (3) their views of slope beyond the algebra curriculum. 

Value of Academic Language 
The responses to statements A, B, and D suggest that teachers value student use of academic 

terminology. Although attending to precision and using correct mathematical terminology is a key 
part of the mathematics curriculum (NGA & CCSSO, 2010), these results raise a red flag that 
teachers may equate academic terminology with conceptual understanding. Teachers’ responses to 
statements A and B suggest that the teachers may devalue visual thinking by equating it with non-
mathematical terminology. Likewise, responses to statement D suggest teachers valued the academic 
language of “rate of change” even though that expression could be used as a mnemonic just as “rise 
over run” often is. Together, these results highlight two important aspects of teachers’ KCS: (1) 
distinguishing between students’ use of terminology and their understanding of the terminology and 
(2) encouraging students to connect multiple representations to integrate academic terminology with 
visual reasoning. 

Rate of Change and Real World Situations 
Teachers’ responses also revealed some interesting trends related to the role of real world 

situations in students’ learning about slope. The real world situations provided by teachers either 
demonstrated the Ratio component within the context of a functional situation (e.g., time worked 
versus dollars earned) or the Trigonometric component within the context of physical situations (e.g., 
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steepness of roof). Furthermore, when physical situations were mentioned, they were done so 
trivially without explicit attention to how slope was related to steepness. These results suggest 
teachers may miss valuable opportunities to help students connect the Ratio and Trigonometric 
components of slope through real world situations (KCS). As a result, their students may fail to 
connect the ideas of slope and steepness (Nagle & Moore-Russo, 2013b).  

Role of Slope in Advanced Mathematics 
The results raise questions about how the teachers view slope as informing students’ work with 

non-linear functions. Nagle and Moore-Russo (2014) describe the CCSSM’s high school focus on 
extending the notion of a constant rate of change of linear functions to interpret and understand non-
linear functional relationships. Recall that teachers generally were not sure how to interpret statement 
L that “slope refers to the straightness factor of line,” a statement that links naturally to CCSSM’s 
focus on moving from linear to non-linear relationships by understanding variable rate of change. 
Furthermore, other than the Calculus component of slope, the teachers tended to provide algebraic 
interpretations of slope, even when statements were open to more trigonometric or geometric 
interpretations. Even teachers who do not teach beyond the Algebra I/II curriculum, should have 
sufficient knowledge of the curriculum (KCC) and how slope is foundational to more advanced 
concepts, such as the derivative (HCK), to include more advanced interpretations of slope. 

Future Work 
By analyzing teachers’ interpretations of student statements, we have described the teachers’ 

apparent values related to student thinking about slope. We have not investigated how these values 
are carried out through teachers’ intended or enacted instruction on slope. Future work should 
investigate to what extent the tendencies described for teachers do or do not play out in their intended 
and enacted lessons on slope. Doing so will allow for confirmation of these valuations and for 
exploration of the manner and extent to which teachers’ valuations of understanding inform their 
written and enacted lessons (KCT). 
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While the mathematics education community encourages teachers to support students in developing 
a more meaningful contextual understanding of algebraic symbols, very little is known about 
teachers’ quantitative understandings of algebraic symbols themselves. The goal of this study was to 
fill this gap and examine secondary teachers’ ability to contextualize algebraic symbols, in 
particular notation that results from algebraic generalization. The results led to the identification of 
various conceptual hurdles that teachers encountered as they endeavored to articulate the 
underlying quantities as well as various conceptualizations they invoked, both productive and 
unproductive, in their attempt to overcome these challenges. 

Keywords: Mathematical Knowledge for Teaching, Algebra and Algebraic Thinking 

Introduction 
Traditionally, algebra instruction in the United States has focused on symbol manipulation. 

Teachers tend to emphasize formal methods, involving abstract mathematical symbols, over other 
approaches that involve representations that are more closely grounded in context such as diagrams, 
tables, and graphs (Kieran, 2007; Smith & Thompson, 2007; Yerushalmy & Chazan, 2002). 
Unfortunately, such an approach has failed to meet the needs of many, if not most, students. 
Struggling to cope with abstract notation, abruptly introduced and presented as detached from a 
coherent system of referents, students often fail to develop meaningful interpretations of algebraic 
symbols and the associated operations (Kieran, 2007; Harel (2007); Knuth, Alibali, McNeil, 
Weinberg, & Stephens, 2005; Sfard & Linchevski, 1994).   

The ability for students to not only manipulate symbols, but interpret the contextual quantities 
that expressions represent has been emphasized as a core component to algebraic thinking. The 
Common Core State Standards (2010) underscores this understanding, including it as one of the eight 
practice standards (SMP 2: Reason abstractly and quantitatively) as well as a high school algebra 
content standard (HSA.SSE.A.1). Likewise, many scholars have articulated the significance of this 
understanding. Kaput and colleagues (2008) noted that without such an understanding, students’ 
actions are guided strictly by the rules of the notational system without support from the previously 
learned structure of the reference field. As such, knowledge is more fragile with students tending to 
overgeneralize symbolic rules such as (a + b)2 = a2 + b2.  

To support students in developing a contextual understanding of symbols, researchers have 
advocated for the introduction of algebra through inquiry-based activities grounded in more concrete 
representations such as tables, situations, and words (Koedinger & Nathan, 2004; Nathan, 2012). One 
example of such an approach is through figural pattern generalization. These are tasks in which 
students are provided drawings of sequential stages and asked to find subsequent stages and 
eventually write an expression to model their understanding of a general stage. Exploring these 
patterns affords students the opportunity to convey their generalizations through a variety of 
increasingly abstract representations, leading to a more meaningful interpretation of the eventual 
symbolic forms. 

In order to support students in developing a quantitative understanding of the notation, teachers 
must possess specialized content knowledge that goes beyond simply the ability to write expressions 
(Ball, Thames, & Phelps, 2008). They must understand how to relate, with precision, the various 
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mathematical representations to the contextual quantities they represent. Although several 
researchers have investigated students’ understanding of representations in algebra (e.g., Knuth, 
2000; Nathan & Kim, 2007), less attention has been given to examining teachers' understandings of 
algebraic notation and their ability to draw connections to the context. Stylianou (2010) studied 
middle school teachers’ beliefs about the instructional use of multiple representations, but not their 
knowledge. Harel, Fuller, and Rabin (2008) documented ways in which teachers failed to support 
students to develop meaningful interpretations of symbols, but without exploring teachers’ symbolic 
reasoning or other potential causes for the failure.  

While the field has emphasized the need for students to develop a contextual understanding of 
symbolic representations, we know very little about teachers’ understanding in this area. Having a 
better image of the specific challenges teachers face and how to overcome these challenges will 
inform teacher educators how to better support teachers in working with their students to develop this 
ability. Therefore, the goal of this study was to examine secondary teachers’ understandings of the 
quantitative meanings of algebraic symbols, in particular notation that results from algebraic 
generalization. The results led to the identification of various conceptual hurdles that teachers 
encountered as they attempted to make sense of and connect the underlying quantities and 
quantitative relationships as well as various conceptualizations they invoke, both productive and 
unproductive, in their attempt to overcome these challenges.  

Theoretical Perspective 
Although there is a lack of empirical studies addressing teachers’ understandings of mathematical 

representations, considerable thought has been devoted to establishing the importance and role of 
representations theoretically. Multiple scholars have developed theoretical rationales to explain why 
the ability of expressing the meaning of numeric and algebraic figures is foundational to the 
understanding of mathematical notation. 

Quantitative Reasoning 
In order for students to be able to contextualize algebraic notation, they must possess a strong 

understand of the quantities the symbols represent. Therefore, a key component to possessing a deep 
understanding of algebraic symbols is quantitative reasoning. According to Thompson (1994), 
“quantitative reasoning is not reasoning about numbers, but reasoning about objects and their 
measurements (i.e., quantities) and relationships among quantities” (p. 8). As such, problem solving 
is not about determining the sequence of operations that will result in the correct answer, but about 
developing a conceptual understanding of how the quantities in a given problem are interrelated and 
how they combine to create new quantities. By focusing on the relationship between quantities, 
students develop a deeper understanding of the problem situation. Smith and Thompson (2007) argue 
that students must possess a sophisticated enough understanding of the structure of the problem to 
warrant the use of algebraic tools. Without a grasp of the quantities that shape the problem situation, 
students are unable to see algebraic notation as a representation that communicates quantitative 
relationships and consequently are left interpreting symbolic expressions as simply a tool that serves 
to calculate numerical values. 

Symbolization 
While understanding the contextual situation is foundational for developing meaning of algebraic 

expressions, for such an understanding to become embedded in abstract symbolic forms and for 
students to see notation as communicating the quantitative structure, various cognitive developments 
must take place. Kaput, Blanton, and Moreno-Armella (2008) described a process they refer to as 
symbolization, in which through one's experience in working with mathematical ideas, their related 
understandings become infused in the mathematical objects used to represent the phenomenon. They 
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noted that over time and with multiple iterations of reflection, students’ understanding of the context 
becomes instilled in more and more densely compressed forms of symbolization. Initially, students 
use more contextually connected representations such as oral, written, and drawn descriptions to 
express their experiences. They then use these representations to reflect on this same experience. 
This process leads to a newly mediated conceptualization of the mathematical phenomenon and 
possibly to new representations. Each interaction with the mathematical phenomenon, whether 
individual and or socially mediated, results in a new conceptualization. Eventually these 
conceptualizations converge into a conventional and compact symbolic form, establishing a rich, 
densely packed interpretation of the mathematical phenomenon. Kaput and colleagues noted that in 
the end, instead of the symbols' representing the referent as a separate entity, the two become 
interpreted as one. Actions applied to the symbols are construed as actions on the referent itself. At 
this stage, a student does not look at symbols, but through them, seeing the mathematical 
phenomenon and the notation as one.  

Connections Between Representations 
The role of multiple representations in mathematics and the importance of teachers to engage 

students in making connections among mathematical representations has been recognized by many 
scholars (National Council of Teachers of Mathematics [NCTM], 2014). Several studies have 
demonstrated the ability to translate between representations as a characteristic of more robust and 
flexible knowledge (e.g. Pape & Tchoshanov, 2001; Stylianou & Silver, 2004). In particular, Lesh, 
Landau, and Hamilton (as cited by Lesh, Post, & Behr, 1987) observed that students working through 
mathematics problems seldom came to the solutions successfully using a single representational 
mode. Explaining this phenomenon, Tripathi (2008) noted that using these “different representations 
is like examining the concept through a variety of lenses, with each lens providing a different 
perspective makes the picture richer and deeper” (p. 439). Extending this idea, Dreyfus and 
Eisenberg (1996) argued that representations differ not only in the way information is expressed, but 
also in terms of the information itself. They maintained that "any representation will express some, 
but not all of the information, stress some aspects and hide others" (pp. 267). Subsequently, 
mathematical ideas are not embodied by a single representation but rather lie, at the intersection of 
these representations. Finally, Lesh et al (1987) asserted that establishing a relationship from one 
representational system to another supports students in developing a stronger understanding of the 
various properties within the situation as they are encouraged to focus on what structural 
characteristics are preserved in the mapping. 

Methods 
To investigate the various conceptual hurdles associated with teachers’ quantitative 

understanding of the algebraic notation used to describe figural generalizations, I engaged four 8th 
grade teachers each in a 1.5-hour individual semi-structured clinical interview (Ginsburg, 1997). 
Wanting to identify particular challenges associated with connecting algebraic notation to quantities 
as well as productive conceptualizations teachers formulate to overcome these difficulties, I chose 
teachers with significant experience with algebraic generalization. The teachers selected all had 
previously participated in multiple days of professional development focused on algebraic 
generalization as well as significant experience teaching and interviewing students in this area. 
Although a study of a more representative group of teachers might provide more generalizable 
information, choosing more knowledgeable participants allowed me to investigate in detail the 
subtleties of contextualizing algebraic notation.  

During the interview, the teachers were presented two different figural generalizing tasks (see 
Figure 1). These afforded many different decompositions including interpretations of groups of 
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varying sizes and overlapping groups. Also, the two patterns picked differed in that one was more 
conducive to being construed as consisting of a constant number of groups of increasing size, while 
the other could be more readily understood as comprising of an increasing number of groups of 
constant size. During the interview the participants were asked to provide numerical expressions for 
specific stages and a general algebraic expression for the nth stage. After each expression they 
formulated, I asked them to explain what each symbol represented. In addition, I asked the 
participants to analyze the quantitative meanings of students’ work to examine their understanding of 
decompositions that might differ from their own. Throughout the interview, questions focused on the 
teachers’ understandings of individual symbols and collections of symbols. In addition, I asked 
participants to comment on their interpretations of various initial symbolic rules as well as on 
intermediate expressions that arise through syntactical manipulation.  

 Each interview was videotaped and transcribed. Teachers’ responses were reviewed using a 
grounded theory approach (Strauss & Corbin, 1994) in which I used open coding and the constant 
comparison method to analyze their responses. I began by identifying particular areas of difficulty 
across the four teachers. I then compared the actions and comments in these areas among the 
participants as well as among similar items on different problems.  

 
 

 
 
 

 

Figure 1. Figural Generalizing Tasks 

Results 
All four teachers approached the generalizing tasks quantitatively.  That is, rather than using a 

procedure based on numerical values to arrive at a correct linear expression, they began by 
decomposing the figures into various quantities and then formulating expressions to express their 
understanding of the quantities they saw.  In addition, all of the participants were successful in 
writing different expressions that corresponded to distinct decompositions of the pattern when asked 
to analyze the pattern differently and were able to explain possible interpretations of the pattern when 
exposed to students’ expressions that differed from their own. That being said, while the teachers 
were able to connect the expressions to the quantities in the pattern in general, they struggled 
articulating the precise contextual quantities that symbols represented. In the end two different 
challenges emerged along with 3 different conceptualizations to overcome each challenge, one 
unproductive and two productive. 

Challenge #1. Interpreting the Coefficient of x    
The first conceptual difficulty centered on the participants’ understandings of the coefficient of x 

and its relationship to the variable.  Initially, all four participants described the coefficient and the 
variable together as representing groups of a particular size (i.e. 5x represents the number of groups 
of 5), but struggled to disentangle the two and articulate the specific meanings of the symbols 
independently.  

Unproductive conceptualization: Detaching meaning of the symbols from details of context. 
To overcome this challenge one participant, Denise, reconceptualized the coefficient as the constant 
difference between stages even when such a construal was inappropriate for the context.  To illustrate 
this type of thinking, I describe Denise’s explanation of the expression 3x+1 for the second task.  
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Initially, she stated that the 3 and the x both represented number of groups of 3.  When asked to 
clarify, she began vacillating between various interpretations (the number of groups of three, three 
tiles, the number 3, the three added on) before ultimately concluding that it represented the three tiles 
that were being added at each stage. When asked to highlight “the three added on” in the figure, she 
seemed to imposed her notion of adding three on the diagram, selecting tiles that did not correspond 
to how the pattern changes between stages.  Initially she said it did not matter which ones, circling 
what seemed like arbitrary groups of 3 dots (see left image of Figure 2), before eventually deciding 
the three additional tiles each stage were the one far left tile and the two far right tiles (see right 
image of Figure 2).  

Denise’s vague and even problematic explanations of the various symbols’ referents are evidence 
that she was not using symbols to communicate her interpretation of the figure.  Instead, she seemed 
to reinterpret the coefficient as representing a decontextualized growth factor and attempted to 
improvise a quantitative interpretation on the figure.   

 
 

 
 
 

 

Figure 2. Denise’s Interpretations of the Coefficient in Pattern 2. 

Productive conceptualizations: Interpreting the variable as the number of groups and 
coefficient as a ratio of tiles per group or vice versa.  While the other three participants also 
struggled identifying the meaning of the coefficient and variable separately, they eventually 
disentangled their meanings, describing the variable as the number of groups and coefficient as a 
ratio of dots or tiles per group for the first task.  Notable was their explanation of the symbols in the 
expression 3(x – 1) + 4 for the second task.  While two of the participants switched their 
interpretation of the symbols relative to the first task, with the coefficient now representing the 3 
constant groups and the variable corresponding to their varying size, the third teacher did not.  To 
make sense of the 3, he imagined orbits of 3 tiles being added to each stage.  Such a 
conceptualization matched his previous interpretation of the variable as the number of groups with 
the coefficient representing its size. While all three participants had quantitative interpretations of the 
symbols, the first two flexibly adapted their interpretations of the symbols to accommodate their 
quantitative understandings of the figure, while the third had a more fixed view of the symbols, 
reconceptualizing the quantities in the figure to match his previously formulated understanding of the 
symbols. 

Challenge #2. Interpreting Expressions Where the Variable Appears More Than Once 
The second conceptual challenge that emerged for the teachers was negotiating the meanings of 

variables that appeared more than once in a single expression or between expressions after algebraic 
manipulation. Such a situation exists in the first pattern when decomposing the figure into 
overlapping groups of 5, first with the expression 5x – (x – 1) and then in the subsequent simplified 
expression 4x + 1.  Initially all four participants interpreted the various xs in these expressions as 
representing different quantities in the figure. They understood the x in 5x as the number of groups of 
5, the x in x – 1 as the number of overlapping dots, and the final x in 4x as the number of groups of 4.  
Expecting a single variable to a have a consistent meaning, they struggled to explain this apparent 
conflict.   

Unproductive conceptualization: Imposing the interpretation of one variable onto another.  
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Three	of	the	participants,	in	an	effort	to	coordinate	the	symbols’	referents,	initially	imposed	an	
interpretation	of	the	number	of	groups	of	five	on	the	x	in	the	expression	x	–	1.		In	doing	so	they	then	
incorrectly	reinterpreted	the minus 1 as accounting for the difference in sizes of the groups of five 
and the groups of four (i.e., the difference in the number of dots) rather than the difference between 
the total number of groups of five and the number of overlapping dots. While all three teachers 
devoted at least 5 minutes to this incorrect construal, eventually they all noticed their inappropriate 
interpretation.  Of these three teachers, two then formulated productive conceptualizations of the 
variables to overcome this problem, while the third participant did not. Instead, in an attempt to 
resolve this inconsistency, she oversimplified	the	symbols’	referents,	arriving	at	a	final	
interpretation	of	all	the	xs	as	simply	a	dot.		Accordingly,	she	construed	5x	to	mean	5	dots	and	4x	to	
mean	4	dots,	but	was	unable	to	indicate	which	exact	dots	in	the	figure.	Such a conceptualization of 
x as a dot essentially treats the variable as a label and the coefficients as decontextualized numbers, 
removing any quantitative meaning of the symbols and failing to explain any quantitative 
relationships between the symbols.   

Productive conceptualizations: Coordinating numerical values and reinterpreting symbols 
to align quantitative meanings.  Two of the participants were able to articulate viable, yet different 
solutions to reconcile the diverging meanings of the symbols.  Although both teachers initially tried 
to make sense of the xs by using a literal translation of the words like the participant described 
previously, they eventually formulated productive conceptualizations.  

The first participant did so by associating the quantities numerically.  By evaluating the 
expressions multiple times and stating the quantities and their numerical relationships, she was able 
to see that the number groups, initially of 5 dots, is always equal to the number of overlapping dots to 
be removed, which is equal to the number of groups of 4 dots. In the end, although she continued to 
interpret the same variable as different referents, she realized that the numerical value of each of 
these quantities is always equal.  

The second productive conceptualization resulted through a reinterpretation of the quantitative 
meanings of the variables. Similar to the previous participant, the third teacher verbalized his 
understanding of the various variables in the expression 5x–(x+1) and 5x–x+1, while carefully 
examining their values. This process helped him to not only coordinate the values of the two 
quantities (groups of 5 and overlapping dots), but also to connect them physically, noticing that the 
overlapping dots were members of the same groups of 5. In addition, he had added, apparently 
somewhat serendipitously, a coefficient of 1 in front of the second expression (resulting in 5x–1x–1).  
Together, these various semiotic acts supported him in reconceptualizing the overlapping dots as 
group of size 1.  This conceptualization allowed him to reinterpret x as the purely the number of 
groups, without attaching a size, and the varying coefficients as the size. In the end, he was able to 
formulate an understanding of the variable so that it retained consistent quantitative meaning 
throughout as well as explained the varying coefficients.  

Discussion 
As this analysis reveals, contextualizing algebraic notation is challenging, even for experienced 

teachers.  There are many nuances that experts overlook when they use algebraic expressions to solve 
problems and communicate their generalizations.  In this final section I will revisit some of these 
challenges and discuss implications that I see stemming from these results. 

Conceptual Complexities of Interpreting Algebraic Expressions 
To highlight the complexity of contextualizing algebraic notation, I want to revisit a particular 

conceptualization that emerged. This example serves to not only illustrate the sophisticated 
understanding necessary, but also emphasizes that the quantities the teachers came to see in the 
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notation were not intrinsic properties in the figure but rather, mental constructs that they themselves 
created.    

One challenge identified in this study was articulating, with precision, separate meanings for the 
variable and coefficient that explained the relationship between the two.  To overcome this difficulty, 
participants not only interpreted x as the number of groups and the coefficient as the size of each 
group, but also reversed this mapping and conceptualized the coefficient as the number of groups and 
the variable as the group size. To see both ways requires an abstract and flexible interpretation of the 
symbols. To illustrate the abstraction of perceiving both ways, I will use an alternative figure (see 
Figure 3) in which the transition between these two views requires only a subtle, cognitive shift in 
defining the group.  As I point out, while this pattern can be modeled by the expression of 3n, 
depending on your perspective, the 3 and then n can take on different meanings.  In interpretation 1, 
the n indicates the number of groups of size 3 and in interpretation 2, the n represents the number of 
dots in the constant 3 groups.  

 

 
Figure 3. Flexible Conceptualization of Variable and Coefficient. 

As this example illustrates the quantitative structure of the pattern is not an inherent characteristic 
of the figure or of the corresponding notation used to communicate it. The capacity to interpret 
symbols in multiple ways is an understanding that must be explicitly developed. 

Implications 
While I see several implications that stem from this study, I will highlight two which are 

interrelated. As noted in the introduction, algebra classrooms are dominated by a symbolic focus 
without attention to meaning.  While only a few studies have specifically tackled this issue from the 
teacher’s perspective, the consensus seems to be that the primary cause is teachers’ orientations. The 
results of this study indicate that the challenge to transform the current symbolic focus in algebra 
classrooms is not simply an issue of beliefs. By detailing teachers’ struggles with the complexity of 
this topic, this study demonstrates that, at least in part, the difficulties teachers experience in shifting 
their instruction is connected to their knowledge bases.  Consequently, a second, related implication 
is the need for teacher preparation programs to explicitly develop this understanding. While 
definitely a daunting task, the results of this study contribute to this endeavor by identifying both 
conceptual hurdles and conceptual resources on which to focus instructional attention to support 
teachers in developing this knowledge and ultimately helping their students foster a deeper, 
quantitative understanding of the notation. 
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Most existing measures of mathematical knowledge for teaching (MKT) assume a unidimensional 
structure and report scores that reflect the “amount” of MKT possessed by each examinee. These 
measures aggregate scores on MKT items that each tap different kinds of teacher work (e.g., 
explaining concepts, using representations) and different curricular topics. Although this approach is 
useful for some purposes, the author argues that a new way of conceptualizing measures of MKT will 
be more useful for gathering data to address open questions about MKT.  A review of existing 
measures is used to argue that conceptualizing measures of MKT in terms of underlying components 
has promise for building MKT theory.  

Keywords: Mathematical Knowledge for Teaching, Teacher Knowledge, Teacher Education-
Preservice 

Only in the last decade has teachers’ mathematical knowledge been reliably linked with student 
achievement. The breakthrough was writing job-embedded items that require teachers to coordinate 
specific kinds of teacher work with specific curricular topics in order to assess mathematical 
knowledge for teaching (MKT; Ball et al., 2008; Hill, Ball, Schilling, 2008). In existing MKT 
measures, however, teachers’ responses on work- and topic-specific items are aggregated. The 
resulting scores subsume many different kinds of teacher work and span large content areas such as 
all of elementary or secondary mathematics (e.g., Baumert, et al., 2010) or content covered over one 
or more years such as algebra (McCrory et al., 2012), geometry (Herbst & Kosko, 2014) or number 
and operation (e.g., Hill, Rowan, & Ball, 2005).  

Efforts to measure MKT have come to an important crossroads. General MKT scores provided 
by existing measures are important for answering some questions but are too coarse to reveal how 
underlying components of MKT (i.e., the kinds of teacher work and the specific curricular topics) are 
related to instructional quality, student learning, or teacher development. These questions are critical 
for improving MKT theory, and in this paper, we propose a new way of conceptualizing how MKT is 
measured in terms of its underlying components, that—if realized—promises useful data for building 
theory. 

Existing Measures of MKT 
Three large-scale studies have found correlations between MKT and student achievement 

(Baumert et al., 2010; Hill et al., 2005; Tchoshanov, 2010). Ball, Thames, and Phelps (2008) 
proposed a framework for MKT that can be used to classify the different approaches used by these 
studies. The framework extends the notion of pedagogical content knowledge (PCK) introduced by 
Shulman (1986) by grouping PCK with content knowledge and identifying strands within both 
categories of teacher knowledge. The term PCK captured Shulman’s seminal idea that teachers’ 
knowledge of the content they teach is transformed by and merged with their knowledge about how 
to teach it to form a new domain of knowledge. Within the MKT framework, one kind of PCK is 
knowledge of content and students (KCS), a category that includes, “familiarity with common errors 
and deciding which of several errors students are most likely to make” (Ball et al., p. 401). Within 
the MKT framework, two kinds of content knowledge are common content knowledge (CCK), the 
knowledge expected of educated adults including knowledge of the content that students will learn, 
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and specialized content knowledge (SCK), knowledge that teachers but few other adults or 
professionals would possess, such as knowing how tasks and representations correspond with 
mathematical ideas and evaluating non-standard student reasoning.  

Each of the research teams on the three large-scale studies of MKT took its own approach. 
Tchoshanov (2010) designed the Teacher Content Knowledge Survey (TCKS) measure with three 
subcontracts, all “closely aligned with … standardized tests for students” (p. 148); thus, it measured 
CCK. The Learning Mathematics for Teaching (LMT, Hill et al., 2005) measure included CCK items 
in addition to SCK items involving job-embedded mathematical tasks, for example, to determine the 
mathematical validity of student strategies. The CCK and SCK items were modeled on the same 
scale. Items were also developed to measure KCS, but factor analysis revealed “significant problems 
with multidimensionality” (Hill, Schilling, & Ball, 2004, p. 26). 

The COACTIV project (Baumert et al., 2010) created an MKT measure that had two distinct 
dimensions: content knowledge and what they called PCK. The content knowledge dimension was 
similar to the instrument used by Tchoshanov (2010) and focused on teachers’ understanding of 
mathematical topics in the curriculum. The PCK dimension included identifying multiple solutions 
for tasks (PCK-Tasks), understanding students’ thinking (PCK-Students), and selecting 
representations and explanations for instruction (PCK-Instruction). Thus, it overlapped with all three 
categories of CCK, KCS, and SCK in Ball et al.’s (2008) framework. Baumert et al. (2010) argued 
the LMT instrument assessed (their) PCK: “mathematical knowledge related to the instructional 
process” (p. 141). 

Categories of Teacher Work 
As the COACTV case suggests, the terminology and definitions of the Ball et al. (2008) 

framework have been influential but have not proved canonical. Several other research groups have 
defined and validated large-scale MKT measures after delimiting and subdividing the MKT domain 
in other ways. Table 1 shows three crosscutting categories of teacher work emphasized in the 
constructs and sub-constructs of published MKT measures. First, teachers use mathematical 
knowledge to (1) understand what they teach. The second and third categories of teacher work reflect 
the components of PCK specified by Shulman (1986, p. 9). Teachers use mathematical knowledge to 
(2) appraise students’ conceptions and reasoning and to (3) select and use instructional 
representations. Moreover, Table 1 illustrates how terms one might expect to have common 
meanings (e.g., PCK) do not agree across projects. 

Table 1: Three Categories of Teacher Work Intersect Subconstructs of MKT Measures 
 Categories of Teacher Work 
Project 

or 
Instrument 

Understanding the 
content to be taught 
(deeply) 

Appraising students’ 
conceptions and reasoning 

Selecting and using 
instructional 
representations 

COACTIV • PCK-Tasks • PCK-Students • PCK-Instruction 
DTAMS • Type 1, 2 & 3 • Type 4 (PCK) • Type 4 (PCK) 
LMT • CCK items • KCS & SCK items • SCK items 
SimCalc none • MKT Items none 
TCKS • Type 1, 2 & 3 none none 
TEDS-M • MCK • MPCK • MPCK 

Curricular Topics 
Projects also differ in how they divide and delimit MKT relative to mathematical topics. Often, 

the mathematical demarcations are explicitly related to curriculum. For example, two of LMT 
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instruments measure “Number and operation (K-6)” and “Geometry (3-8)” (Learning Mathematics 
for Teaching Project, n.d.). The curricular focus of MKT measures can be quite broad; both the 
TEDS-M and COACTIV projects measured MKT for entire mathematics curricula across multiple 
grades. Focal content can also be quite narrow; many small studies have used interviews and 
observation to investigate MKT over a range of specific curricular topics (see review, Depaepe et al., 
2013). Rather than being empirically grounded, these divisions of MKT reflect divergent 
conceptualizations. 

As is clear from this review of measures, MKT does not have a simple structure. The LMT 
excluded KCS pilot items because they were multidimensional. In spite of this complexity and lack 
of agreement between projects, all these projects except DTMR used unidimensional psychometric 
models to construct measures, and—differences in how the domain of MKT is defined and divided 
notwithstanding—all reported unidimensional measures that had sound psychometric characteristics. 
It may be that the item selection process used to create these measures reduced the diversity of the 
retained items in non-obvious ways, with each project converging on a different dimension within a 
multidimensional space. 

Conceptualizing A Novel Way to Measure MKT 
The inconsistent results and framings of MKT across the field stem in part from scholars who 

disagree on the paradigmatic foundations of MKT. Two such concerns are whether MKT can be 
distinguished from mathematical knowledge and whether MKT is situated knowing-to-act that 
depends on classroom context or if it is cognitive knowledge-about-action that can be validly 
assessed with survey questions (Depaepe, Vershaffel, & Kelchtermans, 2013; Graeber & Tirosh, 
2008; Mason, 2008; Petrou & Goulding, 2011). Different kinds of data than are now available are 
required to address these gaps and open questions in MKT theory. 

At the elemental level, I conceptualize MKT as the mastery of a specific kind of teacher work for 
a specific curricular topic in mathematics. Rather than assuming a single general structure (i.e., a 
unidimensional latent trait), I hypothesize that MKT may be multidimensional and structured by the 
kind of work and the curricular topics involved. I propose developing new MKT measures that 
systematically vary the kind of work and topic. By leveraging recent advances in psychometrics 
(Rupp, Templin, & Henson, 2010), a 16-item test (4 kinds of work crossed by 4 topics) could provide 
a score on each of the 8 components for every examinee. Data from such an assessment bear on 
several pressing open questions about MKT. 

One question concerns how the components of MKT shape and constrain the knowledge teachers 
develop.  I hypothesize that knowledge for a certain kind of teacher work learned in relation to a 
specific curricular topic may not readily transfer to different topics even if the teacher work is 
similar. In a study of 40 experienced first-grade teachers, Carpenter, Fennema, Peterson, and Carey 
(1988) found they could identify which whole number addition and subtraction problems would be 
most difficult for their students but could not explain why. It is unlikely that teachers could apply 
tacit professional knowledge such as this to different curricular topics such as fraction addition or 
subtraction. Comparing relevant MKT component scores could confirm this hypothesis. 

A second question concerns how different kinds of teacher work and different curricular topics 
moderate the relationship between teacher knowledge and student learning. Sadler and colleagues 
(2013) found that middle grade science teachers’ knowledge of student misconceptions for an 
individual student item predicted large gains for that teachers’ students on the same item at the end of 
the year; however, teachers’ average knowledge of misconceptions across all items was only weakly 
related to increases in their students’ overall scores. When it comes to the teacher work of identifying 
common student errors, MKT may affect student learning very narrowly, topic by topic. Correlation 
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analysis between student achievement for specific topics and teacher MKT for corresponding topics 
would shed light on this question. 

Conclusion 
Existing MKT items are written to combine specific kinds of teacher work with specific 

curricular topics, yet existing measures are not sensitive to these components. New kinds of MKT 
measures should be developed that can resolve MKT in terms of the specific kinds of teacher work 
and curricular topics assessed. Such measures coupled with fine-grained, mixed-methods, and 
longitudinal analyses, have promise for addressing the critical gaps in MKT theory. 
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This study investigated the pedagogical conceptions held by three exemplary high school 
mathematics teachers for teaching about and through problem solving and how the conceptions were 
held that made them effective in supporting students’ engagement with problem solving. It was 
framed in a perspective of mathematics problem-solving knowledge for teaching [MPSKT] 
consisting of five components of knowledge. Analysis of data, consisting of interviews and class-room 
observations, indicated that there were important relationships in how the teachers held their 
conceptions, with one component of their MPSKT forming the core knowledge that gave meaning to 
the other four components. A core knowledge of “knowledge of students” was a critical factor in 
supporting their problem-solving-based classrooms.  

Keywords: Problem Solving, Teacher Knowledge 

Problem solving [PS] is a central aspect of learning and doing school mathematics as well as 
teaching it. Teaching through PS is promoted as a way to foster students’ development of 
mathematical thinking and autonomy to solve challenging, meaningful problems (e.g., National 
Council of Teachers of Mathematics [NCTM], 2000).  However, this learner/learning-focused 
approach to teaching is likely to be a challenge for teachers depending on their understanding of PS 
in mathematics. Similar to the perspective of Ball, Thames, and Phelps (2008) that suggests general 
mathematical ability does not fully account for the knowledge and skills needed for effective 
mathematics teaching, the knowledge teachers need to effectively engage students through PS should 
be more than general PS ability (Chapman, 2015; Schoenfeld, 1985). Understanding this knowledge 
from a practice-based perspective can provide insights to support teachers’ learning and use of it. 
This paper contributes to this understanding based on a study that investigated the conceptions held 
by three exemplary high school mathematics teachers regarding teaching about and through PS and 
how the conceptions were held that made them effective in supporting students’ engagement with PS.  

Related Literature and Theoretical Perspective 
In recent years, considerable attention has been given to mathematics knowledge for teaching 

(MKT) (e.g., Ball et al, 2008; Rowland & Ruthven, 2011) as a basis for understanding and improving 
the teaching of mathematics. Mathematical problem solving knowledge for teaching (MPSKT), an 
important aspect of MKT, requires specific attention to address how to support teachers in creating 
PS-based classrooms. PS is considered here as “engaging in a task for which the solution method is 
not known in advance” (NCTM, 2000, p. 52). In PS-based classrooms, students are engaged in PS as 
a way of thinking mathematically and doing and learning math. 

Several studies have highlighted issues with teachers’ PS ability and knowledge of PS. For 
example, they tend to lack flexibility in choice of PS approaches (van Dooren, Verschaffel, & 
Onghena, 2003), apply a stereotypical solution to a problem (Leikin, 2003), have a lack of strategies 
for interpreting the information given to them in word problems and to recognize the appropriate 
procedure to use (Taplin, 1998) and make sense of PS as a linear process (Chapman, 2005). 
However, less attention has been given to teachers who hold knowledge that supports PS- 
based classrooms, which is the focus of the study being reported in this paper.  
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The study is framed in a theoretical perspective of MPSKT suggested by Chapman (2015). Based 
on a structure similar to Ball et al.’s (2008) perspective of MKT, two categories of MPSKT are 
adopted in this study. Category 1 (PS content knowledge) has three components: knowledge of 
problems, PS, and problem posing. Description of these components includes understanding of 
meaningful problems, of mathematical PS as a way of thinking, of how to interpret students’ unusual 
solutions and implications of students' different approaches, and of problem posing before, during 
and after PS. Category 2 (Pedagogical PS knowledge) has two components: knowledge of students as 
problem solvers and instructional practices for PS. This includes understanding what a student 
knows, can do, and is disposed to do and understanding how and what it means to help students to 
become better problem solvers. 

The participants’ knowledge is based on their conceptions of each component connected to their 
teaching of and through PS. 

Research Process 
This study is part of a larger project that investigated prospective and practicing elementary and 

secondary school mathematics teachers’ thinking and teaching of PS. It focuses on three of the high 
school teachers who consistently taught through PS. They were experienced grades 10 to 12 
mathematics teachers with 16 to 20 years of teaching experience. They were from different local 
public schools and received teaching awards as excellent mathematics teachers.  

Main sources of data were open-ended interviews, PS tasks, classroom observations, role play, 
teaching/learning artifacts, and students’ work. The interviews explored the participant’s conceptions 
of and experiences with PS. This included questions/scenarios on: PS ability; nature of tasks, PS, and 
learning; instructional approaches; contexts; planning; and intentions for PS in their teaching. 
Participants also commented on the nature of five different types of relevant school mathematics 
problems and on when and how they may or may not use them in their teaching. Interviews were 
audio recorded and transcribed. Classroom observations and field notes focused on the teachers’ 
actual instructional behaviors and students’ engagement during the lessons. Ten lessons (60 to 85 
minutes each) involving PS or when a new concept was being introduced and developed were 
observed and audio-recorded.  

Data analysis involved the researcher and a trained research assistant working independently to 
thoroughly review and code the data and identify themes, which were validated through an iterative 
process of identification and constant comparison. Coding was guided by the five com-ponents of 
MPSKT. This included highlighting participants’ conceptions and what they valued regarding each 
component. For example, for PS, their conceptions included: “It's like anything else that you don't 
know what the outcome will be and you're kind of game for anything, so you just take your chances 
and you try and use the tools that are available to you, see what happens.” “It is a process, it is not a 
solution. It is whatever takes you to get to that solution.  So, thinking, trying out things, writing, 
using whatever tools you have to find a solution.” The data were also examined for connections that 
were consistently expressed in their conceptions as a basis for understanding how they held their 
MPSKT. For example, their conceptions of problems were always expressed in relation to the 
problem solver/learner/student regardless of the context involved; e.g., “Using problems in class, the 
big thing is that they have to be interesting to some-one, to those kids.” “All word problems are real 
problems if students have not encountered them before.” “Students don’t have a predetermined 
solution process.” “It's a problem you want to have the answer to, … something that is needed, is 
practical, is worthwhile, that has some kind of relevance to the student.” In general, for all 
participants, explicit connections to students was dominant for each component of MPSKT, which 
was consistent with their observed classroom actions. Thus, knowledge of student emerged as central 
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to how they held and used their know-ledge. Further analysis focused on unpacking and confirming 
the relationships with students. 

Finding 
While there were differences in the teachers’ conceptions and teaching approaches, only the 

common features that were central to how they engaged students in PS are presented here. The 
teachers held conceptions that showed positive disposition to PS. They viewed PS not as separate 
topic but as a central aspect of learning mathematics that should be integrated throughout a course. 
Their PS-based classrooms included engaging students in solving challenging problems, exploring 
patterns, designing tasks, formulating and checking conjectures, reasoning and generalizing, and 
communicating/discussing ideas and outcomes. New concepts were introduced through PS. For 
example, Teacher 1 started her Grade 11 unit on functions by giving students a set of graphs and 
asking them “to put them together in some form, like group them or look at them in some way that 
they are mathematically connected or similar or not.” This was followed by further exploration. 
Teacher 2 started her unit on relations and functions with the following scenario for which students 
had to determine independent and dependent variables with justification, represent the scenario in 
three different modes, explain the type of graph and reason for it, explain the meaning of the 
steepness and intercepts.  

You are running in the Terry Fox Run at school. One of the ways to earn money in support of the 
Terry Fox Run is to obtain sponsorship. The school has decided the sponsorship rate will be 
$1/km run in the designated time slot.  

Table 1 summarizes central aspects of the teachers’ conceptions of the components of MPSKT 
that defined their teaching.  

Table 1: Teachers’ MPSKT 
Components 
of PSKT  

Teachers’ Conceptions  

Students  Students are designers, interpreters, evaluators, inquirers and agents of their 
learning and doing of PS.  

Problem  A problem emerges based on how the student experiences the task. The task 
provides possibilities, while the student provides the interpretation that gives 
meaning to the problem, e.g., as interesting, relatable, and challenging or not. 

Problem 
posing  

Problem posing involves students creating tasks, modifying/redesigning tasks 
contextually and extending a problem. It allows them to realize their interests and 
be creative. 

PS PS involves what students are able to do that makes sense to arrive at a solution. 
Instructional 
strategies 

A key strategy is not teaching heuristics or concepts in an explicit way, but 
allowing them to emerge out of students’ experiences in trying to solve a problem 
and reflecting on the process and concept. 

 
In addition to the nature of the teachers’ conceptions, an important finding is that the com-

ponents of MPSKT were not held by the teachers in isolation of each other but were connected 
through one component that formed the core of a network consisting of the five components. For 
these teachers, the core knowledge was knowledge of students. Students were viewed in terms of 
their ways of learning/knowing and affective factors/beliefs impacting them as problem solvers/ 
learners. Knowledge of each of the other four components was held in relation to knowledge of 
student. For example, problems were viewed as relationship between student and task. Problem 
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posing was viewed in relation to students as task designers. For example, after mentioning the 
Goldilocks story as an example, Teacher 3 assigned the following task to her grade 12 students:  

… rewrite a children’s story to solve permutations or combinations. The math should be an 
integral part of the story line, perhaps illustrating difficult decision making or large numbers of 
choices to be made. …This is a children’s story, so make the story line and illustrations simple, 
although the problems encountered should be relatively complex in nature. 

PS was viewed in relation to the students’ thinking/inquiry process and instructional strategies were 
viewed in relation to supporting students’ agency and autonomy in engaging in PS. As Teacher 3 
explained: 

I go around and listen to the groups. …I can sit next to any group and they talk, and I ask them 
questions if they're stuck but that's about it.  I simply watch how the groups are working together 
and if I see a group is stuck, I try to come up with a question that will allow them to continue, but 
I will not give anybody the answer at any time …they can always ask a question, but if they want 
to know how to do it, or are they right, they may not talk to me. 

Conclusion 
This study contributes to our understanding of the nature of and relationship between exemplary 

teachers’ MPSKT and practice. It indicates the nature of the teachers’ MPSKT and that they held 
their conceptions of the five components of MPSKT, not independent of each other but, as a network 
of interdependent knowledge with one component forming the core or anchoring component that 
gave meaning to the other four components. The findings suggest that the nature of this core 
component is a critical factor in supporting PS-based classrooms.  In particular, they suggest that a 
teacher’s MPSKT with a core component of knowledge of students as genuine problem solvers is 
important to enable the teacher to support PS-based classrooms with “effective teaching that engages 
students in meaningful learning … to make sense of mathematical ideas and reason mathematically” 
(NCTM, 2014, p.7). Ongoing investigation in the larger project explores this relationship between 
MPSKT, core component, and teaching to empower students in learning about and through PS and 
the implication for teacher education. 
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KNOWLEDGE FOR TEACHING INTEGERS: ATTENDING TO REALISM AND 
CONSISTENCY IN A TEMPERATURE CONTEXT 
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Research has illustrated that prospective teachers struggle to construct word problems for integer 
operations. This paper extends the current research by examining the ways in which four classes of 
prospective teachers responded to a child’s temperature story for an integer addition number 
sentence (i.e., -9 + -6 = ☐ ). One hundred prospective teachers responded to whether they believed 
that the story matched the number sentence and provided justification for their reasoning. The 
child’s story, an actual story posed by a Grade 5 student, did not utilize temperature realistically 
(realism), nor was it consistent with the given number sentence (consistency). The results indicated 
that when prospective teachers were asked to evaluate the child’s story, they tended to either focus 
on realism or consistency, but not both. Benefits of using children’s thinking during instruction as 
well as implications for research are discussed.   

Keywords: Number Concepts and Operations, Teacher Education-Preservice, Mathematical 
Knowledge for Teaching, Teacher Knowledge  

Background 
Research has shown that prospective teachers (PTs) struggle to think conceptually about integer 

addition and subtraction, often focusing on procedures (e.g., Bofferding & Richardson, 2013). 
Additionally, both children and PTs have difficulties when posing stories for integer number 
sentences (Kilhamn, 2009; Roswell & Norwood, 1999). Since PTs will need to extend their own 
knowledge about integer operations (Chrysostomou & Mousoulides, 2010) to make sense of 
children’s reasoning with contexts for integer addition and subtraction, we developed a study 
focusing on the ways in which PTs attended to a child’s posed temperature story for an integer 
addition number sentence.  

Utilizing Contexts with Integer Addition and Subtraction  
Research has illustrated that both children and PTs have varying degrees of success when 

generating stories for integer operations (Kilhamn, 2009; Wessman-Enzinger & Tobias, 2015). 
Difficulties include posing unrealistic stories, changing the number sentence to a different number 
sentence, and using contexts that do not support opposites (Kilhamn, 2009; Wessman-Enzinger & 
Mooney, 2014). Wessman-Enzinger & Tobias (2015) found that although some PTs could 
successfully pose temperature stories, many either posed unrealistic stories or did not use 
temperature as a context. Likewise, Kilhamn (2009) asked PTs to solve and describe their thinking 
for integer number sentences (e.g., -8 – -3= ☐). Kilhamn found that only a small amount of PTs 
utilized a model or context to explain the mathematics. Interestingly, those who did either used 
number lines or temperature to explain their reasoning.  

Though the research described above has given us some insight about how children and PTs 
struggle with posing stories for integer operations, little is known about how PTs reason about 
children’s thinking. This study seeks to extend current research by examining the multiple ways PTs 
responded to an integer temperature story posed by a fifth-grade student and what their 
understandings of the child’s story means for their own content knowledge for teaching. 
Consequently, the guiding research question for this study was: What do PTs attend to when they 
evaluate a child’s temperature story related to integer addition?  
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Methodology  

Background 
One hundred and three elementary and middle school PTs in four different classes participated in 

a study on integer addition and subtraction. The PTs were enrolled in an introductory mathematics 
content course focused on number concepts and operations. Two of the three authors were professors 
for this course and all three of the authors analyzed the written tasks from the PTs. The mathematics 
content course was designed to promote conceptually oriented discourse. PTs were first given 
problem situations. Then they worked on the problems individually and/or in small groups. This was 
followed by whole-class discussions where the instructor acted as a facilitator. Throughout the course 
PTs were asked to solve problems in multiple ways, present their own solution strategies, make sense 
of the reasoning of others, and ask questions when clarification was needed. 

Data Collection and Analysis 
Data were collected across two academic semesters, Fall 2013 and Spring 2014. The PTs were 

given four integer addition and subtraction number sentences with stories that Grade 5 children posed 
for those number sentences. The PTs were asked to provide a response for whether the child’s story 
made sense and justify their responses. PTs’ responses to one of these stories, The Sabrina Task (see 
Table 1), is the focus of this report.  

Table 1: The Sabrina Task 
Student Number Sentence Story 
Sabrina -6 + -9 = ☐ It is -6 degrees 2 days ago. It was -9 yesterday. Now it is -15 

degrees. 
 

The data for this study were comprised of the PTs’ written responses (i.e., responding yes or no 
for matching and their explanations). Of the 103 written responses, only 100 explanations were 
readable and consequently analyzed for the study.  

When coding the responses, we analyzed them to determine themes for coding, such as attention 
to language, attention to the solution, attention to realism, and attention to consistency. We then went 
through an initial pass of coding, checking to see if these themes were evident in each PTs’ response. 
As we discussed themes like language and attention to solution, we noticed that our discussions for 
this problem centered on realism and consistency. Realism focused on PTs’ attention to the fact that 
adding temperatures from previous days does not determine the temperature the following day as 
well as everything within PTs’ responses being realistic. Consistency included PTs’ attention to the 
story not being consistent with addition, and PTs’ explanations themselves being consistent. After 
each round of coding, the authors met, compared codes, and negotiated any differences. We then 
obtained counts and percentages of these codes to make sense of the qualitative data (Miles & 
Huberman, 1994).  

Results 
Of the 103 PTs responses, 17 thought that Sabrina’s story did match the number sentence. 

Eighty-four PTs thought that Sabrina’s story did not match, and 2 PTs thought that Sabrina’s story 
did and did not match at the same time. The responses from PTs contained various levels of attention 
to consistency and realism.  

Attention to Consistency    
When attending to consistency we found that fifty-three of the 100 PTs’ written responses 

mentioned that the story was not consistent with the addition sentence. 47 did not mention a 



Mathematical Knowledge for Teaching 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

615 

consistency issue, including students who claimed that the story was consistent with a subtraction 
problem instead of an addition problem. Additionally, 28 of the PTs themselves suggested an 
inconsistent story when trying to fix Sabrina’s problem. 

When PTs recognized that there was not an addition operation present in the story they expressed 
this in various ways – utilizing language such as “no addition,” “no operation,” “no relationship,” or 
“no math.”  An example of this is PT B20’s response: Sabrina’s sentence did not make sense because 
in her sentence she just stated different degrees on different days. There was no mention of any 
addition or subtraction. This PT noted that there was no mention of addition or subtraction and that 
the story just lists the temperatures from different days.  

Attention to Realism  
When coding for realism we found thirty-eight of the 100 PTs’ responses mentioned that it is not 

possible to sum previous days’ temperatures to obtain the next day’s temperature. Sixty-six of the 
100 responses were entirely realistic.  

We found PTs whose entire justification included the idea that combining the previous two days’ 
temperatures do not give you the temperature for the third day. For example, PT B4 wrote:  

The separate days’ temperatures don’t affect today’s temperature. So, the problem doesn’t make 
sense. Others, such as PT B21, also stated that Sabrina’s story was not realistic. However, PT B21 
offered a suggestion that was coded as unrealistic, because it involved adding the two temperatures 
together. 

… her story does not make sense. The temperature from two days ago and one day ago do not 
necessarily dictate what the temperature will be today, there is no relationship there. It would 
have been fine if she asked, “what are these temperatures together?”  

Though PT B21 noted that the temperatures from the previous two days do not determine the 
temperature for the third day, she stated that Sabrina should have asked what the two temperatures 
are together, which is unrealistic in the context of temperature. 

Discussion and Implications 
Our results indicated that PTs used varying levels of justification when discussing Sabrina’s story 

and were generally successful in determining that Sabrina’s story did not match the number sentence 
(81 out of 100 PTs). Of these, only 13 attended to the fact that Sabrina’s story was both unrealistic 
and inconsistent with the number sentence. The majority (64 of 81) focused on only one aspect, 
either realism or consistency, and four did not attend to either. These results provide insight into PTs’ 
mathematical knowledge for teaching as well as extend previous research focusing on PTs’ 
understanding of integer operations. 

Providing PTs with a task that included examining a child’s story that was both unrealistic and 
inconsistent may have helped them to focus on realism and consistency more so than if they had just 
been asked to pose a story themselves. We found that the majority (76 PTs) did this automatically by 
discussing realism, consistency, or both even when instructed to just explain whether Sabrina’s story 
matched the number sentence. Giving PTs this story may have given them an avenue to reflect on 
what makes a story realistic or consistent as previous research has suggested that PTs do not 
necessarily attend to these same aspects when posing their own stories (Wessman-Enzinger & 
Tobias, 2015).  

The results also indicate that PTs used a variety of justifications when analyzing an integer 
addition story for a given number sentence. Focusing discussions around these justifications can be a 
productive way for PTs to develop an understanding of the limitations of certain contexts that support 
integer operations as well as what it means to operate with integers. For example, the Sabrina Task 
included a temperature situation that was not possible (adding two temperatures together). By 
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exploring realism, PTs can develop an understanding of why contexts, such as temperature, are not 
possible for integer addition when the second addend is negative. These conversations can then lead 
PTs to develop similar understandings for subtracting with a negative as it is also not realistic for a 
temperature to drop by a negative amount.  

Conclusion and Final Remarks 
PTs’ responses to the Sabrina Task highlight the need for content and methods courses in 

mathematics education to provide PTs with a variety of classroom experiences, including but not 
limited to posing problems, examining stories in multiple contexts, and analyzing children’s thinking 
in the domain of integers. The results extend previous research by providing insight into the ways in 
which PTs coordinate various contextual nuances with temperature and integers, such as realism and 
consistency in comparison to a given number sentence. We found that despite having experiences 
with temperature and integers, PTs did not readily extend this knowledge to children’s thinking. In 
addition, although many of the PTs attended to realism and/or consistency in their responses, some 
stated other things that were unrealistic or inconsistent. Thus, as mathematics educators, we have an 
indispensable responsibility to provide PTs with opportunities where they can make sense of 
children’s thinking to deepen their own content knowledge as well as prepare them for what they will 
be required to do in their own classrooms.  
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This paper presents a quantitative analysis of data from an MKT instrument administered on a 
sample of 284 practicing teachers in Norway and Slovakia. It confirms concerns raised by several 
qualitative studies: Some teachers choose the “I’m not sure” distractor despite having solid 
knowledge. On the other hand, we found that the statistical impact of these cases is limited and a 
qualified use of the MKT measures is likely to provide valid and useful information. 

Keywords: Mathematical Knowledge for Teaching, Measurement, Teacher Knowledge 

Discussions of the knowledge needed to teach mathematics and issues with the related measures 
have received notable coverage in research literature. One of the most cited models of teachers’ 
professional mathematical knowledge is the Mathematical Knowledge for Teaching (MKT) that 
emerged from the research at the University of Michigan (Ball, Thames, & Phelps, 2008). These 
researchers also developed measures of MKT (the MKT measures, sometimes referred to as the LMT 
measures) that served many important purposes. For example, they were used to statistically validate 
the existence of various domains of MKT (Hill, Ball, & Schilling, 2008) and demonstrate the positive 
effect of teacher’s MKT on students’ achievement (Hill, Rowan, & Ball, 2005). Due to the unique 
properties of the MKT measures, several international researchers (see for example Blömeke & 
Delaney, 2012) adopted them and studied their validity in new cultural contexts. 

Our study builds on the cross-national MKT measures adaptation research and involves data from 
Norway and Slovakia collected by using the same MKT instrument (MSP_04_formA containing 61 
multiple-choice items with known IRT parameters for the U.S. population). This report focuses on a 
specific result that our data set revealed: How the “I’m not sure” distractor affects the response 
patterns and potentially the overall validity of the MKT instruments. 

Theoretical Background 
The MKT measures were developed as multiple-choice questions to allow a robust quantitative 

analysis involving several thousands of respondents. To discourage guessing, which may 
occasionally result in a correct answer without having the knowledge, the authors of the measures 
included the distractor “I’m not sure” (coded as incorrect, cf. Hill, 2007). However, the format of the 
MKT measures was criticized by some researchers and multiple issues were raised. For example, a 
multiple-choice approach to measuring teacher knowledge ignores its complexities (Beswick, 
Callingham, & Watson, 2012), and as such might be measuring constructs different from the 
intended one (Schoenfeld, 2007). Other researchers employed qualitative methods to study how 
answering MKT measures relates to the actual teacher knowledge or their performance in a 
classroom. For example, Hill and colleagues describe a case of a teacher who scored significantly 
high on the MKT instrument (89th percentile) and yet her quality of instruction was only average with 
undue emphasis on routines and mnemonics (Hill, Umland, Litke, & Kapitula, 2012).  Fauskanger 
(2015) combined MKT measures with constructed-response questions to reveal the cognitive types of 
knowledge teachers use when answering MKT measures. She found that one teacher (out of 28 in the 
study) provided three incorrect responses on multiple-choice items and yet demonstrated connected 
conceptual knowledge in related constructed-response questions. On the other hand, 13 teachers 
chose correct multiple-choice answers and yet their constructed responses indicate limited, 
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instrumental understanding. In another qualitative study, Fauskanger and Mosvold (2015) looked at 
the reasons for choosing the “I’m not sure” option and found out, that out of 15 teachers in the study, 
six choose this distractor because they lacked the knowledge, five had limited, instrumental 
understanding of the content and four chose “I’m not sure” even though they possessed connected, 
conceptual (relational) understanding.  

Research Questions 
Research suggests that at least in some cases, there is a mismatch between teacher’s MKT scores 

and their actual knowledge for teaching mathematics and that teachers choose the “I’m not sure” 
option even if they possess deep, conceptual understanding of the topic. This is problematic as the 
“I’m not sure” option is coded as incorrect and thus affects calculations of the test parameters and 
consequently teachers’ abilities. If the number of knowledgeable teachers who chose the “I’m not 
sure” distractor is relatively high (relative to the number of teachers who chose it for the lack of 
knowledge) then item difficulty estimates can be inaccurate. Similarly, the ability estimates can be 
inaccurate for teachers who chose this option repeatedly. 

We therefore decided to investigate if the quantitative patterns in our data can reveal how the 
overall knowledgeability of respondents is related to their decision to choose the “I’m not sure” 
option. Particularly, we were interested in answering the following questions: 

3. Does our quantitative data support the findings of other qualitative studies? Identification of 
respondents who choose the “I’m not sure” option despite their high overall level of 
knowledge will provide such support. 

4. If so, what is the statistical importance of such cases? Specifically, we will try to assess the 
extent to which these cases affect the item parameters (and consequently teachers’ abilities).  

Methods and Results 
Our instrument contains 61 MKT items and we administered it in Slovakia and Norway to collect 

data from 284 practicing elementary teachers. The sample size allows us to use a two-parameter Item 
Response Theory (IRT) model. IRT scales the person’s MKT (ability θ) and item difficulty (b) on the 
same continuum: A person with the ability (MKT) of θ has a 50% chance to answer an item with the 
difficulty b = θ. The parameters are scaled so that the average θ for the whole population is 0 and the 
population standard deviation is 1. 

We performed several data simulations to explore various assumptions. We recoded all “I’m not 
sure” answers the same way as “No Answer” is coded to be ignored in the calculations. Our new 
estimates of item difficulties (denoted b’) and teacher abilities (θ’) thus operate on an assumption 
that teachers were choosing these two options interchangeably and their inclination towards the “I’m 
not sure” option does not indicate lacking knowledge. 

For each item, we then recorded the ability estimates (θ’) of all teachers who chose the “I’m not 
sure” option for that item. In other words, we created ability profiles of teachers who choose the “I’m 
not sure” option across all items. We did the same analysis for missing answers. Only the items with 
more than twenty “I’m not sure” or skipped answers were included in the analysis.  

Table 1 summarizes important parameters and shows that the mean ability of teachers who chose 
“I’m not sure” is lower than the mean ability of teachers who chose not to answer items. The 
difference is statistically significant (t(40) = -2.85, p < 0.005). This result indicates that statistically, 
the distractor “I’m not sure” works as intended: teachers who choose it are more likely to be “less 
knowledgeable” than the ones who simply skip the answer. 
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Table 1: Ability estimates θ’ of teachers who chose “I’m not sure” or skipped answers 

 

Number of items with 
frequency >20 Ability (θ’) mean Std. deviation 

"I'm not sure" 24 -0.495 0.229 
No answer 32 -0.335 0.170 

 
The analysis of individual items provides further insight. Points in the scatter plot in Figure 1 

represent the average abilities θ’ (y-axis) of those teachers who selected “I’m not sure” for a given 
item (x-axis). Vertical segments show the standard errors of the θ’ estimation. The plot provides 
visual information on the relationship between the average ability of teachers who selected “I’m not 
sure” option for a particular item and the population mean (bold horizontal line θ’ = 0).  

We can see that even if the teachers who choose “I’m not sure” are overall likely to select it for 
the lack of their knowledge to choose another option, concerns raised by Fauskanger and Mosvold 
(2015) are valid. For example, the group of teachers who chose “I’m not sure” for the item 16 is on 
average significantly more knowledgeable than the whole population. As many such teachers are 
knowledgeable overall and some of them are very knowledgeable (six teachers ranked above the 87th 
percentile), it is likely that their choice of “I’m not sure” was not caused by the lack of their 
knowledge. Similarly, the teachers who chose this option for the item 43 or 37 are on average not 
significantly less knowledgeable than the population average. Further insight into the possible 
reasons for choosing “I’m not sure” can be gained from a closer analysis of these items and the 
national samples; Such analysis, however, is beyond the scope of this report. 

When assessing the statistical importance of this group of knowledgeable teachers, we selected 
all teachers (26) who chose “I’m not sure” in either of the questions 16, 37 and 43, and whose ability 
estimates were above the population mean (taking the standard error into account). We assumed that 
these knowledgeable teachers likely chose “I’m not sure” for reasons other than the lack of 
knowledge. We removed these respondents and recalculated the test parameters. 

Due to a limited scope of this paper, we only present a partial analysis of the item difficulties 
calculated from the new sample (b’’) and the original difficulties (b). We can see from the Table 2 
that the new difficulties b’’ of the items 16, 37 and 43 are within the standard errors of the original 
difficulty estimations b. The extension of this analysis to all items yields similar results: The group of 
knowledgeable teachers, who choose the “I’m not sure” option for reasons likely unrelated to the 
lack of their knowledge does not significantly affect the test parameters. 
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Figure 1. Average abilities of respondents who chose the "I'm not sure" distractor. 
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Table 2: Original (b) and Simulated (b’’) Difficulties of the Items 16, 37 and 43 
  Item 16 Item 37 Item 43 

original item difficulty b and the standard error 0.51 ± 0.22 -0.19 ± 0.44 -1.36 ± 0.3 
new item difficulty b'' 0.39 -0.22 -1.2 

Conclusion 
Our quantitative results confirm that concerns raised by the qualitative analyses of Fauskanger 

and Mosvold (2015) are valid. The analysis of the items 16, 37 and 43 revealed knowledgeable 
teachers who occasionally choose the “I’m not sure” option for reasons likely not related to the lack 
of their knowledge. On the other hand, we saw that the group of teachers who chose “I’m not sure” is 
on average less knowledgeable than those who skipped the answers. Moreover, the statistical impact 
of the group of teachers who choose the “I’m not sure” option despite their sound knowledge was not 
significant in our data. We view these results as a reminder of the importance of a qualified use of the 
MKT measures. If an MKT instrument, such as ours, is used to assess the ability of an individual 
teacher (e.g. for certification purposes), it is possible that the resulting MKT score will not correctly 
capture their actual knowledge. If, however, it is used for the purpose, for which it was designed (for 
example to measure knowledge growth of a group of teachers participating in a professional 
development), it is likely to provide valid and useful results. 
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MIDDLE SCHOOL TEACHERS’ MATHEMATICAL KNOWLEDGE FOR TEACHING 
PROPORTIONAL REASONING 
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Vast amounts of money are spent on professional development for teachers, but little is known about 
its quality or efficacy. IMPRINT, an 18-month long professional development project, was aimed at 
improving the teaching of proportional reasoning using mathematical tasks set in authentic contexts. 
IMPRINT framed teachers’ analyses of student work using particular domains of MKT. Outcomes 
indicate that IMPRINT positively influenced participants’ MKT in ways that fostered more student-
centered instruction, with students working on authentic application tasks set in engaging and 
motivating contexts. Compared to a control group, students of IMPRINT teachers showed greater 
knowledge and understanding of ratio and proportion. 

Keywords: Teacher Education-Inservice/Professional Development, Mathematical Knowledge for 
Teaching, Middle School Education; Teacher Knowledge 

Introduction 
Proportional relationships are foundational to much of the mathematics curriculum, and have 

been called the capstone of elementary concepts in mathematics (Lesh, Post, & Behr, 1988). 
However, evidence exists that teachers’ knowledge of proportional reasoning, and how to teach it, is 
not robust (Izsak, Jacobson, & de Araujo, 2012). Although professional development is conducted in 
virtually every district across the United States, empirical evidence regarding the relationships among 
professional development, teacher growth, and student learning is scant (Desimone, 2009). Few 
studies demonstrate a link between professional development and measures of teacher learning, 
instructional performance, or student learning outcomes at scale. Gersten, Taylor, Keys, Rolfhus, and 
Newman-Gonchar (2014) found that only two forms of professional development had positive effects 
on students’ achievement in mathematics: intensive courses in mathematics content with follow-up 
workshops, and lesson study. 

Cognizant of these challenges, we designed the Improving Proportional Reasoning Instruction 
through eNgineering Tasks (IMPRINT) professional development to enhance teachers’ mathematical 
knowledge and pedagogical skill in developing strong understandings of ratio and proportion. 
IMPRINT was designed around the idea that improvement of mathematics teaching requires 
expansions of teachers’ mathematical knowledge for teaching (MKT) (Ball, Thames & Phelps, 
2008). Devising teacher learning environments situated in the demands of instruction (Ball & Cohen, 
1999) guided our work. To develop teachers’ MKT, we designed mathematically rich experiences 
anchored in what teachers see as their real work. Mathematical tasks played a large role because 
teachers are engaged with mathematical tasks in their daily work.  The research described in this 
paper sought to understand whether and how teachers’ MKT (Ball, Thames & Phelps, 2008) in 
proportional reasoning was enhanced through their participation in IMPRINT’s professional 
development program of intensive mathematics content with follow-up workshops and lesson study 
over an 18-month period, and how this affected student learning in turn.  

Methods 
Participants in this study were the 16 elementary and middle school teachers who completed the 

IMPRINT program, which, included working on mathematical tasks that feature proportional 
relationships in authentic STEM contexts, evaluating word problems in school curricular materials, 
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studying student thinking including known misconceptions in proportional reasoning, revising and 
creating mathematical tasks for proportional reasoning, and analyzing student work collaboratively. 
The Survey of Enacted Curriculum (CCSSO SEC, 2005) was administered to teacher participants as 
both a pre- and a post-test to measure any changes in instructional practice.  Improvement in 
participants’ MKT in proportional reasoning was assessed with the Learning Mathematics for 
Teaching (LMT) 4-8 Proportional Reasoning Assessment (Hill, Schilling, & Ball, 2004) used as a 
pre- and post-test for project teachers and a control group.  Students of IMPRINT and control group 
teachers were assessed for their knowledge of proportional reasoning using a project-developed 11-
item assessment at the beginning and end of the project.  

Teachers’ analysis of student work provided qualitative data. Teachers administered a 
proportional reasoning task twice during the project. Each time, teachers used the same task, 
analyzing it collaboratively. Their analyses focused on the varied strategies students used. In another 
analysis cycle, a task was chosen by each teacher and administered twice, focusing their analysis on 
their own students and the specific problem they wanted to do with their students.   

LMT data were analyzed using non-parametric tests to detect any statistically significant 
differences between IMPRINT and control group teachers, and SEC data were analyzed using two 
proportion z-tests to detect any changes in the IMPRINT teachers during the project. Teachers’ 
analyses of student work were categorized, coded, and examined for emerging patterns and themes 
(Miles & Huberman, 1994). Triangulation of data ensured the reliability of the study.    

Results 
Teachers reported in surveys that their understanding and teaching of proportional reasoning 

improved during IMPRINT, and analyses of the quantitative and qualitative data bear this out.  

Through the time that I have been a part of IMPRINT I have definitely strengthened and 
expanded my knowledge of ratios, rates, and proportional reasoning. Before beginning 
IMPRINT, I thought I had a solid understanding of these concepts and that I was doing a good 
job teaching these concepts to my students, however there were so many new and different ways 
of thinking, teaching, and looking at the concept of proportional reasoning, rates, and ratios. 

As this teacher noted, we saw instances of deeper thinking about the content as well as how to teach 
the content. Below, we provide further evidence bolstering self-reports of improved MKT.  

Quantitative Evidence 
Due to small sample sizes, the LMT pre-test results were analyzed with a Mann-Whitney U test. 

The project and control groups were not significantly different (p=.0.582). When the differences 
from pre- to post-test for each group were tested for significance using the Wilcoxon signed rank test, 
the control group did not show any significant differences from pre-test to post-test (p=0.330), while 
the project group showed a significant positive difference (p=0.017). 

Post-test results of the student assessment were analyzed using ANCOVA, controlling for pre-
test scores. At α=0.10, a significant difference in favor of the project group was found (p=0.087).  At 
α=0.05, ANCOVA also revealed significant differences in favor of the IMPRINT group on two of 
the individual items (p=0.02 and p=0.04). 

We used sections of SEC pertaining to instructional and assessment practices and teacher 
opinions/beliefs. When the SEC items were analyzed, statistically significant changes from pre- to 
post-test were detected in the proportions of participants who answered items in ways consistent with 
the goals of IMPRINT.  

Taken together, the LMT results show that IMPRINT teachers’ MKT in proportional reasoning 
increased over the life of the project, while the SEC results demonstrate that IMPRINT teachers were 
changing instruction in ways that aligned with the project’s objectives.  Moreover, students of the 
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project teachers outperformed those of a control group of teachers on the 11-item proportional 
reasoning assessment. 

Fostering Teachers’ MKT With Student Work 
Teachers analyzed their students’ work on two different proportional reasoning tasks assigned at 

two different times. The goal was to develop teachers’ MKT by having them appraise students’ 
responses and strategies. The assignments encouraged teachers to track different solution strategies, 
as well as examine their own and students’ habits in solving proportional reasoning problems. This 
supported development of a wide variety of solution strategies.  

Building on this work, teachers chose and implemented a proportional reasoning task. Next, they 
responded to questions about the tasks they chose, explained why they selected them, and shared 
student work. They also commented on one another’s selections. Analysis of tasks selected and 
reasons for selecting them shows IMPRINT teachers most valued tasks relevant to students’ lives.  
They also preferred open-ended proportional reasoning tasks leading to multiple solution pathways 
or leading to fruitful discussions. These discussions often touched on the MKT domain of 
Knowledge of Content and Students (Ball, Thames, & Phelps, 2008). 

We also found teachers slightly more concerned with what students did not understand than what 
they did understand. We surmise that concern with lack of understanding stems from their efforts to 
improve the task and students’ understanding of it, hence their focus on what  students did not 
understand. There was little mention of specific errors or explanations for errors in the student work, 
possibly due to the nature of questions teachers were asked as they analyzed their results. Regardless, 
there is strong evidence teachers were focusing on students’ proportional reasoning, some teachers 
more so than others.  

After analyzing what teachers noticed in students’ work, we looked at their task revisions. We 
categorized the revisions as consistent, somewhat consistent,  or inconsistent with what they noticed. 
For example, one teacher used a problem which asked students to find ratios of different colored 
LEGO pieces. She noticed that students struggled with comparing multiple parts to a whole, as well 
as filling in a ratio table. She revised the task, but only addressed the ratio table where students 
lacked understanding of equivalent fractions. We coded this as a “somewhat consistent” revision 
with a shift in the content of the lesson. The revision was coded “somewhat consistent” because only 
one part of what was noticed was used in revising the task. Shifts in the content of the lesson 
occurred when teachers decided to teach a different concept based on observations made from 
teaching an earlier concept. In the LEGO example, the teacher went from comparing parts to parts 
and parts to wholes to focusing solely on equivalent fractions, because it is “foundational to 
proportional reasoning.” Changes in the direction of instruction occurred when teachers reflected on 
students’ learning trajectories as a result of analysis. They shifted to more challenging content or 
reviewed content they deemed their students lacked. In the LEGO example, after implementing a 
revised task on equivalent fractions, the teacher decided to also teach addition and subtraction of 
fractions. Finally, we also observed teachers’ deliberations on the revision cycle based on analysis of 
student work. For example, one teacher wrote:  

In this problem, students had to calculate the hourly pay rate and then use that to determine how 
much money they would earn for a given number of hours worked.  It was very straightforward, 
however, and didn't lend itself to much discussion.  There was only one right answer although 
students could come up with the answer in different ways. The new task I created is much more 
engaging and has multiple answers. 

For this teacher, the correct calculation of a proportion was insufficient.  She sought discussion, 
engagement, and creativity in her students’ work.  We see this as evidence of improved MKT. 
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Discussion and Implications 
In sum, the IMPRINT experience contributed to teachers’ improved MKT and fostered more 

student-centered teaching practices aligned with content standards in mathematics.  We also observed 
teachers’ growing interest in using tasks that featured authentic applications of mathematics. 
Participating teachers commented that interesting and motivating contexts were reasons for their 
choice of tasks. Finally, our interpretation of the quantitative data analysis suggests that the students 
of participating teachers had increased knowledge and understanding of proportional relationships by 
the end of IMPRINT, in comparison with the control group. This suggests that extended attention to 
authentic tasks, immersion in rich and focused mathematics content, and the fine-grained 
collaborative analysis of student work contribute in positive ways to the teaching of proportional 
reasoning, and ultimately, to student learning. 
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This paper explores two preservice mathematics teachers’ understanding of mode.  Participants’ 
initial understanding and understanding following use of an interactive virtual manipulative is 
examined.  Findings suggest that participants initially operated with less-effective definitions of 
mode.  Preservice teachers’ developed understanding following a learning trajectory is discussed.  

Keywords: Data Analysis and Statistics, Middle School Education 

Purpose 
Mode is a statistical representation, often in the form of a single value or classification, for the 

distribution of a data set.  Mode is an important concept that is typically introduced to students as 
early as middle school.  Unfortunately, researchers have found that a significant portion of students at 
various levels (i.e., middle-grade, high school, and undergraduate) have difficulty understanding and 
explaining the concept mode (Groth & Bergner, 2006; Jacobbe & Carvalho, 2011).  Given that 
teachers’ mathematical conceptions can influence those of their students (Ball, Thames & Phelps, 
2008; Jacobbe & Carvalho, 2011), the present study focuses on the nature of teachers’ understanding 
of mode.  Thus, it is the purpose of the present study to explore preservice mathematics teachers’ 
(PSMTs) conceptions of mode.  

Perspective 
Relatively few studies have focused specifically on conceptions of mode of either teachers or 

students.  Those that have generally done so in the context of or in relation to statistical mean.  Groth 
and Bergner (2006) interviewed PMSTs to investigate their understanding of mean, median, and 
mode.  Their research study suggested that most PSMTs (34 out of 45) believed that a data set may 
have only one mode, as they defined mode as ‘most frequent number.’  Only a few participants (3 out 
of 45) believed that a data set may have more than one mode or no mode at all (Groth & Bergner, 
2006).  Jacobbe and Carvalho (2011) reported that often preservice and inservice mathematics 
teachers confuse the concept of the mean with the concept of mode.  In fact, many mathematic 
teachers (over 30%) defined mode incorrectly (Jacobbe & Carvalho, 2011).  Barr’s (1980) 
observation of college students revealed that 68% of the participants considered the frequency count, 
and not the classification (in this case, a number) as the mode.  Thus, even at the collegiate level 
where students learn to become teachers, many consider mode in a manner that does not meet the 
mathematical definition. 

While previous studies reported lack of PSMTs’ knowledge about the mode, they only reported 
PSMTs’ amount of understanding, but did not provide reasons as why that is the case.  Furthermore, 
prior study has not examined how conceptions of mode develop or evolve.  By contrast, the present 
research study sought to explore PSMTs’ understanding of mode and provide descriptions of learning 
trajectories regarding conceptions of the mode.   

Method 
An individual teaching experiment was used to guide this study.  In an individual teaching 

experiment, a researcher (a.k.a. teacher-researcher) interviews individual students on one-on-one 
basis with the intent to model their conceptual understanding of a particular topic (Steffe & 
Thompson, 2000).  Also, the researcher observes and identifies individuals’ actions so that the 



Mathematical Knowledge for Teaching 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

626 

researcher can model learning processes, conceptions, and less-effective understandings.  Because of 
its flexibility, an individual teaching experiment allows a researcher to focus on one student or 
participant at a time. 

The present study consists of nine teaching episodes across a period of nine weeks.  Consistent 
with teaching experiment design guidelines, an observer-researcher was present in all episodes to 
improve reliability of researcher-constructed models of PSMTs’ conceptions.  For each episode, 
tasks were prepared ahead of time.  While main tasks were designed to focus on a specific topic or 
concept (e.g., definition of mode, finding mode of a given data set), probing questions were used 
during each episode) to clarify participants’ answers and press them to explain or explore aspects of 
the task.  

In order to facilitate PSMTs’ engagement in tasks related to the mode, a computer-based virtual 
manipulative in the form of a number line was used.  Number lines are widely considered as an 
appropriate tool for investigating various measures of central tendency (Amiruzzaman & Kosko, 
2016; Gravemeijer, 2004).  Thus, the Interactive Statistical Number Line (ISNL) was incorporated 
within specific tasks (see Figures 1 and 2 for screenshots of ISNL).  ISNL allowed PSMTs to 
manipulate the location of data as discrete elements within a dataset.  For mode-based tasks, this 
generally resembled a line plot.  Although visually similar to a paper-based line plot, use of ISNL 
was hypothesized to engage participants in considering how all elements are represented aspects of 
the data set, given the virtual manipulation of each element in the data set.  

Analysis and Findings 
Two Preservice Mathematics Teachers participated in this study: Alex and Bob.  Considering the 

length of this paper only Alex’s answers are presented here.  Data were collected from a larger study 
focusing on various aspects of measures of central tendency (mean, mode, & median).  However, 
only data focusing on PSMTs’ interaction with mode-based tasks is reported.  Considering the length 
of this paper, we limit our description of the analysis and findings of Alex’s actions within episode 4. 

Episode 4 was intended to explore Alex and Bob’s understanding of the mode.  Given the initial 
task to find the mode of a given data set, Alex sorted the data set as, 1, 3, 3, 4, 5, 6, 9, and then told 
me that mode is 3 (see Figure 2).  Following this, he used the ISNL to develop a mathematical model 
for the data set and indicated 3 as a mode of the data set.  To explain his work, he said that he needed 
to sort the data set, so that he could see the repeated numbers.  In the example, there are two 3s, Alex 
saw them together once he sorted the numbers.  He said, “[after sorting] …now I see two 3s…so 3 is 
mode.”  Alex knew that the mode is a repeated number and his algorithmic scheme helped him to 
find the mode (see Figure 1).  We refer to this scheme as algorithmic because Alex followed a step-
by-step procedure to find the mode. 

To confirm the model and his initial understanding, Alex was asked to define the mode.  Alex 
answered, “What occurs the most is mode, in the example, 3 occurred the most, so 3 is mode.”  So, 
Alex was asked to find mode from, 1, 2, 3, 4.  He responded that all of them are mode as all of them 
occurred most.  Thus, Alex’s algorithmic scheme aligns with a definition of mode as “the most.”  

 

 
 

(a) (b) 
 
Figure 2. Alex’s approach to find mode from a data set for Task 1 (a) and Task 2 (b). 
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To press Alex’s use of this definition, the teacher-researcher asked him to compare the first data 
set (1, 3, 3, 4, 5, 6, 9) with the second data set (1, 2, 3, 4).  Alex used the ISNL to model both data 
sets (see Figure 2).  While he was comparing models of both data sets, he identified some 
differences, “I see that … data sets are not same….in the first data set, there was a repeated number 
which was the mode… in the second data set there were no repeated numbers…”  After analyzing 
both data sets via the ISNL, he decided to revise his definition of mode (see Figure 2).   

 

 

 
(a) (b) 

Figure 3. Alex's models for two data set. One with repeated number and another without repeated 
number. 

Alex modeled additional datasets on the ISNL to find a mode before revising his definition.  He 
said, “The mode is the value that appears most often in a set of data.  A data element will be 
considered to be a mode if it has a frequency of at least two and there is no other data element that 
has a higher frequency than that.  A data set may have no mode, or one mode, or more than one 
mode.”  After revising the definition of mode, Alex went back to find the mode of the data set 
consists of 1, 2, 3, 4.  He analyzed the data set once again and developed a mathematical model using 
ISNL, and he claimed that the data set 1, 2, 3, 4 has ‘no mode’.  He further added, “…If there are no 
data elements that occur most frequently, then that situation indicates that the data set has no 
mode…” 

Alex’s initial understanding confirms the finding of Groth and Bergner (2006).  Knowing that 
mode is the most frequent number is not enough.  In fact, in some cases ‘most frequent number’ will 
help to find a mode of one data set, but not necessarily another (i.e., the first data set versus second).  
By comparing the two sets on the ISNL, Alex identified that his definition of the mode was 
incomplete and was not suitable for all scenarios or data sets.  We conjecture that by manipulating 
the individual elements of data along a number line, with the purpose of finding the mode (to 
represent the set of data).  Note that, Alex was confronted with scenarios that were at odds with his 
prior definitions.  The comparison task, in particular, perturbed his acceptance of both his prior 
definition and operational scheme.  Specifically, Alex initially considered his algorithm before 
considering the nature of the data.  By the end of the episode, Alex demonstrated attention to the 
elements of the data as part of a dataset.  Although seemingly a subtle distinction, this shift in how 
Alex operated on the data to find mode allowed for more flexible considerations, and more correct 
identifications of mode.  

Conclusions 
This paper described one PSMT’s (Alex’s) points of cognitive dissonance related to the concept 

of mode, and provides an initial learning trajectory.  A key facilitator of Alex’s developing 
conception of mode appeared to be his use of visualization of mathematical models.  Such models 
may be helpful for both PSMTs and K-12 students to develop more sophisticated schemes in 
operating with data.  

It is a common assumption in mathematics education that merely memorizing definitions and 
working with a few examples is not sufficient to develop a deeper understanding of concepts.  Yet 
mode is often considered a simple concept, and this study provides evidence that many PSMTs (and 
potential their future students) may not know that they have understood less useful definition of 
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mode (or even one considered incorrect by the discipline).  Alex considered his definition of mode as 
insufficient only after he developed mathematical models and visualized both models side-by-side.  
However, some individuals may have needed additional models that can further press their definition 
of mode.  Specifically, Alex visualized a comparison of multiple datasets, and manipulated elements 
within those datasets through construction of mathematical models.  Such engagement pressed Alex 
to consider a different way of determining mode, and allowed a transition from an algorithmic 
scheme to a whole set unit scheme.  In the whole set unit scheme, Alex considered the whole data set 
as a unit before finding the mode.  A similar transition may be possible with other PSMTs or with 
middle school students.  However, future study is needed to both confirm and extend the findings 
presented here. 
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Taking the perspective that a robust understanding is necessary for middle grades mathematics 
teachers, this study explores what particular knowledge resources teachers make use of in their own 
problem solving. We analyzed the knowledge resources used by 17 middle grades teachers as they 
solved proportional reasoning tasks in two protocols designed for this purpose. We report on how 
the occurrences of these knowledge resources were related to teacher performance on proportional 
reasoning LMT items. 

Keywords: Rational Numbers, Mathematical Knowledge for Teaching 

Purpose and Background 
Proportional reasoning is an important component of the mathematics curriculum (Lamon, 2007; 

Lobato & Ellis, 2010) that has only increased in prominence and emphasis by being considered its 
own content domain in the Common Core Standards for Mathematics (National Governor’s 
Association & Council of Chief State Schools Organization, 2010). While middle school 
mathematics teachers are required to guide students in their efforts to develop this complex set of 
understandings, research suggests that, like students, teachers struggle with proportional reasoning 
(e.g., Harel & Behr, 1995).  

While research on teacher knowledge of proportional reasoning is limited (e.g., Lamon, 2007), 
there is a growing consensus about the kinds of understandings that may be important for teachers to 
have (e.g., Lobato & Ellis, 2010). For example, teachers need to understand that a ratio is a 
comparison of two quantities, where quantity is defined as “a measurable quality of an object-
whether that quality is actually quantified or not” (Lamon, 2007, p. 630). A teachers’ understanding 
of ratio should go beyond ways to express it, to include the understanding that a ratio is a 
multiplicative comparison and not an additive comparison (Lamon, 2007; Lobato & Ellis, 2010; 
Sowder et al., 1998). This is a critical understanding of the concept of ratio and is considered crucial 
for the transition from additive to multiplicative reasoning, and teachers need to be able to discern 
whether students are using additive or multiplicative reasoning (Sowder et al., 1998). Furthermore, a 
coherent and robust understanding of ratios for middle school teachers must go beyond that of their 
students (Clark et al., 2003; Lobato & Ellis, 2010). In order to have a robust understanding for 
teaching, teachers’ understanding must also include specialized content knowledge and pedagogical 
knowledge resources (Ball, Thames & Phelps, 2008). 

This study investigates teachers’ knowledge resources used in solving proportion tasks. We aim 
to contribute to research on teachers’ understanding of proportional reasoning. Specifically, we 
examine how the frequency of 17 middle school math teachers’ use of knowledge resources, related 
to teaching proportional reasoning, was correlated with their scores achieved on the proportional 
reasoning Learning for Mathematics Teaching (LMT, 2007) assessment. 
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Theoretical Framework 
We rely on the Knowledge in Pieces theory (KiP; diSessa, 2006) for this study. KiP asserts that 

individuals hold understandings of various grain sizes that are used as knowledge resources in any 
given situation (Orrill & Burke; 2013). For novices, these knowledge resources are not likely to be 
well-connected to each other. As expertise develops, interconnections among the knowledge 
resources allow them to be invoked in appropriate situations. KiP offers a unique lens for exploring 
the development of expertise, which is dependent not only on the amount of knowledge resources but 
also the extent of the coherency of knowledge (Orrill & Burke; 2013), which we define as multiple 
knowledge resources that are connected in robust ways allowing for in situ access to the resources. 
Coherence, combined with a robust set of knowledge resources, allows teachers to deal with complex 
situations in more efficient ways. This is consistent with previous research on expertise (e.g., Bédard 
& Chi, 1992) and Ma’s (1999) concept of profound understandings of mathematics. We hypothesize 
that as a teacher develops coherence among knowledge resources, the teacher will be more fluent at 
teaching and doing mathematics.  

KiP represents a departure from the deficiency model traditionally used in the study of teachers’ 
knowledge. Much prior research has focused on what knowledge teachers do not “have” and the 
misconceptions that they display. In contrast, our application of KiP assumes teachers have a wide 
variety of knowledge resources available to them, but that different situations invoke different 
knowledge resources. Teachers develop these resources and make connections between resources 
depending on the situation or task they are facing. Thus, in KiP, the focus is on what knowledge 
resources are elicited and used by teachers and how those resources are connected. In this study, our 
focus is specifically on what knowledge resources elicited in novel proportional reasoning tasks were 
highly correlated to traditional measures (e. g. the LMT assessment) of teacher’s mathematical 
knowledge for teaching proportional reasoning.  

Methods 

Data Sources 
In this analysis, we used a convenience sample of 17 middle grades mathematics teachers from 

four states. Participants completed two task-based interviews as well as the LMT proportional 
reasoning assessment. One paper-based interview was mailed to participants and completed using a 
LiveScribe pen, which recorded their marks on the paper protocol as well as their spoken words. 
Participants were asked to speak aloud about their reasoning as they solved the tasks. A second 
interview was a 90-minute clinical interview conducted in person and recorded on video. Tasks 
included in the interviews were situated in the work of teaching in that some asked the participants to 
solve a novel proportional situation, while other tasks asked the participants to make sense of student 
work or respond to an inquiry made by another teacher.  

Data Analysis 
Interviews were transcribed verbatim and then analyzed by at least two members of the research 

team for reliability. Each utterance was coded for the presence of knowledge resources in 
participants’ reasoning based on a set of 23 codes for teaching proportional reasoning grounded in 
literature as well as from the data (Weiland, Orrill, Brown, Nagar, & Burke, 2016). A correlational 
analysis was performed using Kendal’s Tau correlation coefficients on the frequency of participant’s 
use of the knowledge resources in the two interviews.  

Results 
Five knowledge resources were found to be significantly correlated with the participants’ 

standardized theta scores on the proportional reasoning LMT (see Table 1). The codes that were 
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significantly correlated with participant performance on the LMT pertained to understanding the 
structure of ratios or proportional reasoning, which are listed in Table 1. For example, recognizing 
the relationship between quantities is multiplicative or identifying a scenario as involving 
proportional reasoning. 

Table 1: Significant Kendal’s Tau Correlations between Participant’s Frequency of Use of 
Knowledge Resources their Standardized Theta Scores on the Full 73 Item Proportional 

Reasoning LMT 
Knowledge 
Resource 

LMT item 
Theta 

Description 

Multiplicative 
comparison 

.413* Shares description of the relationship of the 
quantities that is multiplicative. (.032) 

Covariance .447* Recognizes that as one quantity varies in rational 
number the other quantity must covary to maintain 
a constant relationship. (.016) 

Ratio as measure .391* Identifies an abstractable quantity created from the 
combination of the two quantities (e.g., flavor or 
speed) or discusses the effect of changing one 
attribute in terms of its effect on the ratio. 

(.036) 

Constant ratio .538** Recognizes the invariant multiplicative 
relationship between two quantities (.004) 

Proportion 
situation 

.421* Recognizes that a situation involves proportional 
reasoning. (.020) 

Discussion 
Based on the results presented in Table 1, there is a significant relationship between the uses of 

the following knowledge resources: multiplicative comparison, covariance, ratio as measure, constant 
ratio, and proportional situation, and how well a participant did on the LMT assessment. Note that all 
relationships are positive so as the use of these knowledge resources increases, the success on LMT 
increases. The results also suggest knowledge of the structure of ratios is an important subset of 
knowledge resources teachers rely on to reason proportionally. In particular, recognizing the 
invariant multiplicative relationship between quantities in a ratio and recognizing that the quantities 
in a ratio must covary in a particular way to maintain their relationship are a particularly interesting 
finding. They suggest the presence and importance of dynamic understandings that would not 
necessarily be evident in familiar missing value proportion problems that teachers frequently and 
easily solve with procedures such as cross multiplication. The ability to recognize when reasoning 
proportionally about a situation was or was not appropriate is also shown to be a knowledge resource 
correlated with success on the proportional LMT. Previous research found teachers’ identification of 
a situation as appropriately proportional was not correlated with their history of taking content or 
methods courses (Nagar, Weiland, Brown, Orrill, & Burke, 2016).   

Implications 
That there is a set of understandings that correlate to high performance on a measure of teacher 

knowledge can provide guidance for the design of learning opportunities for in-service and pre-
service teachers. Opportunities to consider both proportional and non-proportional situations together 
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could address the recognition of proportion. Ratio concepts that involve the idea of variation and 
invariance may benefit from tasks that are not static instances of equating two ratios, but rather 
involve some way of experiencing the invariance and covariation that simultaneously exists between 
quantities in a proportion. Resources higher-scoring teachers use would be powerful tools in the 
hands of all middle school mathematics teachers.  
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En este estudio piloto exploramos una aproximación metodológica para investigar el 
conocimiento colectivo para la enseñanza de las matemáticas en grupos de profesores basada, por un 
lado, en el análisis de redes sociales (Scott & Carrington, 2011) que tiene fundamentos en la teoría 
de gráficas, y por el otro en el estudio de conceptos matemáticos (Davis y Renert, 2014; Preciado-
Babb, Solares-Rojas, Davis y Padilla-Carrillo, 2015) como modelo de formación profesional en el 
que grupos de educadores trabajan juntos para interrogar y discutir las asociaciones conceptuales de 
conceptos matemáticos a distintos niveles escolares. 

Si bien el conocimiento para la enseñanza de las matemáticas es un tema prominente en la 
educación matemática, todavía existen preguntas sobre cómo se puede evaluar este conocimiento. 
Por ejemplo, Davis y Renert (2014) han enfatizado la necesidad de estudiar formas de evaluar el 
conocimiento colectivo de profesores de matemáticas. En este estudio analizamos las conexiones 
entre conceptos identificados de forma colectiva en distintos grupos con diferentes niveles de 
experiencia en matemática educativa. Proponemos que el estudio de estas conexiones puede generar 
información relevante para evaluar el conocimiento colectivo para la enseñanza de las matemáticas 
en grupos de profesores. 

Uno de los autores impartió tres talleres basados en el estudio de conceptos compuestos de dos 
sesiones cada uno. Dos talleres tuvieron lugar en la Ciudad de México y el tercero en la Ciudad de 
Colima, México. El primer taller estuvo conformado por estudiantes de grado y de posgrado en 
educación matemática (n=14). El segundo taller estuvo conformado por académicos y estudiantes de 
posgrado en educación en matemáticas (n=15). El tercer taller estuvo conformado por  estudiantes de 
licenciatura en educación (n=28). Los datos colectados incluyeron mapas mentales desarrollados 
como parte de las actividades del taller y una encuesta de salida. La encuesta incluyó preguntas sobre 
los conceptos clave discutidos durante taller, percepciones sobre el tema del taller (estudio de 
conceptos matemáticos), así como el impacto del taller en futuras prácticas docentes. 

Para estudiar la relación entre los conceptos matemáticos identificados por los participantes del 
taller utilizamos medidas de centralidad de análisis de redes. Usamos el programa Gephi 0.9.1 para 
elaborar gráficas correspondientes a las relaciones de centralidad. Contrastamos la gráficas 
considerando los distintos niveles de experiencia en cada grupo. Encontramos que las diferencias 
entre las gráficas se pueden relacionar con los niveles de experiencia y conocimiento especializado 
de los grupos. Esto sugiere que esta aproximación metodológica permite evaluar el conocimiento 
colectivo para la enseñanza de las matemáticas en cada grupo.  
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In this pilot study we explore a methodological approach to study collective knowledge for 
teaching mathematics in groups of teachers based, on the one hand, on social network analysis (Scott 
& Carrington, 2011), that has its foundations on graph theory, and, on the other hand, on 
mathematics concept study (Davis & Renert, 2014; Preciado-Babb, Solares-Rojas, Davis & Padilla-
Carrillo, 2015) as a model for professional development in which groups of educators work together 
to interrogate and discuss conceptual associations of mathematical concepts at different school levels. 

Although teacher's knowledge for teaching mathematics is a prominent topic in mathematics 
education, there still exist questions about how this knowledge can be assessed. For instance, Davis 
and Renert (2014) have stressed the need to study ways to assess mathematics teachers' collective 
knowledge. In this study we analyzed the connections collectively identified in different groups with 
different levels of expertise. We contend that studying these connections can generate relevant 
information to assess collective knowledge for teaching mathematics in a group of teachers. 

One of the authors delivered three workshops based on concept study, with two sessions each. 
Two workshops took place in Mexico City and the third in Colima City, in Mexico. The first 
workshop included undergraduate and graduate students in mathematics education (n=14). The 
second workshop included academic staff and graduate students in mathematics education. The third 
workshop included undergraduate students in education (n=28). Collected data included mental maps 
created as a part of the workshops and an exit survey. The survey included questions about the key 
concepts discussed during the workshop, participants' perceptions on the workshop themes 
(mathematics concept study), as well as the impact of the workshop on future teaching practices.  

We used network analysis measure of centrality to study the relationship between identified 
mathematical concepts during the workshop. We used Gephi 0.9.1 software to generate graphs 
corresponding centrality relationships. We contrasted the graphs against each other considering the 
different levels of expertise in each group. We found that the differences among the graphs can be 
related to the levels of expertise and specialized knowledge in each group. This finding suggests that 
this methodological approach allows us to assess collective knowledge for teaching mathematics in 
each group.  
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Mathematics teachers utilize mathematical knowledge for teaching (MKT) during instruction. 
MKT includes not only common knowledge of content but also specialized content knowledge 
usually needed only by teachers (Ball, Thames, & Phelps, 2008). Prospective secondary mathematics 
teachers (PSMTs) often learn advanced content knowledge and pedagogical knowledge in separate 
courses. Grossman, Hammerness, and McDonald (2009) argued that this separation is problematic 
for PSMTs because it fosters a disconnect between content knowledge and the work of teaching in a 
classroom. Furthermore, they argued the separation of content and pedagogy can result in PSMTs 
inability to apply specific content knowledge when making pedagogical decisions in teaching.  

As part of a national initiative, this project includes developing, piloting, and studying the 
effectiveness of modules for use in a College Geometry course that interweaves common and 
specialized content knowledge elements into a rigorous geometry content course.  PSMTs engage in 
mathematical practices while developing a deep understanding of advanced content throughout three 
modules (Axiomatic Systems, Transformational Geometry, and Similarity). PSMTs also engaged in 
completing simulations of teaching practice activities that required them to draw on MKT in their 
responses. We posed the following question for this study: How does PSMTs’ MKT change as a 
result of interacting with the Geometry Modules?  

Data for this study included pre- and post-assessments that included open response items for 
which PSMTs responded to student thinking during a simulation of teaching practice. Other data 
sources included open response pre- and post-assessments of the geometric knowledge PSMTs 
believed necessary for teaching at the secondary level. Qualitative data were analyzed using 
Silverman and Thompson’s (2008) framework which focuses attention on evidence of understanding 
student thinking, developing key developmental understandings, and decentering. In addition, 
PSMTs’ MKT was measured in a pre- and post-assessment format using the Geometry Assessment 
for Secondary Teaching (GAST; Mohr-Schroeder, Ronau, Peters, Lee, & Bush, accepted).  
Preliminary findings indicate that PSMTs increased their MKT as measured by the GAST and 
developed key aspects of MKT. In particular, PSMTs moved from generalized discussion of student 
thinking to more specific responses that indicated application of MKT. 
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In an elementary methods course, the first author references Gladwell’s (2011) description of 
struggles to learn the counting number sequence in English. After observations, novice teachers 
asked the first author for support in teaching money concepts to students. Novice teachers cannot 
remember how they learned about numbers and coins. We, a mathematics education professor and 
two undergraduate mathematics students, want to re-create struggles to learn these concepts. 

Conceptual Perspective 
Ma (1999) wrote that American teachers struggle to explain subtraction with re-grouping well. 

The work in performing multi-digit subtraction is as an algorithm, without connection to place value. 
Rowland and colleagues (2005) described one component of their Knowledge Quartet as “structural 
connections within mathematics itself [and] awareness of the relative cognitive demands of different 
topics” (p. 263). In this study, participants encounter place value through tasks: familiar and 
unfamiliar coins. 

Research Question and Design 
Two questions guide this study. The first is in what ways do novice teachers’ mathematical 

knowledge support answering word problems in unusual contexts? The second is in what ways do the 
same teachers’ knowledge inhibit answering word problems? We will use task-based interviews to 
answer these questions. Novice teachers refer both to pre-service teachers and teachers in their first 
one or two years of teaching. 

Data Collection Techniques 
For place value concepts, participants work individually to count, add, and subtract using digital 

base-five blocks. Data include videos of work and participants’ reflections. For money concepts, 
participants in small groups will be asked several questions using Euro coins correctly. 
Data include scans of groups’ written work to word problems and transcripts of discussions. 

Preliminary Findings 
One pre-service teacher attempted to coordinate the base-five system with the decimal system 

simultaneously. Another participant made the transition to the new base quickly. We conjecture the 
use of words in the American currency that convey limited or no decimal place value will create a 
struggle for these teachers to explain the Euro coins. 
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The intent of this poster is to work towards building an overarching framework for the 
mathematical knowledge for teaching teachers (MKTT) needed for the content preparation of 
prospective elementary (K-8) teachers (PTs). Often the endeavor of elementary teacher 
preparation falls to those without explicit training in elementary mathematics education 
(Masingila, Olanoff & Kwaka, 2012). Given the diversity of backgrounds that Mathematics 
Teacher Educators (MTEs) bring to their practice, it is imperative to establish a framework for 
the knowledge needed to develop elementary PTs’ Mathematical Knowledge for Teaching 
(MKT; Ball, Thames, & Phelps, 2008). We aim to build a foundation for such a framework by 
analyzing and synthesizing the existing literature on the work of MTEs through the lens of 
elementary mathematics content course development. 

Much of the extant research conceptualizes MTE knowledge as an extension of teacher 
knowledge (Jaworksi & Huang, 2014). While such conceptualizations make explicit the 
theoretical domains that are critical to MTEs’ work, such broad conceptualizations fail to capture 
the tacit knowledge embedded in MTEs’ daily teaching practice (particularly in regards to 
teaching content courses for elementary PTs). Building off the work of Chavout (2009), we will 
consider and synthesize recently emerging theoretical mappings of MTE knowledge, while 
comparing and contrasting them with the well-established domains of MKT. Our goal is to 
provide insight as to how domains of MKTT are embedded in the work of developing 
elementary PTs’ MKT.  

The exploration of MKTT is a relatively new avenue for research in mathematics education; 
it resides at the crossroads of mathematics teacher knowledge and the development of MTEs. As 
the field grows, it becomes imperative to attend to how MTEs can be better supported for the 
demands of preparing elementary PTs. We believe our work in this area will have implications 
for improving both the preparation and professional development of MTEs. 
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This study investigated specific aspects of prospective elementary teachers’ (PSTs’) knowledge 
for teaching fraction addition. We examined changes in their use of the subconcepts underlying 
fraction addition and their use of models in their explanations. This is an important area of study 
because it can be difficult for PSTs to effectively utilize their specialized content knowledge for 
teaching (Morris, Hiebert, & Spitzer; 2009). Our research questions were the following: What 
underlying concepts do PSTs mention when describing how they would help a child understand 
fraction addition? When a drawn model is provided as a representation, how do PSTs use the model? 

The setting for this study was a midwestern university where elementary education majors take 
two sequential mathematics content courses followed by a mathematics methods course. All three 
courses are taught in the mathematics department. The study occurred during a semester when seven 
different instructors each taught one section of the first mathematics content course.  A pre-test, 
which including one item addressing fractions, was administered at the beginning of the semester in 
all sections of both mathematics content courses.  A related item on the final exam also assessed 
similar concepts. At the beginning of the following semester, the pre-test was again administered in 
the second mathematics content course. This study compared PSTs’ responses on the pre-test item 
with their responses on the same item administered in the second content course the following 
semester. The study also examined PSTs’ responses on the final-exam item. The responses to the pre-
test item and the final-exam item were analyzed using the six subconcepts underlying fraction 
addition identified by Morris, Hiebert, and Spitzer (2009). The responses to the final-exam item were 
also analyzed for PSTs’ use of models, using the four pedagogical purposes for using drawn models 
identified by Izsak (2008). 

Our results showed moderate changes, following completion of the first mathematics content 
course, in PSTs’ use of underlying concepts in their written descriptions of how they would help a 
child understand fraction addition. Our results also revealed wide variations in PSTs’ use of drawn 
models to add fractions, with some PSTs demonstrating no ability to use a drawn model, most using 
the model to illustrate the solution, and a few using the model to deduce aspects of the solution. 
Finally, our results indicated providing the drawn model could both promote and hinder PSTs’ 
attempts to make the underlying concepts explicit.  
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Teachers’ perspectives of mathematical modeling affect how modeling tasks are designed and 
implemented (Lesh & Lehrer, 2003).  As reported in previous studies, middle grades (5-9) teachers 
were affected by their educational backgrounds and interpreted the term “mathematical model” in 
many different ways (Bautista, Wilkerson-Jerde, Tobin, & Brizuela, 2014). 

This study analyzed the mathematical modeling views of four middle school teachers using 
interviews with the teachers, observations of teachers’ task solutions and lesson development during 
a year-long professional development workshop, and student work samples provided by the teachers.  
This poster focuses on the manifestation of the teachers’ views of mathematical modeling in their 
teaching and their implementation of tasks.   

The theoretical framework of this study was created to connect the idea of mathematical thinking 
styles (Borromeo Ferri, 2006) to Kuhs and Ball’s (1986) framework for mathematics teaching styles 
and Thompson’s (1992) notion of conceptions regarding conceptual and calculational orientations.  
The three previous frameworks are related in their objective to describe teachers’ views and the role 
of these views in their teaching practices.  Borromeo Ferri (2006) found that teachers are likely to 
emphasize different aspects of the modeling process or even avoid certain modeling elements 
depending on their preferences toward a certain mathematical thinking style.  This study extends her 
results by closely examining each teacher’s view of what counts as a mathematical modeling task.   

This framework allowed for a three-fold analysis.  First, teachers’ perceptions of mathematical 
modeling aligned with three common views in the literature.  Second, teachers’ views of 
mathematical modeling reflected specific elements of the modeling process that they emphasized 
during their teaching.  All four teachers listed different criteria for the elements that constitute the 
successful completion of a modeling task.  Third, teachers’ perceptions of their role during the 
planning and implementation of mathematical modeling tasks aligned with their teaching views of 
modeling.  These findings suggest that teachers should consider their own perceptions of 
mathematical modeling prior to implementing tasks in their classrooms. 
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Posing an additional problem to confirm or learn more about student thinking is a strategic move 
that teachers can make when eliciting student thinking. However, the selection of such a problem is 
not straight-forward. Teachers need to attend to critical features in tasks to strategically choose what 
to maintain and what to vary. This work draws upon mathematical knowledge for teaching (MKT) 
(Ball, Hoover, & Phelps, 2008). This exploratory study examines the preservice teachers’ (PSTs’) 
skills at generating a follow-up problem and articulating the rationale for using the problem to 
confirm a particular student’s thinking. 

We made use of a teaching simulation in which each PST engaged with a “simulated” student to 
elicit the student’s process and understanding. Then, PSTs were asked to generate a follow-up 
problem that could be used to confirm their interpretations of the student’s thinking (Shaughnessy & 
Boerst, in press). The student task is to find the total number of squares needed to cover a rectangle 
which has some squares drawn in. The “simulated” student uses the marked squares to determine the 
number of squares in a row and then iterates the row count (Battista et al., 1998). Our sample is 39 
PSTs in three cohorts in a two-year elementary teacher education program: pre-admission (Pre-
admits), beginning of year 1 (Yr1), and beginning of year 2 (Yr2). 

PSTs from all cohorts generated follow-up problems for finding the total number of squares 
needed to cover a rectangle, but we found differences across cohorts in the features that they attended 
to or changed. For example, more Pre-admits and Yr2 PSTs created problems which had dimensions 
which were similar to the original problem than Yr1 PSTs. Examining PSTs’ rationales for 
generating these problems, we found that more than two-thirds of the PSTs focused on confirming 
one core step of the student’s process: counting by rows. They did so by either maintaining or 
changing some features of the problem: some generated similar problems that maintained all of the 
core features of the problem but others increased or decreased the difficulty.  

These findings point to the need for further investigation of PSTs’ capabilities in generating 
follow-up problems. Future studies might examine skill in generating follow-up problem for a range 
of content and instructional experiences that support the development of such capabilities.  
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Skillful mathematics teaching involves being able to size up children’s strategies and determine 
whether a strategy would work in general (Ball, Thames, & Phelps, 2008). This application of 
mathematical knowledge for teaching may be particularly challenging for novice teachers who have 
less familiarity with alternative or nonstandard approaches. Yet, valuing and leveraging student 
thinking is imperative for teachers to teach mathematics equitably. 

This study focuses on preservice teachers’ (PSTs’) generalizations about the validity of a 
student’s strategy for finding the area of a rectangle. The student’s strategy is to use marked squares 
to find the number of squares in one row and then to skip count by that number (Battista et al., 1998). 
PSTs analyze a student work sample, interact with a “simulated” student, then engage in a structured 
interview about their interpretation of the student’s process and understanding (Shaughnessy & 
Boerst, in press). We investigated: What do PSTs attend to when generalizing about the validity of 
this strategy? Our sample consists of 38 PSTs at three stages in a two-year elementary teacher 
education program: pre-admission, beginning of Year 1, and beginning of Year 2. 

Through qualitative analysis of interview responses, we found that PSTs often attended to 
problem features such as having whole unit squares and no partial squares, but some did not 
articulate the core idea that each row needs to contain the same number of unit squares. Variation in 
generalizations was most evident when PSTs explained why the strategy would not work for a shape. 
All 38 PSTs accurately identified a shape for which the strategy would not work, but only 20 PSTs 
(54%) explained that the strategy would not work because such shapes lack the same number of 
squares in each row. PSTs who were further along in the program were more likely to articulate this 
reason. In addition, we noticed considerable variation in PSTs’ attention to the properties of shapes 
and use of precise mathematical language.  

Further investigation of these ideas could allow us to explore the relationship between program 
learning experiences and differences in mathematical knowledge for teaching. More broadly, use of 
generalization questions with simulations could allow researchers to distinguish between cases of 
superficial and deep understanding. 
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This study extends past research on students’ understanding of slope by analyzing college students’ 
mistakes on routine tasks involving slope. We conduct quantitative and qualitative analysis of 
students’ mistakes to extract information regarding slope conceptualizations described in prior 
research. Results delineate procedural proficiencies and conceptual underpinnings related to various 
slope conceptualizations that can help both teachers and researchers pinpoint students’ 
understanding and make appropriate instructional decisions to help students advance their 
understanding. 

Keywords: Algebra and Algebraic Thinking 

Functions play a crucial role throughout the mathematics curriculum. The concept of slope is 
critical to the study of linear functions in beginning algebra and extends to describe non-linear 
functions in advanced algebra (Nagle & Moore-Russo, 2014), the line of best fit in statistics (Casey 
& Nagle, 2016), and the concept of a derivative in calculus (Stanton & Moore-Russo, 2012). 
Research has documented students’ difficulties with interpreting slope in both functional and 
physical situations (Simon & Blume, 1994) and with transferring knowledge of slope between 
problem types (Planinic, Milin-Sipus, Kati, Susac & Ivanjek, 2012). Moore-Russo and her colleagues 
(Moore-Russo, Conner & Rugg, 2011) have refined and extended the conceptualizations of slope 
Stump (2001) offered, resulting in 11 conceptualizations which have been documented among 
secondary and post-secondary students and instructors (Nagle & Moore-Russo, 2013; Nagle, Moore-
Russo, Viglietti & Martin, 2013). Procedural knowledge of slope is also important; students need a 
comprehensive knowledge of a procedure, along with an ability to make critical judgments about 
which procedure is appropriate for use in a particular situation (National Research Council, 2001).  

In the case of slope, procedural knowledge includes familiarity with the symbols typically used in 
relation to it and the rules used to calculate it (e.g., m, !"#$

!"#
 , !!!!!
!!!!!

 ) (Nagle & Moore-Russo, 2013). 
Conceptual knowledge enables students to make connections between the various notions of slope 
and to explain why particular procedures for calculating slope work. In a recent study of eleventh 
grade students’ interconnected use of conceptual knowledge and procedural skills in algebra, 
Egodawatte and Stoilescu (2015) used error analysis to show how prevalent procedural errors 
sometimes indicated weak conceptual understanding. As described earlier, research has documented 
students’ weak conceptual understanding of slope. However, findings that many students confuse 
rise over run and run over rise in the formula for slope and are unsure of the procedure to find a 
perpendicular line’s slope also suggest that students may lack procedural knowledge of slope as well 
(Stump, 1999).  

Since slope is the constant rate of change of two linearly related variables, it is important to 
consider how students apply covariational reasoning as they conceptualize slope. Described as the 
“mental coordination of two varying quantities while attending to the ways in which they change in 
relation to each other” (Carlson, Jacobs, Coe, Larsen & Hsu, 2002, p. 354), covariational reasoning 
has been identified as a key prerequisite for advanced mathematical thinking (Carlson, Oehrtman & 
Engelke, 2010). Carlson and colleagues (2002) describe five developmental stages of covariational 
reasoning. The first three stages, namely L1 Coordination, L2 Direction, and L3 Quantitative 
Coordination, are foundational for students’ thinking about slope (Casey & Nagle, 2016).  
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The Present Study 
Past research on slope has described the multitude of ways which students might conceptualize it 

and described students’ limited proficiency. However, these areas of research have not been merged. 
In particular, past research has not engaged in error analysis of students’ solutions on common slope 
tasks to extract information regarding students’ procedural and conceptual knowledge of the various 
slope conceptualizations. We conduct quantitative analysis of students’ solutions to routine slope 
tasks in order to delineate procedural proficiencies and conceptual underpinnings that can be 
attributed to those mistakes. We link these to the previously identified slope conceptualizations to 
provide insight into the procedural and conceptual knowledge underlying each notion of slope. The 
research questions are: 

1. What mistakes did students make when solving the various slope tasks? 
2. Which tasks did students have the most trouble with and what mistakes were most prevalent?  
3. What do students’ mistakes reveal about procedural proficiencies and conceptual 

understanding of different slope conceptualizations? 

Methods 

Participants and Assessment 
Participants in this study were primarily college freshmen and sophomores at a single four-year 

college in the Northeastern region of the United States. Seven mathematics instructors representing 
13 sections of Quantitative Reasoning (Elementary Algebra), Algebraic Problem Solving (College 
Algebra or Intermediate Algebra), and Precalculus agreed to administer the slope assessment to their 
students during class time. The assessment was administered during the second half of the semester, 
after slope was taught. In all, 256 students completed the assessment with fairly even distribution 
among the three courses: Quantitative Reasoning (QR, n = 79), Algebraic Problem Solving (APS, n = 
94), and Precalculus (Precalc, n = 83). The researchers developed a 15-question assessment 
containing standard slope questions similar to those that students solved on homework and exams. 
The 15 questions belonged to six broad categories: (1) write an equation of a line given particular 
information, (2) write the equation of a line given its graph, (3) write the equation of a line given its 
graph and interpret in terms of a real problem situation, (4) use a table of values to write a linear 
equation, (5) determine whether graphs of two equations are parallel, perpendicular, or neither, and 
(6) sketch a line given particular information. One sample problem from each category, with an 
actual student response, is provided in Figure 1. The fifteen-item assessment included questions that 
called on nine of the eleven slope conceptualizations described by Moore-Russo, Connor, and Rugg 
(2011) as shown in Figure 1. Only the Trigonometric and Calculus conceptions of slope (Moore-
Russo et al., 2011) were not reflected in the items included on the assignment. 

Data Analysis  
Coding began with one researcher grading all responses using a four-point scale: 4 points for a 

completely correct answer, 3 points for a mostly correct answer, 2 points for a half correct answer, 1 
point for a partially (less than half) correct answer, and 0 points for a blank or nonsense answer. 
Next, the researchers used grounded theory (Glaser & Strauss, 1967) to code students’ solutions for 
mistakes. For every answer that did not receive a perfect score, the researchers analyzed the students’ 
solution to determine what mistake(s) were made. We define a mistake as a wrong action or 
inaccuracy or lack of action that was demonstrated in the problem solution. We recognize that the 
same mistake may stem from different sources of misunderstanding and we do not distinguish 
between these when coding for mistakes. Based on the students’ solutions, we generated a list of 
possible mistakes. When a new solution suggested the need for an additional mistake category, the 
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code was added to the list and all responses were revisited in light of the revised list. After generating 
a list of possible codes, one researcher revisited all student work and completed the coding according 
to the list of mistakes.  

Results 

Classifying Mistakes 
In total, 18 mistake categories emerged from the grounded theory approach to coding students’ 

solutions on the slope tasks. Table 1 provides a description of all such mistakes and indicates the 
assessment question(s) on which the mistake was made as well as the frequency of the mistake across 
all students and questions (n = 3840). Figure 1 illustrates sample responses with the corresponding 
mistake codes and overall item score (out of 4 points) assigned to the response. 

Table 1: Mistake Codes, Related Questions, and Frequency 

 *We recorded this as a “mistake” to track the frequency of its occurrence, but students were not penalized 
when a fraction was not written in simplest form. 

	

Code 
   # 

Abbreviation 
code Description of Mistake Related 

Questions Frequency  

1 NoResponse No response or nonsense answer All questions  496 

2 Arithmetic Any type of addition, subtraction, multiplication, 
or division mistake 

All except 14  310 

3 SimpleFraction* Not changing a fraction to the simplest form All except 1, 3, 
13, 14 

128 

4 NoXvariable Don’t put the x variable after the slope in the 
equation 

All except 6, 
11, 12, 13, 14 

54 

5 SlopeRunRise Calculating a slope as run/rise instead of rise/run 2, 5, 6, 7, 8, 9, 
10 

57 

6 CoordiPoints Calculating !!!!!
!!!!!

, hence getting the opposite of 
the actual slope. 

2, 5, 6, 7, 8, 9, 
10 

17 

7 SubtractCoord Calculating !!!!!
!!!!!

 2, 8, 9, 10 8 

8 OppSignSlope Putting a negative sign for an increasing line’s 
slope or vice versa 

5, 6, 7, 8 95 

9 BlockSlope Using blocks instead of axis’ units to calculate a 
slope  

5, 6 94 

10 MentalAction1 Does not coordinate the value of one variable 
with changes in the other variable 

7, 8 32 

11 MentalAction2 Does not coordinate the direction of change in 
one variable with changes in the other variable 

7, 8 30 

12 MentalAction3 Does not coordinate the amount of change in one 
variable with changes in the other variable 

7, 8 118 

13 CalcYintercept Don’t know how to calculate the y-intercept with 
many non-routine points 

9, 10 101 

14 NoSlopeInter Not revising a standard form to a slope-intercept 
form when using the coefficient of x as the slope 

11, 12 55 

15 GraphOpposite Graphing opposite direction with a given slope 13, 14, 15 73 

16 PlotXYchange Plotting a point using x-coordinate value as a y-
coordinate and vice versa 

13, 14, 15 29 

17 NoOppPerp Using reciprocal but not opposite slope to apply 
to the perpendicular line’s slope 

4 32 

18 NoRecPerp Using same slope to apply to the perpendicular 
line’s slope or just put opposite sign 

4 29 
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Overall Performance on Slope Problems 
The mean percentage on the assessment for all 256 students was 65.66%, with APS students 

scoring highest (66.76%), Precalc students scoring in the middle (65.13%), and QR students scoring 
lowest (64.92%). A single factor ANOVA showed no significant difference on overall percentage 
based on the students’ course of enrollment [F (2, 253) = 0.15, p = 0.86 >> 0.05]. It is interesting that 
not only did Precalc students not score significantly higher than students in the more basic Algebraic 
Problem Solving and QR courses, but they actually scored lower in overall percentage (albeit not 
statistically significant) compared with the APS students.  

Questions with Lowest Average Percentage Scores 
Across the 15 questions, the four lowest average percentage scores were Questions 10 (45.4%), 4 

(54%), 7 (55%), and 8 (55.5%). Figure 1 illustrates sample responses highlighting typical mistakes 
for these four questions. Despite being a standard task, students scored the lowest on Question 10. 
Many students made a mistake when coordinating points in the slope formula, resulting in a positive 
slope instead of a negative slope. Question 4 had the next lowest average score. The sample response 
to Question 4 (see Figure 1) illustrates the common mistake of calculating the y-intercept before 
finding the perpendicular line’s slope. Although this solution uses the negative reciprocal slope of -
2/3 in the final slope-intercept form of the equation, notice that the original slope of 3/2 was used 
when calculating the slope-intercept of the perpendicular line. The variable x is also omitted from the 
slope-intercept form of the equation. Questions 7 and 8 both required students to write an equation 
(given a graph) and interpret the equation in light of the real world context that was provided. These 
items, and their common responses, are discussed in the next section.  

Covariational Reasoning and Overall Performance 
Students’ challenges on Questions 7 and 8 generally related to interpreting the equation in terms 

of the problem situation. The codes MentalAction1, MentalAction2, and MentalAction3 emerged 
from students’ difficulties interpreting the slope of this linear equation in context. A code of 
MentalAction1 indicated that a student did not demonstrate knowledge of the two covarying 
quantities (L1 Coordination). This was often seen in responses that considered only a single variable 
changing. A code of MentalAction2 indicates that a student did demonstrate L1 covariational 
reasoning but either did not attempt or made errors in L2 Direction covariational reasoning. This 
generally appeared when students described the direction of change incorrectly (e.g., “the value of 
the HDTV increases as the number of month increases”). The MentalAction3 code indicates that a 
student demonstrated both L1 and L2 covariational reasoning but either did not attempt or made an 
error when reasoning using L3 Quantitative Coordination covariational reasoning. Generally, this 
code indicated that a student did not attend to the amount of change (e.g., “the value of the HDTV 
decreases over time”) or did not correctly interpret the slope as a ratio of change in y variable over 
unit change in x variable. We conducted additional analysis of how students’ covariational reasoning 
levels were related to their overall performance on the slope tasks. Students who exhibited higher 
levels of covariational reasoning scored higher on the slope assessment as a whole. Demonstrating 
fluency with L3 covariational reasoning on both Question 7 and 8 was correlated with a higher 
overall score on the slope assessment (r = 0.294). Fluency with L2 reasoning was also positively 
correlated with overall score (r = 0.203).  

 
Category 1: Write an equation of a line given particular information. 

Question 4. (Slope Conceptualizations: Parametric Coefficient, Determining 
Property) 
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                Response Coding: NoRecPerp, NoXvariable (Score 1)  

Category 2: Write the equation of a line given its graph. 
Question 6. (Slope Conceptualizations: Algebraic Ratio, Geometric Ratio, Parametric 

Coefficient) 

                
                Response Coding: Arithmetic, CoordiPoints, OppSignSlope (Score 2) 

Category 3: Write the equation of a line given its graph and interpret it in the 
problem situation. 

Question 7. (Slope Conceptualizations: Algebraic Ratio, Physical Property, Functional 
Property, Parametric Coefficient, Real-world Situation) 

                
                 Response Coding: MentalAction2 (Score 2) 
 

Question 8. (Slope Conceptualizations: Algebraic Ratio, Physical Property, Functional 
Property, Parametric Coefficient, Real-world Situation) 

                
                Response Coding: MentalAction3 (Score 3) 

Category 4: Use a table of values to write a linear equation. 
Question 10. (Slope Conceptualizations: Algebraic Ratio, Parametric Coefficient, 

Linear Constant) 
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                 Response Coding: CoordiPoints, SimpleFraction (Score 1) 

Category 5: Determine whether graphs of two equations are parallel, 
perpendicular, or neither. 

Question 11. (Slope Conceptualizations: Parametric Coefficient, Determining 
Property) 

               
                 Response Coding: NoSlopeInter (Score 0) 

Category 6: Sketch a line given information. 
Question 13. (Slope Conceptualizations: Geometric Ratio, Behavior Indicator) 

                
                  Response Coding: GraphOpposite, PlotXYchange (Score 0) 

Figure 1. Sample assessment items with anticipated slope conceptualizations,  
actual student response, and resulting codes. 

Discussion 
Our study of students’ mistakes on routine slope tasks has built on previous literature by 

analyzing particular mistakes that may hinder students’ abilities to reason successfully with the 
various slope conceptualizations. A total of 18 mistake categories emerged from the grounded theory 
approach to coding students’ solutions. The mistakes indicate that there are many procedural 
proficiencies required for students to work with the various slope conceptualizations. Arithmetic 
mistakes were the most widespread mistakes regardless of a student’s class of enrollment. These 
errors carried over into algebraic manipulation with many students making mistakes when adding or 
subtracting a variable term to the other side of the equation or dividing by the coefficient of the x-
term when converting from standard to slope-intercept form. This is a reminder that even when a 
student has a strong conceptual grasp, a lack of procedural proficiency may hinder his or her ability 
to reason successfully on slope tasks. 

Procedural Proficiencies and Conceptual Underpinnings of Slope Conceptualizations 
Past research has focused on describing the many different conceptions of slope. Our analysis in 

this paper does not attempt to distinguish between a student’s procedural and conceptual 
understanding of slope. However, by analyzing the mistakes students made on problems related to 
each slope conceptualization, we were able to develop a preliminary list of the underlying procedural 
proficiencies and conceptual underpinnings that may have been linked with the mistakes we saw on 
the assessment. Next, by linking the mistakes with the slope conceptualizations each problem 
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illustrated, we were able to make a preliminary list of the procedural proficiencies and conceptual 
underpinnings which may be linked to the various slope conceptualizations (see Table 2). This is an 
important step which allows teachers and researchers to begin to break down the underlying ideas 
and practices that are necessary for a student to work fluidly with a particular notion of slope.  

Table 2: Procedural Proficiencies and Conceptual Underpinnings for Each Category 
Category Procedural Proficiencies Conceptual Underpinnings 

Geometric 
ratio 

Count “units” for vertical change. 
Count “units” for horizontal change. 
Attach a sign to indicate direction (up or 
right is positive, down or left is negative). 

Rise and run are oriented (signed). 
Units are determined by graph increments (not 
blocks). 
The “rise over run” ratio and “run over rise” ratio 
are reciprocals. 

Algebraic 
ratio  

Subtract y-coordinates for change in y. 
Subtract x-coordinates for change in x. 

“Change” is oriented (signed). 
The “change in y over change in x” and “change in 
x over change in y” ratios are reciprocals. 

Functional 
property 

Interchange the word slope with the phrase 
“rate of change”. 

Slope describes the coordinated change of two 
covarying quantities. 

Parametric 
coefficient 

Algebraically manipulate an equation into 
slope-intercept form or point-slope form. 
Identify the coefficient m of x. 

The coefficient of x reveals different information 
depending on the form of the linear equation. 

Real-world 
situation  

Identify the real-world quantity associated 
with the input and output variable (using 
any type of representation). 

Interpret change as it relates to a real-world 
variable (i.e., a decrease in price shows 
depreciation over time). 

Determining 
property 

Calculate the negative reciprocal. 
Recognize that equal slopes indicate two 
lines are parallel.  
Recognize that negative reciprocal slopes 
indicate two lines are perpendicular. 

Slope indicates the number of points shared by 
two linear relationships and how they intersect (if 
at all).  

Behavior 
indicator 

Visually determine if a line increases/ 
decreases. 
 

An increasing (decreasing) relationship is one in 
which the variables change in the same (opposite) 
direction. 
MA2: A positive rate of change indicates two 
variables change in the same direction. 

Linear 
constant 

Choose any two points on a graph/in a table 
when given multiple points. 

Slope is independent of the points chosen since the 
ratio of change between the dependent and 
independent variables is constant. 

Physical 
property Visually recognize a line’s “steepness”. 

MA3: The rate of change indicates the amount of 
change in the dependent variable per unit change 
in the independent variable. 

 
Future research should analyze the pattern of student mistakes to better understand whether 

procedural proficiency or conceptual grounding may be the root of the mistake. In particular, a 
simple isolated incident may mean a student made a procedural slip while repetition of a mistake 
across problem types and representations may indicate deep-rooted conceptual misunderstandings 
(Egodawatte & Stoilescu, 2015).  

Slope Questions for Instruction 
The questions on which students had the most difficulty can also provide important insight for 

teachers. Results suggest that teachers should consider including tables with x-values that have 
varying increments and which are non-monotonic. This is supported by students’ difficulties with 
Question 10, a seemingly standard question other than the lack of a pattern in the x-coordinates 
provided in the table. Students’ difficulties with Questions 7 and 8 highlight the need for teachers to 
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link the Algebraic and Geometric Ratio conceptualizations with the Functional Property idea of 
slope as a rate of change of two covarying quantities. Many students struggled on these examples 
because although they were able to explain that the two variables changed together, many even 
describing the corresponding directions of change in the variables, they struggled to interpret the 
slope as the amount of change in the dependent variable per a unit change in the independent 
variable. Thus, our results remind teachers that L3 covariational reasoning is a conceptual 
underpinning that helps to link the Functional Property conception of slope as the rate of change of 
two variables with Behavior Indicator and Physical Property conceptions of slope that focus on the 
direction and magnitude of change, respectively.  

Future Study 
Our work has described procedural fluencies and conceptual underpinnings related to nine slope 

conceptualizations. Future work should repeat error analysis with more diverse pool of students to 
see whether other mistakes emerge. Future studies could also investigate the patterns of student 
mistakes over multiple items to analyze whether they indicate procedural errors or more foundational 
conceptual misunderstandings using the framework we have described. 
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Research in mathematics education has established that gestures – spontaneous movements of the 
hand that accompany speech – are important for learning. In the present study, we examine how 
students use gestures to communicate with each other while proving geometric conjectures, arguing 
that this communication represents an example of extended cognition. We identify three kinds of 
“collaborative gestures” – gestures that are physically distributed over multiple learners. Learners 
make echoing gestures by copying another learner’s hand gestures, mirroring gestures by gesturing 
identically and simultaneously with another learner, and joint gestures where multiple learners 
collectively make a single gesture of a mathematical object using more than one set of hands. The 
identification and description of these kinds of collaborative gestures offers insight into how learners 
build distributed mathematical understanding. 

Keywords: Reasoning and Proof, Geometry and Geometrical and Spatial Thinking, Cognition 

Introduction 
Theories of embodied cognition posit that learners understand ideas, even abstract mathematical 

ideas, through their bodies and senses (e.g., Lakoff & Núñez, 2000). One important form of 
embodiment is gesture – physical hand movements that people spontaneously formulate to 
accompany speech. Hostetter and Alibali (2008) argue that gestures are an outgrowth of mental 
simulations of actions enacted by learners as they think and reason. Considerable research has 
suggested that gesture production predicts students’ learning and performance across a variety of 
content areas, including mathematics (Goldin-Meadow, 2005; Valenzeno, Alibali, & Klatzky, 2003; 
Cook, Mitchell, & Goldin-Meadow, 2008). 

While the importance of gestures to student learning has been established in a variety of studies, 
less work has been done detailing how gestures allow for cognition to be physically distributed over 
multiple learners. Here we focus on how multiple learners use gestures in their interactions with each 
other, during mathematics classroom learning activities. We argue that these gestures exemplify 
extended cognition (Clark & Chalmers, 1998), the idea that cognitive processes themselves include 
physical resources beyond the skull. We show evidence of extended mathematical cognition by 
documenting collaborative gestures – gestures made collectively by multiple students as they work 
together to make sense of mathematical ideas. We discuss the emergence of collaborative gestures in 
the context of proving geometry conjectures. 

Literature Review 

Justification and Proof 
Justification and proof are central activities in mathematics education (National Council of 

Teachers of Mathematics, 2000; Yackel & Hanna, 2003). In fact, “proof and proving are fundamental 
to doing and knowing mathematics; they are the basis of mathematical understanding and essential in 
developing, establishing, and communicating mathematical knowledge” (Stylianides, 2007, p. 289). 
Research on mathematicians’ proving practices has suggested that proof “is a richly embodied 
practice that involves inscribing and manipulating notations, interacting with those notations through 
speech and gesture, and using the body to enact the meanings of mathematical ideas” (Marghetis, 
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Edwards, & Núñez, 2014, p. 243). The multimodal nature of proof is also evident for novice students 
in classroom settings, as students’ proofs often take on spontaneous, verbal forms, as opposed to 
formal, written ones (Healy & Hoyles, 2000), and both teachers and students use gestures as a way to 
track the development of key ideas when exploring mathematical conjectures (Nathan et al., 2017). 
Thus, gestures serve as crucial embodied grounding mechanisms for proof-related reasoning in 
geometry classrooms. 

Dynamic Gestures and Dynamic Geometry Systems 
One type of gesture identified in prior research as being particularly important is dynamic 

gestures (Göksun, Goldin-Meadow, Newcombe, & Shipley, 2013; Uttal et al., 2012). These are 
gestures where learners use their bodies, usually their hands and fingers, to physically formulate and 
then manipulate mathematical entities (see Walkington et al., 2014). For example, when proving that 
the sum of any two sides of a triangle must be greater than the remaining side, a learner might 
physically formulate two sides of the triangle with straight hands, and then “collapse” these two sides 
to show that if the two sides were not larger, the triangle would not be able to close. The presence of 
dynamic gestures has been associated with more accurate proofs of geometric conjectures, with a 
medium effect size (Walkington et al., 2014; Nathan & Walkington, in press). 

Dynamic gestures allow students to formulate shapes and lines with their bodies in a manner that 
can be similar to using dynamic geometry software (DGS). DGS allows users to construct, measure, 
and manipulate objects by dragging and connecting defined objects on a computer screen (Christou, 
Mousoulides, Pittalis, & Pitta-Pantazi, 2004). The direct manipulation of DGS allows users to 
experiment freely and to have instantaneous interactions with geometric objects and their spatial 
relations (Marrades & Gutierrez, 2000). Dynamic gestures are limited compared to DGSs in that 
there is no feedback on whether manipulations are mathematically possible, nor is there exact 
measurement of geometric objects. However, gestures are highly portable and meaningful to the 
learner, and are part of the natural way in which human beings communicate, making them a 
powerful tool for mathematical reasoning. Research has shown that when gesture is facilitated or 
directed, reasoning is improved (Goldin-Meadow, Cook, & Mitchell, 2009), and when it is inhibited, 
reasoning is impaired (Hostetter, Alibali, & Kita, 2007). Walkington et al. (2014) found that for 
geometry conjectures specifically, even the inhibition of sitting in a chair and having a pencil in-hand 
and paper available reduced the incidence of dynamic gestures, and caused students to formulate 
correct proofs less often. 

Distributed and Extended Cognition 
Work in professions involves the coordination of many different inscriptions and representational 

technologies by differently-positioned actors whose actions occur across a range of social and 
physical spaces (Goodwin, 1995; Hutchins, 1995). Through joint, coordinated activity, cognition 
becomes distributed over a patchwork of discontinuous spaces and representational media. In this 
conceptualization of distributed cognition, the environment is used to offload cognitive demands. 
Theories of extended cognition go even further to argue that the social and physical environment of 
learners is actually constituent of their cognitive system (Clark & Chalmers, 1998). The implication 
is that cognition, rather than existing in the head of an individual, is distributed over the bodies of 
multiple learners and the environment around them as they interact. One way in which cognition can 
be extended across learners is through the use of gestures that extend over multiple persons. 

Prior research on students learning origami from instructors has identified collaborative gestures 
as gestures through which a learner interacts with the gestures of a communicative partner 
(Funiyama, 2000). In the context of this past research, these gestures often involved a learner 
pointing to or manipulating a teacher’s gestures about origami folds. Here we reimagine the idea of 
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collaborative gestures to be relevant to learner-learner interactions around mathematical sense-
making, and take such gestures to be a case of extended cognition. 

Research Purpose 
In the present study, we address the following research question: What are the ways that team 

members use collaborative gestures when proving geometric conjectures? We focus specifically on 
cases where the physical, gestural activity is distributed over multiple learners, rather than cases of a 
single student gesturing and another student interpreting that gesture.  

Method 

Setting and Sample 
Eleven undergraduate students enrolled in a teacher education program (ten female and one male) 

aged 20-22 years voluntarily participated in this 75-minute study. The undergraduates were enrolled 
in the elementary mathematics method course from a private university situated within a large city in 
the southwestern United States. Informed consent was obtained from all participants. Sixty-four 
percent of the participants identified as Caucasian, 18% identified as Asian, and the remaining 18% 
identified as Latino/a. The undergraduates had already declared a non-education major, but were 
simultaneously enrolled in a 33-credit hour undergraduate major in education preparing them to 
pursue teaching careers, work in the social sciences, or informal education paths in non-profit 
organizations. Students were divided into two groups around two separate gaming systems with each 
group being video recorded while playing the video game. We focus our analyses on one of the two 
groups of students, with four females and one male. 

Procedure and Measures 
The focus of the study was the playing of an educational video game about learning geometry 

(see Nathan & Walkington, 2017 for more information about the game). Specifically, through the 
Kinect video game platform, students were prompted to perform specific arm motions and then prove 
geometry conjectures that were related to those arm motions.  While only one participant (the gamer) 
of each group controlled the Kinect with their body movements, the remaining participants in each 
group worked collaboratively with the gamer to mathematically prove or disprove the conjectures. 
The role of the gamer rotated throughout the group so that each participant had the opportunity to 
perform the directed arm motions and also to take the lead in communicating the proof. In this study, 
rather than focusing on the directed arm motions that the game directed learners to perform before 
proving the conjecture, we focus on the hand gestures they spontaneously made while formulating 
their proofs. 

Before playing the video game, students were given a pre-test measuring their knowledge of 
geometry (basic properties of triangles, circles, and quadrilaterals) and their attitudes towards 
geometry (items drawn from Linnenbrink-Garcia et al., 2010). Although a detailed analysis of these 
pre-measures is beyond the scope of this paper, results suggest that the students had neutral or 
slightly negative attitudes about geometry, rating items like “I enjoy doing geometry and “Geometry 
is exciting to me” on average between 2 and 3 on a 5-point scale (SDs ≈ 1.0). In addition, results 
suggest that students had somewhat strong knowledge of basic geometric properties (pre-test items 
included statements like “the angles of a triangle add up to 180 degrees”), scoring an average of 80% 
(SD = 13%) on the pre-assessment. 

Analysis Techniques 
The video captured while the participants played the game was transcribed using Transana 

(Woods & Fassnacht, 2012) in order to integrate text and video data into the analysis. These 



Mathematical Processes 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

656 

transcripts and videos were then analyzed to find where the students performed collaborative gestures 
– gestures that were distributed in some way over multiple individuals. Transcripts from the group 
formulating proofs for their six conjectures were analyzed using multi-modal analysis (McNeil, 
1992) of gestures. Multimodal analysis involves analyzing, interpreting, and reporting the use of 
gestures in conjunction with speech transcripts, in order to provide the fullest possible picture of 
learner reasoning. Here we employ a multiple case studies approach (Yin, 1994), since our research 
goal is to describe phenomena of potential theoretical importance, rather than the manipulation of a 
relevant behavior. Case study research recognizes that the rich context in which the interactions 
occur contain many variables interacting simultaneously.  

Results 
Through a multi-modal analysis of the focal group proving six conjectures, we discovered three 

types of collaborative gestures. Although we present a single group’s activities, these gesture types 
were also present and important in subsequent work that examined 4 additional classes of students. 
We give a case for each gesture type. All student names are pseudonyms. 

Echoing Gestures 
Our first case is taken from the group proving the conjecture, “If you know the measure of all 

three angles of a triangle, there is only one unique triangle that can be formed with these three angle 
measurements.” Tanya (bottom image, Figure 1) was in front of the game, with the other students, 
including Karen (top image, left, Figure 1), assisting her in formulating a proof.   

 
Figure 1. Transcript of echoing gestures. 

Once Tanya reads the conjecture (Line 1), Karen explains why the conjecture must be false, and 
uses a dynamic gesture where she formulates a triangle with her thumb and index fingers, making it 
grow and shrink (Line 2). Tanya seems to immediately understand and take up this gesture, repeating 
the gesture herself, and putting Karen’s explanation into her own words (Line 3). Tanya and Karen 
performed echoing gestures, where one person made a dynamic gesture, and then a second person 
repeated that gesture while making the accompanying verbal reasoning her own. Other literature has 
identified gestural catchments as repeated similar or identical hand gestures used by a single gesturer 
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(usually an instructor) to convey similarity of or highlight important conceptual connections 
(McNeill & Duncan, 2000). Next, we describe a related use of gesture where one learner echoes and 
repeats the gestures of another learner. 

Mirroring Gestures 
Our second case is taken from the group proving the conjecture, “If one angle of a triangle is 

larger than a second angle, then the side opposite the first angle is longer than the side opposite the 
second.” In this sequence (Figure 2), Haley, shown in the left of the images, works to formulate a 
proof using gestures. She first draws two angles of a triangle in the air with her fingers, and then 
points to the angles of the triangle (Line 4). At the same time, Karen (shown on the right, partially 
cut off) represents a side of the triangle with her arm, interweaving her reasoning (“and the side 
opposite the first…”; Line 5) into Haley’s narrative proof. Haley and Karen perform identical 
gestures where they form equilateral-like triangles with their thumbs and forefingers (Line 6). Haley 
then performs a dynamic gesture where she collapses one side of this equilateral-like triangle inwards 
in order to vary the angle measurements and check how this impacts the side lengths (Line 7). After 
the transcript ends, they come to a consensus that the conjecture is true, both repeating their prior 
gestures as they clarify their reasoning. 

 
Figure 2. Transcript of mirroring gestures. 

Karen and Haley performed mirroring gestures as they were gesturing at the same time in 
response to the same line of reasoning and jointly formulating a mathematical argument. In addition, 
at times their gestures were structurally identical. Mirroring gestures differ from echoing gestures in 
that they occur simultaneously – learners are using their bodies in conjunction with each other as 
they reason together in-the-moment. Echoing gestures, on the other hand, may capture instances 
where one learner’s reasoning is later taken up by another learner, after the initial string of reasoning 
has been communicated and interpreted. 
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Haley’s and Karen’s gestures are representing two distinct geometric shapes, with one shape 
being imagined in the air in front of each of them. In our final case, we observe gestures where two 
learners operate on a single imagined geometric object using gestures. 

Joint Gestures 
Our third case is taken from the group proving the conjecture, “The measure of any central angle 

of a circle is twice the measure of an inscribed angle intersecting the same two endpoints on the 
circumference.”  In this sequence (Figure 3), Karen begins by trying to represent both the circle and 
the angles using her gestures, but struggles to properly represent the conjecture (Line 9). Stephanie 
misunderstands the reasoning she is communicating using this gesture (Line 10), so Karen seeks a 
different approach to make her thinking clear to her group. She calls upon Haley to use her hands to 
make the circle (Line 15), and then Karen layers her hands over Haley’s circle to formulate a central 
angle and then an inscribed angle.  

Stephanie, who is controlling the game for this conjecture, then mimics their gesture (Line 20) 
and agrees with their conclusion that the central angle would be smaller (Line 22). Haley questions 
their reasoning at two points during the discussion (Lines 19 and 23), but ultimately the group 
concludes that the central angle is smaller than the inscribed angle (Lines 26-27). This is a common 
misconception – the central angle is the large angle since it sweeps out more space.    

Discussion and Implications 
 Situated cognition holds that cognitive behavior is embodied, embedded, and extended. An 

embodied cognition perspective (e.g., Lakoff & Núñez, 2000) focuses on ways body states and body-
based resources shape behavior. Embedded and distributed cognition holds that cognition is mediated 
by the physical and social environment and the environment is used to off-load operations that could 
otherwise be performed mentally (Hutchins, 1995). Extended cognition takes this further, positing 
that social actors and the physical environment, in concert with the mind of the one doing the 
reasoning, constitute the cognitive system (Clark & Chalmers, 1998). 

Here we identified three novel ways in which students socially coordinate hand gestures and 
speech that exemplify extended mathematical cognition. In echoing another’s gestures, one learner 
makes a hand gesture representing a mathematical object, and then another learner repeats it, often 
making the reasoning it illustrates personally meaningful. In mirroring gestures, two learners 
simultaneously make the same or similar gestures with each of their set of hands, as a way of 
following each other’s’ reasoning in real time. This strategy goes beyond simply observing another’s 
gestures – by making the same gesture, learners may better understand a collaborator’s reasoning. 
Finally, joint gestures illustrate how multiple learners collaboratively build and manipulate 
mathematical objects that are too complex for one set of hands. Taken together, these findings 
suggest collaborative gestures have the potential to provide learners with additional tools that 
facilitate mathematical communication and proof....” 

An interesting question for future research is how collaborative gestures influence student 
learning – our third case shows an ultimately unsuccessful use of collaborative gestures – and 
whether collaborative gestures are more effective than other tools of extended cognition (e.g., 
manipulatives, pencil and paper, DGS). We are of the view that there is not one optimal tool for 
learning about geometric properties and conjectures; rather that students need a variety of 
experiences exploring geometric ideas with different tools for cognition and collaboration. In the 
present paper, we argue that collaborative gesture should be one element of students’ toolboxes as 
they learn proof in geometry. In this way, we seek to answer the question “How can we lay the 
groundwork for future crossroads between theory, research, and practice?” We use educational 
research to lay the groundwork for the potential importance of collaborative gestures, connecting our 
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research to theories relating to gesture and extended cognition. By studying these gestures within 
classrooms where students are engaged in mathematical reasoning, we begin to consider how this 
research might inform practice. 
 

  

Figure 3. Transcript of joint gestures. 
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In this study, we examine how inservice secondary mathematics teachers working together on a 
contextualized problem negotiate issues arising from the ill-structured nature of the problem such as 
what assumptions one may make, what real-world considerations should be taken into account, and 
what constitutes a satisfactory solution. We conceptualize the process of negotiating these questions 
as the construction of a “problem space,” characterized by the boundary between considerations 
deemed relevant or essential to the problem and ones thought to be beyond the scope of the problem. 
We use data from group discussions of the problem to consider ways in which problem spaces are 
co-constructed by learners, instructors, and problem authors and how these problem spaces evolve 
over time. We conclude by discussing implications of these findings for the design and 
implementation of contextualized mathematics problems. 

Keywords: Problem Solving, Modeling, Classroom Discourse, Affect, Emotion, Beliefs, and 
Attitudes 

Background 
The focus of this paper is on teacher work on one particular mathematics problem. The problem 

is contextualized and open-ended and involves aspects of both problem-solving and mathematical 
modeling. Lesh and Zawojewski (2007) define problem solving as 

the process of interpreting a situation mathematically, which usually involves several iterative 
cycles of expressing, testing and revising mathematical interpretations – and sorting out, 
integrating, modifying, revising, or refining clusters of mathematical concepts from various 
topics within and beyond mathematics. (p. 782) 

The problem we discuss in this paper requires integration of multiple mathematical concepts, as well 
as interpretation, modification, and revision of ideas within and outside of mathematics. With respect 
to mathematical modeling, when learners work on a problem involving a real-world context, part of 
the problem solving process may involve the construction of mathematical models, or systems of 
objects, relationships, and rules that can explain or predict the behavior of other systems (Doerr & 
English, 2003). Although we do not claim that the problem discussed in this paper is a modeling 
problem per se, participants engage in aspects of the modeling process (e.g., developing a model and 
interpreting solutions) as they solve the problem. The problem used in this study is contextualized 
and ill-structured, and requires that the learner find and use information from the real world. 

Our focus in this paper is on the negotiation of problem spaces. We defined a “problem space” as 
the collection of mathematical ideas and classroom and real-world issues and resources that learners 
take up and use as part of their solution process. These ideas, issues, and resources become visible as 
the boundaries of the problem spaces are constructed and explicitly negotiated. For example, while 
working on the problem of designing an enclosure with the greatest possible area given a fixed 
perimeter, a learner may decide (by themselves or by asking a teacher) that they only need to 
consider rectangular shapes. This decision about the problem boundary leads to a problem space that 
includes rectangles but not other shapes. By investigating the development of problem boundaries, 
we hope to better understand the ways in which problem spaces are created and how they evolve, as 
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well as surface implicit assumptions about problem spaces and boundaries that we may take into our 
own mathematics teaching. 

In our research, we assume that learners’ problem-solving work is situated within particular 
mathematics classroom contexts, with associated norms and expectations that will influence the 
negotiation of the problem space, as will learners’ previous experiences in mathematics classrooms. 
We assume that learners’ beliefs about mathematics, and their mathematical and school-learner 
identities, will influence how problem spaces/boundaries are established, as will power and authority 
relationships among learners and between teachers and learners. Lastly, we assume that the 
establishment of problem spaces is an ongoing negotiation that takes place among learners, teachers, 
and “animated others” such as problem authors or representatives of the real world (e.g., people in a 
town, a business owner, etc.). Within this framework, we address the following questions: 

4. How do mathematics teacher learners, engaged in an ill-structured contextualized problem, 
negotiate the problem space? 

5. What boundaries do the teachers establish and how are they determined? How do the 
boundaries evolve throughout the problem-solving process?  

Method of Study 

Context and Problem Design 
In Summer 2015, the authors taught an 80-hour mathematics content focused professional 

development (PD) course to 33 middle and high school mathematics teachers from three school 
districts in the Southwestern United States. Teachers spent most of their time during the PD working 
in small groups on problem sets and activities meant to highlight key ideas in middle grades and 
secondary mathematics. 

One of these was the “Quantitative Reasoning Cards” activity, in which participants work in 
groups of four on a sequence of problems involving real-world contexts. Each problem consists of a 
statement and several pieces of information. For the problem analyzed in this study, both the 
statement and the information are on a single card given to the group member designated as the 
leader for the task. The text on the card is shown below: 

 

 
Figure 1. The Water Shortage Problem. 

The leader may share the information on the card with other group members and help guide the 
discussion, but they are not permitted to write anything down nor look up any additional information. 
Other group members may write down their thoughts and mathematical work, but are not allowed to 
see nor touch the leader’s card. Once the group reaches a consensus solution, the leader must explain 
it to one of the PD instructors (designated as the “referee”), who may then ask follow-up questions of 
the other group members. The design of the problem is meant to foster interdependence among group 

The town of Squareville (population 25,600) relies on a nearby lake 
for drinking water.  The water has been tainted due to an industrial 
accident.  The lake can be cleaned, but it will take about two weeks to 
do so.  In the meanwhile, the state plans to use trucks to send clean 
water to Squareville from a town 23 miles away.  How many trucks 
will the state need? 

 
In order to proceed to the next task, you (the person holding this card) 
must give a referee a convincing argument answering this question. 
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members (Cohen & Lotan, 2014); because the group leader cannot perform calculations, and other 
members have no direct access to the information on the card, group members must communicate 
about their overall problem-solving strategy as well as the details of the solution so that the leader 
can clearly describe the group’s work to the referee. 

The Water Shortage Problem, designed by one of the authors of this paper, requires participants 
to answer a practical question (how many trucks are needed to deliver water to a town) by analyzing 
rates of water consumption and delivery rather than absolute amounts. The information card 
intentionally leaves some essential questions unanswered, such as how much water a truck can carry, 
and how much water each person will need. The purpose of providing incomplete information is to 
stimulate discussion among participants about what quantities are relevant to the problem’s solution, 
and to encourage participants to seek information from sources external to the activity. 

The problem is designed to elicit thinking from participants about how to estimate quantities 
whose values cannot be determined exactly. For example, if a disaster preparedness website 
recommends that each person receive 2 to 4 gallons of water per day, should one assume that each 
person will receive 2 gallons, 4 gallons, or some amount between these two extremes? We have 
found in our own implementations of this and similar problems, given a range of possible estimates 
for a quantity, participants will often select an estimate at the middle of the range, even when a lower 
or upper bound might be more useful for the situation at hand. 

The problem is also designed so that solutions that do not contain rate thinking (e.g., thinking 
only about how many gallons total are needed for 2 weeks, rather than thinking about gallons per 
day) will likely lead to unreasonably large answers. This problem feature is intended to spur learners 
to reconsider their solutions and seek ways to decrease the number of trucks needed. For this to 
occur, participants must expand the problem space to include consideration of whether a given 
number of trucks is practically feasible; while a request for ten trucks is likely to be honored by an 
emergency management agency, a request for five thousand will almost surely be rebuffed.  

Participants, Data Collection, and Analysis 
During the problem implementation, we captured video and audio recordings of two groups of 

teachers working on the Water Shortage Problem. Each group consisted of four inservice secondary 
mathematics teachers. Group 1 consisted of three female middle school teachers and one male high 
school teacher; Group 2 consisted of one female high school teacher, one female middle school 
teacher, and two male middle school teachers. Group 1 spent 22 minutes on the problem, and Group 
2 spent 30 minutes. 

After the conclusion of the professional development course, the two researchers viewed both 
videos independently and made note of instances in which participants and instructors appeared to 
question or negotiate the boundaries of the problem. For each such instance, we attempted to identify 
factors in the group discussion, the instructor’s comments, or the design of the task that may have 
influenced the group’s decision about how to define the problem space. We repeatedly met together 
to compare analyses and come to consensus on any discrepancies. We report results of this initial 
work here; however, we intend to continue to refine our analysis process as we attempt to apply it to 
the data we have collected (video and audio) for small groups working on other contextualized 
problems. 

Results 
In both groups that participated in the study, the group leader read the task, and the group worked 

gradually toward a consensus solution, making assumptions about the situation described, making 
preliminary estimates, and refining these estimates to produce a reasonable and practically feasible 
solution. Along the way, each group confronted questions about which elements of the real-world 
situation should be taken into account and which considerations lay beyond their co-constructed 
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boundaries. In this section, we analyze each group’s negotiation of the problem space and observe 
how this space evolved over the duration of the group’s work on the problems. All names used below 
are pseudonyms. 

Shifting Responsibility for Boundary-Setting: The Case of Group 1 
Vicki, the leader of Group 1, introduced the problem by reading her card aloud to her teammates 

Tina, Kenny, and Nalda. Shortly after reading the card, Vicki questioned whether the group was 
allowed to consider information not on the card. The question of how much discretion the group has 
in negotiating problem conditions and goals occurred again later, as Vicki asked whether the question 
was about “efficiency” or about how many trucks the state should send. Upon asking this, Vicki said, 
“I don’t know how far we’re allowed to take this,” suggesting that authority for determining problem 
boundaries lay at least partially outside of the group itself. We hypothesize that many teachers’ prior 
experiences with contextual problems (as teachers or learners) may consist mainly of problems for 
which the boundaries are largely pre-determined by the problem statement, or as structured by the 
teacher.  

Table 1: Interactions Influencing the Problem Space for Group 1 
Interaction Action/response Possible causes of interaction 

Vicki: Are we allowed to extrapolate 
outside of what is on the card? We 
would need to know how much a truck 
could carry, average family size… 

Tina begins to look 
up information on 
phone. 

Contextual problems encountered in 
school often provide the information 
that is needed; no more, no less. In this 
setting the group must negotiate the 
boundaries of the problem space. 

Nalda: Are we looking for realistic 
solutions to this? Because the state 
isn’t going to pay for that many a 
day… each truck can make four trips… 

Nalda’s teammates 
assert that they are 
counting truckloads, 
not distinct trucks. 

Nalda believes that in this case, issues 
of realism should at least be considered. 
Nalda uses the pronoun “we,” while 
Vicki uses the pronoun “they.” 

Kenny: What if they don’t have 
tankers, they have an average water 
truck? 

Group considers 
both scenarios and 
produces an estimate 
for each. 

The problem is ambiguous on the issue 
of which type of truck the state will use. 
The group does not have the resources 
to resolve this ambiguity, but is willing 
to manage it as a condition of the 
problem. 

Tina: So did we answer the question? 
Vicki: I feel like we would need more 
parameters though to be able to really 
integrate the 23 miles. 
Nalda: I feel like they give us the 23 
miles for us to estimate how many 
trucks. 

Group begins to 
consider multiple 
trips per truck. 

Task design: Tina cannot look at the 
card with the question on it. 
 
Nalda pushes the group not to set aside 
the mileage information. She reframes 
the problem so as to put group members 
inside the real-world situation. 

Kenny: How long is a tanker? 
Nalda: I don’t know. 
… 
Kenny: Where are they storing this? 
Nalda: Well, water towers. 
Kenny: I’m just thinking/ 
Nalda: /Half an hour to fill, half an 
hour to get there…  

Tina pulls up a 
picture of a tanker 
on her phone and 
shows the group. 
Nalda redirects the 
group’s attention to 
the calculation of the 
number of trucks. 

Nalda seems to view Kenny’s queries as 
outside of the problem’s boundaries. 
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The group ultimately developed estimates for the number of trucks needed in two different 
scenarios: if the state sends large tanker trucks, and if it sends smaller water trucks. The group’s 
initial approach assumed that each truck would make only one trip per day, and that each resident of 
the town would receive 90 gallons of water per day. This led to an estimate of 221 tankers per day. 
At this point Nalda raised the concern that sending 221 tankers per day would not be realistic, and 
suggested a model in which each tanker makes several trips per day. The group initially dismissed 
this suggestion, claiming that the problem was to estimate the number of truckloads, not tankers. 
However, by pointing out that the group had not used the information provided about the distance 
between the towns, which we interpret as an appeal to an external source (i.e., the problem author) in 
order to determine a problem space boundary, Nalda later persuaded her teammates to consider the 
possibility of allowing each truck to make several trips per day, and count the number of trucks 
rather than the number of truckloads of water. The group eventually produced an estimate of 56 
tanker trucks. 

Table 1 outlines some instances in which the problem space was negotiated, explicitly or 
implicitly, by members of Group 1. We note here that, for Group 1, interpreting the implicit 
intentions of the problem author appears to be a central part of their effort to negotiate the problem 
boundaries, and thus the problem space. At the same time, the group also attended to whether a 
particular approach or solution was realistic. In the data, we found multiple examples of this push-
pull between school mathematics norms for contextualized problems (e.g., figuring out what the 
problem author intends) and the desire to find a realistic solution. Importantly, we note that attention 
to realism may itself relate back to expectations about how we do mathematics in school when faced 
with contextualized problems for which some information is not given. 

The Instructor’s Role in Expanding the Problem Space: The Case of Group 2 
Vince introduced the problem to his teammates Tobias, Darla, and Violet by summarizing the 

information on his card rather than reading it verbatim. The group immediately began searching the 
internet for information relevant to the problem and found that a water truck can carry 5000 gallons, 
and that the average American uses between 80 and 100 gallons of water per day. Based on this 
information, they obtained an initial estimate of 6450 trucks, which Violet deemed to be “excessive.” 

Spurred in part by the infeasibility of this estimate, the group then began to identify ways they 
could significantly decrease this estimate. Tobias suggested researching the minimum amount of 
water a person needs each day; based on his research, the group accepted a much lower estimate of 5 
gallons per person per day. The group thus arrived at a more modest estimate of 358 trucks, still 
reflecting the implicit assumption that each truck will make only one run over the two-week period. 
The group presented this solution to Nancy, one of the PD facilitators. Nancy stated that the state did 
not have 358 trucks to spare, and that the group should try to determine the minimum number of 
trucks needed. After she left the group, Violet pointed out that the question did not ask for the least 
possible number of trucks, and Tobias claimed that Nancy had changed the question. 

After this exchange, Tobias suggested considering how many trucks are needed per day (rather 
than for the entire two-week period); this brought the group’s estimate from 358 down to 26. The 
group then gradually developed a plan in which six trucks take turns dropping water off at 
Squareville; at any given time, one truck is in Squareville dropping water, one truck is in the nearby 
town collecting water, and four other trucks are in transit between the two towns. Vince presented 
this solution to the other PD instructor, who endorsed it as an acceptable solution. 

As the group worked on the problem, the problem space grew to encompass considerations of 
how much water a person needs during an emergency, and how much water an “average” truck can 
hold. However, only after Nancy visited the group and encouraged members to develop a more 
feasible solution did they seriously consider the possibility of having trucks perform multiple runs on 
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the same day. This consideration entered the problem space at least in part due to Nancy’s 
intervention. Table 2 below shows some instances in which Group 2 interacted to define the problem 
space and its boundaries, and our interpretations of possible causes of the interactions. 

Table 2: Interactions Influencing the Problem Space for Group 2 
Interaction Action/response Possible causes of interaction 

Violet: Do we know how much water 
the trucks hold? Or how much each 
person needs? 
Vince: No. 

Tobias starts to look 
for information on 
the internet using his 
tablet. 

The problem cannot be solved without 
information that is not on the card. 

Violet: Are they telling the people to 
limit the water? Because I feel like 
that would be beneficial. 

Tobias determines 
that on average, a 
person uses between 
80 and 100 gallons 
per day. The group 
doesn’t pursue 
Violet’s idea yet. 

The group seems to feel that limiting 
water is beyond the boundaries of the 
problem. 

Violet: It’s 80-100 gallons per day, so 
do we just want to use 90? 

Group calculated 90 
x 14 x 25,600 = 
32,256,000 gallons. 
Divided this by 
5000 to obtain 6451 
trucks. 

Using the midpoint of a range as an 
estimator is possibly related to prior 
experience with school math problems; 
in this case, it may actually be 
worthwhile to use the lower end of the 
range in order to minimize the number 
of trucks needed. 

Violet: 6451 trucks, that seems really 
excessive. 
Tobias: Let’s see how much a person 
needs in a day. 
Violet: We don’t know what 
limitations have been set for this 
town. 

Group discusses 
different uses of 
water and eventually 
settles on 5 gallons 
per person per day, 
leading to an 
estimate of 358 
trucks. 

Initially, Violet seems to view the issue 
of water rationing as outside the 
boundaries of the problem. Eventually, 
the group shifts the boundaries to 
encompass this question. 

Nancy: Yeah, well Circleville’s also 
having a water issue, and I just don’t 
have 358 trucks, so what’s the 
minimum number I need? 
… 
Nancy: So think just a little more 
about how many trucks you need. 
Like what’s the minimum number I 
can give you? 

Group turns to the 
question of how 
long it takes for a 
truck to complete 
one cycle of 
loading, driving to 
town, unloading, 
and driving back. 

Nancy observes that the group has not 
incorporated the possibility of trucks 
making multiple deliveries per day into 
the problem space; she uses the 
impracticality of a request for 358 
trucks to encourage the group to 
reconsider the problem boundaries 
they have constructed. 

Darla: How long does it take to 
unload a water truck? 
Violet: And how do you decide who 
gets water first? Are we figuring out 
the least? Is that the question? The 
least number? It just said how many 
trucks need to be sent, it didn’t say 
least! 
Vince and Tobias: She changed it. 

Group estimates 
how much time is 
needed for a 
delivery cycle and 
how many cycles 
are needed per day, 
and eventually 
decides upon 6 
trucks. 

Violet, Tobias, and Vince indicate their 
belief that they have been asked to 
enter a different problem space. 
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The push-pull between school mathematics and associated expectations of problem authors on 
the one hand and concerns for realism played out somewhat differently in this group. The group 
seemed initially unconcerned with limiting water, an aspect of the situation that would most certainly 
come into play in the real world. Yet, an unrealistic number of trucks did spur the group to reconsider 
water consumption, and this then became a part of the problem space. At this point, Violet raised 
another issue related to negotiating the problem boundaries, namely that the group did not know what 
limitations on water use had been put in place for the town in question. The group expressed 
frustration with the ambiguous nature of the problem space after the instructor questioned whether 
358 was realistic. 

Discussion 
We offer this report as an initial analysis of the construct of “problem space” as it applies to 

contextual problems in mathematics. We make no claim that our findings generalize across all 
classes of mathematics problems and all groups of learners. The negotiation of a problem space may 
look markedly different in the context of a more closed-ended task, and may also vary according to 
the age and mathematical background of learners. One may argue that in this particular study the 
participants’ shared familiarity with rate reasoning allowed them to devote additional attention to 
considering boundary issues such as which quantities in the problem should influence the problem’s 
solution and which should not. Further study, with different types of tasks and with different 
populations of learners, is needed for a better understanding of how problem spaces develop in 
different settings. 

The expectations that learners have of teachers, problems, and genres of mathematical tasks are 
central to the establishment of problem boundaries and spaces within them. If learners are 
accustomed to tasks in which all relevant and necessary information is explicitly provided, they may 
initially hesitate to consider external sources of information when presented with an open-ended 
problem. This may lead to learners attempting to work within a problem space that is too narrow to 
provide the intellectual resources necessary to construct a solution. At the same time, learners may 
make decisions to expand the problem space when faced with a problem that does not explicitly 
provide all the resources necessary for its solution. However, the boundaries defining the problem 
space cannot expand endlessly; learners must, at some point, accept that the situation they are 
attempting to analyze contains some details that are inaccessible to them and therefore cannot be 
modeled mathematically. 

Our analysis of the negotiation of problem boundaries has implications for the practice of 
designing open-ended problems. In analyzing the groups’ work on the Water Shortage Problem, we 
found that the problem worked as intended in at least one respect: both groups originally obtained 
infeasibly large estimates for the number of trucks needed, and thus were encouraged (without 
external feedback) to revise their assumptions. Both groups decided that the problem space should 
include some consideration of whether the solution obtained was fiscally responsible. Additionally, 
both groups decided to include some analysis of whether the solution obtained was physically 
feasible; for example, Group 2 developed a scheme in which six trucks rotate in and out of 
Squareville in succession, dropping off water as they arrive. Thinking about the problem at this level 
of detail helped the group develop confidence that a solution with six trucks was feasible and would 
deliver enough water. We posit that open-ended problems that contain supports for the development 
of detailed models and that encourage winnowing out unreasonable solutions may support learners in 
expanding problem spaces to include practical considerations. 

Our analysis also has implications for the orchestration of open-ended problems. Both groups had 
questions that one could easily imagine asking of a teacher; for example, Vicki might have wanted to 
ask a PD instructor whether it was permissible to consider information outside of the problem 
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statement. However, in the absence of instructor guidance, the group quickly decided that 
information from the real world lay squarely within the boundaries of the problem, since the 
information on the card was inadequate. Because problem spaces evolve over time, a teacher 
implementing an open-ended problem may wish to take an observer role initially and allow the 
problem space to develop according to the explicit and implicit demands of the problem. 

We conclude this report by highlighting two ways in which the problem space of the Water 
Shortage Problem may communicate with the broader space of students’ real-world experience. 
Since the time of the creation of this problem, serious water crises have occurred in places such as 
Flint, Michigan and Corpus Christi, Texas. In subsequent implementations of the Water Shortage 
Problem, the authors have noticed that teachers who have experienced water crises such as these 
sometimes interact differently with the problem; they are more knowledgeable about how water is 
actually distributed during a water crisis, and more attentive to logistical issues such as how a town 
should time and manage water collection. We offer this as an example of learners’ real-world 
experiences interacting with the problem space. As an example of the problem space talking back to 
the broader world in which the learners live, consider the following comment from Violet: “If this 
[90 gallons per day] is what I use on a regular basis and this [4-6 gallons] is what I use in a disaster… 
like… I feel like this is the disaster!” Seeing the disparity between everyday water usage in the U.S. 
and recommended water usage during an emergency may heighten learners’ awareness of the 
possibility of scaling back water consumption and using natural resources at a more sustainable rate.  

Endnote 
Alphabetical listing of author names is intended to indicate equal contributions to the paper. 
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Abstract: This paper sets forth a concept (Simon, 2017) of contrapositive equivalence and explores 
some related phenomena of learning through a case study of Hugo’s learning in a teaching 
experiment guiding the reinvention of mathematical logic. Our proposed concept of contrapositive 
equivalence rests upon set-based meanings for mathematical categories and negation, representing 
these sets by closed regions in space, and linking conditional truth to a subset relation between these 
regions in space. Our case study serves to portray that students must construct all of these elements 
to achieve a sense of necessity in the equivalence. This study thus contributes a set of learning goals 
for any introductory logic instruction using Euler (or Venn) diagrams, which has been little studied 
in the mathematics education literature.  

Keywords: Reasoning and Proof, Problem Solving 

Proof oriented mathematics instruction depends upon mathematical logic to ensure that students 
learn 1) to interpret mathematical statements the way mathematicians do and 2) to draw inferences 
that do not violate the mathematical community’s norms. Prior research provides ample evidence that 
students’ interpretations of mathematical conditionals (statements of the form “if…, then…”) pose a 
number of difficulties (e.g. Durand-Guerrier, 2003) as does the logical equivalence of contrapositive 
(CP) statements (Stylianides, Stylianides, & Phillipou, 2004). There is little prior literature on how 
students are to come to learn CP equivalence (Yopp, 2017) or the meanings by which this can be a 
logical necessity. This paper seeks to fill this gap through a case study drawn from a larger series of 
teaching experiments guiding reinvention of mathematical logic through reflective use of 
mathematical language (Dawkins & Cook, 2016).  

Logical Background 
The CP of a conditional “If [P], then [Q]” is the conditional “If not [Q], then not [P].” Consider 

the statement, “If a triangle is obtuse, then it is not acute.” Its CP is “If a triangle is acute, then it is 
not obtuse.” Certainly these statements are both true, but how are their truths linked? In our prior 
studies we observe that students often reason about such statements using examples, properties, or 
sets (Dawkins & Cook, 2016). We encourage the reader to consider how both statements can be 
confirmed from the fact that any triangle has exactly one of the properties acute, right, or obtuse (a 
property-based strategy). Notice that so affirming both conditionals may not reveal the relationship 
between the two or why all conditionals with that relationship must share a truth-value. For this 
reason, we propose a distinction between a CP inference and CP equivalence. A student draws a CP 
inference when they infer a CP is true from the original conditional or when they use the original 
conditional to infer not [P] from not [Q] (modus tollens). CP equivalence instead entails students 
constructing a logical equivalence between any conditional and its CP rooted in generalizable 
meanings for conditional truth and reference.  

We present our intended understanding of contrapositive equivalence in terms of Simon’s (2017) 
explication of mathematical concepts. Simon explains, “A mathematical concept is a researcher’s 
articulation of intended or inferred student knowledge of the logical necessity involved in a particular 
mathematical relationship” (p. 7). This concept thus reflects our understanding of how a student 
might come to understand the necessity of CP equivalence. Simon clarified that concepts result from 
reflexive abstraction and thus are anticipations based on the learner’s activity. This characterization 
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of a concept helps distinguish our work from other relevant studies. Stenning (2002) explored logical 
reasoning as a broadly assessed without attending to students’ meanings for particular concepts or 
their sense of logical necessity. Stylianides et al. (2004) assessed whether students use a CP 
equivalence rule they were taught when assessing arguments, and found that students frequently did 
not apply CP equivalence as intended. They did not study the students’ meanings for conditional 
truth or how they entail CP equivalence’s necessity. Hawthorne and Rasmussen (2014) explored 
students’ meanings for elements of formal logic such as truth tables, and found that many learned 
such formalisms disjoint from their ongoing mathematical activity. They lacked necessity for the 
learned rules.  

We articulate the concept of CP equivalence as follows: 

(Point 1) A mathematical conditional is true whenever the set of objects satisfying the if part 
is a subset of the objects satisfying the then part. (Point 2) These two sets can be represented as 
closed regions in space with points representing the mathematical objects. (Point 3) The negation 
of a mathematical category refers to the complement set of mathematical objects. (Point 4) 
Therefore, whenever a conditional is true, its CP must also be true because the complement of the 
larger region is contained in the complement of the smaller region.  

Original conditional CP conditional 

“If for 𝑥 ∈ 𝑆 𝑃(𝑥), 
then 𝑄(𝑥).” 

 
is true whenever 

 
𝑥 ∈ 𝑆 𝑃 𝑥
⊂ 𝑥 ∈ 𝑆 𝑄 𝑥  

 “If for 𝑥 ∈ 𝑆 not 
𝑄(𝑥), then not 𝑃(𝑥).” 

 
is thus true because 

 
𝑥 ∈ 𝑆 ~𝑄 𝑥
⊂ 𝑥 ∈ 𝑆 ~𝑃 𝑥  

 

Figure 1. Euler diagrams portraying the subset meaning for a conditional and its CP.  

Point 1) We propose the subset meaning for conditional truth as part of Dawkins and Cook’s 
(2016) more general findings that set-based meanings were most propitious for students’ reinvention 
of mathematical logic (over example and property-based meanings). Point 2) Logicians have long 
represented categories by closed regions (Stenning, 2002), but we find this is not always a natural 
step for participants in our reinvention. Students often prefer representations that maintain semantic 
meaning (e.g. the number line, example numerals, example shapes). Representing categories by 
closed regions reflects an abstract meaning for mathematical definition: any well-defined distinction 
among mathematical objects. Point 3) Dawkins and Cook (2016) explain that students’ 
interpretations of negative categories do not always correspond to the complement set of examples, 
but this interpretation is necessary for interpreting CP equivalence diagrammatically. Point 4) CP 
equivalence is a necessary entailment of the topological relations portrayed in Figure 1. We do not 
claim that student understanding of CP equivalence must be mediated by visual diagrams (Yopp, 
2017), but we anticipate that the necessity of CP equivalence rests upon isomorphic ways of 
reasoning across semantic content.  

The Case of Hugo 
In what follows, we shall explore the contours of our concept of CP equivalence through a case 

study of one student’s participation in our guided reinvention teaching experiments. Hugo did not 
construct the concept of CP equivalence, though his interview partner did. We find Hugo’s story of 
learning helpful because he made clear progress on diagrammatic reasoning about mathematical 

𝑃(𝑥) 

𝑄(𝑥) 

~𝑃(𝑥) 

~𝑄(𝑥) 
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conditionals and in some way exhibited progress regarding each of the first three points of the 
concept. However, he still clearly lacked a sense of necessity for CP equivalence, though he observed 
the shared truth-values. We present this case both because it portrays the kinds of activity that we 
anticipate would foster students’ abstraction of CP equivalence and the challenge inherent to such 
abstractions in mathematical logic. Furthermore, this case allows us to set forth three possible 
characterizations for logic learning in advanced mathematics, which we observe as an arena in need 
of clarification and disambiguation.  

Methods 
The methods of this study mirror those reported elsewhere regarding this series of teaching 

experiments guiding the reinvention of mathematical logic (Dawkins & Cook, 2016). Each teaching 
experiment involved pairs of volunteers recruited from Calculus 3 courses at a medium-sized, public 
university in the Midwestern United States. These students met with a teacher/researcher for 6-11 
hour-long sessions. The sequence of activities consisted of presenting students with lists of 
statements of the same logical form (disjunctions, conditionals, and multiply-quantified) each with 
varied, familiar mathematical content. Students were asked to:  

1. determine whether each was true or false,  
2. formulate rules for when statements of the given form were true or false,  
3. develop a method for negating statements, and  
4. in the case of conditionals, explore the relationship between a conditional and its converse, 

inverse, and contrapositive.  

Table 1: Sample Conditionals that Hugo and Elya Analyzed 
1. If a number is a multiple of 3, then it is a multiple of 4. 
2. If a number is a multiple of 3, then it is a multiple of 6.  
3. If a number is a multiple of 6, then it is a multiple of 3.  
4. If a number is not a multiple of 6, then it is not a multiple of 3.  
5. If a number is not a multiple of 3, then it is not a multiple of 6. 
6. If a triangle is not acute, then it is obtuse.  
7. If a triangle is obtuse, then it is not acute.  
8. If a triangle is not acute, then it is not equilateral.  
10. If a quadrilateral is a rectangle, then it is a parallelogram.  
15. If the sum of two integers x+y is even, then at least one of the numbers x and y is not odd. 

The teacher/researcher generally provided minimal direct guidance besides clarifying 
mathematical facts about the content of each statement (e.g. 1 is not prime, a square is a rectangle), 
asking students to clarify explanations or compare claims about various statements, and asking 
partners to respond to one another’s reasoning. Based on the earlier findings reported in Dawkins and 
Cook (2016), the teacher/researcher also explicitly guided Hugo and his partner Elya to focus on the 
sets of objects making each statement true or false. The interviewer attempted not to introduce any 
logical formalizations (i.e. notation, terminology, or diagrams) until the students seemed to recognize 
some relevant pattern or need to express their reasoning. All data was analyzed using the constant 
comparative method (Strauss & Corbin, 1999).  

Results 
Hugo and Elya studied conditionals during their third, fourth, and fifth experimental sessions. 

Elya was absent from the fourth session. During the third session, their initial task was to assign 
truth-values to (or assess) the conditionals. They assigned the same truth-values a mathematician 
would (normative truth-values). They did not exhibit set-based reasoning during this activity; the pair 
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relied on examples and properties. For false claims, they recognized what constituted a counter-
example to a conditional. For instance, Hugo denied statement #1 with the example 6 and explained 
this was sufficient for assessment: “So we came up with one case where it’s false, so it is false.” 
Hugo affirmed three statements using property-based reasoning. For instance, he reasoned about #8 
saying, “not acute would mean either a right triangle or an obtuse triangle. Neither of those can be 
equilateral, so that would be true.” In other cases when Elya affirmed a statement using properties, 
Hugo introduced examples. Regarding #15, Elya inferred that “one of [x and y] would have to be 
odd” to have an odd sum. Hugo chose 5 as the sum and considered the possible addends. It is unclear 
whether Hugo perceived this as a justification or simply an explanation, but it portrays Hugo’s 
overall propensity toward example-based strategies for assessing conditionals even when Elya 
provided property-based explanations.  

Point 1: The Subset Meaning of Conditional Truth 
In the last 15 minutes of that session, the interviewer asked Hugo and Elya to consider sets. 

I  (1):  Think about the set of all things that satisfy the if part and the set of all things that satisfy the 
then part. And tell me about the relationship between those two […]  

H (2):  I’d say, if the statement is true then the set for the first part—I’m sorry the set of the second 
part will be included in the set of the first part.  

I  (3):  Okay. Why do you say that?  
H (4):  Um, because if we said that it’s true then when we pick—something that’s true for the first 

part, then it has to be included in the second part for the whole statement to be true.  
I  (5):  […] So you’re saying, if the statement is true then what was the relationship here?  
H (6):  Then the—then will be inside if.  

Hugo’s initial explanation (turn 2) suggests that he had not yet considered the sets of objects referred 
to by the categories in the given conditionals. It is possible that his reverse subset claim reflects 
attention to the set of properties in each statement. For instance #3 is equivalent to “If an integer is a 
multiple of 2 and 3, then it is a multiple of 3.” The then property is “included” in the if property (turn 
4), but the subset relation between the sets of integers goes the other way round.  

When the interviewer asked Elya, she proposed the normative subset relation that the “if has to be 
in the then.” She elaborated using statement #3, “all the multiples of 6 are contained in multiples of 
3.” The interviewer asked Hugo to respond using a particular statement.  

H (7):  Uh, you wanna talk about number 3. Um in like a circle, and multiples of 3—3,6,9,12. [draws 
a circle and inside of it writes the numbers he says aloud] Um, multiples of 6 will be included in 
that circle [draws smaller circle around 6 and 12]. Like 6 and 12 are multiples of 6. So there’s an 
additional circle inside that includes some numbers but does not include others [completes the 
diagram in Figure 2].  

I  (8):  Okay[…] which are you calling the if part and which circle are you calling the then?  
H (9):  The then part would be the bigger one [he labels the larger circle]. The inside would be 

then—sorry other way around. Then is on the outside. If is in [he labels the small circle].  

By encircling his short list of examples, Hugo bridged his example-based representation into a set-
based representation and acknowledged the normative set-based meaning for conditional truth. In this 
way, Hugo made initial steps toward the first point in our concept of CP equivalence, though his 
grasp was at times tenuous through the subsequent interviews.  
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Figure 2: Hugo’s first set diagram. 

During this third session, Elya and Hugo recognized the syntactic relationships between 
conditionals traditionally known as converse (e.g. #6 and #7) and inverse (e.g. #3 and #4). They 
related CP statements as having undergone both transformations (e.g. #3 and #5, via #4). Using one 
of their subset diagrams, Elya provided an argument for why the original and CP statements should 
both be true in a manner compatible with Figure 1. We thus observe that she quickly and easily 
constructed our concept of CP equivalence from her fluency with set-based meanings and 
complement operations. Hugo showed little sign of following her reasoning, but he was exposed to a 
general explanation for why the CP must be true whenever the original statement is.  

Point 2: Closed Regions and Their Topology 
Elya was absent from the fourth session allowing Hugo to explore his understanding of 

conditionals and sets independently. Early in the session, Hugo considered statement #6. He 
appropriately explained that it was false because it failed the normative subset relation, “We said it 
was false ‘cause our first set included… right triangles. So then it was only asking if it was only 
obtuse. So it could have been a right triangle or obtuse. Not just obtuse.” Hugo went on to produce 
two diagrams to express his understanding of the two sets (Figure 3). The first reflected a traditional 
Venn diagram arrangement (with “O” standing for “obtuse”). As he unpacked the properties in the 
statement, he revised his diagram, “This is the if, “not acute” we said that could be a 90 triangle or 
obtuse. And then the then was, ‘it is obtuse’ so I guess that would be—this. So it’s a little different 
than what I originally drew.”  

           
Figure 3: Hugo’s two diagrams for statement #6.  

Hugo recognized that one region of the Venn diagram did not contain any triangles and represented 
that in the topology of the two regions in his second, Euler diagram. In this instance, Hugo seemed to 
clearly make progress regarding the second point in our concept of CP equivalence by using closed 
regions to represent sets and using their topology to relate those sets.  

We conjecture that Hugo’s property-based reasoning the previous day influenced his diagram 
construction. He let the properties stand for the entire category without recourse to representative 
examples (as in his diagram produced the previous day). It is unclear the extent to which Hugo 
imagined the curves as encasing the sets of triangles imagined as points or whether they encased the 
words themselves that stood for the examples. One cause for questioning Hugo’s interpretation of the 
circles and their reference arose when Hugo next considered statement #7. Though statement #7 
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contains the same categories, Hugo produced a completely new diagram like the second in Figure 3, 
except the if and then labels were reversed. The interviewer asked Hugo to compare the two 
diagrams, and, upon reflection, he said they were the same. He clearly did not anticipate this 
relationship.  

Point 3: The Negation/Complement Relation 
The interviewer invited Hugo to write the inverse statements to both #6 and #7 on the board. He 

then asked Hugo to assess these statements using the same diagram he produced for #6. Hugo 
considered #6’s inverse, written “If acute, then not obtuse” in the following way: 

So “if acute” then we’d be talking about anything outside of the if circle, so everything 
outside of here, then “it is not obtuse”—right. ‘Cause you’re not—we’re talking about everything 
except inside this circle. And obtuse is inside the circle. So that’d be true. We said this [statement 
#6] was false. So it was the opposite, or the negation. 

Here, Hugo displayed two novel developments in his thinking. First, he associated the negation 
of a category with the complement of a closed region. Specifically, the region outside the larger 
circle represented acute triangles. Once again, we cannot be sure whether this inference was 
supported by 1) Hugo’s knowledge that any triangle is exactly one of acute, right, or obtuse or 2) 
reasoning about the representational structure of the diagram. In either case, he used the 
negation/complement relation. Secondly, he did not affirm the inverse of #6 by the subset meaning, 
but rather notes that anything outside the large circle is not inside the small circle (“if acute, then not 
obtuse”). We call this the empty intersection meaning for conditional truth. This criterion is distinct 
from the subset meaning Elya used during the previous session, but formally equivalent to it. It 
depends upon the presence of not in the latter half of the conditional.  

At the end of the previous quote, Hugo noted that the inverse statements had opposite truth-
values, and anticipated this might be the case more generally. To explore this conjecture, the 
interviewer next asked Hugo about statement #7 and its inverse: 

H (10): My guess is that it would be false ‘cause it’s—it’d be the opposite, but “if not obtuse,” so 
anything that’s outside of this little circle—then it is acute. That’s not necessarily true because—
that would—we still have 90 degree—triangles that are not obtuse but are still not acute. So that 
would still be false. Or that would be false. 

I (11):  Okay, now you anticipated it would be false. What was your basis for anticipating that it 
would be false?  

H (12): That one. We took the inverse of this one, we got the opposite—the opposite truth-value. 
I (13):  […] What about the picture tells me which two [of the four statements] are true? […] 
H (14): That if we limited it to this inner circle—the obtuse triangles. Then obviously we would not 

be talking about if it was outside of the circle. We’re only talking about the inside 
I (15):  What about then this one [inverse of #6]? How can I see it in the picture, this one? 
H (16): That if we’re talking about anything outside of this circle, the bigger circle here, which would 

be all the acute. Then that would exclude anything inside the circle—obtuse triangles are only 
inside the circle. So then we would only be talking about the area out here. 

In turn 10, Hugo denied the inverse of #7 because the non-obtuse triangles were not all acute. 
Hugo associated the negation of obtuse with the complement of the smaller region. He identified 
acute triangles (outside the larger circle) as counterexample to the conditional. Hugo noted that this 
example also affirmed his conjecture that inverse conditionals have opposite truth-values.  
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The interviewer noticed that Hugo was fluidly shifting between subset, empty-intersection, and 
counterexample meanings to assess the given conditionals. So, in turn 13 he asked Hugo to consider 
more generally which of the four statements (#6, #7, and their inverses) were true and how the 
diagram represented this. In turns 14 and 16, Hugo affirmed #7 and its CP both using the empty 
intersection meaning: the inner circle and outer complement were mutually exclusive. While this 
observation could provide a general sense of symmetry regarding the truth conditions for some CP 
statements, there was no evidence of Hugo abstracting this relationship at this point.  

Point 4: CP Equivalence 
To help Hugo see the syntactic relationship between the true statements he affirmed in the last 

interchange, the interviewer asked Hugo to specify all of the syntactic relationships among the four 
statements. Figure 4 shows the results of their discussion (Hugo and his partner used the term 
“switch” for converses). Using this diagram, Hugo noted that CP statements had the same truth-
value: “if we have an if-then statement that’s true, we take the inverse and the switch […] so far 
we’ve proved that it would be true [...] Well I’m observing but I’m trying to articulate why that is.” 
He admitted that this was for him an empirical observation and he could not justify it.  

 
Figure 4: Exploring the syntactic relationship among a conditional quartet. 

Not only did Hugo fail to see a general justification for CP equivalence, he was very inconsistent 
in his use of subset diagrams to assess conditionals about other topics. When asked to discuss the sets 
associated with statement #10 and its CP later in that session, Hugo drew separate and isolated circles 
above the words “rectangle” and “parallelogram” in #10. He recognized that all rectangles were 
parallelograms, but he did not use the topology of the regions to represent this. With prompting, he 
modified these diagrams to match the previous subset diagrams. Regarding the CP, Hugo began new 
circles rather than using the complements of the regions drawn for #10. Throughout the rest of that 
interview and the next, Hugo went on to consider at least three other quartets of conditional, inverse, 
converse, and contrapositive. Once prompted to produce a subset diagram, he consistently 1) 
affirmed the base conditional by the subset meaning, 2) denied the inverse and converse by 
counterexample or by failing to have a subset relation, and 3) affirmed the contrapositive by the 
empty-intersection meaning. However, he did not routinize creating such diagrams without 
prompting or begin anticipating the topological relations that would affirm a conditional and its CP. 
In short he did not construct the concept in such a way as to produce a sense of logical necessity for 
the shared truth-values.  

Conclusions 
Our goals in this paper were to 1) set forth our concept (Simon, 2017) of CP equivalence, 2) 

portray mathematical activity by which this concept could develop, and 3) convey the challenge these 
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abstractions pose through Hugo’s learning process. We claim that Hugo made progress regarding 
each of the first three points in the concept and empirically observed point 4, but did not perceive 
point 4 as a logical necessity. We presented evidence that Hugo understood that conditionals could 
be affirmed via a subset relation (Point 1). It is unclear whether this relationship was universal and 
reversible, or simply a sufficient condition. Hugo was able to represent the relationships between the 
categories in conditionals using closed regions and their topology (Point 2). At times he used these 
diagrams flexibly, as when he created the empty intersection meaning. He did not see such diagrams 
as a universal tool, judging by his alternating strategies and representations. He produced diagrams 
with different referential structures and often bypassed reasoning with the diagram by resorting to 
property-based inferences. While we appreciate that Hugo consistently connected his representation 
to the relevant mathematical categories (cf. Hawthorne & Rasmussen, 2014), he did not consistently 
use the diagram to draw new inferences about the mathematical categories. Hugo at times associated 
the negation of a category with the complement of either region in a diagram (Point 3), but he never 
coordinated two such complement regions simultaneously (as implied in Figure 1). Thus regarding 
each point of the concept, we see why Hugo’s understanding did not support reflexive abstraction.  

We intend for this analysis to emphasize the difficulty and nuance involved in constructing 
logical necessity in diagrammatic reasoning in the course of semantically-rich mathematical activity. 
We also propose that further literature on logic learning should clearly distinguish the kinds of 
understanding they intend. We propose three categories. Reading involves assessing mathematical 
statements in normative ways and drawing normative inferences. Hugo did this throughout. 
Reflecting involves finding general representations and criteria for assessing mathematical 
statements, such as Euler diagrams and the subset criterion. Hugo began this during the study. 
Abstracting involves reflexive abstractions yielding new insights from these representations and 
criterion. Elya, but not Hugo, displayed this kind of learning regarding CP equivalence. We 
anticipate that elaboration of these categories will facilitate future investigation. 
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Generalization is a critical aspect of doing mathematics, with policy makers recommending that it be 
a central component of mathematics instruction at all levels. This recommendation poses serious 
challenges, however, given researchers consistently identifying students’ difficulties in creating and 
expressing normative mathematical generalizations. We address these challenges by introducing a 
comprehensive framework characterizing students’ generalizing, the Relating-Forming-Extending 
framework. Based on individual interviews with 90 students, we identify three major forms of 
generalizing and address relationships between forms of abstraction and forms of generalization. 
This paper presents the generalization framework and discusses the ways in which different forms of 
generalizing can play out in activity.  

Keywords: Cognition, Learning Theory, Reasoning and Proof 

Introduction: The Importance of Mathematical Generalization  
The act of generalizing is at the core of mathematical activity, serving as the means of 

constructing new knowledge. Researchers have argued that mathematical thought cannot occur in the 
absence of generalization (Sriraman, 2003; Vygotsky, 1986). As a result, “developing children’s 
generalizations is regarded as one of the principal purposes of school instruction” (Davydov, 
1972/1990, p. 10). Researchers have studied the importance of generalization for promoting algebraic 
reasoning (Cooper & Warren, 2008), mathematical modeling (Becker & Rivera, 2006), functional 
thinking (Ellis, 2011; Rivera & Becker, 2007), and probability (Sriraman, 2003), among other areas. 
Despite the importance of generalization to success in mathematical reasoning, research on students’ 
abilities to generalize has identified pervasive student difficulties. For instance, Rivera (2008) 
reported results of 5 years of performance assessments on generalization given to more than 60,000 
middle and early high school students; these findings revealed a stable ceiling value of only a 20% 
success rate in the construction of a general formula. Other researchers have similarly documented 
students’ difficulties in creating correct general statements, shifting from pattern recognition to 
pattern generalization, and using generalized language (e.g., English & Warren, 1995; Mason, 1996). 

Although student difficulties are well documented, the instructional conditions necessary for 
fostering more productive student generalizing are not well understood. Complicating the matter, the 
bulk of research on generalization has occurred with algebraic patterning tasks, situating 
generalization as a type of, and route to, algebraic reasoning (Becker & Rivera, 2006; Cooper & 
Warren, 2008). There remains a need to understand how students construct generality in more varied 
and more advanced mathematical domains. The goals of this study are to investigate students’ 
mathematical generalizing from middle school through the undergraduate level in the topics of 
algebra, advanced algebra, and combinatorics. In particular, our aim is to elaborate the nature of 
students’ generalizing, contributing to the field’s knowledge base by extending the investigation of 
generalization up the grade bands. Based on clinical interviews with 90 students from 6th grade 
through the undergraduate level, we introduce a framework characterizing three major forms of 
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generalizing activity: relating, forming, and extending. We also introduce and discuss relationships 
between forms of generalization and forms of abstraction.   

Theoretical Framework  

Forms of Generalization 
Definitions of generalization vary, with the most prominent situating generalization as an 

individual, cognitive construct (e.g., Kaput, 1999). More recent sociocultural definitions position 
generalization within activity and context, as a collective act distributed across multiple agents 
(Tuomi-Gröhn & Engeström, 2003). These perspectives attend to how social interaction, tools, and 
history shapes people’s generalizing, recognizing generalization as a social practice that is rooted in 
activity and discourse (Jurow, 2004). We borrow from both the cognitive and the sociocultural 
traditions to define generalizing as an activity in which learners in specific sociocultural and 
instructional contexts engage in at least one of the following three actions: (a) identifying 
commonality across cases (Dreyfus, 1991), (b) extending one’s reasoning beyond the range in which 
it originated (Radford, 2006), and/or (c) deriving broader results from particular cases (Kaput, 1999). 
We use the term generalizing to refer to any of these processes, whereas generalization refers to the 
outcome(s) of these processes.  

Borrowing from Lobato’s (2003) transfer framework, we take an actor-oriented approach to 
studying students’ processes of generalizing. This approach represents a shift from the observer’s 
(usually the researcher’s) stance to the actor’s (the student’s) stance. In particular, it compels us to 
abandon normative notions of what should count as a generalization, instead seeking to understand 
the processes by which students construct relations of similarity that they experience as meaningful. 
Our framework also builds on Ellis’ (2007) taxonomy of generalizations, which distinguishes 
between students’ activity as they generalize, called generalizing actions, and students’ final 
statements of generalization, called reflection generalizations.   

Forms of Abstraction 
The second line of research we rely on examines the role of abstraction in developing 

generalizations (e.g., Dorfler, 1991). Abstraction has been characterized in multiple ways, but we 
focus particularly on reflective abstraction and the interrelationships among the actions and 
operations that constitute students’ construction of mental objects. In particular, we distinguish three 
types of reflective abstraction salient in informing students’ generalizing activity: pseudo-empirical 
abstraction, reflecting abstraction, and reflected abstraction (Montangero & Maurice-Naville, 1997; 
Piaget, 2001). Pseudo-empirical abstraction is based on the observation of perceptible results, in 
which new knowledge is drawn not just from the properties of objects, but from how the student has 
organized the activities she has exerted on those objects. We further distinguish pseudo-empirical 
abstraction from other forms by noting that pseudo-empirical abstraction includes reflection on the 
outcome of one’s activity. The focus is on the products of a learner’s actions, rather than the 
coordination and transformation of actions themselves.  

In contrast, reflecting abstraction includes reflection on one’s actions, not merely on the 
outcomes of those actions. One can transfer to a higher plane what he or she has gleaned from lower 
levels of activity, leading to differentiations that imply new, generalizing compositions at that higher 
level. In reflected abstraction, one becomes conscious of his or her actions, bringing awareness of 
qualitative differences between his or her actions. Through reflected abstraction, one is able to 
formulate, formalize, and subsequently operate on his or her thought.  
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 Methods  
We conducted a series of individual semi-structured interviews with middle school (ages 12-14), 

high school (ages 14-17), and undergraduate students in the domains of algebra, advanced algebra, 
discrete mathematics, and combinatorics. The algebra and advanced-algebra topics included linear, 
quadratic, higher-order polynomial, and trigonometric functions, and the discrete mathematics and 
combinatorics topics included counting problems, combination and permutation problems, and the 
binomial theorem. We conducted 10 middle-school, 11 high-school, and 10 undergraduate algebra or 
advanced algebra interviews, and 19 middle-school, 13 high-school, and 27 undergraduate discrete 
mathematics (combinatorics) interviews.  

During the interviews we presented the participants with domain-specific tasks to elicit both near 
and far generalizations, and we asked the participants to identify patterns and themes, discuss any 
elements of similarity they noticed, and, where reasonable, explain and discuss the generalizations 
they formed. All interviews were videotaped and we used gender-preserving pseudonyms for all 
participants. Table 1 presents a sample of the interview tasks across the mathematical domains.  

Table 1: Sample Interview Tasks 

Interview Task Domain and 
grade level 

The rectangle below grows along the dotted path as shown: 

 
Complete the following statement: When the length of the rectangle grows by 
_____, the area grows by _____. 

Algebra, middle 
school 

You have a 1 cm by 1 cm by 1 cm cube, and all sides grow at the same rate. How 
much additional volume does the cube gain when the sides each increase by 1 cm? 

Adv. algebra,           
high school 

You have a deck of number cards numbered 1-6. You create a two-card hand by 
drawing a card from the deck, putting it back, and drawing a second card. 
Determine how many possible two-card hands you could get. How many times the 
number of two-card hands would you have if you had twice the number of cards? 

Discrete math, 
middle school 

Suppose passwords consist of (uppercase) As, Bs, and/or the number 1. How many 
such passwords are there that are n characters long?  

Combinatorics, 
undergraduate 

Analysis 
We relied on the constant comparative method (Strauss & Corbin, 1990) to analyze the interview 

data in order to identify forms of generalization and abstraction. For the first round of analysis we 
drew on Ellis’ (2007) analytic framework for categorizing students’ generalizing actions and 
reflection generalizations, using open coding to infer categories of generalizing activity based on 
students’ talk, gestures, and task responses. This first round led to an initial set of codes, which then 
guided subsequent rounds of analysis in which the project team met weekly to refine and adjust the 
codes in relation to one another. This iterative process continued until no new codes emerged. A final 
round of analysis was descriptive and supported the development of an emergent set of relationships 
between forms of abstraction and forms of generalizing, characterizing the evolving nature of 
students’ mental activity as they generalized. 
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Results: The Relating-Forming-Extending Framework  
Based on data analysis from the 90 interviews we developed an empirically-grounded framework 

capturing the broad range of generalizing activity across a variety of grade bands and domains. We 
present the results in two major sections. First we introduce the framework itself, which provides 
definitions, descriptions, and examples of each form of generalization demonstrated by the study 
participants (Tables 2-4). Due to space constraints, we do not elaborate on every form of 
generalizing, but we instead present a data episode identifying the interrelationships between the 
forms of abstraction and forms of generalizing. This episode is meant to be representative of the 
explanatory power of the framework, which we limit to one student due to space considerations. The 
Relating-Forming-Extending framework distinguishes between inter-contextual forms of 
generalizing, in which students established relations of similarity across problems or contexts, and 
intra-contextual forms of generalizing, in which students formed and extended similarities and 
regularities within one task. Following the actor-oriented perspective, we made the inter/intra 
distinction based on evidence of whether the student perceived the establishment of similarity or 
regularity he or she formed to occur across different contexts or situations, or to occur within the 
same context.  

Table 2: Inter-Contextual Forms of Generalizing (Relating) 
Form of Generalizing Example 

Relating 
Situations: 
Forming a relation 
of similarity across 
contexts, 
problems, or 
situations 

Connecting Back: 
Formation of a 
connection between 
a current and 
previous problem 
or situation. 

HS Adv. Algebra Student: All the sides are the same 
length. The formula is generally the same [as the prior 
problem], you’re just adding one more side for the 4-
dimensional one. 

Analogy Invention: 
Creating a new 
situation or 
problem to be 
similar to the 
current one. 

MS Algebra Student: The more seconds he has, he’ll slow 
down. And the less seconds he has, he’ll speed up faster. 
Int: Okay, and how come? Student: You know how, if you 
had less time to go into the grocery store to get the foods 
on the grocery list, you would go faster if you had like 1 
second to do it in? You would, like, be in and out real 
quick. Same thing here. 

Relating Ideas or Strategies (Transfer): 
Influence of a prior context or task is 
evident in student’s current operating. 

HS Adv. Algebra Student: So in this case it’d be P plus, 
let’s do V for valence because that’s one word I know for 
outer ring. Int: Cool, is that from chemistry? Student: Yep. 
Like the valence electrons…how much that equals plus the 
previous one, would equal your new answer. 

 
The inter-contextual forms of generalizing all involved a type of relating activity. The intra-

contextual generalizing, however, occurred in two major categories: (a) forming a similarity or 
regularity, in which students searched for and identified similar elements, patterns, and relationships 
(Table 3); and (b) extending or applying a similarity or regularity (Table 4). In the latter case, 
students extended established patterns or relationships to new cases. 

We illustrate several intra-contextual generalizations and their relationships to forms of 
abstraction by presenting the work of Willow, a middle-school algebra student, who worked on the 
growing rectangle task (Table 1). Willow initially established a numerical relationship between the 
length of 4 cm and the area of 6 cm2: 
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Well, the area is 2 more than the length so I would think if, however, if they grew like the same 
amounts of, if this (points to the area) grew by 2 in the area, so it would be 8 and this (points to 
the length) grew by 2 and it would be 6, then it would always be 2 more if they grew in the same, 
like, the same amount. 

Table 3: Intra-Contextual Forms of Generalizing (Forming) 
Form of Generalizing Example 

Relating 
Objects: 
Forming a 
relation of 
similarity 
between two or 
more present 
mathematical 
objects 

Operative: Associating 
objects by isolating a 
similar property, function, 
or structure. 

Und. Adv. Algebra Student: [Comparing x = sin(y) 
with y = sin(x) graphs] They’re both representing the 
same thing…with equal changes of angle measures 
my vertical distance is increasing at a decreasing rate 
[tracing graph]…here it’s doing the exact same thing. 

Figurative: Associating 
objects by isolating 
similarity in form. 

HS Adv. Algebra Student: How does the volume 
equation relate to this cube? Well the three numbers 
are getting one bigger and the three sides got one 
bigger. 

Activity: Relating objects 
or ideas based on 
identifying one’s activity 
as similar. 

MS Algebra Student: I think it would be 2 more than 
the 6. Int: Two more than the 6? Okay, how come? 
Student: Because, like, same as this one [points to the 
prior problem] you’re just adding it. 

Search for similarity or regularity: Searching 
to find a stable pattern, regularity, or element 
of similarity across cases, numbers, or 
figures. 

HS Adv. Algebra Student: I don’t think it goes up by 
the same amount each time. Does it? That goes up by 
3, and that goes up by 5, and that goes up by 7. Three, 
5, 7. Yeah, it goes up by…okay.  

Identify a 
regularity: 
Identification of 
a regularity or 
pattern across 
cases, numbers, 
or figures. 

Extracted: Extracting 
regularity across multiple 
cases. 

MS Combinatorics Student: For every addition 
problem that we do, like 6 plus 6 equals 12, it is 
always one more added to that every time. 

Projected: Describing a 
predicted or known stable 
feature. 

MS Algebra Student: You could do, you could do 1.5 
times growth and that would get you, times the growth 
in the length and then that would give you the growth 
in area.  

Isolate constancy: Focusing on and isolating 
regularity – a stable feature – across varying 
features. 

HS Adv. Algebra Student: This is like the one thing 
that you started off with [circles the original 
rectangle]. It’s like the only constant really. And so 
each time it changes a little bit so it’s really one of 
these is being added each time and so that’s not really 
taking it into account, the 15 that was already there. 

 
Willow identified a regularity by stating “It (the areas) would always be 2 more (than the 

length)”. Although Willow’s generalization is incorrect, it represented a pattern that she saw as valid. 
We also suspect Willow’s generalization relied on a pseudo-empirical abstraction, not because her 
generalization was incorrect, but because she appeared to generalize based on the outcome of her 
activity. Specifically, Willow’s operation was to take the difference of the numbers 4 and 6, and she 
generalized the difference remaining constant. She made an additive comparison between numerical 
values that did not appear to be based in quantitative operations relating length to area. When asked 
what would happen if the rectangle grew by another 4 cm, Willow responded, “So it grew by 
4…would the area have grown by 4 too? It could be, like, 10.” Here Willow extended by continuing 
the “area = length + 2” relationship she had established to a new case. She then further generalized 
by stating, “If the length grew by x, then the area would be 2 more than the total length,” which she 
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expressed as “A = 2 + T”. Here Willow extended by removing particulars in order to algebraically 
express the relationship she had established. We maintain that this string of generalizations remained 
grounded in Willow’s activity of pseudo-empirical abstraction. Her focus remained on the result of 
her operation, the difference of 2, and at no time did Willow coordinate the growth of the rectangle 
simultaneously with varying measures of length and area. 

Table 4: Intra-Contextual Forms of Generalizing (Extending) 
Form of Generalizing Example 

Continuing: Continuing an existing pattern or 
regularity to a new case. 

MS Combinatorics Student: [Moves from a 7-card 
case to an 8-card case]: It is like the last time. You 
don’t count (8, 8) twice. 

Operating: 
Operating on 
an identified 
pattern, 
regularity, or 
relationship in 
order to extend 
it to a new 
case. 

Near: Making a minor 
change to a regularity in 
order to extend it to a new 
case. 

HS Adv. Algebra Student: [After having established a 
pattern of adding 8 square units for every additional 
rectangle]: And then plus 8, or I could just do plus, 
um, 8 times 5, right? And so that would be 40. 

Projection: Making a major 
change to a regularity in 
order to project it to a far 
case. 

Und. Combinatorics Student: [After solving cases 
with 3 and 4 combinations]: So now I believe if you 
gave me something where if there was 20 
combinations I could solve how many combinations 
there are without having to write them all out: 220 and 
whatever that equals. 

Transforming: 
Extending a 
generalization 
and, in doing 
so, changing 
the 
generalization 
that is being 
extended. 

Constructing a Quantity: 
Constructing a new quantity 
or a relationship between 
quantities in order to extend 
a regularity to a new case. 

HS Adv. Algebra Student: [Exploring the three sides 
of a rectangular prism, the interviewer asks the 
student to express one side in terms of the other.] So 
it’s x plus 1, right? 

Recursive Embedding: 
Embedding a previous 
situation into a new one as a 
key component of the new 
task. 

Und. Combinatorics Student: Okay, we’re definitely 
using 1, so we’re limiting ourselves to only 2 
possible states for the entire password, A and B, 
which means it’s basically no different than what we 
did in one of the earlier examples. So that I’ll 
probably just figure, okay, 2 to the 3rd equals 8. 

Removing particulars: Extending a specific 
relationship, pattern, or regularity by 
removing particular details to express the 
relationship more generally. 

MS Algebra Student: I was thinking, like, trying to 
put it in an equation I guess, so it kind of makes 
sense…Well it could be, area equals 2 plus total 
length [writes A = 2 + T]. 

 
Right when the interviewer began to remove the task in order to transition to a new problem, 

Willow suddenly evidenced a shift in her thinking, saying, “Unless it will start at 0?” 

Because if you start it at 0…to find out the actual growth, then, say this is like the first they grew 
and this, kind of, so this grew by 4 first (gestures along the length) and then this grew by 6 
(gestures to the whole figure, along the area). So this (the length) could grow by 4 again, and this 
(the area) could grow by 6 again. 

Willow appeared to construct a dynamic image of the rectangle growing “from 0”. She further 
explained, “Because it would always be plus 4 and plus 6, so if you said when the length grows by 8, 
the area grows by 12.” Willow imagined the rectangle growing in chunks, iterating twice. Willow 
therefore identified a regularity that if the rectangle started growing from 0, then for every 4-cm 
increase in length, the rectangle would increase in area by 6 cm2. This regularity, unlike the first one 
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Willow identified, was based on an image of growth in which Willow was able to coordinate an 
increase in length with a corresponding increase in area. This image was informed by the operations 
of forming a ratio and iterating it. It was also a product of reflecting abstraction in that Willow 
reflected on her activity in order to coordinate iterating her formed ratio with the number of times it 
was iterated. Therefore, she could then state that the length would increase by 4 again, resulting in 
another increase of 6 for the area. Willow extended by continuing the relationship, and she did so by 
relying on her ability to coordinate growth in one quantity with growth in the other. 

We take further evidence that Willow engaged in reflecting abstraction by what occurred next. 
Namely, she was able to extend by operating on the relationship she had formed, multiplying each 
term in the 4:6 ratio by 4, then by 10, ½, ¼, ¾, and 5/4 in order to generate new length:area pairs. 
This extension was significant because it included the use of both whole number and fraction values. 
It also suggests that Willow had reflected on her operation of forming a ratio in order to develop a 
flexible, generalizable relationship with which she could meaningfully operate. Willow ultimately 
developed a unit ratio, explaining, “Each time the growth in length goes up by 1, the growth in area, I 
think the growth in area equals [writes A = 1.5 × L].” Thus Willow identified a new regularity and 
then removed particulars for this regularity. When she removed particulars, she reflectively 
abstracted a ratio from the phenomenological bounds in which it was created, and Willow’s 
subsequent flexible use of this ratio with messy numbers is evidence that she could imagine it 
holding for any arbitrary value. 

Discussion  
The Relating-Forming-Extending framework identifies forms of generalizing based on data from 

multiple grade bands and mathematical domains, addressing the need to understand how students 
construct generality in more varied and advanced mathematical contexts. Willow’s work provides 
evidence that students can and do generalize their reasoning on a variety of problems beyond typical 
patterning tasks. In particular, in contrast to much of the literature identifying how students 
inductively generalize patterns, Willow abductively (Peirce, 1931-1958; Radford, 2006) developed a 
generalization from just one case. Willow’s reflective activity enabled her to develop, solidify and 
apply generalizations in two ways. Firstly, she generalized an additive comparison based on the 
numerical relationship she established between 4 and 6 (a pseudo-empirical abstraction). Secondly, 
she generalized by forming and operating on a ratio between quantities that was rooted in her image 
of the rectangle’s length growing in tandem with its area (a reflecting abstraction). 

The Relating-Forming-Extending framework extends prior work by distinguishing and 
characterizing three forms of generalizing activity and by coordinating these forms of generalizing 
with forms of abstracting. The case of Willow shows that students can engage in many forms of 
generalizing, such as identifying regularities, extending by continuing, and removing particulars, 
based on either pseudo-empirical or reflecting abstraction. Other forms of generalizing, such as 
extending by operating or transforming, appear to be more typically grounded in reflecting 
abstraction, as they often entail differentiations based on activity in order to support new 
compositions. By attending to both abstraction and generalization in students’ sense-making, we can 
begin to characterize how students can leverage initial abstractions into first-pass generalizations that 
they can then reflect on and transform in further activity. Further analysis of these relationships 
between abstraction and generalization will inform a better understanding of the conceptual 
mechanisms driving generalizing activity in a variety of mathematical contexts. 
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This article is a report on a teacher study group that focused on three elementary teachers’ 
perceptions of mathematical modeling in contrast to typical mathematics instruction. Through the 
theoretical lens of figured worlds, I discuss how mathematics instruction was conceptualized across 
the classrooms in terms of artifacts, discourse, and identity. I then highlight, through four themes, 
how mathematical modeling challenged the ways in which both the teachers and students understood 
what it means to know and do mathematics. Findings suggest that the practice of mathematical 
modeling allowed for access, empowerment, and real world connections that were typically not 
present in classroom instruction. In addition, it challenged student positioning in the classroom in 
terms of who was framed as capable of doing mathematics. 

Keywords: Elementary School Education, Equity and Diversity, Modeling 

Introduction 
Mathematical Modeling, a standard of mathematical practice in the Common Core State 

Standards, is a process in which students use mathematical tools to reason about, represent, and make 
decisions surrounding a real world scenario (Lesh & Doerr, 2003). The process of modeling is cyclic 
and it begins when the modeler translates the scenario into the mathematical world by posing a 
question. Using knowledge and mathematical tools, the modeler proposes solutions and translates 
them back to the real world to determine if they are appropriate or if modifications need to be made. 
In this paper, mathematical modeling refers to the entire process rather than the end product.  

Although mathematical modeling has traditionally taken place in secondary and college 
classrooms, researchers (Carlson, Wickstrom, Burroughs, & Fulton, 2016) have argued that it is 
equally as important for elementary students to engage in the process. Modeling supports 
mathematical literacy (Steen, Turner, & Burkhardt, 2007) and allows students to draw on their own 
backgrounds and experiences in framing the mathematical problem (English & Watters, 2005). 
Modeling also promotes productive attitudes toward mathematics (Lesh & Yoon, 2007), and fosters 
integration across mathematical content and practices (Lehrer & Schauble, 2007).   

The study of mathematical modeling in the elementary classroom is a relatively new field of 
study. The purpose of this paper is to add to existing literature by describing an elementary modeling 
task and the ways in which it challenged teachers’ and students’ perceptions of what mathematics is 
and what it means to do mathematics as well as the students’ and teacher’s roles within the 
classroom. Through the theoretical lens of figured worlds, in this paper I address the following 
research questions: 

1. How does mathematical modeling press on or extend the boundaries of what it means to 
know and do mathematics in the elementary classroom? 

2. In what ways, if any, does mathematical modeling challenge positionality and roles in the 
elementary classroom? 

Theoretical Framework: The Mathematics Classroom as a Figured World 
This work is framed through the theoretical lens of Holland, Skinner, Lachicotte, and Cain’s 

(1998) concept of figured worlds. They define a figured world as, “a socially and culturally 
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constructed realm of interpretation in which particular characters and actors are recognized, 
significance is assigned to certain acts, and particular outcomes are valued over others.” (p.52) 
Holland et al.’s work addresses the idea that each individual’s thoughts, behaviors, and ways of 
interpreting the world are often influenced by culture, power, and status. In addition everyday 
activities act as figured worlds that build, inform, and continually define individual’s identities. In 
this paper, I argue that the mathematics classroom functions as a figured world. In the elementary 
classroom, there are routines that define what it means to know and do mathematics. In addition, both 
the teachers and students take on different roles and identities that are continually formed across the 
school year.  

Figured worlds consist of three key elements: artifacts, discourse, and identity. I begin the paper 
by discussing a typical day in the teachers’ classrooms in response to artifacts that contributed to the 
figured world of mathematics instruction, discourse surrounding how the three teacher’s interpreted 
doing mathematics, and the identities and roles the teachers perceived in the classroom. Next, I 
identify and describe four themes that arose while mathematical modeling that challenged the 
established norms or figured worlds.  

Methods 

Participants 
Three teachers participated into this study, Ms. A, Mr. B, and Ms. C.  Ms. A was a fifth-grade 

teacher. Mr. B was a fourth-grade teacher and Ms. C was a third-grade teacher. The teachers were 
participants in a NSF-funded professional development on integrating mathematical modeling in the 
elementary classroom that took place in a school district in the Rocky Mountain West. As part of the 
professional development, the teachers attended a weeklong professional development on 
mathematical modeling and pedagogical practices in the summer. During the summer, they designed 
a modeling task to implement in their respective classrooms. Following summer professional 
development, the teachers participated in a teacher study group in which they met seven times across 
the fall semester to debrief and discuss the modeling task with a university faculty member. The three 
teachers were chosen for this study because they were grouped together in the same study group and 
enacted the same modeling task. I, the researcher, took on the role of their study group facilitator.  

Modeling Task 
This section is meant to give a brief overview of the task. Specific examples of students engaging 

in the task will be given in the results section. In designing the modeling task, each of the teachers 
discussed that they led some type of community-building lunch at the beginning of the school year 
for students to get to know one another. Instead of designing the activity themselves, they decided 
they would use this as a real-world scenario to engage students in mathematical modeling. Teachers 
presented the following scenario to students, “Building community in our classrooms is very 
important. The university has given us money to support a community building lunch.” After 
presenting the scenario, they asked students to consider 1) What do we need to know? and 2) What 
tools could we use to help us? Students decided that they needed to address broad questions like 
“What should we have for lunch?”, “What activities should be included to build community?”, “Will 
what we want fit into our budget?”. Students also discussed that there are other factors to consider 
like allergies and personal preferences in food selection.  

The teachers worked with students on this task across 3-4 weeks, visiting the task a few times a 
week. Initially, the students worked on determining what should be served at lunch and quantity. 
Students primarily used surveys, multiplication, counting, and measurements as mathematical tools 
to aid them in making decisions. Once students had determined what should be served and how 
much, they needed to determine where the food would come from and if the meal was in budget. The 
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teachers helped by providing grocery store and restaurant ads. Again, the students primarily used 
multiplication and repeated addition in determining the total cost.  

Data Collection 
I, the researcher, observed all three teachers across implementation of their modeling tasks 

visiting each teacher for 3-4 lessons. During observations, I took qualitative notes of what occurred 
in the classroom including what the teachers said or did, students’ progress in the task, and students’ 
remaining questions or concerns. In addition, I facilitated and video-recorded seven meetings in 
which the three teachers debriefed about the modeling task and their work as teachers. Following the 
fall teacher study groups, the teachers individually participated in a one-on-one interview that lasted 
for about 45 minutes. The purpose was for teachers to first describe the structure of a typical 
mathematics lessons including routines, student activities, and teacher activities. In the second half of 
the interview, the teachers were asked to describe their experiences enacting mathematical modeling. 
This included describing key features of and comparing mathematical modeling to a typical lesson. 
In addition, they were asked to describe what the process was like for their students and for them, as 
teachers. The primary data source for this article are the one-on-one interviews with observational 
notes used as triangulation.  

Data Analysis 
Interviews with teachers were audio recorded. Each of the interviews was transcribed verbatim 

resulting in about 10 pages of typed transcript per teacher. Classification and coding took place first 
related to the research questions and theoretical framework (Miles, Huberman, & Saldana 2014). I 
analyzed the transcripts first looking for statements that helped to contextualize and describe 
components of a typical mathematics lesson. Then, I analyzed the data looking for statements related 
to the three main components of figured worlds: artifacts, discourse, and identities. Finally, I looked 
for statements, in describing the modeling task, that were in contrast to the figured world of the 
mathematics classroom. I analyzed and grouped the statements to generate themes regarding the 
figured world of the mathematics classroom and the ways in which mathematical modeling 
challenged or reinforced this world.   

Results 

The Figured World of the Mathematics Classroom 
Artifacts. Artifacts are objects that act as the “means by which figured worlds are evoked, 

collectively developed, individually learned, and personally powerful.” (Holland et. al, 1998, p.61) 
Across the three classrooms, there were three artifacts that supported how mathematics instruction 
was conceptualized: group/carpet area, worksheets, and journals. Each of the teachers began the 
lesson by bringing the class together in a communal area or a carpet at the front of the classroom. 
The purpose was for the students to be able to express themselves in a communal environment. The 
teachers described that they first presented an idea or a problem to students in pairs or groups. 
Students were asked to compare and discuss their solutions with their partner and then solutions were 
shared allowed. In describing this part of the lesson, Mr. B stated:  

So they’ll (the students) work independently, compare their answers with their learning partner 
and then I’ll call, usually using the equity sticks, I will call several people up…often I just look 
and see a variety of different problem solving methods and always emphasize that the students 
learn more from each other than me.  

Each of the teachers discussed this as time for students to voice multiple solution strategies, build 
community, and learn from one another.  
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The second artifact that shaped mathematics instruction was the worksheet. After students 
discussed and shared solution strategies, they moved back to their desks and were given different 
types of practice problems. All of the teachers used the worksheet as a way to individually assess if 
students understood the material as well as time to talk individually with students. Ms. C described, 
“I give them a few problems and I just want to see, I rotate from group to group to see if they are 
getting it.” The emphasis of this part of the lesson was for students to practice the mathematics and 
try out different strategies independently.  

The journal was the final artifact that shaped mathematics instruction. All of the teachers either 
had students write in a journal or respond to a reflective prompt describing their learning and 
successes or challenges they faced. Ms. A described,  

After we have been doing any sort of activity…they open their journals and they reflect for a few 
minutes and I have them identify a success or a challenge that they had and we talk about it. Or 
sometimes I ask them to give advice to the next class on what they learned.  

In examining the artifacts, students participated in mathematics through daily routines. Through 
the carpet space, mathematics was communal and open to discussion. Through the worksheets, 
mathematics became an individual endeavor in which teachers could examine students’ thinking and 
skills. Finally, mathematics became a reflective process through the mathematics journal.  

Discourse. Discourse accounts for the ways in which people interact with one another and 
discuss a particular topic in their setting. Through classroom discourse, teachers and students are able 
to shape and define what it means to do mathematics. There were four themes that arose surround 
discourse from the teachers’ perspectives: student voice, multiple strategies, problem solving, and 
mistakes.  

All of the teachers discussed student voice in defining what it means to do mathematics in their 
classrooms. The students were expected to share ideas with one another and this fostered the second 
theme of multiple strategies. When multiple students are able to share out, the teachers stressed that 
there are multiple ways to do a mathematics problem. For example, Ms. C described different student 
hand signals she employs so students can respectfully disagree or add to another students’ thought. 
She stated,  

As we talk we have different signals, like (one for) something to add when someone is explaining 
something or if they don’t think the answer is right. So there are different hand signals so that we 
establish a community that’s equitable and everyone’s voice is heard and we share different 
ways. So kids are prompted to think about if someone did in a different way and they can learn 
from each other.  

For each of the teachers, mathematics was more than knowing facts or solving problems 
correctly, it was perseverance in problem solving. They each discussed that they wanted students to 
leave their classrooms with the confidence to attempt problems and apply what they knew. In 
addition, related to this theme, they also discussed making mistakes as part of problem solving. Mr. 
B stated,  

I want students to be sort of fearless. They don’t worry about failing. They just jump right in and, 
you know, my biggest thing is taking what you know, how can I approach a problem with what I 
know. So I want my students to be truly confident and believe that they can do this or don’t mind 
failing.  

Across the four themes, mathematics was framed as an activity in which multiple voices should 
be heard and where multiple strategies could lead to a valid solution. In addition, students were 
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encouraged to view mathematics as a problem solving activity in which it was normal to make 
mistakes.  

Identity. Identity is the roles that teachers and students take on during mathematics instruction. 
The teachers each discussed that they expected students to take on different roles. They wanted 
students to learn from each other and be comfortable presenting mathematical strategies. Students 
took on roles of learner, presenter, and teacher with varying levels of engagement in each of these 
roles.  

The teachers primarily envisioned themselves as facilitators rather than instructors. They 
discussed that they observed, listened to students, and had students explain their thinking rather than 
instructing students on how to solve the problem or having them complete several practice 
worksheets. Their role was to observe student reasoning over time and help students make progress 
both collectively and individually.  

Pressing on and Extending the Boundaries of Mathematics through Modeling 
As the three teachers engaged their students in the process of mathematical modeling, they 

described that the process was in contrast to typical mathematical instruction. Four themes emerged 
in relation to pressing on or extending boundaries: access, empowerment, real world connection, and 
positioning.   

Access. Each of the three teachers discussed that the modeling task provided access and 
differentiation across the class that was not typically present during mathematics instruction. At the 
beginning of the modeling unit, when discussing the theme of a community luncheon, all students 
had questions and ideas that were important to them and they wanted to investigate. Based on past 
experiences, all students were able to contribute and posed broad ideas like we need to consider cost, 
likeability, and number of people but also more personal factors like food, allergies, and best places 
to shop. They each had experiences that they could draw from to start the conversation across 
multiple perspectives. In describing this, Mr. B stated,  

I think the thing that is most incredible about modeling is watching students use what they know 
to solve problems, you know? Watching each individual or each group come up with a 
completely unique way to solve a problem and bring their individual strengths to be part of the 
solution. That has been really powerful.  

The teachers commented that the students, by grade level, determined the mathematics they 
would use and how far to pursue the task.  For example, when planning the luncheon, the third-grade 
students decided to investigate the cost of a main and side dish while the fifth-grade students planned 
drinks, a main dish, a dessert, a game following lunch to help build community, and how they would 
allocate their time across each. Individually within grade levels, students could also access the task 
and apply mathematical concepts that were appropriate to their understanding. For example, in 
fourth-grade, students decided they wanted pizza for lunch. When determining the number of pizzas 
needed, some students used repeated addition while others used multiplication. In describing access, 
Ms. C stated, “It differentiates itself just by design and kids that are at different levels can be 
successful at it.” 

Ownership and Empowerment. The second theme that emerged was the idea of ownership or 
empowerment. The teachers identified that the students were able to make choices in the process of 
modeling. For example, when determining what beverage(s) to serve at the lunch, students surveyed 
one another using Google documents and found that students wanted the following: 28% root beer, 
25% orange soda, 17% lemonade, 10% Cool Aid, 10% apple juice, and 8% milk, and 2% Caprisun. 
At first, some students proposed that they should just serve root beer because it had the highest 
percentage. Other students disagreed and stated that less than half of the class wanted root beer, so 
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they should have multiple choices. In the end, the class decided they would offer the top three 
choices so that more people would be happy in their beverage choice. In describing the process, Ms. 
A stated that she tries to give students choice, but the process of modeling provides greater 
opportunity for student choice and ownership. She stated,  

Well (modeling) it’s all about choice. I mean they choose what path they want to do or take and 
how they go about solving it. I try to have a lot of choice in here (my classroom) but I can only 
have so much, right? And modeling is different because it (the choices made) are mostly theirs 
and when it wasn’t theirs, they didn’t know that. They had this empowerment that it was them 
controlling where they were going. 

In addition to having choices, students understood that the choices they made mattered. Whatever 
they decided upon actually happened. For example, in the fifth-grade class, students decided on pizza 
for lunch, but ran out of Hawaiian pizza before everyone who ordered it was served.  In describing 
the situation, Ms. A., stated,  

Like the little girl who didn’t get her pizza. She just assumed her math was right and when I 
began to think about it, I just assumed that the kids had been sneaky, but maybe their math 
wasn’t right and we didn’t order enough of that kind of pizza?... It is pretty powerful and 
something that we could have a future discussion about.  

Although this example highlights a negative outcome, through taking on the responsibility of 
planning, teachers commented that students felt confidence in making decisions and then seeing their 
decisions become reality.  

Real World Connection. A third theme that emerged was the concept of math as reality. In 
describing the launch of the task, Ms. C stated, “I think a lot of them didn’t realize they were doing 
math.” Because the problem was situated in reality, all three teachers discussed that students engaged 
and related to the mathematics with more excitement and perseverance.  Mr. B discussed that 
students were self-motivated when investigating the lunch problem. He stated, “for fourth-
grade…our lunch was really successful, you know? It’s been really motivating. There is no work I 
have to do, you know, no encouragement I mean. We just start the process and they are excited and 
want to attack the problem.” It is interesting to note that the lunch modeling task took about a month 
to complete with students working on the task a few times a week. At no point did they loose 
motivation or interest to finish the project. Ms. C discussed that during a typical mathematics lesson 
there is limited connection to the real world. She felt that the process of modeling added an 
additional layer of meaning to the problem. She stated,  

The real worldliness of what we were doing was key. Because a lot of math that I teach on a daily 
basis I feel like has no connection to the real world. I mean, maybe you can stretch it to where we 
are talking about candy or in a story problem dividing it up, but it kind of loses something 
because it’s not connected to a real-world thing that means something to the kids. 

The process of modeling highlighted that mathematics is more than different strategies to a 
particular problem. It can be used to reason about issues students face.  

Positioning. The three themes above, access, ownership, and real world connection, all involve 
how the students perceived and engaged with mathematical content. Mathematical modeling also 
served as a tool to question positioning in the classroom. All teachers described that it helped to 
challenge students who they labeled as gifted. The modeling process often takes time and there is no 
one right answer which was frustrating for some students. Ms. C. stated,  

I also like that it is challenging for the kids who are considered gifted. I have a couple (gifted) 
kids in my class that when they wrote their reflection, they were like, “I don’t like this” because 
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they are so used to, even though they are only third-graders, they are so used to being right and 
getting the right answer…and this was out of their comfort zone. I think that was a good thing.  

The process helped to challenge the idea that mathematical thinking is not always about solving 
problems quickly and correctly. Mathematics can be interpretive. Some students commented that 
they usually did not like mathematics, but they enjoyed this process.  

In addition, teachers commented that modeling fostered mathematics as a community activity. 
Everyone could feel included and that their ideas mattered. Students could bring knowledge and 
experiences from outside of the classroom in to help them make decisions about the task. In 
describing positioning in the classroom, Ms. A stated,  

The most amazing thing to me is that everybody is able, no matter who you are, can enter the 
(modeling) process where you need to enter it. I just, my entire life, as a person, I have always 
had a hard time not including everyone and not having everyone feel like they are valued and 
important. And, I’ve, when I decided to become a teacher, as much as we like to think public 
education is inclusive, it’s not. We have groups, pullouts and things because we need to service 
everybody. I totally understand, but it has always made me a little uncomfortable because I see 
the dynamics because of that. Roles are created. Status is created within the classroom. It’s just 
reality and so this was the first time that I had that that “aha” moment in the class this summer 
when we were reading those articles. If this is how math could be in my classroom where 
everyone was doing mathematics and didn’t have a role in this or as the really smart kid or the 
not so smart kid. We would all just have a part in it. 

All three teachers described that modeling allowed for all students to feel that they could actively 
contribute to solving the problem.  

Discussion and Concluding Remarks 
The teacher interviews and study group notes suggest that mathematical modeling can act as 

means to extend and redefine students’ notions of what it means to know and do mathematics. In 
classrooms that already valued multiple solution strategies and community-based discussion, 
modeling acted as a means for all students to feel that they had something to contribute. This is 
similar to statements made by English and Watters (2015) that students draw on their own 
experiences to frame the problem. Students were also empowered to view mathematics as a tool 
rather than seeing mathematics as the practice of skills. The mathematical choices students made 
mattered. In addition, this study highlights that modeling pressed on the idea that mathematics is 
bound to classroom instruction. Students were able to see that mathematics could help them make 
choices about real world decisions. Lastly, modeling challenged perceptions regarding who was 
capable of doing mathematics and what it meant to be successful in solving a mathematical task. In 
closing, if mathematical modeling adds to students’ understandings of what it means to know and do 
mathematics, it is important to investigate ways to provide opportunities for modeling across the k-12 
system as well as investigate the impact from the student’s perspective.  

Acknowledgements 
This material is based upon work supported by the National Science Foundation under Grant No. 

1441024.  

References 
Carlson, M. A., Wickstrom, M. H., Burroughs, E., Fulton, E. W. (2016). A case for mathematical modeling in the 

elementary classroom. In C. Hirsch (Ed.), Annual perspectives in mathematics education: Mathematical 
modeling and modeling mathematics. (pp. 121– 130). Reston, VA: National Council of Teachers of 
Mathematics.  



Mathematical Processes 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

692 

English, L. D., & Watters, J. J. (2005). Mathematical modeling in the early school years. Mathematics Education 
Research Journal, 3, 5879 

Holland, D., Lachicotte, W., Skinner, D., & Cain, C. (Eds.) (1998). Identity and agency in cultural worlds. 
Cambridge, MA: Harvard University Press 

Lehrer, R. & Schauble, L. (2007). A developmental approach for supporting the epistemology of modeling. In W. 
Blume, P. L. Gabraith, H. Henn, & M. Niss (Eds.), Modeling and applications in mathematics education: The 
14th ICMI study. (pp. 153-160). New York, NY: Springer. 

Lesh, R. & Doeer, H., M. (2003). Foundations of models and modeling perspective on mathematics, teaching, 
learning, and problem solving. In R. Lesh (Ed.), Beyond constructivism: Models and modeling perspectives on 
mathematics problem solving, learning, and teaching. (pp. 3-34). Mahwah, NJ: Lawrence Erlbaum Associates.  

Lesh, R. & Yoon, C. (2007). What is distinctive in (our views about) models and modeling perspectives on 
mathematics problem solving, learning, and teaching? In W. Blume, P. L. Gabraith, H. Henn, & M. Niss (Eds.), 
Modeling and applications in mathematics education: The 14th ICMI study. (pp. 161-170). New York, NY: 
Springer. 

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis : a methods sourcebook. Thousand 
Oaks, Califorinia : SAGE Publications, Inc. 

Steen, L. A., Turner, R., & Burkhardt, H. (2007). Developing mathematical literacy. In W. Blume, P. L. Gabraith, H. 
Henn, & M. Niss (Eds.), Modeling and applications in mathematics education: The 14th ICMI study. (pp. 285-
294). New York, NY: Springer.  

 
 



Mathematical Processes 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

693 

PROBLEM DRIFT: TEACHING CURRICULUM WITH(IN) A WORLD OF EMERGING 
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In this paper we frame our observations in enactivism, specifically problem posing, to propose the 
notion of problem drift as a method to analyze the curriculum generating actions of small group 
learning systems in relation to teacher interventions intended to trigger specific content goals. 
Teacher attentiveness to problem drift is suggested to be valuable in advancing the content goals in 
small group work. 

Keywords: Problem Solving, Instructional Activities and Practices, Cognition 

 Small group problem solving has become a stalwart for classroom teachers attempting to 
occasion vibrant communities of mathematical communication and reasoning. Placing students in 
problem solving groups creates simultaneous short-range interactions, and results in a classroom 
ecology dense with opportunity for the teacher to curate productive mathematical insight. However, 
observing teaching and learning from an enactivist stance means a teacher cannot assume that the 
group will interact with the content goals of a lesson along a predictable pathway. Instead, cognition 
is a process of continually posing problems relevant in the moment (Varela, Thompson, & Rosch, 
1991). A teacher may assign a task with specific content goals in mind, but, through their action with 
the task, groups bring forth multiple worlds of significance (Kieren & Simmt, 2009), each of which 
the teacher is then required to assess for relation to the original curriculum goals. After all, the 
ultimate responsibility of teaching any program of study is to deliberately impact learners. This 
leaves the teacher with the job of monitoring how a small group encounters targeted content 
outcomes within mathematically rich spaces during their course of interactivity as well as coupling 
with that interactivity with the intention of triggering interaction with targeted content outcomes.  

Here, we suggest that the observation of the problem around which the group organizes their 
interactivity (the problem that is posed by the learners as relevant to addressing the task as currently 
understood by the group) can inform a teacher’s intentional attempts to impact a group’s 
mathematical action (Proulx & Simmt, 2016). This problem posing activity of a group signals the 
character of their knowing, of their world of mathematical significance. The ongoing re-posing of 
this relevant problem is termed problem drift (Banting, 2017), and can be thought of as a way of 
observing the emerging character of a group’s curricular attention. We add to Proulx and Simmt’s 
work by analyzing problem drift and its relation to the targeted content outcomes of a lesson. This 
frames our observations of the world of significance brought forth by a learning system (learners, 
teachers, and environment inclusive) in specific relation to the intended curricular outcomes. Doing 
so results in a pragmatic stance with(in) the learning system that includes more than just the 
interactions of the group surrounding content goals, but also the patterns of action in relation to the 
teacher interventions offered with content goals in mind. 

In this paper we explore the notion of problem drift as a method for analyzing the dynamic 
bringing forth of meaning among members of small groups when given a mathematical task. We 
explore how problem drift can provide a focus for teachers (and researchers) whose goal it is to 
understand the nature of mathematical meaning and how they might be purposeful in their influence 
of it.  
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Establishing Problem Drift 
For the enactivist, knowing is doing (Maturana & Varela, 1987); the process of knowing and its 

products are one in the same thing (Pirie & Kieren, 1994). The mathematical knowledge of a group 
(its knowing) is not a source through which the mathematical action (its doing) is resourced or 
initiated. Rather, knowing/doing emerges through interaction between a subject and their 
environment (Proulx & Simmt, 2016). Reciprocally, through these interactions from which knowing 
emerges, the environment is continually shaped (hence co-emerges), and, in return, triggers further 
possibilities for action. It is through this process that meaning is brought forth. Therefore, knowing 
emerges out of context. The coordination of learner and environment is not fully in the agent nor the 
environment, but emerging from the interaction between the two, constituting an emerging world of 
significance (Kieren & Simmt, 2009); this is the image of knowing and learning with(in) an 
environment. The learners do not interpret their context in multiple different ways, which would 
imply that the environment remains static as the learner constructs an impression of its character. 
Rather, through the mutual triggering of environment and agent, the learners’ knowing—that is to 
say, doing—brings forth distinct worlds of significance. It is through this lens that content outcomes 
are recast in active terms. In other words, claiming that a specific skill (like “creating equivalent 
fractions”) is known means that it must emerge as relevant; it must be enacted. 

The mutual specification of problem (environment) and problem solver (learner) means that “we 
do not choose or take problems as if they were lying out there, independent of our actions, but we 
bring them forth” (Proulx, 2013). Action of a learner is not dictated or prescribed by the 
environment, but a learner’s structure allows certain features of the environment to become 
problematic, curious, or interesting. These worlds are maintained through the ability of the learner, in 
this case, the learning group, to pose problems relevant to its needs at that moment (Varela et al., 
1991), where that relevance is contextually and structurally determined (Maturana & Varela, 1987) 
and the action triggers a furtherance in the posing. In other words, for the enactivist, problems are not 
given (by the teacher); problems are posed (by the learner). It is through the posing of the problem 
deemed relevant in the moment that the problem environment and the learning action of the problem 
solver co-dependently arise. This evolution of the problem posing constitutes the problem drift of the 
learning system. Because problems are not ready-made, determining what problem has been posed as 
relevant provides the context in which the group is acting—what meaning they have brought forth. 
Problem drift details the relevant problem posed by a learning system in order to analyze its knowing 
action, a sort of trace of mathematical knowing.  

It seems that we arrive at a fundamental tension between the responsibility (for the teacher) to 
provide problems pertaining to a specific set of outcomes as delineated by a curriculum document 
and the enactivist notion of problem posing—the recognition that learners enact the nature of the task 
by entering into interaction with it. It problematizes the role of problems to prescribe content 
outcomes. Rather, teachers design prompts in anticipation that the structure of the task will trigger 
action that is observed to be mathematical. Teachers then become fully complicit in bringing forth 
the world(s) of significance by participating in the meaning making (Proulx, 2010). In other words, 
the teacher does not stand aside and perturb the world of significance of the learners, the teacher 
participates in the becoming as a fully coupled agent. Conceptualizing knowing in this fashion co-
implicates the teacher in the generation of significance. In this sense, the enactivist notion of problem 
posing does not consider the process of learning as helter-skelter and unbridled where the teacher has 
little-to-no influence. Such an image would be unapologetic to the project of schooling. Rather, 
enactivist cognition heightens the role of teacher as one who participates fully in the action—
provoking, triggering, orienting, and influencing the learning system. The task of teaching becomes 
the tethering of the emergent problem posing the group undertakes to bring forth a world of 
significance to the anticipated content goals built into the task.  
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Problem drift sits at the crossroads between the enactment of a problem and the mathematical 
products required by a curriculum; it provides a method to analyze the curriculum a group brings 
forth. It allows an observer snapshots in the action that can be analyzed for the mathematical 
processes that were used to address the relevant issues that emerged through their interaction with the 
task. In short, problem drift allows us to observe the curricular outcomes emerge to address the 
problem(s) posed as relevant (Banting, 2017).  

Methodology 
The teacher participants for this study were recruited through previous professional relationships. 

Using a design research approach (Prediger, Gravemeijer, & Confrey, 2015) with specific attention 
on the tenants of enactivist methodology (Reid & Mgombelo, 2015), the daily instruction in two 
classrooms (belonging to two different teachers) was designed around small group tasks completed 
by students working in randomly-created groups of three. During the study, video data from the 
workstations of three randomly-chosen small groups was recorded on five separate occasions for a 
total of of fifteen accounts of group problem solving.  

Three adults—a researcher, a classroom teacher, and a pre-service teacher partnered with the 
classroom teacher for the semester—took on the role of teacher during the classroom episode under 
analysis here. After each classroom session, a debriefing was audio recorded that included all three 
teachers. In it, they discussed what they observed in regards to the character of the groups, the 
interventions they offered, and the reasons behind their choices.  

Portions of the action of Brock, Ria, and Sharla (pseudonyms used) is detailed as they worked 
together on the Tile Design task in their grade nine mathematics course which contained twenty-
seven students, or nine groups of three. The Tile Design task asked students to create a series of 
shapes with colored square tiles to satisfy requirements given to them by a series of stage cards. The 
task was designed to provide occasions for students to work with two content outcomes:  

• Creating equivalent fractions  
• Comparing and reasoning about fractions in a part-whole model 

Results 
In what follows, we detail the action of Brock, Ria, and Sharla (along with the teachers) with 

interlacing dialogue, artefacts of their doing (images depicting the tile arrangements on their 
workspace), and description of teacher interventions with the intention of triggering interaction with 
the content outcomes of the task. For the sake of brevity, only a portion of their action (divided into 
three episodes) is provided. 

In the first episode, the group was required to create a shape where one twentieth was yellow, one 
quarter was green, one half was blue, and the remaining was red. Dialogue begins after the group had 
arrived at an initial arrangement (Figure 1). 

Teacher: Is that half blue? 

After a quick glance of their arrangement, the group was unanimous that the shape was not half 
blue, and a student removed two blue tiles to leave the arrangement in Figure 2.  
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Figure 1. Initial arrangement. 
 

 

Figure 2. Altered arrangement. 

Brock: This is only 14! 
Ria: We need 20 tiles. 
Sharla: Because the common denominator is 20? 
Teacher: What were you going to say, Ria? 
Ria: You need 20 tiles because the denominator, the common denominator is 20. 
Brock: Yeah. It doesn’t equal 20. 
… 
Ria: You add other blues. 
Sharla: If you add, then you have to add in more. But then you have to add in another colour. 

Add another colour. 
Brock: Wait, how many green do we have? 
Sharla: We need to add in more green then if you added more blues. 
Ria: Which means we have to add more yellow because it has to be equal. 
… 
Emma: Well, if blue is supposed to be one half, and green is supposed to be one-quarter, then 

green has to be half the size of blue because one half can be split up into two quarters and if 
this is one quarter it should be half the size of blue. 

Shortly thereafter, a second episode was prompted when the group was provided with a new 
stage that required them to create a shape that was at least one half red, at least one quarter green, and 
no more than one sixth yellow. 

Brock: At least means it has to at least be a half, right? Okay, so let’s make it a common. 
Ria: Let’s just say this is half.  
Brock: Let’s do 12. Want to do 12? 
Ria: Yeah, sure.  
Brock: Okay. So half of 12 is 6. So we have to at least have 6 red. 
Ria: Can I make the shape this time? 
Brock: No more than one sixth is yellow. 2. And then at least one fourth is green. 
Sharla: So that would be. 
Ria: 3.  
Brock: It has to be 3. Umm. Put one more yellow. It has to be like this. Make sure that’s good.  
Ria: So if its. We’re using 12, then there can only be 2 yellow, right? 
Brock: What? 
Ria: We’re using 12 and there can only be 2 yellow. 
Brock: Yeah, but, at least. Oh yeah. K yeah, so that works. 

The arrangement resulting from the second episode appears in Figure 3. The new stage did not 
trigger the group action away from the insistence of using a specific number of tiles, that equal to the 
lowest common denominator of the stage’s requirements. In an attempt to trigger further action, a 
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teacher removed a single green tile from the group’s arrangement (Figure 4) prompting a third 
episode. 
 

 

Figure 3. Initial arrangement. 
 

 

Figure 4. Teacher-altered arrangement. 

Teacher: What if I did this? Does that still work? 
Sharla: No, because he. 
Ria: No, because this is less than a quarter now. 
Sharla: No, it’s not. 
Brock: No, it’s a quarter.  
Ria: No, but it’s still not a quarter of this. 
Brock: But it doesn’t equal 12. 
Ria: Exactly, so you need that. 

Analysis 
The group’s action was analyzed using the notion of problem drift. That is, we, as observers, 

interpreted the relevant problem that was posed by the group as they worked through the stages of the 
Tile Design task. (For a more detailed explanation regarding the method of analysis, see Banting, 
2017.) During the action detailed here, three relevant problems were determined to emerge and 
compose the group’s problem drift. In other words, we deciphered these episodes to each contain a 
unique problem posed as the group transformed—brought forth—mathematical meaning. The 
group’s action in the episodes detailed above was organized around the following pathway of 
problem drift: 

• How can we meet the requirements by using 20 tiles? 
• How does the at least requirement affect our 12-tile solution? 
• Can we satisfy the requirements without using 12 tiles? 

We now turn our attention to the important connection for the teaching of mathematics that 
emerged when the action of the group was analyzed by characterizing its problem drift. Analyzing 
problem drift allowed us to observe the group’s mathematical doing in relation to the teacher actions 
as they coupled with the learning system. Specifically, in the third episode detailed here, problem 
drift provides an explanation as to why a teacher intervention, while attempting to trigger 
mathematical action around a specific content goal, failed to do so. 
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Problem Drift Informs Content Goals 
The problem drift reveals the group to be operating in a productive space with regards to the 

intended curricular outcomes. That is, the creation of equivalent fractions and the comparison and 
reasoning about the sections of a part-whole model have emerged as processes to address the 
problems posed as relevant in their context. We see this knowing/doing in two regards. First, the 
group consistently computes targeted common denominators. Specifically, they identify the lowest 
common multiple of the denominators in the stage’s requirements, and execute the algorithm for 
creating equivalent fractions. This is how the group arrives at the 16-tile arrangement in Figure 1. 
The group converted one half, one quarter, and one twentieth into ten twentieths, five twentieths, and 
one twentieth respectively, only to lose focus on the size of the whole and assume that ten blue, five 
green, and one yellow would constitute the desired solution. We see it again in the 12-tile 
arrangement in Figure 3. These actions show that, when it is deemed to address a relevant problem, 
the group can execute this process.  

Second, problem drift allows us to analyze the knowing at a deeper level by interpreting what 
problem caused the creation of common denominators to become relevant. The group calculation of 
equivalent fractions emerges while acting with the problem, “How can we meet the requirements by 
using 20 tiles?” The algorithm to create equivalent fractions is brought forth through a need to 
establish how many tiles they should use to create their arrangement. Before they begin to reason 
about the size of each part, they need to first establish the size of the whole. 

Through the analysis of problem drift, we interpret that the group knows that equivalent fractions 
can be used to establish a whole because their doing surrounds the establishment of that whole. That 
is, the group understands the problem as one where a specific size of the whole (first twentieths and 
then twelfths) needs to be established. Creating equivalent fractions accomplishes that goal. The 
problem drift allows us to observe the curriculum outcome in the context from which it emerged as 
relevant (in active terms) and not simply as a skill that can be executed. It provides context as to why 
the group feels equivalent fractions are suitable; we begin to see the place of equivalent fractions in 
their emerging world of significance.  

In the second episode the group was left with eleven of twelve tiles assigned a definite color after 
computing common denominators. They then began to address the remaining tile’s worth of “empty 
space” by posing, “How does the at least requirement affect our 12-tile solution?” Throughout their 
action, there is no wavering in their understanding that they must work from a well-established 
whole. They reason about the possibilities of adding the different colors (attempting yellow, rejecting 
yellow, and eventually settling on the addition of a green) within the frame of the posed problem. In 
this sense, their reasoning about the size of fractions emerges within the context of filling in empty 
space left by the firm establishment of the 12-tile whole. The problem drift allows us to observe that 
the group knows that there are certain restraints in adding colors to an arrangement with a fixed 
whole. Throughout the episode here, analyzing the problem drift of the group allowed us to observe 
their dynamic mathematical doing tethered directly to content outcomes. Not only do we observe the 
direct execution of mathematical processes, but we also observe the world of mathematical 
significance in which these processes emerged as relevant. 

Problem Drift Informs Teacher Action 
The problem drift of the group in reaction to the teacher’s decision to trigger action by removing 

one of the green tiles reveals the world of significance brought forth by the group. In the post-session 
interview, the teacher explained that they observed the group creating equivalent fractions, but their 
action never required them to compare the size of two fractions. With an eye to this content goal, the 
teacher hoped that removing a single green tile would trigger the group to compare the new fractions 
(now with a denominator of eleven) to the requirements of the stage. Having witnessed the group 
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create equivalent fractions previously (creating equivalent fractions was a part of their structure), 
they assumed the intervention would result in a furtherance of this skill. 

The third episode details how the group interacts with the intervention. The group not only fails 
to reason about the size of fractions using common denominators, they dismiss the new arrangement 
as impossible and the intervention as borderline nonsensical. Analyzing the group action through 
their problem drift reveals a possibility as to why. While the teacher assumed that the group would be 
triggered into further creation of equivalent fractions, they failed to take into account the context 
from which the creating of equivalent fractions initially emerged as relevant for the group. The group 
knows common denominators as an important process for establishing the whole; they do not know 
them as a process to compare unfamiliar fractions. This knowledge of equivalent fractions was never 
a part of their world of significance. In their understanding, equivalent fractions are a process to 
create the whole, not to compare sizes of constituent parts. That is why an intervention attempting to 
trigger action around such a concept was foreign. The teacher treated the creation of equivalent 
fractions as a skill held by the group, and did not interpret their action as brought forth with(in) a 
specific context. Problem drift allows us to re-conceptualize the reaction of the group to the trigger. 
They did not ignore the invitation because they were unable to execute the creation of a common 
denominator. As detailed previously, they do exactly this several times throughout the episodes. 
They ignore the invitation because the trigger was foreign to the world of significance they had 
brought forth.  

For them, in their world of significance, the problem was one of establishing a whole and then 
assigning the parts to meet the requirements. This is evident through their problem drift. It is the 
symbolic equivalent to determining a fixed denominator and then adjusting the numerators of each 
section until the requirements are met. By removing a tile, the intervention asked the group to alter 
the established whole—to adjust the denominator instead of the numerator. Their reaction does not 
indicate a lack of skill, but rather that the anticipated interaction was not relevant to the problem they 
posed. The teacher’s anticipated vision was incompatible with the group’s world of significance. In 
other words, analyzing problem drift reveals the group’s preoccupation with establishing the whole, 
and why an intervention that suggests they do otherwise did not sponsor the desired action 
surrounding content outcomes. This does not suggest the intervention was an example of bad 
teaching (Towers & Proulx, 2013); it simply did not coordinate with their enactment of the 
problem—it was irrelevant.  

Discussion 
Problem drift is a method for analyzing the dynamic bringing forth of meaning. It provides a 

focus for teachers (and researchers) whose goal it is to understand the nature of mathematical 
meaning and how they might be purposeful in their influence of it. It focuses the search for emergent 
knowing on the nature of a learner’s doing. 

The teaching intervention of removing a green tile did not have the desired curricular effect, but 
that is not to dismiss it as having no effect. Through their intervention, the teacher acting with(in) the 
world of significance provided a possibility by suggesting that shapes of different sizes could meet 
all the requirements of the stage. The structure of the group, and their world of significance 
evidenced through their problem drift, did not allow that possibility to become problematic, and it 
was treated as foreign or nonsensical. In order to trigger the desired content outcomes, the possibility 
of different sizes of shapes would need to first become relevant to their structure before becoming 
enacted into the group’s world of significance. Understanding this provides an avenue for the teacher 
to attempt further triggering. 

We do not suggest that understanding problem drift will make the group response to a teacher 
intervention predictable. Instead, we suggest that identifying the problem that has focused action—
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that is, become relevant—makes teacher interventions accessible. Problem drift speaks to what the 
group knows because it analyzes what they have done—what problems they have posed as relevant 
and their relation to the intended curricular outcomes. It is a way of viewing emerging 
knowing/doing and assessing whether the desired content outcomes have become a part of that 
action. It is a way of attuning to the group’s structure and situating teacher inter-actions therein. 
Here, we propose that attuning to problem drift is a critical piece to inform teacher interventions 
designed to advance the content goals of a lesson. It switches the orienting question of teaching from 
“How did they solve the problem?” to “What problem are they solving?” The former assumes the 
problem was engineered to meet certain curricular requirements, while the latter sits at the crossroads 
between emerging meaning and curricular mandates—that which has become relevant in the 
moment.  
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REFORMULATION OF GEOMETRIC VALIDATIONS CREATED BY STUDENTS, 
REVEALED WHEN USING THE ACODESA METHODOLOGY 

 Álvaro Sebastián Bustos Rubilar Gonzalo Zubieta Badillo 
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In this article, we report how a geometric task based on the ACODESA methodology (collaborative 
learning, scientific debate and self-reflection) promotes the reformulation of the students’ validations 
and allows revealing the students’ aims in each of the stages of the methodology. To do so, we 
present the case of a team and, particularly, one of its members who expresses the intention of 
reformulating validations for a mathematical conjecture besides showing evolution in the form of 
justifying. 

Keywords: Reasoning and Proofs, Geometry and Geometrical and Spatial Thinking 

Background and research problem 
For some decades, the teaching and learning of proof have been studied by a number of 

mathematics education researchers to promote their learning (De Villiers, 2010; Hanna, 2000, among 
others) and identify and classify the procedures provided by the students when developing tasks in 
which they have to prove (Balacheff, 1987; Bell, 1976). The works by these authors consider that 
students in general show difficulties when they are asked to prove a mathematical statement or 
mathematically justify their statements. Proof is probably the only accepted way of validation among 
mathematics scholars. However, in a context of teaching and learning, students are not necessarily 
expert in the matter and will not become professional mathematicians (Legrand, 1993). This means 
that, when asking students to prove, we will probably find that what they consider will be far from 
what is accepted as proof by a professional or a scholar. Considering that, our research uses the term 
validation to refer to what a student may provide to justify a mathematical statement. We understand 
this validation as a dynamic process we expect to evolve according to the context in which the 
student works.  

The aim  of this work was to determine how the validation created individually by a student is 
reformulated and improved when working with tasks based on the ACODESA methodology 
proposed by Hitt (2007). To do so, we raise the following research question: How does a validation 
change from its written formulation by a student, its subsequent study by a team and debate by the 
class, to its final reconstruction in a process of self-reflection? 

Theoretical References 
In this study, we consider the term validation as a process through which a proposition or 

mathematical statement is validated, as Balacheff (1987) explains. He considers that proving is the 
intellectual activity, not entirely explicit, that deals with the manipulation of the given or acquired 
information to produce new one, aiming to ensure the truth of a proposition. The validation can be 
expressed in different ways: explanation, argumentation, proof or demonstration. All of them can 
vary or evolve, according to the context in which the student works. Therefore, as Brousseau (2002, 
p. 17) states:  

The didactical situation must lead them to evolve, to revise their opinions, to replace their false 
theory with a true one. This evolution has a dialectic character as well; a hypothesis must be 
sufficiently accepted—at least provisionally—even to show that it is false. 
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Accepting a form of validation will depend on the mastery of knowledge each student possesses 
as well as the social environment and how close he or she is to the validation criteria of the 
community where the validation occurs. This last element is of great importance since the validity of 
a proposition must be accepted by the student and his or her social environment. Above all, the 
validity must be guided by the validation criteria of the discipline—mathematics, in this case. The 
description of the different forms of validation, according to Balacheff (1987), are the following: 

Explanation. Discourse with which the truth of a position or result previously acquired by the 
speaker is clarified.   

Argumentation. Discourse aimed to obtain the listener’s consent.  
Proof. Explanation accepted by a community that can be rejected by another. It may 

simultaneously evolve with the advance of the knowledge on which it is based.   
Demonstration. It is a series of statements organized according to a well-defined set of rules.  
To identify and then categorize the validations produced by the students, we used the typology of 

levels and types of proof by Balacheff (1987): 
Naive empiricism. It occurs when the student asserts the validity of a statement after verifying it 

in particular cases. The student's resistance to generalization is evident in this type of proof.   
Crucial experiment. The student verifies with the least particular example he or she can 

manage. In this type of proof, the student explicitly generalizes from the example with which the 
statement is verified.  

Generic example. The student provides an example representing the generality; that is, an 
example that is not considered a particular case but a representative of a type of cases for which the 
statement is true. In this type of proof, operations and transformations of the mathematical object 
explain why the statement is valid.   

Thought experiment. The student explains the reasons through the analysis of the properties 
involved in the statement, decontextualizing it and taking it out from a particular representation. 

Calculation on statements. Intellectual constructions based on more or less formalized or 
explicit theories, created in a definition or property. They are based on the transformation of 
symbolic expressions. This type of proof ranges from the thought experiment to the proof. 

Balacheff (1987) groups the types of proofs, described above, in pragmatic and intellectual. On 
one hand, the naïve empiricism, the crucial experiment and the generic example are pragmatic 
proofs: they resort to action and concrete examples. On the other hand, the thought experiment and 
the calculation on statements correspond to intellectual proofs, given that they are supported by the 
formulation of mathematical properties set in play and the relationship between them. 

Methodology  
Students of a Master of Educational Mathematics participated in the study for two sessions of 

two hours each. In each session, two video cameras were used to record an overall view of the 
classroom and specific moments. Additionally, dialogs between the students were recorded using a 
voice recorder.   

The task implemented was designed and organized according to the principles of the ACODESA 
methodology (Hitt, 2007), which allows promoting collaborative learning through social interaction 
and the use of technology. As a result, processes of conjecture, argumentation and validation are 
created in the classroom (Hitt, 2011; Hitt, Saboya, & Cortés, 2016). The ACODESA methodology 
has five stages: 

1. Individual work. The student develops the task individually using paper and pencil. 
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2. Teamwork. The students work in teams of three or four members. Each member presents a 
solution and justifies the response to the problem in front of his or her peers to create a 
solution as a team.  

3. Debate. Each team presents its proposal in front of all the class. The guidelines to the debate 
used in the ACODESA methodology must be in accordance with what Legrand (1993) stated. 

4. Self-reflection. The students carry out a process of reconstruction of the task. This stage is 
important because, as Hitt y González-Martín (2014) and Hitt et al. (2016) state, the 
consensus obtained in the previous stage might be provisional for some students. Therefore, 
every student has to reconstruct the solution individually using paper and pencil, considering 
what has been done in previous stages.  

5. Institutionalization. The teacher presents the institutional solution to the task in front of the 
students. To do so, the teacher summarizes what was done in previous stages and highlights 
the solutions proposed by each team. 

The general aim of the task was to create a work environment in which the students could 
conjecture and then validate such conjectures both individually and in teams. With the activity, we 
sought to identify the types of validations provided by the students when working on the different 
stages of the ACODESA methodology. Then, we determined how their validations evolved from the 
individual formulation to the moment they were shared and discussed during teamwork in a plenary 
session and up to the moment when they were reconstructed by the student in the self-reflection 
stage. Due to space limitations, in this article we only report part of the results of the task. The 
statement in the task and the questions were as follows: 

A parallelogram is known to be a quadrilateral whose opposite sides are parallel. If you choose 
any given parallelogram and draw the respective diagonals, four triangles will be formed; then, 

• What can you say regarding the areas of the four triangles? Justify your response in detail 
and do not forget to mention which parallelogram you chose. 

• Are your responses above independent from the type of parallelogram you choose? Why? 
Justify your response in detail. 

The first question aimed for the students to conjecture and validate for the particular case of a 
parallelogram. The objective of the second question was to make the students generalize their 
conjecture and then, validate it. To differentiate between their responses in the different stages, the 
students were asked to use a black ballpoint pen for the individual work, a red one for the teamwork 
and a blue one for the debate stage. 

Analysis and Result Discussion  
In this section, we present the case of Alex, a student whom we considered the most 

representative of the group in which the task was implemented. The analysis was carried out 
according to the stages of the ACODESA methodology. 

Individual Work  
Alex chose a square to formulate the response. To do so, he drew a general representative and 

assigned a measure L to each side (Figure 1). The student then conjectured that the areas of the four 
triangles formed randomly when drawing the diagonals were equal. 
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The areas of the triangles of this parallelogram are equal since they have a side L in 
common, which might be said to be the base of the triangle, and its height is determined by 
the center of the square. 

Figure 1. Particular solution provided by Alex. 

The student’s strategy was to justify that the areas are equal because the four triangles have the 
same base and height. In his response, we identify two statements to achieve his objective: (1) the 
four triangles have equal base because L is a side of the square, and (2) the height of each triangle is 
determined by the center of the square.  

The student justified the first statement through one of the properties of the square (equal sides). 
For the second statement, related to the congruency of the heights of the four triangles, Alex did not 
mention nor justified the property that allowed him to say the intersection point of the diagonals was 
the center of the square. Although his statements are valid, Alex omitted middle justifications 
(second statement). Regardless, we consider this validation to be a proof corresponding to the 
incomplete thought experiment, given that the student based the arguments on a general 
representation of the squares and presented (incomplete) justifications when he applied properties 
involved in the chosen parallelogram. In the response provided by the student for the second answer, 
in which he was induced to generalize, Alex claimed that his conjecture (regarding the square case) 
was independent from the type of parallelogram chosen; that is, the equality of the areas of the four 
triangles is met for any parallelogram (Figure 2). 
  
 

 
Yes to the one of the area because the properties mentioned in my response are maintained 
in any parallelogram, except that the base of the triangles is not always the same. 

Figure 2. Generalization provided by Alex. 

Alex correctly generalized the conjecture since the four triangles will always have the same area. 
However, when justifying the new conjecture—general conjecture, hereafter—we observe that the 
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student supported his argument on the validation created for the case of the square. In consequence, 
we infer that the student believed that validation was also true for any parallelogram. Then, we have 
a generic example-type of proof because the validation of the general conjecture, which refers to all 
parallelograms, would be supported by the validation Alex created for the square case, which is only 
a representative of a type of the parallelogram family. 

Teamwork 
The other two members of the team, S1 and S2, created their own responses from a rectangle and 

a general parallelogram, respectively. Both students conjectured that only opposite triangles have 
equal areas and were adamant that the square is a particular case. Unlike Alex, they created thought 
experiment proofs based on the consistency of triangles. Although Alex conjectured that the four 
triangles would have equal areas in all parallelograms, he did not say so to his teammates and 
corrected his conjecture on the answer sheet (Figure 3), but did not create another validation. 

 

 
Correction 
In the case of the areas of the triangles, they are not equal for the four triangles, it is met 
only for the particular case of the square. 

Figure 3. Correction written by Alex during the teamwork stage. 

Debate 
During the debate, the students first discussed whether the four triangles or only opposite ones 

had equal areas. Once the teams presented their responses, the consensus of the debate was that, in 
any given parallelogram, the four triangles formed would always have the same area. The validation 
agreed on by all the students was based on congruency of triangles to justify the equality of the 
opposite triangles and the property of diagonals (the diagonals intersected each other) to justify the 
equality of the areas of adjacent triangles. After this, Alex corrected his response once more (Figure 
4) and went back to his general conjecture—the one he had discarded during teamwork. He then 
expressed that the argumentation for such conjecture had to be changed. From his response, we infer 
that, after listening to different responses in this stage, Alex obtained more arguments to create a new 
validation for his general conjecture, although he only did so in the following stage: self-reflection. 
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Re-correction 
The notion that the areas were equal in the four triangles was correct (the argumentation 
changes). 
We can prove that they are equal based on the diagonal part of each triangle. 

Figure 4. Correction created by Alex in the debate stage. 

Self-Reflection 
In this stage, we observed a more solid validation (Figure 5) than the one created by the student 

during the individual work stage.  
 

 
After what we checked in class, a general parallelogram can be considered as follows: 
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• By the intersection of parallels, we have that: 𝑨 = 𝑨𝑻 and 𝑩 = 𝑩𝑻. 
• By the ASA (angle, side, angle) congruency criterion, we conclude that the triangles 

∆𝟏 and ∆𝟐 are congruent, that is, 𝑨∆𝟏 = 𝑨∆𝟐. 
• Likewise, triangles ∆𝟑 and ∆𝟒are analyzed, concluding that 𝑨∆𝟑 = 𝑨∆𝟒. 
That said, the center of the parallelogram is known to divide the diagonals in two equal 
segments, so, if we observe triangles ∆𝟐 y ∆𝟑, they have the same base and the same 
height, then 𝑨∆𝟐 = 𝑨∆𝟑. 
Therefore, 𝑨∆𝟏 = 𝑨∆𝟐 = 𝑨∆𝟑 = 𝑨∆𝟒 for any parallelogram. 

Figure 5. Validation created by Alex during the self-reflection stage. 

Alex used triangle congruency as his first argument to justify the equality of the areas of opposite 
triangles (𝐴! = 𝐴! and 𝐴! = 𝐴! in the parallelogram in Figure 5); such argument arose during the 
teamwork stage. The student then used the property of diagonals to justify the equality of the areas of 
adjacent triangles (𝐴! = 𝐴! in the parallelogram in Figure 5); he built this argument during the 
debate stage. Alex returned to his general conjecture while his validation did not depend on a 
particular representation anymore. Then, it was a proof of the type calculation on statements since 
Alex based his statements on the definition and properties of the parallelogram. 

Conclusions 
In the individual work stage, we observed that the student created a thought experiment proof to 

validate his conjecture regarding the square case. However, when he generalized, his validation 
became a generic example proof. In the teamwork stage, Alex did not expressly wrote any 
reformulation to his validations, but did alter his general conjecture (Figure 3). During the debate 
stage, he went back to his general conjecture and gave indications that the validation had to change. 

If we consider that the general conjecture created by the student (the four triangles have equal 
areas), the validation he created in the individual work stage corresponds to a generic example, a 
pragmatic proof. In contrast, during the self-reflection stage, the student built an intellectual proof for 
the same conjecture; it was a calculation on statements and included arguments that arose during the 
teamwork and debate stages. This revealed a noticeable change between his individual work and self-
reflection to validate the same conjecture, given that his validation went from a pragmatic level to an 
intellectual one. We can credit this to the ACODESA methodology, as indicated by Hitt et al. (2016). 
An adequate environment was created for the students to conjecture and validate in a context of 
social interaction. 

On the other hand, during the teamwork stage, Alex provisionally rejected his conjecture after 
listening to his classmates’ arguments. This situation probably took place because Alex did not have 
the necessary arguments in that moment to persuade his team of the veracity of his conjecture. 
Regardless, this situation was overcome in the debate stage, during which all the students agreed that 
the four triangles would always have the same area despite the type of parallelogram used. In the 
previous chapter, we observed how the didactic situation led the students to evolve, as defined by 
Brousseau (2002), both in the initial conjecture and the arguments used for its validation.  

Most of the students rationally justified their assertions, both in the individual and the group 
stages. Additionally, we observed an environment of discussion around the arguments used to defend 
the different statements that arose during the development of the task, especially in the debate stage. 
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Quantitative reasoning plays a crucial role in students’ and teachers’ successful modeling activities. 
In a semester-long teaching experiment with an undergraduate student, we explore how her 
conception of a graph plays a role in her ability to quantify and maintain quantitative structures. We 
characterize here Lydia’s conception of a graph as one in which the graph entails several quantities 
she identified in a given dynamic situation, contradicting the conception of a graph as a 
representation of a multiplicative object consisting of only two quantities. We also discuss her 
thinking about her graph in terms of figurative and operative thought during a session in which we 
support her in disembedding and graphically representing quantities.  

Keywords: Geometry and Geometrical and Spatial Thinking, Curriculum, Modeling, Teacher 
Education-Preservice 

Introduction 
Quantitative reasoning is a crucial component to students and teachers establishing productive 

meanings (Thompson, 2013). Researchers, however, have found that students’ meanings for 
functions and their graphs lack reasoning about relationships or processes between quantities 
(Dubinsky & Wilson, 2013; Lobato & Siebert, 2002; Oehrtman, Carlson, & Thompson, 2008; 
Thompson, 1994b), which ultimately influences students’ representational activities. For example, 
Moore and Thompson (Moore & Thompson, 2015; Thompson, 2016) characterized students’ non-
quantitative graphing activities in terms of static shape thinking (i.e., treating graph-as-wire and 
focusing on physical features of situations and graphs). During a semester-long teaching experiment, 
we noted that one of our participants, Lydia, seemed to have a particular meaning for graphs that not 
only entailed remnants of the static shape thinking discussed by Moore and Thompson, but also 
included thinking of a graph as containing an abundance of information she perceived in a situation. 
This latter meaning became problematic as Lydia progressed through the teaching experiment. In this 
paper, we explore how Lydia’s meaning for graphs influenced her reasoning and how quantification 
and establishment of a graph as a representation of two quantities supported her in reasoning 
quantitatively about the sine and cosine relationship and their graphical representations.  

Background and Theoretical Framework 
This paper focuses on the intersection of quantification and the consideration of a graph as a 

multiplicative object. It is important to note that as we define these words, we are operating under the 
assumption that knowledge is actively constructed in ways idiosyncratic to the knower (von 
Glasersfeld, 1995). Because of this perspective, we view quantities—conceptions of a specific 
quality of an object that entails the quality’s measurability (Thompson, 1994a)—as personally 
constructed measurable attributes (Steffe, 1991; Thompson, 2011). Moore and Carlson (2012) 
highlight the significance of this perspective by arguing that the relationships an individual constructs 
between quantities depends on her understanding of the quantities and, relatedly, the transformational 
nature of her image of how these quantities constitute a situation.  

Before determining relationships between quantities, one must establish quantities through a 
process called quantification. Quantification is “the process of conceptualizing an object and an 
attribute of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
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proportional relationship (linear, bi-linear, multi-linear) with its unit” (Thompson, 2011, p. 37). 
Consider the Ferris wheel in Figure 1; more specifically, let the object under consideration be the 
green cart (or more precisely, a point on the Ferris wheel that represents the location of the rider on 
the wheel). There are many attributes one could observe: colors, shapes, motions, etc. These 
attributes become a quantity when they are measurable; that is, a quantity is understood as a 
magnitude or amount-ness, such that it entails a unit or dimension and a way in which to assign 
numerical value to the magnitude or amount-ness. Note that the process of measuring does not need 
to be carried out in order for the attribute to be considered a quantity. Some quantities in the Ferris 
wheel situation include the distance the green cart is above the centerline, the arc length the rider is 
from the 3 o’clock position on the Ferris wheel, and the speed the rider has traveled. Reasoning about 
relationships between quantities is termed quantitative reasoning.  

A graph is a way for students to represent the relationships between quantities they perceive in a 
situation. More specifically, a normative Cartesian graph defines a pair of quantities—directed 
lengths—via axes, and each point on the graph is a uniting of two quantity’s magnitudes. A cognitive 
uniting of the two quantities in a given situation is necessary either to construct or to interpret a point 
on a graph in the aforementioned way. This cognitive uniting of magnitudes is what Saldanha and 
Thompson (1998) referred to as constructing a multiplicative object. This notion of a multiplicative 
object stems from Piaget’s notion of “and” and as of a multiplicative operator (Piaget & Inhelder, 
1963). For instance, the sine relationship can be considered as the cognitive uniting of the vertical 
distance above the horizontal diameter and the arc length traveled around a circle (both measured 
relative to the radius of that circle).    

A conception of a graph as a multiplicative object along with a robust quantification process is 
necessary for thinking of graphs operatively (Moore, 2016). Piaget (2001) distinguished between two 
types of thought, figurative and operative thought. He characterized the former as thought 
constrained to sensorimotor experiences and perception and the latter as one that prioritizes the 
coordination of mental operations over figurative activity. For example, conceiving the sine graph as 
a multiplicative object is an example of operative thought due to the conception entailing the 
coordination of mental actions in the form of quantitative operations. Static shape thinking is an 
example of figurative thought, as such thinking is dominated by elements of sensorimotor experience 
and perception to the extent it does not necessarily entail a relation to Cartesian axes (Moore & 
Thompson, 2015).   

Methods 
The results of this study come from a teaching experiment (Steffe & Thompson, 2000), in which 

we worked with three students (two female, one male) across 10-11 videotaped teaching sessions 
lasting 1-2 hours. The sessions occurred over the course of a spring semester at a large public 
university in the southeastern U.S. We conducted two sessions with all three students present. All 
other sessions included one student with at least two research team members. The students were in 
their first semester of a four-semester secondary mathematics education program, enrolled in both a 
content course and a pedagogy course. The students had all completed at least two additional courses 
beyond a traditional calculus sequence with at least a C as their final grade. We selected students 
from their first content course based on the research group’s analysis of their results on an adapted 1-
hour version of Thompson’s Project Aspire assessment, Mathematical Meanings for Teaching 
Secondary Mathematics (MMTsm) (Thompson, 2016), which focused primarily on questions related 
to rate of change, interpretation of graphs, symbolic notation, and proportion. The research group 
analyzed the assessments and identified three students who, from the researchers’ perspectives, 
provided a range of responses and communicated their thinking clearly in their written responses. 
The three students then agreed to participate in the teaching experiment and were monetarily 
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compensated for their time. The principal investigator of the project was the teacher-researcher at 
every interview. At least one other member of the research team served as the observer(s). The 
teacher-researcher and observers (heretofore referred to as researchers) took field notes and asked 
probing questions as necessary. All sessions and written work were videotaped and digitized. 

The goal of the teaching experiment was to create models of individual’s mathematics, 
specifically with regards to students’ construction of graphs. Steffe and Thompson (2000) referred to 
these researcher models as the mathematics of students (cf. students’ mathematics). In both ongoing 
and retrospective analyses efforts, we analyzed the students’ actions using generative and axial 
approaches (Corbin & Strauss, 2008) in combination with conceptual analysis (Thompson, 2008). 
We first analyzed the students’ observable and audible behaviors in order to develop tentative 
hypothetical models of their thinking. Then, we attempted to identify connections and consistencies 
across each student’s activities with specific attention to her or his meanings for graphing and the 
extent to which these meaning entailed quantitative or covariational reasoning. Lastly, we made 
comparisons across students in order to construct more fine-grained models of the students’ thinking. 
In this report, we focus on one student in the teaching experiment, Lydia, whose meaning for graphs 
enabled us to explore the intersection between the quantification process and her representational 
activity as we strived to support a conception of a point on a graph as a multiplicative object.  

Results 
We divide the results section into three parts: (a) Lydia’s initial response to a graphing activity 

given a dynamic situation from her first interview, (b) a summary of our attempts to support 
quantitative and covariational reasoning of the sine and cosine relationships through reasoning about 
the relevant magnitudes in a simplified version of the Ferris wheel situation, and (c) Lydia’s attempt 
to relate what she understood as the sine and cosine relationships in the situation and what she 
understood as the graph that represented those relationships. 

The Ferris Wheel Task 
One of the first tasks we presented Lydia was the Ferris Wheel Task, which includes a dynamic 

image of a Ferris wheel rider (green bucket) who travels at a constant speed clockwise from the 
bottom of the Ferris wheel (Figure 1) (Desmos, 2014). We first asked her to comment on what she 
observed in the situation, to which she stated there is “a function that would give us the shape of a 
circle.” We subsequently gave her the prompt: “Graph the relationship between the total distance the 
rider has traveled around the Ferris wheel and the rider’s distance from the ground.” She then 
produced what she called her graph in Figure 2. When prompted, she indicated several different total 
distance and height pairs by pointing on a location on her drawn circle, tracing around her drawn 
circle from the bottom to indicate total distance, and motioning from the point to the denoted ground 
to indicate height. She also noted how the speed of the Ferris wheel would influence where along the 
circle she would be at a particular time, explaining “there has to be some physics formula for that, 
but I don’t know it.” Importantly, we inferred her drawn graph and comments to suggest that she 
conceived one particular curve to describe the Ferris wheel situation as a whole, and from that curve, 
she could isolate and discuss the quantities under question. As we describe below, this inference is 
important relative to her response to our prompting her to construct a graph in a normative Cartesian 
system. 
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Figure 1. Animation snapshots of the Ferris wheel task. 
 

 
Figure 2. Lydia’s initial graph for the Ferris wheel task. 

 

Partitioning Activities with Diagrams of Circles 
The teaching experiment tasks shifted away from constructing graphs shortly after this task in an 

effort to provide Lydia and the other participants of the teaching experiment with the opportunity to 
focus on reasoning together about the relationships between magnitudes in circular contexts. With 
considerable support from the researchers, the students engaged in partitioning activities (e.g., Figure 
3) with a diagram of the circle to reason about amounts of change in horizontal/vertical distance from 
the vertical/horizontal diameter for equal changes in arc length. Lydia and another student related 
these quantities to sine and cosine graphs at the conclusion of the joint sessions. Lydia expressed the 
novelty of the partitioning activity to her, and it subsequently became a way for her to operate on 
images (diagrams or graphs) to explore relationships. However, as we argue in the following section, 
her conception of graphs described in the previous section constrained her ability to use this 
partitioning activity effectively to describe relationships between quantities.  

 
Figure 3. Partitioning activities using a diagram of a circle from the joint sessions. 

 

Sine Graph 
In the next individual session, one week later, the researchers asked Lydia to return to the context 

of circular motion. Initially, they supported Lydia in drawing a diagram of a situation in which a 
point on a circle is traveling counterclockwise from the 3 o’clock to the 12 o’clock position (Figure 
4a, top). She used her newly developed partitioning activities and constructed changes in horizontal 
distance for equal changes in arc length, and she compared these changes to conclude that the 
horizontal distance decreased by an increasing magnitude for an equal change in arc length as the 
point rotated from the 3 o’clock to the 12 o’clock positions (Figure 4a, top). Shortly after this 
description, we asked her to create a graph representing the relationship between the horizontal 
length and the arc length, with our intention being that she produce a normative graph for the cosine 
relationship. She produced the graph in Figure 4a (bottom), stating that the graph can be comparing 
“the y-height here [vertical segments in Figure 4a, bottom] and then also can be comparing the x-
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distance [horizontal segments in Figure 4a, bottom].” In her initial description of her drawn graph, 
Lydia did not reference arc length. Thus, she seemed to indicate that the quantities she had conceived 
as “y-height and x-distance” in her diagram of the situation were both represented in her graph. This 
conclusion is consistent with her conception of her graph from the Ferris Wheel task in which she 
identified several quantities she thought were represented in her graph.  

 

 
  (a)  (b) 

Figure 4. (a) (top) Diagram of the situation highlighting amounts of change in “x-distance” and 
(bottom) resulting graph; (b) Equal changes in arc length denoted along curve and corresponding 

changes marked along horizontal axis. 

The researchers subsequently asked Lydia to clarify how she was interpreting “y-height and x-
distance” relative to her drawn graph. She first stated she would show the “x-distance” and then 
traced along her curve to indicate “increase in arc length.” Following this statement, she drew in 
horizontal line segments between the curve, starting nearest to the horizontal axis, and moving 
upwards (Figure 3b). She described these segments as decreasing as the “arc length” increased, 
which she argued was the same conclusion she had reached in the circular context. She made this 
statement while drawing in the vertical lines and motioning along two “arc length” and “x-distance” 
pairs, seemingly mimicking partitioning activities from a previous session (Figure 3). However, 
when asked to say more about how she was denoting “arc length” and “x-distance” on her graph, 
specifically about the vertical lines from and highlighted regions in Figure 4b, she questioned the 
efficacy of her actions. Soon afterwards, she switched from talking about horizontal distances to 
talking about height, stating, “[S]o we’re doing the arc length and height again [labeling her axes 
with arc length on the horizontal axis and height on the vertical axis]”. She then motioned along her 
horizontal axis, saying “and as I am going across my arc length” and shortly afterwards tracing along 
the curve starting from the first maximum in Figure 4b saying, “[O]ur arc length, as it increases, the 
height will decrease.” She then related this statement to her diagram by completing the first half of 
the full rotation on her diagram in Figure 4a (top).  

To summarize, Lydia stated a directional covariational relationship between (i) “x-distance” and 
“arc length” and (ii) “height” and “arc length” using the same graph. Also, when referring to “x-
distance”, she denoted horizontal segments that connected two points along her curve and conceived 
“arc length” as a distance along the curve. When referring to “height”, she conceived “arc length” as 
a magnitude along the horizontal axis and conceived height as vertical magnitudes between the curve 
and horizontal axis. After a researcher subsequently drew attention to Lydia’s reference to “arc 
length” as both a distance along the curve and a distance along the horizontal axis, she was perturbed 
and over the course of nearly 30 minutes attempted to rationalize the graph entailing the three 
quantities she had identified (“height”, “arc length”, and “x-distance/width”). About seven minutes 
into her efforts, she made the following statement: 

Lydia: I don't know. I'm confused. That's what's going on. I like see the relationship, and I can 
explain it to a point, and then I get like – I confuse myself with the amount of information I 
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know about a circle that I was just given to me by a teacher, and then what I've like 
discovered here [referring to the teaching sessions] and like how those – I'm like trying to 
find a connection, but I'm getting confused. 

Her extended perturbation emphasizes the figurative conception she has of her graph, relying on 
perceptual features consistent with static shape thinking to relate it with her diagram. Due to the 
persistence of Lydia attempting to identify each of the three quantities in her drawn graph and the 
perturbations she experienced due to this attempt, the researchers decided to draw Lydia’s attention 
back to the situation in hopes of isolating the three quantities she perceived in the situation. The 
researcher specifically asked Lydia to denote the three quantities (i.e., triple) she identified for 
various points along the circle (Figure 5).  

 

 
Figure 5. Lydia’s diagram of the circle (left) and her triples for various points along the circle (arc= 

arc length, h= height, w= width). 

Upon determining several triples (see Figure 5, bottom right), the researcher asked Lydia how the 
triples related to her graph (i.e., “[D]oes it represent all three [quantities]? Does it represent just two 
of them? Does it represent one of them?”). She then drew attention to the origin on her graph and 
explained: 

Lydia: Because this is my – This is x – um, x-y plane, then here I'm saying at this point [the 
origin], my width is 0, my arc length is 0, and my height is 0.  

Researcher: Width is 0, my arc length is 0 and my height is 0.  
Lydia: Wait, but then I said at arc length 0, and [laughs] height is 0, then my width should be 1.  
Researcher: And your width should be 1, right? What about at pi-halves? What should we have?  
Lydia: Then I should have a height of 1 [pointing to curve for an abscissa value of pi/2].  
Researcher: Okay.  
Lydia: And then my width should be 0. So this graph does not do anything with the x-y plane. 
[Lydia summarizes this claim and then the researcher asks Lydia to consider an arc length of pi 

radians.]  
Lydia: Then my arc length on the x-axis [motions across horizontal axis] should be pi. My height 

should be 1 – or 0, and then my x-value should be negative 1. So this [referring to her drawn 
graph] just doesn't have – then this doesn't relate to the x, the width [referring to width from 
the situation], just this graph. So my whole circle talks about width and height and arc, but 
then this graph itself only talks about arc and height. [speaking emphatically] Done it. 
[laughs]  

We infer that Lydia accommodated her meaning for her drawn graph, including how it related to 
the circle situation, during this interaction. Specifically, she came to understand that her drawn graph 
related two particular quantities—arc length and height directed horizontally and vertically, 
respectively—in a way compatible with the situation. She simultaneously held in mind that these two 
particular quantities were a subset of the three she understood to constitute the situation. We infer 
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that her accommodation occurred when assimilating a point on the circle as containing a trio of 
information and then interpreting the point on her graph as entailing the three quantities’ values as 0 
(i.e., the arc along the curve, the abscissa value, and the ordinate value). This resulted in her 
experiencing a perturbation with her understanding of the situation (i.e., an arc length of 0, a height 
of 0, and a width of 1). Alleviating this perturbation required that she disembed two of the quantities 
from the situation, understand these quantities as represented orthogonally with respect to her drawn 
graph, and conceive a point on her graph as representing each quantity’s value or magnitude 
simultaneously (i.e., as a multiplicative object). She tested the viability of this new model with two 
additional points before being confident in the efficacy of her actions; each point on her graph was a 
uniting of two, and only two, quantities. At this point, her thinking about her graph shifted from 
figurative to operative. 

Discussion 
We highlight four important findings from Lydia’s activity. Firstly, we note the difficulty a 

student has in maintaining a consistent quantitative structure within and between a situation and its 
representation when (i) quantification and quantitative reasoning is a novel way of thinking and (ii) 
one has a conception of a graph as encompassing an abundance of quantities in a situation. For 
instance, Lydia had a graph on which she attempted to quantify based on the results of her 
partitioning activities in her diagram of the situation, but she did not maintain the quantities she 
believed the graph represented as evidenced by her switching arc length from axes to along the curve. 
Relatedly, the process of disembedding quantities was crucial for Lydia to view her graph as a 
representation of a multiplicative object, which was what shifted her thinking from figurative to 
operative. Thirdly, we have provided a more detailed example of Moore and Carlson (2012), who 
primarily characterized how the quantitative structure of the situation that the student constructed 
influenced their mathematical artifacts, including how the students conceived of a quantitative 
invariance between the two. We extend that work by providing a more detailed look into the 
students’ activity by drawing figurative and operative distinctions, thus not presuming the students to 
have constructed and maintained quantities. Lastly, this study has important implications for the 
study of trigonometry in that students should understand the cosine (and sine) relationships as 
disembedding from the unit circle. Lydia’s case shows that this disembedding process should not be 
taken as a given.  
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Making connections during math instruction is a recommended practice, but may increase the 
difficulty of the lesson. We used an avatar video instructor to qualitatively examine the role of linking 
multiple representations for 24 middle school students learning algebra. Students were taught how to 
solve polynomial multiplication problems, such as (2x + 5)(x + 2), using two representations. 
Students who viewed an explicit linking episode were more likely to make important connections, but 
less likely to exhibit problem-solving success than students who did not view the linking episode. 
Further, the quality of the connections made by the students was negatively related to subsequent 
problem solving and transfer. Thus, although focusing on connections may support rich 
understanding, it may decrease learning of solution methods. The results showcase the promise and 
pitfalls of making connections in mathematics. 

Keywords: Problem Solving, Algebra and Algebraic Thinking, Instructional Activities and Practices, 
Technology 

Introduction 
Making explicit connections during mathematics learning instruction is a recommended practice 

(e.g., NCTM, 2000; Pashler et al., 2007). In fact, some researchers have even defined mathematics 
understanding in terms of the number or kind of connections that have been constructed by the 
learner (see Crooks & Alibali, 2014). One important type of connection to make is between multiple 
representations of the same concept or procedure (e.g., the graph of a line and its equation). In the 
current study, we used an avatar video instructor to examine the role that linking multiple 
representations during an algebra lesson had on connection-making and problem-solving 
performance. Our goals were (1) to compare the effects of a lesson that included a linking episode 
versus a lesson that did not include a linking episode on students’ connection-making and problem 
solving, and (2) to examine how students’ connection-making related to subsequent learning and 
transfer. We selected the domain of algebra because it functions as a “gatekeeper” to future 
educational opportunities (Moses & Cobb, 2001). Further, algebra is a focal point of reform efforts in 
mathematics education (e.g., NMAP, 2008). 

 

Theoretical Framework 
Mathematical ideas and representations are connected to and build upon other mathematical ideas 

and representations. The new Common Core State Standards for Mathematics (National Governors 
Association Center for Best Practices, 2010) is explicit on this point: fundamentally, “mathematics is 
a connected subject” (p. 5). Understanding these connections is fundamental to having a deep, 
conceptual understanding of mathematics. Indeed, the notion of connecting mathematical ideas and 
representations emerges in many of the standards put forth by the National Council of Teachers of 
Mathematics (NCTM, 2000), one of which is the ability to “translate among mathematical 
representations” (p. 67). 

The current study evaluated the influence of a lesson that explicitly linked multiple 
representations during instruction. We define linking episodes as segments of instruction during 
which the instructor seeks to make explicit links between ideas or representations (Alibali et al. 
2014). For example, imagine instructing students on the concept of mathematical equivalence first 
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using a balance scale, then using an equation, and finally by making the correspondences between the 
balance scale and equation explicit. Establishing the correspondences between the two 
representations would be considered a linking episode. 

On the one hand, linking episodes during instruction should facilitate greater understanding for 
students because they point out conceptual links among ideas and representations (e.g., Crooks & 
Alibali, 2013; Rittle-Johnson & Alibali, 1999). For example, Hiebert and colleagues (1997) argue, 
“we understand something if we see how it is related or connected to other things we know” (p. 4). 
Further, there are many examples of students benefitting from connections made via a variety of 
instructional techniques, including direct comparison (Rittle-Johnson, Star, & Durkin, 2009), linking 
gestures (Alibali et al., 2013) and fading from concrete to abstract representations (Fyfe, McNeil, & 
Borjas, 2015). 

On the other hand, making connections among representations can be cognitively demanding, 
requiring students to understand each representation as well as their correspondences (e.g., Gick & 
Holyoak, 1980; Nathan et al., 2011). For novices, this may overload their cognitive resources (e.g., 
Sweller et al., 1998). Indeed, learning from connections may be difficult for students with low 
background knowledge (e.g., Clark, Ayres, & Sweller, 2005; Kotovsky & Gentner, 1996). For 
example, one study found that making connections via comparison was beneficial for advanced 
students, but not for novices (Rittle-Johnson et al., 2009). Specifically, middle school students who 
did not know a method for solving the target equations benefitted more from studying two methods 
sequentially than from comparing two methods directly.  

Thus, the inclusion of explicit linking episodes may help students focus on making rich 
connections between multiple representations. At the same time, it may detract from focusing on 
learning to work with each individual representation correctly, particularly for novice students.  

Current Study 
In the current study, we had two specific aims. Our first aim was to compare the effects of a 

lesson that included a linking episode versus a lesson that did not include a linking episode on 
students’ connection-making and problem solving. Specifically, middle school students were taught 
how to solve polynomial multiplication problems, such as (2x + 5)(x + 2), by an avatar instructor 
using an area-based representation and an equation-based representation (see Figure 1). Students in 
the link condition viewed a subsequent linking episode and students in the no-link condition did not. 
We expected students in the link condition to make more high-quality connections between the two 
representations than students in the no-link condition, but to have similar problem-solving 
performance. Our second aim was to examine how the quality of students’ connection-making 
related to subsequent learning and transfer, regardless of condition. After the initial lesson and 
assessment, all students were exposed to an instructional linking episode and a posttest. This 
provided students an opportunity to use the knowledge they acquired from the initial lesson. We 
expected the quality of students’ connection-making to be positively related to their performance on 
posttest items that tapped understanding of the links between the representations, but negatively 
related to their performance on posttest items that tapped understanding of individual representations. 
This work was part of a larger project that developed a teacher avatar (Anasingaraiu et al., 2016) and 
is investigating how variations in the avatar's behavior during linking episodes influences student 
learning. The present study focused on variations in the presence of linking episodes in the avatar 
lesson.  
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Figure 1. Image of the lesson with the area method (top) and equation method (bottom). 

Method 

Participants  
Participants were 16 seventh-graders and 8 eighth-graders attending one of three middle schools 

in a mid-sized Midwestern city in the United States. Participants were predominantly White (75% 
White, 8% Asian, 4% Hispanic, 13% Other) and their mean age was 13.2 years (min = 11.5, max = 
14.2). Sixty-two percent were male. An approved email was sent to all seventh- and eighth-grade 
students at the schools inviting them to participate in a project that would take place on the 
university’s campus. Each student was compensated $15 for participating.   

Design and Procedure 
We used a pretest-lesson-posttest design. Each student participated in a single one-on-one session 

that lasted 45 minutes. Students completed a pretest to assess their background knowledge. Next, 
they viewed a lesson presented by an avatar video instructor. The lesson focused on multiplying 
binomials using a target problem: (2x + 5)(x + 2). For the lesson, children were randomly assigned to 
one of two conditions (Figure 2): link (n = 12) or no-link (n = 12). 
 

 
Figure 2. Sequence of activities in the experimental procedure. 

The instructor described an area-based method and then described an equation-based method 
(Figure 1). In the link condition, the avatar instructor then provided a linking episode in which she 
delineated the correspondences between the two representations (e.g., “2x + 5 in the equation 
corresponds to the length 2x + 5 in the rectangle”). Students then engaged in an explanation of the 
target problem and solved the items on the midtest. The purpose of the explanation and midtest was 
to assess differences in learning between students who had viewed a linking episode and those who 
had not. After the midtest, all students in both conditions viewed the linking episode and completed a 
posttest. The purpose of the posttest was to evaluate how the quality of students’ initial connection-
making (as assessed on the explanation and midtest) related to their learning from subsequent 
instruction. Throughout the session, students were encouraged to think aloud so we could gain a 
richer account of their thought processes (Ericsson & Simon, 1993). 

Pretest Linking
EpisodeMidtest Posttest

Area Method, Equation 
Method

(No-Link Instruction)

Area Method, Equation 
Method, Linking Episode

(Link Instruction)
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Materials and Measures 
All items on all measures were presented one at a time on an interactive smart board. 
Pretest. The pretest included six items (see Table 1 for examples). The first five items tapped 

students’ background knowledge of operating with variables and calculating area. The sixth item was 
a target polynomial multiplication problem.  

Explanation. After the avatar lesson, students were shown the instructional problem and asked: 
“Here is the same problem you just learned about. Imagine that another student is seeing this 
example for the first time. Can you explain how to solve this problem?” Explanations were coded for 
whether students (1) exhibited a “trouble spot,” defined as indicating confusion or displaying 
incorrect understanding (Alibali et al., 2013), (2) referred to one or both representations, and (3) 
provided a general solution strategy rather than a step-by-step procedure. 

Midtest. The midtest included two items (see Table 1 for examples). The first item was a 
polynomial multiplication problem. The second item was a linking item. 

Posttest. The posttest included seven items (see Table 1 for examples). Two were polynomial 
multiplication problems. Three were linking items. The final two were transfer items that tapped 
whether students could apply what they learned about multiplying expressions with variables to 
multiplying whole numbers. Items were scored as correct or incorrect based on students’ written 
answers and on the verbal think-aloud reports they provided while solving. 
 

Table 1: Example Items Presented on the Pretest, Midtest, and Posttest 
Item Type Example Item Instructions Example Responses 
Background 
Knowledge Item 
(five on pretest)  

 

Simplify the 
expression. 

Correct: 
2x 

 
Incorrect: 
1, 1x, x, 2, x2 

Solve Item (one 
on pretest, one 
on midtest, two 
on posttest) 

 

Simplify the 
expression by 
multiplying the terms 
6x plus 3 and y plus 
7. 

Correct: 
6xy + 42x + 3y + 21 

 
Incorrect: 
6xy + 10, 21*6xy 

Link Item (one 
on midtest, three 
on posttest) 

 

Circle the term in the 
equation that 
represents the area of 
the shaded rectangle. 

Correct: 
8x 

 
Incorrect: 
40 

Transfer Item 
(two on posttest) 

 

Which area model(s) 
correspond to the 
multiplication 
problem 57 x 32? 

Correct: 
BC 

 
Incorrect: 
Only B, ABC, D 
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Results 

Pretest  
Students did moderately well on the five background knowledge items (percent correct ranged 

from 42% to 88%). However, only one student (out of 24) correctly solved the polynomial 
multiplication problem: (x + 2)(x + 1). The two most common errors on that problem were to add the 
two x’s and add the two integers to get 2x + 3, or to combine terms within parentheses to get 2x * 1x. 
Conditions were well matched at pretest (Mlink = 58% vs. Mno-link = 54%). A median split on total 
percent correct yielded a low-background-knowledge group (n = 12, M = 36%) and a high-
background-knowledge group (n = 12, M = 77%). All students but one were unsuccessful on the 
target problem and were thus novices; the knowledge groups differed in terms of the background 
knowledge necessary to learn about the target problem.  

Explanation 
Following the lesson, students were asked to explain how to solve a polynomial multiplication 

problem. Consider the explanations presented below: 

Student 1 in the link condition: “Basically what you would do is multiply each number by every 
other number that’s in the different set. So 2x times x [draws line connecting the 2x and the x 
in the equation] is 2x2 [circles 2x2 in the area model]. 2x times 2 [draws line connecting the 
2x and the 2 in the equation] is 4x [circles 4x in the area model]. Both of these are one side 
[circles the 2x and 5 across the top of the area model] so you don’t have to multiply these. 
Then you do 5 times x [draws line connecting the 5 and the x in the equation], which is 5x 
[circles 5x in area model]. And 5 times 2 [draws line connecting 5 and 2 in equation], which 
is 10 [circles 10 in area model]. Then you would take all those answers together [circles all 
four terms in bottom equation] and simplify them. So 4x plus 5x is 9x. Then 10, and 2x2.” 

Student 2 in no-link condition: “So first you would do what’s in parentheses…you do 2x plus 5 
[points to 2x and 5 in equation], which I think would be 7x [writes 7x under the 2x + 5 in the 
equation]. Then you do x plus 2, which would be 2x [writes 2x under x + 2 in the equation]. 
Then you multiply them I think. So, it would be 14x.” 

Student 1 provides an accurate explanation, mentions a general solution strategy (“multiply each 
number by every other number that’s in the different set”), and refers to both representations. In 
contrast, Student 2 exhibits a trouble spot (i.e., incorrect understanding), provides only a step-by-step 
procedure, and relies solely on the equation-based method. 

To capture these differences, we created an explanation quality score. Explanations received one 
point for each of the following features: (1) did not contain a trouble spot, (2) offered a general 
solution method, and (3) referred to both representations. One third of students scored a maximum 3 
out of 3, and across all students the average explanation quality score was 1.8 (out of 3; SD = 1.1). 
This suggests that typical explanations hit about two of the three criteria for being high-quality. It 
was most common to provide an explanation that was free from trouble spots (19 out of 24 
explanations). It was less common to refer to both representations (12 out of 24 explanations) or to 
offer a general solution method (12 out of 24 explanations). 

Students with low background knowledge had difficulty in explaining. Compared to the high-
background-knowledge group, they were more likely to exhibit a trouble spot (42% vs. 0%), less 
likely to state a general solution method (33% vs. 67%), and less likely to refer to both 
representations (42% vs. 58%). As such, students with low background knowledge had lower quality 
scores (M = 1.3) than students with high background knowledge (M = 2.3), and there was little 
variability between the two conditions among low-background-knowledge students. 
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However, within the high-background-knowledge group, explanations varied by condition. 
Compared to students in the no-link condition, students in the link condition were more likely to 
provide a general solution method (83% vs. 50%) and more likely to refer to both representations 
(83% vs. 33%). Indeed, for the high-background knowledge group, students in the link condition had 
higher explanation-quality scores (M = 2.7) than students in the no-link condition (M = 1.8). 

Midtest  
Over half of the students solved the target polynomial multiplication problem correctly at midtest 

(54%) and all but three students (88%) solved the linking item correctly. Students with low 
background knowledge were less likely than their high-background-knowledge peers to correctly 
solve the multiplication item (33% vs. 75%), and the linking item (75% vs. 100%). 

As with explanation quality scores, condition differences were minimal for the low-background-
knowledge group. For the high-background-knowledge group, performance on the linking item was 
at ceiling, but performance on the multiplication item varied. Students in the link condition were less 
likely to solve the problem correctly than students in the no-link condition (50% vs. 100%). All the 
high-background-knowledge students who solved the multiplication problem incorrectly also 
provided explanations focused on both representations, suggesting that a focus on linking potentially 
interfered with learning at least one method well. Overall, regarding our first research goal, we found 
that a lesson with a linking episode resulted in higher-quality connection-making among students 
with sufficient background knowledge, but lower problem-solving success relative to a lesson 
without a linking episode.  

Posttest  
The posttest occurred after all students viewed a brief instructional linking episode. It allowed us 

to evaluate how students’ initial connection-making related to subsequent learning and transfer. 
Overall, performance was moderate on the polynomial multiplication solve items (M = 60%, SD = 
44%), high on the three linking items (M = 88%, SD = 26%), and moderate on the two transfer items 
(M = 52%, SD = 35%). Most students demonstrated some learning by the posttest. At pretest, only 
one student (4% of the sample) solved a polynomial multiplication problem correctly, but 17 out of 
the 24 students (71%) solved at least one correctly at posttest.  

Recall that students explained a target problem after the initial instruction and received an 
explanation quality score. These explanation quality scores were related to posttest performance (see 
Table 2). The correlations in Table 2 suggest that explanation quality scores were positively related 
to posttest linking scores, weakly related to posttest problem-solving scores, and negatively related to 
posttest transfer scores. We also examined these associations by splitting students into a high-quality 
explanation group (n = 8, scored 3 out of 3 on explanation quality) and a low-quality explanation 
group (n = 16, scored 0, 1, or 2 out of 3). Among students with high background knowledge, there 
were clear differences based on explanation quality. Compared to students in the low-quality 
explanation group, students in the high-quality explanation group had higher posttest link scores 
(100% vs. 89%), similar posttest solve scores (75% vs. 75%) and lower posttest transfer scores (41% 
vs. 67%). These differences lend credence to the idea that students who focus on making connections 
(and therefore have higher-quality explanation scores) do well on items that tap their knowledge of 
links, but not as well on items that tap their knowledge of the individual solution methods or 
representations.  
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Table 2: Correlations Between Explanation Quality Scores and Posttest Performance 
 Whole Sample Low-Background-

Knowledge Group 
High-Background-
Knowledge Group 

Posttest Link Scores rs = .43 rs = .50 rs = .14 
Posttest Solve Scores rs = .22 rs = .29 rs = -.16 

Posttest Transfer Scores rs = -.18 rs = .00 rs = -.42 
 

To look at this more directly, we made one additional comparison. The explanation quality scores 
took into account trouble spots, the provision of a general solution method, and references to both 
representations. To more directly consider connection-making, we compared students who differed 
only on this last criterion: students who referenced both representations (n = 12) vs. students who 
referenced only one representation (n = 12). Students who referenced both representations had 
slightly higher posttest link scores (89% vs. 86%), slightly lower posttest solve scores (58% vs. 63%) 
and lower posttest transfer scores (41% vs. 63%). These transfer differences were particularly 
pronounced for students with high background knowledge (36% vs. 80%). Overall, regarding our 
second research goal, we found that students’ initial connection-making was related to their 
subsequent learning and transfer. Connection-making seemed to support students’ understanding of 
the links between the representations, but not their ability to solve familiar or novel problems about 
the individual representations.  

Discussion 
Educational opportunities for all learners expand as we come to understand the conditions under 

which teachers’ connection-making during instruction affects student learning. The current results 
highlight the promise and pitfalls of including linking episodes during algebra lessons. For middle 
school students with sufficient background knowledge, a lesson with a linking episode led to higher-
quality explanations than a lesson without one. That is, students who saw the linking episode were 
more likely to provide a general solution method that applied to both representations and to refer to 
both representations rather than one. This suggests they were developing rich connections necessary 
for mathematics understanding (Hiebert et al., 1997).  

However, students who saw the link were also less likely to solve a target problem correctly than 
students who did not see the link – potentially because they were focusing on processing the two 
representations and their correspondences rather than solidifying their knowledge of a correct 
solution method. Further, regardless of condition, students’ engagement in connection-making was 
related to their learning and transfer from a subsequent instructional episode. Specifically, higher-
quality connection-making appeared to be positively related to performance on posttest items that 
tapped understanding of the links between the representations, but negatively related to performance 
on posttest items that tapped understanding of individual solution methods. Thus, linking episodes 
may help students focus on making rich connections, but may also detract from their focusing on 
learning each solution method correctly, particularly for novice students (see also Clark et al., 2005; 
Rittle-Johnson et al., 2009). This may represent a trade-off in the development of conceptual versus 
procedural knowledge (e.g., Crooks & Alibali, 2014). Improvements in understanding conceptual 
links may come at the expense of improvements in understanding key procedures. Importantly, these 
results support the recommendation that instruction should include linking episodes that highlight 
connections among mathematics ideas. We find connection-making can be supported by a video-
based avatar and we identify trade-offs between building rich conceptual connections and performing 
representation-specific solution procedures.  
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AN ETHNOMATHEMATICAL VIEW OF SCAFFOLDING PRACTICES IN 
MATHEMATICAL MODELING CONTEXTS 
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In this work we report on the findings of our ongoing study of fostering validation and refinement of 
mathematical models in classroom contexts.  Drawing on an ethnomathematical perspective we 
examined interactions within mathematical modeling contexts in two 11th grade pre-calculus classes 
to identify and analyze instances where students drew on their contextual and mathematical 
knowledge when solving problems. Our analyses indicate that in presence of teacher’s responsive 
comments students develop deeper learning and engage more intensely in tasks and across contexts.  

Keywords: Modeling, Classroom Discourse, Equity and Diversity, High School Education 

With the adoption of the National Governors Association (2010) Common Core Standards for 
Mathematics (CCSM) there has been an increased interest in mathematical modeling in the United 
States.  Indeed, the CCSM lists mathematical modeling as both a High School content standard as 
well as a Standard for Mathematical Practice.  While the CCSM describes the mathematical 
modeling process it offers little guidance in productive means for teaching mathematical modeling.  
The absence of research-based data on how this standard might be effectively implemented in ways 
that learners’ own voices are considered is hugely problematic (Cai et al., 2016). Evidence exists that 
facilitating modeling cognition among school learners involves intricate attention to cultural 
backgrounds and life experiences of children in ways that the desired mathematics is treated not as 
the cherished prize but rather a humanizing capital that permit for deeper reflection on these 
experiences by both the teachers and learners.   As such, the relationship among learners’ use of 
mathematics in making sense of real life events, teachers’ reflections on what they learn from 
children as they attempt to facilitate their modeling work, and ways in which gulfs of knowledge are 
bridged demands meticulous scholarly attention, an area rarely explored in mathematics education 
research. The overarching goal of this research study was to address this gap by examining the 
reflexive ways that learners and teachers navigate chasms between mathematical and life experiences 
within modeling contexts.  This work will assist in building a theoretical model regarding unique 
features of instructional demands in presence of modeling as well as offer methodological 
implications for the teaching of mathematical modeling. 

Background and Significance 
Blum and Leiss (2007) offer an overview of the mathematical modeling process where a problem 

situation, couched in the real-world transitions into the mathematical world through the process of 
mathematization; is work on mathematically and mathematical results are produced.  These results 
are then analyzed and interpreted against the context being modeled then finally validated with 
respect to the situation model and the cycle could be re-engaged (p. 226). 

While there has been considerable research in examining the mathematization processes of 
students (Lesh, Galbraith, Haines, & Hurford, 2010); there has been significantly less research 
reports that examine how validation and refinement of models is mediated in the process of teaching 
mathematical modeling, a call voiced during the 2016 International Congress on Mathematical 
Education. Indeed, Cai et al. (2016) outlined a need for extensive research examining the nature of 
classroom discourse that supports students in becoming successful modelers and in particular 
examine and report on what mathematical modeling looks like during classroom instruction (p. 4). 
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Currently there is limited research on teachers’ scaffolding practices in mathematical modeling 
contexts, and the current perspective in the literature seems to align with the view that instruction 
must shift students’ views of problem contexts to an idealized solution (Tropper, Leiss & Hanze, 
2015; Schukajlow, Kolter & Blum, 2015; Stender & Kaiser, 2015).  Such an elitist view has been 
challenged by researchers for whom epistemological and ontological perspectives on learning are 
grounded in ethnomathematics, building a case for listening to the voices of the oppressed in 
designing instruction (Rosa & Orey, 2016).   Primarily absent from the literature are cases where 
scaffolding involves sensitivity to students’ views of particular contexts and formal mathematizations 
of those views.  Previously we have argued (Manouchehri & Lewis, in press) that when engaged in 
mathematical modeling processes students rely heavily on their intuitions and personal experiences 
when working on such contexts, and these views impact both the perceived utility of their models 
and whether they consider the need to validate and refine them. 

This ongoing study examines the nature of classroom interactions that occur during the 
implementation of mathematical modeling across two 11th grade pre-calculus classrooms and 
considers the particular ways that the teacher responds to students’ interpretations of contexts, their 
solutions to their perceived problems in these contexts and ways that mutual negotiations take place 
when validating and refining models.  In particular we examine the following research questions: (1) 
How do teachers and school learners co-construct practices associated with developing mathematical 
modeling over the course of an academic year? (2) What function do these practices serve in 
facilitating mathematical modeling process?  How are these practices different from other 
mathematical practices?   

Theoretical and Methodological Orientation 
D’Ambrosio (1895) defines ethnomathematics as the “mathematics which is practiced among 

identifiable cultural groups” (p. 45) and distinguishes it from what he defines as academic 
mathematics, or the mathematics taught in school.  Orey and Rosa (2016) outline “ethnomathematics 
embraces the mathematical ideas, thoughts and practices as developed by all cultures across time and 
space” (p. 6). This view of mathematics affords the ability to treat the experiences and views of a 
particular context as being viable, and unearth the mathematical validity of those statements in 
concert with those cultural ways of knowing.  This affords a view where Western mathematical 
forms are not the only viable means of representing mathematical thinking.  Further Orey and Rosa 
argue that when cultures meet, there are three possible outcomes: (1) that one culture eliminates the 
other completely, (2) that one culture is absorbed by the other, or (3) that the two cultures come 
together to produce a third distinct culture (p. 18), and as such argue for fruitful and equitable means 
of cultural merging as being aligned to the third view where both perspectives are honored. 

We argue that a classroom in itself consists of multiple views motivated by the various cultural 
backgrounds of its members.  Further we notice that the teacher serves as a representative of one 
cultural group with one mediating function being to bring learners into the practices of academic and 
curricular mathematics.  Similarly we recognize that students across classrooms come from a variety 
of background and experiences and draw on various funds of knowledge (Moll et al. 1992) that that 
informs their intuitions.  We argue that with these funds of knowledge informing interaction across 
tasks, it becomes paramount to consider the means by which these interactions frame the views of the 
teachers as well as their students, and examine how these experiences with contexts are treated in 
establishing the culture of the classroom and advancing learners’ cognition. 

Research Design and Methods 
In examining the teacher’s practices and interactions with students and their ideas in 

mathematical modeling contexts we employed a micro-ethnographic study (Bloome et al., 2010) to 
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trace the types of interventions effective in fostering validation of these models. Bloome et al. (2010) 
articulates a relationship between theorizing, discourse analysis and the event in which analysis 
occurs where in triangulating of the generated theories they must be validated in the context of event 
through a discourse analysis, and validated by the members of the space.   According to the authors, 
this process informs the overarching theory through these iterative processes in multiple cycles. 

Data Collection 
Preliminary data collection for this ongoing study commenced in the fall 2016 across two 

different pre-calculus classes taught by the same teacher.  Our field site was a private academy in the 
Midwestern United States.  Prior to formal classroom observations our cooperating teacher identified 
her primary instructional goal engaging her students in mathematical modeling on a regular basis, 
and to support them in both generating and answering their own contextual questions through 
mathematics.  

Our cooperating teacher implements modeling tasks approximately once per week and focuses 
primarily on students generating and responding to questions about a particular context of interest. In 
addition to capturing these events through audio and video recording we also examined the nature of 
general classroom instruction to look for transfer of the mathematical modeling contexts used in class 
during the designated modeling time. In framing our analysis, we focused on the various ways that 
students drew on their funds of knowledge and intuitions over the course of instruction which 
became emergent through their interactions in the classroom. 

Additionally a focus group of students was selected for additional audio recording to capture 
small-group interactions during classroom instruction and small-group/individual work.  Written 
field notes were collected by the research team to identify points of interest for further analysis as 
well as serving as a log of instructional interactions.  Regular reflective interviews were conducted 
with the teacher in order to get their perspective on classroom instruction for that particular day as 
well as capture in the moment thinking about the nature of the daily instruction.  The research team 
also implemented daily reflection (either written or audio/video recorded) to help in identifying key 
events to analyze. 

All video and audio records of the sessions are first transcribed.   In our analysis we seek 
instances of interactions and methods that students use when solving problems.  Particular attention 
is paid to the means by which learners’ intuitive and experiential knowledge informs interaction with 
peers and contexts under study. Finally we look across these analyzed cases to seek productive ways 
that the teacher helps to scaffold students through this process, and where and how these interactions 
inform future interactions in other mathematical contexts.  We characterized these experiences as 
meaningful instances of scaffolding. 

Results and Conclusions 
Our preliminary analysis of key events that occurred across five different modeling contexts over 

the course of three instructional units revealed that when the teacher was sensitive to students’ 
interpretations of problems within each context that this triggered deep mathematical learning and 
intense engagement in these tasks.  For example, in one instance during which students were 
considering the relationship between revenue, cost and profit models in an economic context, 
students challenged the viability of the particular model presented, and offered insights into 
optimizing the business growth potential, and drew on significant and robust mathematical ideas such 
as increasing revenue through raising prices, or evaluating staffing models of the business.  We 
observed that it was through students drawing on their funds of knowledge and the teacher 
recognizing that these ideas had both contextual and mathematical merit that these issues were 
brought to bare in the classroom. Through the teachers responsiveness to these ideas the teacher was 
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able to facilitate a mathematical discussion that helped the students gain insight into this context and 
unpack the mathematical ideas that they were considering. 

In our session, drawing from event maps and illustrations of exemplary interactions, we will 
argue that in viewing student interpretations and ideas as viable sources of knowledge affords the 
ability for a responsive teacher to engage their students in deep mathematical and contextual learning 
that builds on these views.  We offer that our analytical interpretations of these events provide a 
means for theorizing the types of teacher interventions that may be productive in developing a 
modeling disposition.   
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CHARACTERIZING SOPHISTICATION IN REPRESENTATIONAL FLUENCY 

Nicole L. Fonger 
Syracuse University 
nfonger@wisc.edu 

Representational fluency is key to understanding mathematical ideas is deeper ways. This research 
advances a framework for characterizing sophistication in representational fluency that builds on a 
structure of observed learning outcome (SOLO) taxonomy. Drawing on an analysis of interviews 
with 9th-grade algebra students solving equations using a computer algebra system and paper-and-
pencil, I discuss four levels of sophistication: prestructural, multistructural, unistructural, and 
relational. This characterization is sensitive to the nature of students’ creations, interpretations, and 
meanings. Future directions for research are noted. 

Keywords: Problem Solving, Algebra and Algebraic Thinking, Technology 

Introduction and Research Purpose 
Representational fluency—“the ability to translate across representations, the ability to draw 

meaning about a mathematical entity from different representations of that mathematical entity, and 
the ability to generalize across different representations” (Zbiek, Heid, Blume, & Dick, 2007, p. 
1192)—is key to understanding mathematical ideas in deeper ways. Modeling representational 
fluency is often approached through examinations of the number and type and representations student 
use (Dreyfus, 1991; Selling, 2016), and the nature of connections students make across 
representation types (Fonger, 2011). However, little research accounts for how to model early phases 
of students’ learning and representing, including students’ cursory use of representations to make 
progress in solving problems. For example, students may make progress toward solving identity or 
contradiction equations with multiple representations, yet struggle to articulate clear meanings of 
solution sets across symbolic, graphic, and numeric representation types (Huntley et al., 2007). 
Indeed, solving equations with multiple representations is cognitively complex, for “solution set” 
takes on differing forms when solving single-variable equations in symbols, as graphs of functions in 
a Cartesian plane, and as systems of equations in two variables. Examining students’ equation 
solving with multiple representations with technology such as computer algebra systems (CAS) is 
especially important, for CAS can both afford and constrain students’ activity and equation solving 
techniques. 

The purpose of this research report is to advance characterizations of students’ sophistication in 
representational fluency that are sensitive to the nature of students’ mathematical activity and 
meaningful use of multiple representations in solving problems. I focus on the context of students’ 
solving problems involving linear equations in a CAS environment. 

Theoretical Framework and Background 
A key theoretical assumption in this study is the notion that students’ learning and representing 

are complexly intertwined processes. From this stance, Dreyfus (1991) advances four stages for 
learning processes from lesser to greater sophistication: using one representation, using more than 
one representation (in parallel with others), linking multiple representations, and integrating the use 
of multiple representations in a flexible way. Fonger (2011) elaborated the notion of connecting 
representations in an analytic frame that examines the number of representations connected and how. 
More recently, Selling (2016) modeled students’ change in learning and representing as use of: use of 
a single type of representation, use of different types of representations, use of multiple 
representations for the same problem, and connects different representations of the same problem. 
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Across these studies, key components of learning, and arguably change in representational fluency, 
include: the number of representation types used to solve a problem (one or several), and how 
students reason about connections.  

Building on this, and recalling the definition of representational fluency, in this study, I take 
translation and transposition as key indicators of representational fluency. A student translates 
among representations by creating and interpreting the meaning of a target representation from the 
source representation (e.g., symbolic to graphic); a transposition involves creating and interpreting a 
single representation type (Janiver, 1987). In students’ interpretations, I focus on students’ meaning 
of a mathematical scenario or entity (e.g., how a graph represents solution sets to equations). I take 
students’ creation and interpretation of representations as the “assessed element” for examining 
representational fluency. With this unit of analysis, I followed an adapted version of the structure of 
observed learning outcomes (SOLO) taxonomy (Biggs & Collis, 1982) to articulate students’ 
mathematical activity with respect to using one or more representations, connections between 
representations, and mathematical meanings students make in solving problems. I focused on four 
levels of the SOLO taxonomy: (a) prestructural—lacks knowledge of the element being assessed; (b) 
unistructural—focuses on only one element being assessed; (c) multistructural—focuses on several 
elements being assessed, may not be able to relate them; and (d) relational—correctly completes and 
relates more than one aspect of a task. 

Methods 
The data for this study are from two semi-structured task-based interviews I conducted at the 

close of a teaching experiment with 9th-grade algebra students (age 14-15). The participants included 
2 students (of a class of 31) who participated in the 25-day collaborative teaching experiment taught 
by a ninth-grade teacher. Through this collaboration, we introduced equation solving with CAS and 
paper-and-pencil by building on students’ experiences in comparing and justifying the equivalence of 
expressions. Students identified solutions to equations such as ax + b = cx + d by comparing 
functions f(x) = ax + b and g(x) = cx + d. Activities were designed to support students in creating and 
interpreting CAS graphs and tables as comparisons of functions before symbolic manipulations. 
Interview tasks involved solving linear equations given in symbols like ax + b = cx + d for x (given 
integer parameter values for a, b, c, and d). Students solved equations with one, no, and infinite 
solutions. Additionally, students solved a set of two equations in two variables, y = ax + b and y = c, 
solving for the variable x. 

Data sources include one 45-minute video-recorded interview with each of Annie and Bryon 
(pseudonyms). I followed a constant comparative method of coding the video-recorded interviews 
(Glaser & Strauss, 1967). During a first round of coding, two external coders were trained using an 
adaptation of the analytic scheme for representational fluency as introduced by Fonger (2011). With 
81% agreement across coders, all code disagreements were discussed until the discrepancy was 
resolved in either a re-assignment of a code or an adaptation to the framework. I drew on the initial 
round of analyses and additional literature to refine the framework, and recode all data. I again 
followed a constant comparative method of coding until a stabilized coding framework was 
established, and all data were coded consistently. 

Results: Sophistication in Representational Fluency 
In Table 1 I introduce an adaptation of a SOLO taxonomy for characterizing sophistication in 

representational fluency in four levels: prestructural, multistructural, unistructural, and relational. 
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Table 1: Levels of Sophistication in Representational Fluency 

 

At the prestructural level, students may attempt to create or interpret representations to solve a 
problem without success. A typical prestructural level of representational fluency is characterized by 
either no attempt at the problem, or incorrect transpositions within one representation type. For 
example, asked to find the solution to y = 3x – 2 when y = 4, Annie struggled in working within the 
graphic representation type across CAS and paper-and-pencil. She found the point (2, 4) on a CAS 
graph, but could not identify that point as a solution on a hand-drawn graph. Second, students’ 
multistructural level of representational fluency is characterized by students’ movement between 
more than one representation type in either creation or interpretation of representations (but not 
both). At this level, the student makes progress toward successfully completing the task, but has 
difficulty conveying a relationship or connection between these representation types. For example, in 
solving 9 + x = 6 + 4x for x, Annie was successful in creating a split-screen graph and table, yet could 
not discern if the solution was 10 or 1. In this case, Annie’s uncertainty about the solution being 
“ten” or “one” reflects a cognitive complexity in identifying solutions sets (i.e., x = 1 in a one-
variable equation, or (1, 10) in a system of equations), and the meaning of solutions across 
representational forms. 

At the unistructural level of representational fluency, students are successful at creating and 
interpreting multiple representations within one representation type, yet multiple representation types 
and the connections between them are not considered. For example, Bryon demonstrated a 
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unistructural level of representational fluency, when given a one-variable equation in symbolic form, 
he wrote symbolic equations to reach 0 = 2, explaining “if there's no x's there's no solution. Unless 
it's a zero equals zero. But there isn't a zero equals zero, it's a zero equals two. So that's a no 
solution.” Here Bryon compared equations as equivalence relations. Finally, at the relational level, 
students correctly translate between representations to solve a problem, and may make a connection 
by correctly identify the solution as an invariant feature across representation types. For example, 
consider Annie’s work. The task listed an original equation, 2 – x – x = x + 8 – 3x – 6 with a next step 
of combining like terms (2 – 2x = –2x + 2), adding 2x to both sides (2 = 2) and subtracting 2 from 
both sides (0 = 0) with a solution of x = 0 and x = 2. In examining the truth of the claimed solution 
set Annie graphed the functions f6(x) = 2 – 2x and f7(x) = -2x + 2 to claim “they have infinite 
solutions.” Annie treated the equation as a relationship between expressions. 

Discussion 
In the proposed levels of sophistication, prestructural and multistructural denote lesser 

sophistication in representational fluency, while unistructural and relational convey greater 
sophistication. At the lower levels students conveyed cursory understandings of solution sets, while 
at higher levels students conveyed meanings of relational equality. It is notable that both students 
demonstrated sophistication across these levels, which varied by task type. Other frameworks that 
build on SOLO (e.g., Fonger, 2011) did not sufficiently account for the cursory understandings 
students expressed in this study at lower levels of sophistication, which may be important for 
developing greater sophistication over time. Characterizing students’ sophistication in 
representational fluency with this lens can afford a window into students’ emerging development of 
learning and representing. A fruitful direction for research on representational fluency is to 
investigate how students’ meanings of mathematical ideas evolve over time in relation to how 
students create and interpret representations. The nature of the complex interplay between learning 
and representing with multiple representations is a rich area to investigate. 
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CONCEPTIONS OF MODELING REPORTED BY INSTRUCTORS  
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With attention on modeling in the Common Core State Standards for Mathematics (CCSSM), 
research has turned to supporting preservice teachers in preparing to teach mathematical modeling, 
especially addressing their diverse perspectives of modeling. This study explores conceptions of 
modeling, especially those not aligned with mathematical modeling as described in CCSSM, as 
reported by instructors of mathematics and mathematics education courses required by teacher 
preparation programs. With the analysis of interview data collected from five teacher preparation 
programs, we found varying modeling conceptions. Specific examples of the conceptions are 
described, as well as implications for mathematics education and the preparation of future 
secondary mathematics teachers. 

Keywords: Modeling, Teacher Education-Preservice, High School Education 

Engaging in mathematical modeling can enable students to learn mathematics as a complex, 
integrated, and coherent subject, as a powerful tool for making sense of the real world and everyday 
life, and as a critical numeracy lens for exploring embedded mathematics in media and political 
reports (Lesh & Doerr, 2003). Mathematical modeling is recommended by Common Core State 
Standards for Mathematics (CCSSM) as both a Content Standard and a Standard for Mathematical 
Practice (National Governor’s Association Center for Best Practices [NGA] & Council of Chief State 
School Officers [CCSSO], 2010). This dual role of modeling – as a vehicle for learning mathematics 
as well as a mathematical goal on its own – has been noted by researchers, along with other potential 
meanings of modeling that may cause misunderstandings in both research and practice (e.g., Anhalt 
& Cortez, 2015; Smith, 2015).  

Principles and Standards for School Mathematics [PSSM] (National Council of Teachers of 
Mathematics [NCTM], 2000) stated that “it is not surprising that the word [model] is used in many 
different ways in discussions about mathematics education” (p. 70). In addition to connecting 
mathematics to the real world, PSSM included the meanings: (1) physical materials, such as 
manipulatives, and (2) simulations in which a teacher shows how to solve a problem to students. 
Smith (2015) noted that language around modeling can be imprecise, and that care should be taken in 
distinguishing instructional models from mathematical modeling. Smith identified instructional 
models as “visible tools we all use to make invisible and abstract mathematical ideas accessible to 
students” (p. 8), but mathematical modeling as the process of making assumptions and simplifying an 
ill-formed situation to “where we can do some mathematics to answer our initial question” (p. 8). 
Smith cautioned that the distinction can be unclear. As an example, he explained that a numerical 
representation can be used both as an instructional model and as a tool supporting mathematical 
modeling. Similarly, Anhalt and Cortez (2015) described that their mathematics preservice secondary 
teachers (M-PSTs) expressed initial views of modeling in terms of instructional models, but their 
views developed to be closer to mathematical modeling after engaging with full modeling tasks.  

CCSSM defined mathematical modeling as a complex, iterative process for “choosing and using 
appropriate mathematics and statistics to analyze empirical situations, to understand them better, and 
to improve decisions” (NGA & CCSSO, 2010, p. 72). Within the process of mathematical modeling, 
CCSSM recommended that students make assumptions to build a model, test the model 
mathematically, interpret the results, and then use the interpretations to validate the model or revise 
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the model. CCSSM focused on students developing “expertise as well as creativity” as they engage in 
the modeling process, and focused on making and investigating conjectures as they make sense of the 
mathematics found within a given situation. M-PSTs need experiences developing their conceptions 
of mathematical modeling as they engage in modeling tasks and distinguish between the meanings of 
modeling (Anhalt & Cortez, 2015; Smith, 2015).  

As we explore experiences that support M-PSTs in developing their own conceptions of 
mathematical modeling, we aim to answer the following research question: What conceptions of 
modeling, different from those described in CCSSM, were reported by instructors who prepared 
secondary mathematics teachers to learn and teach algebra? 

Methods 
Data used in this paper come from a larger research project Preparing to Teach Algebra. A part 

of the project investigated M-PSTs’ opportunities to learn about mathematical modeling at five 
universities that we call Great Lakes University (GLU), Midwestern Research University (MRU), 
Midwestern Urban University (MUU), Southeastern Research University (SRU), and Western Urban 
University (WUU). We interviewed 48 instructors of required mathematics courses, mathematics for 
teachers courses, mathematics education courses and general education courses. We asked instructors 
to describe modeling opportunities they provided for students.  

The interview data were transcribed and checked by another project team member. Two 
researchers individually coded the interview transcripts for instances when instructors described 
modeling in ways different from the conception of modeling described in CCSSM. They then met to 
compare coded transcripts to resolve discrepancies. The first author read all the coded data, 
summarized the main idea(s) of each coded item, and organized them by similar conception(s) of 
modeling. Two other authors then individually reviewed the categories and examples from the 
transcripts. Three authors met to discuss the coded items and categories until consensus was reached. 
Four themes emerged from this process: (a) generating mathematical notations, (b) constructing 
proofs, (c) using representations to solve non-contextualized problems, and (d) using manipulatives 
without solving a problem. 

Findings 
In considering instructors’ examples of modeling opportunities that revealed conceptions 

different than those described in CCSSM’s “Model with Mathematics” (NGA & CCSSO, 2010), we 
describe each theme below, using examples provided by instructors. 

Generating Mathematical Notations  
Linear Algebra and Abstract Algebra instructors described writing mathematical notations for 

algebraic concepts as examples of modeling. A Linear Algebra instructor at SRU provided an 
example of writing equations of spanning sets for �n. He compared physical representations of �2 or 
�3 with representations of �7 or �n where M-PSTs looked for an abstract model of an abstract 
algebraic idea. Similarly, an Abstract Algebra instructor at MUU mentioned modeling as generating 
mathematical notation to describe certain properties. When she introduced an example of a group, 
she reported her students’ struggle to use general mathematical notation describing properties in a 
specific context. Students either forgot to replace G, which represents an arbitrary group, or 
represented elements incorrectly, or used irrelevant operations. She concluded, “It's being able to 
interpret what these general statements mean from this particular example that they're looking at. In 
that sense, I think I'm using modeling.” These examples of modeling tasks that rely on using 
mathematical notation to model abstract mathematical ideas, reveal a difference in conception from 
that described in CCSSM which focused more on mathematical application than abstraction; that is, 
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on quantities and relationships in “physical, economic, public policy, social, and everyday situations” 
(NGA & CCSSO, 2010, p. 72).  

Constructing Proofs 
A Reasoning and Proof instructor at SRU and an Abstract Algebra instructor at MUU described 

constructing proofs as modeling. When the Reasoning and Proof instructor considered the CCSSM 
modeling process during the interview, he said, “Some modification of this goes into proof design.” 
He described several steps (e.g., identifying variables, formulating a model) of the CCSSM modeling 
process with respect to constructing and testing a proof. He explained, “This [modeling process] 
doesn't apply as much to formulating a specific problem, as it is to formulating and modeling the 
style of an argument.” Similarly, when an Abstract Algebra instructor at MUU considered the 
CCSSM modeling process, she mentioned that her students “had to formulate a model in terms of a 
proof by determining what representation worked.” She described students’ “validating the 
conclusions and possibly improving the model” in a classroom activity in which M-PSTs constructed 
a sketch of a proof and then exchanged their proof with another student in the class to receive 
feedback. These explanations revealed that the CCSSM modeling process can be interpreted as 
processes of proof for algebraic concepts. 

Using Representations to Solve Non-Contextualized Problems 
For geometry courses, instructors reported that M-PSTs learned about algebra as they learned 

geometry through modeling. The Geometry instructor at SRU demonstrated a modeling activity in 
which M-PSTs found the shortest distance between points on the surface of a sphere. This activity 
required M-PSTs to use a model of a sphere and consider the surface metric; he explained, “When 
we were first starting to talk about the idea of lines and originally thinking of it in terms of shortest 
distance… Here's a model that we did, it's sort of like spherical geometry [drawing], not quite so 
round…” Finding the distance between two points is often used in real-life situations, such as 
selecting the shortest path to go from one place to another. However, the focus in this model is 
representing abstract mathematical ideas using a more concrete model, without a specific real-life 
context. Without support, M-PSTs may struggle to connect these abstract ideas with the real-world, 
as needed to teach modeling as described in CCSSM. 

Using Manipulatives without Solving a Problem 
Another conception of modeling was the use of algebraic tools. The Student Teaching Seminar 

instructor at SRU provided an example of modeling where M-PSTs discussed the use of 
manipulatives, such as algebra tiles, pennies, and counters: “We talked about …models like using 
pennies or counters that were green and red, or something like that to talk about integers.” The 
instructor considered modeling as use of tools to discuss algebraic concepts, such as integers, but did 
not connect it with problem solving.  

One major difference between these instructors’ modeling conceptions and those from CCSSM is 
that the instructors did not necessarily considered modeling as involving real-life problem solving. 
All the examples provided here, however, could be extended to include real-life contexts. For 
example, for the “Using Manipulatives” conception, if a real-life problem can be represented and 
solved using algebra tiles, pennies or counters, the problem could be considered as a modeling task 
described in CCSSM. Without such extensions, these reported conceptions entailed a distinct nature 
that is not evident in the description of modeling from CCSSM. 

Discussion and Conclusions 
It would be ideal if instructors of mathematics and mathematics education courses required by 

teacher preparation programs were supported in collaboratively sharing conceptions of modeling and 
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preparing M-PSTs to learn about and to learn to teach modeling. It might not be realistic, though, to 
force all stakeholders to share a single conceptualization of modeling when the term model is 
interpreted in several ways. Along with (1) using manipulatives, which we described earlier as part of 
using instructional models (NCTM, 2000; Smith, 2015), and (2) engaging in mathematical modeling 
as described in CCSSM (NGA & CCSSO, 2010), participating instructors provided examples of three 
conceptions of modeling that differ from CCSSM: (3) generating mathematical notations, (4) 
constructing proofs, and (5) using representations to solve non-contextualized problems. It is worth 
recognizing these different meanings of a model or modeling when teacher educators discuss 
mathematical modeling in their classrooms because M-PSTs may possess varying conceptualizations 
of these terms either from previous mathematics or from mathematics education courses. 

As we investigate several conceptions of a model or modeling from literature and additional 
meanings of these terms found from data collected from the teacher preparation programs, we 
conclude this paper by proposing a systematic way to interpret diverse meanings of a model or 
modeling. When we consider the term model, without mathematics in mind, it can be interpreted as 
manipulatives or imitation, as described in PSSM (NCTM, 2000) or by other researchers (Anhalt & 
Cortez, 2015; Smith, 2015). When we discuss model with mathematics, CCSSM started with the 
following statement in their Standards for Mathematical Practice: “Mathematically proficient 
students can apply the mathematics they know to solve problems arising in everyday life, society, 
and the workplace” and provided several real-world examples to support this idea. If connections to 
the real-world are necessary in model with mathematics, the first three conceptions reported by 
participating instructors are not necessarily consistent with this idea. They do, however, share 
mathematical processes (e.g., identify variables, interpret and validate results) that can be extended 
beyond modeling to generating mathematical notations, constructing proofs, or representing non-
contextualized problem-solving. Connecting such mathematical processes can be an opportunity, not 
an obstacle, for M-PSTs if they have opportunities to learn from instructors who clarify ways in 
which these processes can be used for learning and doing mathematics; including, but not limited to, 
modeling. The various views of modeling held by instructors of teacher preparation programs have 
the ability to influence the way secondary M-PSTs learn to model with mathematics; therefore, 
instructors’ awareness of these views need to be recognized and discussed in teacher preparation 
programs.  
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Reasoning is critical to students’ success in mathematics, yet reports on its development in 
elementary school are scarce. An action research project with grade 5 and 6 students investigated 
how growth in mathematical reasoning occurred within abstract strategy games. Results show that 
Dewey’s educative experience emphasizes the importance of students’ active engagement and 
noticing their own reasoning. Through characteristics of continuity and interaction, students 
analyzed moves, generalized toward strategies, and convincingly justified effective approaches 
through accepted structures of reasoning. Using educative experiences as practice/theory 
intersection demonstrates that all students could have equity in accessing high-level mathematics—
such as proof and proving—later in school mathematics given opportunities in elementary school to 
engage in the verbs and strucutres of mathematical reasoning. 

Keywords: Reasoning and Proof, Elementary School Education, Instructional Activities and 
Practices, Classroom Discourse 

Reasoning is crucial to students’ mathematical learning (Nunes et al., 2012). The possibility of 
abstract strategy games to support growth in reasoning is relatively unexplored (c.f. McFeetors & 
Palfy, 2017; Houssart & Sams, 2008). The research question was: How can we understand 
elementary school students’ development of mathematical reasoning through commercial games? 
Our purpose is to offer a finely-nuanced understanding of a games-based context’s contribution to 
students’ foundational experiences of reasoning. Students’ data illuminates an intersection between 
Dewey’s theory and a novel classroom practice of using strategy games. The research at this 
intersection informs a potential practical route for the use of games in mathematics class and a 
potential theoretical route to understand how informal opportunities to learn impact students’ interest 
and capabilities for future mathematical learning. 

Perspectives: Experience and Reasoning 
Dewey (1938/1997) saw experience as the essence of education. Experience is comprised of 

activity and reflection. Students learn by acting in and on the world around them. Reflective thought 
as an interpretive act is needed to transform activity into an experience. Educative experiences open 
up possibilities for further learning, determined through the characteristics of interaction and 
continuity. Interaction involves the interplay between the internalization of an individual and the 
situation. For situation, both context (ideas, physical environment that is material and natural) and 
other people are included. Continuity considers each experience as growing out of another 
experience and leading toward future experiences. Viewing interaction and continuity over a 
student’s school mathematics learning could direct attention to earlier experiences as being 
foundational. Foundational experiences are students’ (inter)actions and reflections that prepare them 
for future, more formalized mathematics learning opportunities. 

We view mathematical reasoning as a systematic and logical pattern of behavior (Reid, 2002). 
Verbs characterizing this behavior include specializing, conjecturing, representing, generalizing, 
investigating, explaining, justifying, refuting, modifying, and convincing (Lannin, Ellis, & Elliott, 
2011; Mason, Burton, & Stacey, 2010; NCTM, 2000). Reasoning structures include deductive and 
plausible, with subcategories of induction, generalization, specialization, and analogy (Polya, 1954), 
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metaphor, metonymy, mental image (English, 1997); abductive (Conner et al., 2014); and 
transformational (Simon, 1996). Previous research has identified a developmental trajectory of 
mathematical reasoning across the grades which mirrors the development of conceptual 
understanding, moving from analysis of specific cases to systematic generalizations and proof (Stein 
& Burchartz, 2006; Tall, 2014). Contexts which promote the development of reasoning are familiar, 
stimulating, and motivating. Teachers’ prompting for explanations (Mueller & Maher, 2009) and 
setting discursive contexts supports mathematical reasoning (Ko et al., 2016). Game play is familiar, 
motivating and social. 

Mode of Inquiry 
This report focuses on Pollard School, one of three schools in an action research project. Three 

grade 5/6 classes were cross-grouped for station-based learning in three micro-cycles. 45 of the 60 
students and 3 teachers participated in data collection. Each week for one hour, over three months, 
one-third of the students participated in the classroom intervention with games. Four games were 
used: Gobblet Gobblers, Tic Stac Toe, Othello, and Go. The games contain no element of chance. 
Students played in pairs against another pair to encourage interaction.  

While students played, and developed strategies the research collaborators (teachers, researcher, 
and assistants) prompted them to elicit reasoning. Data collection methods included: verbatim 
recording of student statements, student record sheets to explain their strategies and reasoning with 
words and drawings, field notes, photographs of students and game configurations, 20-minute student 
pair interviews and 30-minute teacher interviews. 

We grouped data for analysis by individual student, and read through to develop a holistic view 
of each student’s reasoning (McFeetors & Palfy, 2017). Data was first coded by reasoning structure 
used: inductive, deductive, indirect, metaphoric, analogic, imagistic, and informal and next by 
reasoning verbs: specializing, conjecturing, representing, generalizing, investigating, explaining, 
justifying, refuting, modifying, and convincing. After coding data individually in each phase, we 
compared data coded to maintain reliability to result in cohesive data sets within categories of both 
verbs and structures of reasoning. The high quality of students’ reasoning caused a return to 
interrogate processes in which reasoning developed. 

Results: Data Interpretation 
Although initially students played with little justification for moves, they moved quickly to . 

conjecturing possibilities, generalizing strategies, and convincing others using varied reasoning 
structures. Reasoning developed in students through educative experiences, where continuity and 
interaction were present and contributed to mathematical learning.  

Mathematical Reasoning and Interaction 
The games were purposefully selected because the possibility of winning elicited a high degree 

of engagement which led to meaningful interactions. Students used the games to investigate moves, 
explain to a partner, refute other students’ claims, and to conjecture. During play they investigated 
strategies and explained reasons for moves. In Othello, Renée and Eve convinced each other with 
whispered comments like “go here because we would get the side.”  

Partners also questioned as they evaluated each other’s reasoning and integrated new strategies. 
In Gobblet Gobblers, Floyd developed a “checkmate” position, engaging in analogic reasoning by 
using a familiar term from chess. While Eric initially tried to refute the claim, he declared in a later 
match “I have Floyd in the checkmate position.” Floyd explained “Because then if I put it here he can 
just go here. If I put it here he goes there. And if I put it over here then he can go there.” Floyd’s 
chains of if-then statements are indicative of deductive reasoning. 

Frequently students explored opponents’ strategies when their opponent won repeatedly. Students 
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analyzed by noticing patterns in plays and moved toward generalizations. In Tic Stac Toe, Alex 
analyzed Robyn’s moves and stated, “I’m trying to figure out a strategy to do a horizontal diagonal 
win, like Robyn.” Robyn’s wins were convincing enough for Alex to investigate why Robyn was 
effective and form a conjecture around a modified way to win. 

Collaborators interacted with students’ reasoning through verbal prompts to encourage them to 
enhance reasoning. Furthermore, Esme mentioned to her teacher, “The questions you asked me 
actually helped me play the game better. They made me think about the strategies.”  

Mathematical Reasoning and Continuity 
The cyclical design of the study occasioned continuity of experiences from playing less complex 

games toward a highly strategic game by the end. Students’ reasoning became more sophisticated as 
the complexity of the games increased, as well an increased eagerness to improve reasoning 
emerged. Continuity is best viewed by a focus on one student’s development. We use Renee’s 
thinking to illustrate how integral continuity was to students’ progression. 

Beginning with Gobblet Gobblers, Renee built on her prior Tic Tac Toe strategy of “playing in 
the middle of the board helps you because then any other place you go you can get two in a row.” 
Renee generalized a middle position as a winning strategy and justified her answer using evidence 
from her previous experiences with Tic Tac Toe and Gobblet Gobblers. She combined analogic 
reasoning in connecting two games and inductive reasoning in moving from many specific instances 
to a global strategy. 

For more complexity, Renee and her peers moved to investigate strategies in Othello. Renee 
quickly realized that both the sides and corners were powerful spots to control on the board: “I would 
put white in spot 13 because then I would get the side. The blak [sic] might then go on the side on 
square 12 and then I would sandwich them on the square to the left of square 12. I would then have 3 
on the side”. The importance signified by her chain of if-then statements indicates the development 
of a game tree of mental images or imagistic reasoning (Pirie & Kieren, 1994).  

For the duration of the project, Renee challenged herself to learn a new game, Go. She 
demonstrated an emergent strategy after two matches to make an offensive move to “make a wall” in 
a diagonal line. Renée conjectures and explains, but does not justify her strategy of “making a wall”. 
Her continued experiences gave her the confidence to advise others in the final class through the tips: 
“Making dimonds [sic] to capture the other player and marking territory” and “Making diagonal lines 
so that the other player has a hard time capturing you.  

Renée identifies two strategies where naming board arrangements is an abstraction from 
generalizing, and now also justifies each strategy. The accompanying images point to her use of 
imagistic reasoning. Orally, Renee justified the first tip stating, “I like to make rhombus 
shapes…because it’s my territory and nobody can put one in there. And, it’s difficult to capture.” 
Renee also commented on how game experiences opened up the possibility for further learning: 

It also helps learn how to make up your own strategy. So when you are doing problem solving–
you use–what you did for learning a strategy and try to connect it to problem solving that you are 
doing. … I find it helps playing with other people. ’Cause then you can learn how their strategies 
affect the games. And also you get to know about the way that they think. And I think that it is 
important when you are with people, learning how they think so that you can use that to help you 
– 

Renee sees connections to future experiences with problem solving. She identifies interpersonal 
learning in figuring out how others think. Finally, Renee introduced Go to her family, carrying 
forward learning from mathematics into familial, recreational activities outside of school. 
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Discussion: Significance and Conference Theme 
As a potential new route to explore, commercial abstract strategy games like the ones used in this 

study can be used to support and investigate children’s development of mathematical reasoning. 
What our research suggests is that the games were an authentic context, and what we observed were 
moments of reasoning that moved from nascent toward more robust. The verbs of mathematical 
reasoning students enacted while playing the games were broad and varied. Future research could 
include exploring more games and exploring a new site of parent-child interactions which could 
enrich home-school connections. 

At the intersection of theory and practice, Dewey’s notions of interaction and continuity are 
helpful in framing pedagogical decisions. Our research demonstrates that students can have educative 
experiences when teachers plan for interaction and continuity. These foundational experiences are 
required early in children’s mathematical learning so that they can be consolidated over time and 
prepare them for success in secondary and post-secondary studies.  
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EFFECT OF QUANTITATIVE REASONING ON PROSPECTIVE MATHEMATICS 
TEACHERS' COMPREHENSION OF A PROOF ON REAL NUMBERS 

 Mervenur Belin  Gülseren Karagöz Akar 
 Boğaziçi University Boğaziçi University 
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This study investigated the effect of quantitative reasoning on prospective mathematics teachers' 
comprehension of a proof on the decimal representation of real numbers. A proof comprehension test 
prepared according to the dimensions suggested by Mejia-Ramos, Fuller, Weber, Rhoads and 
Samkoff (2012) was used as both the pre-test prior to and the post-test upon completion of an 
instruction given to 19 prospective mathematics teachers. Also, one hour long post-clinical 
interviews were conducted with six of them. Wilcoxon Signed Rank Test results showed a significant 
difference between the pre and the post proof comprehension test on the performances of prospective 
teachers. Together, the results from the interviews suggest that once prospective teachers engage in 
quantitative reasoning during instruction their proof comprehension might develop. 

Keywords: Reasoning and Proof, Rational Numbers, Number Concepts and Operations 

Introduction 
Proof and proving are the important branches of mathematics education. However, previous 

research showed that students face with difficulties related to proof and proving (Moore, 1994). 
Moore (1994) summarized the sources of difficulties considering proof practices: lack of knowledge 
about definitions of terms and statements and how to use them in the proof; lack of understanding the 
concepts and also mathematical language; inadequate concept images; and failure to generate or to 
use  examples about the proof statement. For the elimination of these difficulties, researchers focused 
on different aspects during teaching using informal proofs such as visuals, diagrams, and generic 
examples (Gibson, 1998). As much the use of empirical examples are important, research also 
suggested that along with examples, the use of quantitative reasoning (Thompson, 2011) could be 
critical for students' thinking about proof (Weber, Ellis, Kulow & Özgür, 2014) since students who 
focus on generalizations through quantitative reasoning can perform better in constructing proofs 
than students who focus on empirical examples while obtaining generalizations (Ellis, 2007). Besides 
the importance of eliminating students’ difficulties about proof and proving during teaching, it is 
essential to consider how to evaluate students’ performances. Instead of using ‘state and prove’ 
format, Mejia-Ramos et.al. (2012) developed an assessment model of proof comprehension at 
undergraduate level with seven dimensions: D1: Meaning of terms and statements, D2: Justification 
of claims, D3: Logical status of statements and proof framework, D4: Summarizing via high-level 
ideas, D5: Transferring the general ideas or methods to another context, D6: Illustrating with 
examples, and D7: Identifying the modular structure. Considering research both on eliminating 
students' difficulties about proof and proving and using proof comprehension model, this study 
investigated the effect of quantitative reasoning on prospective teachers' comprehension of a proof 
about decimal representation of real numbers because research has shown that students have 
misconceptions and difficulties regarding real numbers (Voskoglou & Kosyvas, 2012), which is 
proposed to be taught through quantitative reasoning (Karagöz-Akar, 2016). The research questions 
of this study were as follows: What are the current levels of prospective mathematics teachers in the 
pre-and post-proof comprehension test according to the proof comprehension dimensions? Is there 
any significant difference between pre and post proof comprehension test results of prospective 
mathematics teachers who took an instruction about construction of real numbers as decimal 
expansion via quantitative reasoning? How do prospective mathematics teachers reason on the post-
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proof comprehension test upon completion of an instruction on the construction of real numbers as 
decimal expansion through quantitative reasoning? 

Method 
The sample of the study (N=19) was the prospective primary and secondary mathematics 

teachers* (from now on will be called as students) at a university in Turkey in which the medium of 
language was English. The design of the study was mixed methods, specifically an embedded 
experimental study since the quantitative data obtained from proof comprehension tests were 
supported by the qualitative data via conducting interviews. Quantitative part of the study was one 
group pre-test post-test design and the qualitative part consisted of semi-structured interviews 
conducted after the post-test.  

For the data collection, a statement and its proof about the decimal representation of real numbers 
was used (Usiskin, Peressini, Marchisotto & Stanley, 2003) The authors individually developed the 
test questions considering the proof comprehension dimensions (Mejia-Ramos et.al., 2012). 
Eventually, the test consisted of 13 questions. After checking validity and reliability issues, the test 
was provided to students prior to and after the instruction. The instruction included two teaching 
sessions which focused on the decimal representations of real numbers via quantitative reasoning. 
Then, semi-structured interviews, with 6 students were conducted to collect further data on how 
students reasoned about and justified their answers to the proof comprehension test questions. 

For the analysis of the data for research question 2, Wilcoxon-Signed Rank test was used due to 
the low number of participants. For the analysis of the data for research question 1, the percentages 
of correct, incorrect and partially correct responses for each dimension and each question were 
obtained. This informed whom to interview. Particularly, if the student answered all the questions in 
the dimensions correctly, his/her performance was classified as correct answer. If they could not 
answer or incorrectly answer all the questions in the dimensions, their performance was classified as 
no/incorrect answer. If they gave correct answer to one of the questions in the dimension and no 
answer or incorrect answer to the other question, the performance in the dimension was classified as 
partially correct. This classification was maintained both for the pre-test and the post-test 
performances. Then, the transitions between the answers from the pre-test and the post-test were 
illustrated (See Figure 2). For instance, for proof comprehension dimension 1, if a student was 
classified as partially correct in the pre-test and correct in the post-test, for the analysis, the case was 
taken as from partially correct to correct answer for Dimension 1. The focus of analysis for the 
interviews was students' reasoning quantitatively on the answers to the post-proof comprehension test 
questions. 

Results 

Quantitative Results 
Regarding research question 1, when the percentages for correct, partially correct and incorrect 

answers in terms of dimensions were examined (See Figure 1), there is a decrease in the percentage 
of incorrect answers from the pre-test to the post-test. Therefore, percentages of partially correct and 
correct answers increased for almost all the dimensions, except for D3, asking about the method of 
the proof. For that, the percentage of incorrect answers in the post-test was higher and the percentage 
of the partially correct answers in the post-test was lower than the pre-test. For the research question 
2, the Wilcoxon Signed rank test showed that there was a significant difference between the pre-and 
the post-proof comprehension test results (z=-3.731 and p<0.05). Additionally, 18 students' post-
proof test scores were higher than the pre- test scores. One of the students' post-test score were the 
same as the pre-test score. Also, there were no students with a lower score in the post-test than the 
pre-test. 
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Figure 1. Response percentages for proof comprehension dimensions. 

Qualitative Results 
For research question 3, the following outline was used: As the data analyzed from 19 students, 5 

different transitions from the pre-test to the post-test occurred (See Figure 2). 
 

 
Figure 2. Interviewees' profile. 

 
For all of the five transitions, there was data showing that students used quantitative reasoning 

when needed. Yet, due to the page limitation, a sample data from Student 8 (S8) representing the 
transition from partially correct answer to correct answer in D2 was shared: S8 answered the 
Question 3(Q3) in both the pre and the post test correctly but he had no answer for Question 4(Q4) in 
the pre-test. Yet, in the post-test for Q4 (See Figure 3) he used both the diagrams and symbolic 
expressions to justify how he got the inequality asked in the question.  

 

 
Figure 3. S8's answer for the Q4 in the post-test. 

The data in the figure seems to suggest that he reasoned in the following way: S8 continued 
reasoning on the previous example he used in the test, 10/3, in question 1. He had divided 10 with 3 
and came up with 3+ 1/3 using the division algorithm. Then, continuing with the remaining part, 1/3, 
he first partitioned a whole into 10 equal pieces. Then, he repartitioned each equal piece into 3 more 
equal pieces. Thinking 10 of those 1/30 th pieces, he obtained 10/30. This allowed him to determine 
the number of 1/10th s in 1/3 such that he grouped the pieces (each being equal to 1/30) by 3 and 
then counted how many of those 1/10 th there are in 1/3 rd. That is he measured 10/30 th with 1/10 
th. In this way, he was able to find d1/10 as being equal to 3/10 such that there were 3 times 1/10 th in 
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10/30 and r2/10 was equal to 1/30. This way he was able to justify the inequality in the Q4. During 
the interview his reasoning supported his written work: 

S8: Now r1 could be between zero and 1. I told you. For this reason, 10r1 is between 0 and 10. 
Now d1 is 0≤d1≤9 in this way. Now it is easier to define over the figure. We reach r1= d1/10+ 
r2/10. r1 is greater than d1/10. Why? we said here that from the piece of 10/30 that is 1/3 there 
are some remaining parts 1/30 portion, I mean. The non-terminating part I mean r2/10. Here 
too. r1 is greater than d1/10. Therefore, 10r1 is bigger than d1. d1+1 is bigger than 10r1 because 
it is r1<(d1+1)/10.(He indicates the expression). That is d1+1 means that. It exceeds this part 
(shows r2/10 part). For this reason it (referring to 1/10) exceeds the portion 1/30. 

As the data indicated S8 thought through an example using quantities and shifted to symbolic 
expressions to justify his answer through quantitative reasoning. Particularly, since r1 was equal to 
the sum of d1/10 and r2/10, he was able to reason that r1 had to be bigger than d1/10. In this way, he 
reasoned that 10r1 was bigger than d1. For the other side of the inequality, i.e. 10r1 is smaller than 
d1+1, he again thought through the diagram such that he knew that the amount referring to 
d1/10+1/10 exceeded the portion r2/10.  

Conclusion 
The analysis of the results showed that once students reasoned quantitatively their 

comprehension of a proof on real numbers have developed: Particularly, not only there was a 
significant difference between the pre-and-post test results but also both in the post-test and during 
the interviews, for all dimensions students had a tendency to use diagrams and think through 
quantities while elaborating and justifying their answers. Specifically, descriptive results showed five 
different transitions from the pre-test to the post-test. Results showed that students had a 
development in proof comprehension dimensions, except for the D3, in which the name of the proof 
was asked. In fact, for all of the five transitions, data from the interviews showed that all students 
used quantitative reasoning while justifying their answers. These results align with Weber et.al. 
(2014) and Ellis’ (2007) study arguing that quantitative reasoning is beneficial for proof and proving. 
Therefore, extending the earlier research results this study showed that students were able to make 
generalizations through quantities and even explain the abstract expressions in the proof 
comprehension test. Though, because of the number of students (N=19) participated in this study, we 
propose the effect of quantitative reasoning on proof comprehension regarding both the real numbers 
and other concepts to be investigated further.  
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LOGICAL IMPLICATION AS THE OBJECT OF MATHEMATICAL INDUCTION 
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Proof by mathematical induction poses persistent challenges for college mathematics students. We 
use an action-object framework to analyze ways that students might overcome these challenges. We 
conducted three pairs of interviews with students enrolled in a proofs course. Tasks were designed to 
elicit student understanding of logical implication and components of proof by induction. We report 
results from one student, Mike, who had constructed logical implication as an object, and who 
invented a quasi-inductive proof.  

Keywords: Reasoning and Proof, Instructional Activities and Practices, Post-Secondary Education 

Mathematical induction relies on two defining properties of the natural numbers: 1 is a natural 
number; and if k is a natural number, then k+1 is also a natural number. Any set with these two 
properties contains the natural numbers. In particular, if we define S as the set of natural numbers n 
for which an open proposition P(n) holds, then we can show S=N by showing the following: (1) P(0) 
is true, and (2) for any natural number k, if P(k) is true then P(k+1) is also true, written 
P(k)→P(k+1). In other words, P(n) holds for all natural numbers n if S satisfies the two defining 
properties of the natural numbers. The inductive implication P(k)→P(k+1) can be treated in one of 
two ways: as an inductive step from the inductive assumption, P(k); or, as an invariant relationship 
between P(k) and P(k+1) for any k. We apply an action-object framework to the study of logical 
implication and its use in proofs by induction.  

Action-Object Theory 
Piaget (1970) distinguished logico-mathematical knowledge from other forms of knowledge via 

its objects of study and, specifically, how they are created. Following Piaget, we define mathematical 
objects as coordinated mental actions. Our distinction between logical implication as a 
transformation and logical implication as an invariant relationship builds upon Piaget’s action-object 
theory of mathematical development. Dubinsky made a similar distinction between actions and 
objects in APOS theory, which is also derived from Piaget’s genetic epistemology (Dubinsky & 
McDonald, 2001). Within that framework, Dubinsky (1986) conjectured that understanding 
implication as an object could empower students in mastering proof by induction. Our study is an 
investigation of this claim within our own action-object framework. 

Methods 
The first author conducted clinical interviews with students from an Introduction to Proofs course 

taught by the second author. The course is a junior-level mathematics course designed to prepare 
mathematics majors for rigorous expectations in subsequent proofs-based courses. Three students 
volunteered for the study, and all three students were invited to participate in a pair of clinical 
interviews—one interview before mathematical induction was taught in class and one after. All of the 
interviews were video-recorded, and they lasted about 45 minutes. Each interview consisted of the 
students responding to tasks that were designed to elicit their reasoning and understanding. These 
tasks consisted of three types: logical implication, components of mathematical induction, and formal 
proof by induction (see Table 1). 
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Table 1: Sample Tasks 
Task Type Sample 
A. Logical 
Implication 

Suppose the statement is true: “If two topological spaces are homeomorphic, 
their homology groups are isomorphic.” Evaluate whether the following 
statements are true, false, or uncertain. 
1) [converse]  2) [contrapositive]  3) [negation] 

B. Components 
of Mathematical 
Induction 

Suppose P(n) is a statement about a positive integer n, and we want to prove 
that P(n) is true for all positive integers n. For each scenario, decide whether 
the given information is enough to prove P(n) without induction, with 
induction, or whether the given information is not enough.  

1) P(1) is true; there is an integer k≥1 such that P(k) implies P(k+1). 
2) P(1) is true; for all integers k≥1, P(k) implies P(k+1). 

C. Formal Proof 
by Induction 

Prove the following claim:  
For every positive integer n, 2 + 22 + 23 + … + 2n = 2n+1 – 2. 

Results 
We report results for a student named Mike from his first interview. We focus on Mike because 

he seemed to possess an understanding of logical implication as an object. Mike quickly recognized 
the three transformed statements in Task A1 as the converse, contrapositive, and negation of the 
original statement. For example, in evaluating Task A3, he responded, “if the first statement is true, 
then that has to be false.” When asked to justify his response, Mike replied, “it’s the negation of the 
implication.” He seemed to recognize how the original statement had been transformed into the three 
statements he was evaluating, and he did not have to rely on any formal notation in order to do so. 
We characterize this recognition as an assimilation of the statements within a single structure for 
comparing and transforming them.  

In contrast, Mike did not seem to readily assimilate the scenarios in Task B1. However, he could 
make critical distinctions between them, particularly with regard to quantifiers like “there exists” and 
“for all.” For example, consider his comparison of Tasks B1 and B3. Note that “M” refers to Mike, 
and “R” refers to the researcher (first author). 

M: [reads Task B1 aloud, then pauses] That’s interesting. I don’t think it’s enough because that’s 
only the truth of two, unless you are meant to assume to know that that means that you could 
like replace that k+1 with some other integer--you know, j--that was… and then j+1 is also 
true, and so on. But I think it’s just not enough. 

R: Okay, so what would you know from this one? 
M: I would know that there’s at least... P(1) is true; P(k) and then P(k+1) is true. And that’s all I 

really know, from this. 
R: So you would know P(1) is true, P(k) is true, and P(k+1) is true.  
M: Yeah. 
R: But that’s not enough to prove…? 
M: That’s not enough to prove all positive integers. 
R: So, you know P(k) is true, for which k’s? 
M: Just, there is a k. Just one k. 
R: Is that the problem, then? 
M: I think that’s the problem. 
R: [shows Task B2 on paper] 
M: [looks at statement and immediately responds] Yeah, I know this is what, this is what it 

would take. P(1) is true and for all integers, k, greater than 1, P(k) implies k+1 is true. So, 
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that is the like sort of recursive thing that I was talking about, up there, where like… If you 
know that, yeah, so… P(1) is true and for all integers greater than 1, P(k) implies P(k+1), so 
that just grows to encompass all reals. 

R: How does this recursive thing work? 
M: Well, recursive is the wrong word. I mean, it just like… If you know P(k). Let’s say k is equal 

to 2. So then P(2) implies P(3). But since it’s for all integers k greater than 1, then P(3) also 
implies P(4), and so on.  

Despite having never seen proof by induction, Mike was able to engage in the cognitively 
demanding task of analyzing its components in Task B. His objectification of logical implication 
seemed to free up his cognitive resources for focusing on where, not how, to apply the inductive 
implication. However, Mike’s struggle with the increased demands of Task B were evidenced by his 
numerous pauses and minor mis-statements (e.g., “k greater than 1”). 

Upon reading Task B2, Mike immediately recognized what had been missing in Task B1. The 
new scenario allowed the implication to be applied to all values greater than or equal to 1. Mike 
began to recursively apply the logical implication, P(k)→P(k+1), in a manner consistent with what 
Harel (2002) called “quasi-induction.” In both Tasks B1 and B2, Mike was eager to successively 
apply the inductive implication to consecutive pairs of integers. After sorting through the cognitive 
demands of the tasks, he was able to do so correctly. 

Mike subsequently applied his quasi-inductive reasoning to Task C. Although the task did not 
explicitly call for induction, Mike independently attempted to prove the claim that way.   

M: Well, I’m sort of thinking here that like, start with n equals 1 because you know, the simplest 
to add all of them up. So, you have 2 is equal to 2 to the second minus 2, just… And I was 
thinking, if you could write it in sort of like a symbolic way where you have like the next one 
where n equals 2, then you have 2 plus 2 squared is equal to 8 minus 2. And then I was 
thinking maybe you could plug like the 2 squared minus 2 in for this initial 2 and get it to like 
[moves right hand in circular motion], you know, build on itself. 

R: Oh. Okay. Um, I think that’s a good idea. Um, does that relate to any of [the Task B 
scenarios]... 

M: Yeah. Yeah, it does. That’s what sort of gave me the idea... is like for the k+1.  
R: Okay. These gave you the idea for doing that? Which of these scenarios would it best fit?  
M: Well, hopefully [Task B2]. 

In Task C, P(n) is the statement “2 + 22 + 23 + … + 2n = 2n+1 – 2.” Mike’s approach was to use 
P(1) to build the equation in P(2) by substituting the right hand side (22-2) of the equation of P(1) for 
the initial 2 in the left hand expression in P(2). In this way, Mike used an inductive approach to show 
P(1)→P(2). Mike did not complete a formal proof by induction because he did not know how to 
write the inductive implication in a “symbolic way” that would generalize from any case, k, to the 
next case, k+1. However, Mike was conceivably on his way to generalizing his quasi-inductive 
argument into a formal proof by mathematical induction. 

Conclusions 
Piaget (1970) characterized logico-mathematical thought as grounded in composable and 

reversible mental actions. He described mathematical objects as coordinations of such actions. 
Dubinsky (1986) conjectured that treating logical implication as an object enables students to reason 
in more powerful ways, specifically with constructing proofs by mathematical induction. We 
investigated and affirmed Dubinsky’s conjecture through our interviews with college mathematics 
students, like Mike. 
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Mike entered our study with an understanding of logical implication as an object. He coordinated 
actions on logical implications as objects to organize components of mathematical induction into 
inductive arguments. He used implication across particular pairs of cases (e.g. P(2) implies P(3)) in a 
manner that fits Harel’s (2002) description of quasi-induction. Mike’s struggles were limited to the 
following: (1) determining the cases in which the object applied; (2) symbolizing the inductive 
implication in a way that generalized to all valid cases.  

Mike’s first struggle relates to the role of (hidden) quantifiers and students’ difficulties in 
differentiating between “there exist” and “for all” statements (Shipman, 2016). He recognized that 
Task B1 was existentially quantified, but struggled with the difference between an arbitrary variable 
and a fixed, unknown value. However, because Mike had logical implication as a mental object, he 
was able to resolve the details of the quantification. Mike’s second struggle was apparent in his pre-
interview in that he could not symbolically state the inductive implication for an arbitrary k. 
However, by the post-interview, he easily formalized a general inductive implication, possibly due to 
instruction on mathematical induction.  

Mike did not seem to experience difficulty with other common challenges reported in prior 
research on mathematical induction. For example, he did not conflate the inductive assumption with 
assuming the proposition he was supposed to prove (cf. Avital & Libeskind, 1978; Ron & Dreyfus, 
2004). We argue that students like Mike, who understand logical implication as an object, avoid this 
pitfall of conflation by treating the inductive assumption as a component of a larger object. For them, 
the inductive assumption is not an independent claim, rather it exists within the implication that must 
be established.  

Piagetian theory offers a lens through which Dubinsky (1986) identified the objectification of 
logical implication as a potentially critical aspect of mastering proof by mathematical induction. Our 
results suggest ways that instruction can build upon such understanding. One such approach is the 
task sequence used in our study (Task A, Task B, and then Task C), which seemed to guide Mike to 
nearly invent mathematical induction. His independent formulation resembled Harel’s (2002) quasi-
induction, which Harel had recommended as an instructional approach. Instructional methods that 
separate the inductive hypothesis from the inductive step may inadvertently discourage students from 
engaging in quasi-inductive reasoning. 
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PUSHING TOWARD THE PINNACLE: SUGGESTIONS FOR ASSESSING PROOF 
UNDERSTANDING 
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Proof is considered the pinnacle of mathematics, but students commonly fail to understand proof. 
Research programs have sought to understand how students develop an understanding of proof and 
looked for ways to help improve students’ understanding. Showing significant gains on measures of 
proof understanding is difficult. We suggest that the way proof assessments are scored is a cause. 
Namely, they focus on whether or not students can create acceptable proofs, and fail to capture 
students’ informal means of reasoning. We describe three different proving practices we have 
observed that appear similar in their understanding of proof from the perspective of many rubrics, 
but when analyzed more closely show differences in understanding. 

Keywords: Assessment and Evaluation, Reasoning and Proof 

Proof has been called the pinnacle of mathematics, but most students fail to learn how to prove 
(see Harel & Sowder, 2007). Mathematics education researchers have posited several causes. No 
doubt a problem this widespread is likely the result of many factors. However, one issue we raise is 
that proof is often conceived of as a concept that one has either learned or not. Instead, we posit that 
proving is a complex process that even when understood well may not lead to success in all proving 
situations.  

When proof understanding is assessed, students’ proofs are often compared to teacher- or 
researcher- generated proofs. If we maintain the metaphor of proof being the pinnacle – the highest 
point – of mathematics, then it is clear there is an arduous journey from the bottom to the top. 
However, we are only measuring whether or not students have reached the mountain top and do not 
capture where they fall along this journey. We hope to provide insights into understanding students 
who are on their journey to the top. 

Summary of Previous Research about Proof and Proof Understanding 
In this section, we elaborate our meaning for proof and describe how various studies have 

attempted to assess proof understanding in order to highlight our critical issue. Namely, that these 
assessment rubrics focus on whether students have or have not developed deductive reasoning, and 
failed to parse the many diverse ways of reasoning informally. 

Defining Proof and Proof Schemes 
By proof we mean an argument that removes the doubts for a conjecture. In mathematics, proof 

is often reserved for specific types of arguments. To avoid confusion, we will clarify proofs by their 
types and allow others to decide if the arguments meet their definition for proof. Harel and Sowder 
(2007) described proof scheme as a way of thinking about proof. We have found their framework to 
be useful in categorizing the different types of thinking individuals use in proving situations. Harel 
and Sowder (1998) identified three kinds of proof schemes; external-conviction, empirical and 
deductive. Those who use the external-conviction proof scheme remove doubt by referring to an 
external source, such as a book, teacher, or form of an argument. Empirical proof schemes are 
marked by the use of examples, and deductive proof schemes meet three criteria: they prove for all 
cases, rely on valid forms of logical reasoning, and show operational thought (Harel & Sowder, 
1998). Each proof scheme has many sub-schemes. Three are relevant to our discussion; the ritual 
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proof scheme (external-conviction), the perceptual proof scheme (empirical), and the contextual 
proof scheme (deductive). 

 

Assessing Understanding of Proof 
The National Assessment of Educational Progress (NAEP) includes items that asked for a proof 

(National Assessment Governing Board, 2008). These items determine whether or not students 
understand deductive proof. For one released item students received full credit for including the full 
number of “statement-reason pairs” used in the assessor-generated proof, and varying degrees of 
partial credit for the number of statement-reason pairs they completed (NAEP Questions Tool, 2014). 
This rubric however would treat a student who reasoned empirically (demonstrating an 
understanding of the conjecture) and a student who left the item blank (demonstrating no 
understanding) as the same because both used zero statement-reason pairs.  

More robust assessments, such as, Knuth and colleague’s (2009) used a rubric broken into four 
categories. Level 0 included no attempt at proof, a proof based on an outside authority or based on an 
unsupported claim (external-conviction), Level 1 included empirical arguments, Level 2 included 
students who attempted to prove, but the arguments “fall short of being acceptable proofs” (p. 155), 
and Level 3 arguments were acceptable proofs – a term we adopt. Their rubric distinguishes students 
who no longer hold the empirical proof scheme, but still have not developed the deductive proof 
scheme. However, these students are all treated the same.  

The most relevant evidence for our claim comes from Quinn (2009). As a result of breaking 
empirical arguments into two categories, she showed improvement in her students’ ability to prove. 
Would similarly including more categories to Knuth and colleagues’ Level 2 lead to a greater 
likelihood in showing interventions were effective? These studies all measured the differences 
between mathematicians’ and students’ views of proof. Weber and Mejia-Ramos (2015) suggested 
that one issue with these assessments is the ambiguity of the word “convince” because it has two 
interpretations, absolute and relative conviction. Absolute conviction occurs when someone “has a 
stable psychological feeling of indubitability about a claim” (p. 16). Students’ inconsistent responses 
are a result of researchers’ assumptions that participants have gained absolute conviction when they 
have only gained relative conviction.. 

Examples of Individuals Transitioning to Deductive Proof Schemes 
We now highlight three different ways of reasoning we observed in our participants who would 

be considered as reasoning similarly by the many assessments for proof. Creager (2016) analyzed 13 
pre-service secondary teachers (PSST) knowledge of geometric proof using a survey and two 
separate hour-long, cognitive interviews. Zeybek (2014) analyzed pre-service elementary teachers’ 
(PSETs) conceptions of proof using a survey that consisted of open-ended proof items and cognitive 
interviews. Both studies asked participants to create, evaluate, and prove conjectures and evaluate 
researcher-generated proofs.  

Proof Method 
Ten out of 13 PSST in Creager’s (2016) study appeared to have a procedural understanding of a 

method for proof in geometry. When asked to prove figures congruent, their method included the 
following steps; find two triangles that are congruent, prove those triangles congruent, then use 
triangle congruence to show the original figures congruent. These PSSTs used this method to create 
acceptable proofs, but there were five pieces of evidence that suggested they only had a procedural 
understanding of this method for proof.  

First, this was the only method of proof that was used. For example, Mike said, “I don’t know if I 
can [prove triangles similar].” Sadie said, “I don’t remember how we prove lines parallel.” Second, 
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when they arrived at a point where they could not use their method, they either assumed an additional 
property was true (whether it was or was not) or claimed the conjecture was false. For the conjecture, 
“The median of a triangle creates two smaller triangles of equal area”, the PSSTs in this category 
could not use their proof method so, they said the conjecture was false. Third, they did not gain 
absolute conviction from their arguments. These PSSTs hedged their arguments by calling them 
“informal proofs” or “demonstrations”. Fourth, they focused on the form of the argument when asked 
to evaluate researcher-generated proofs. They preferred arguments that did not use examples and 
included “statements and reasons”. However, their meaning was not aligned with accepted uses. 
They accepted arguments that were based on examples that did not have any special characteristics 
(e.g. an acute triangle versus an isosceles triangle) and they felt that any reason was valid. Finally, in 
situations where proof would be a reasonable, but not explicit expectation, they relied on the 
empirical proof scheme. Mike for example, verified empirically that the diagonals of rectangles 
create two congruent triangles. When he was asked if he was absolutely certain, he agreed, but when 
asked how he would prove that he said, “Well, I guess I’d try to prove two triangles congruent.” 
Eight of the thirteen PSETs in Zeybek’s (2014) study held a similar procedural understanding of 
proof.  

Interestingly though, the PSST and PSETs created several acceptable proofs. In a way, they are 
more like individuals with a ritual proof scheme. They seem to know what to do, but not why they 
would do it. However, they would be considered to have improved in their understanding of proof on 
many assessments. Our perspective however is that these students have learned to play their teachers’ 
game more effectively. Something we consider in the discussion. 

Ritual Proof Scheme: The case of Alana and Elizabeth 
Alana, a PSST, often reasoned similarly to those with a method for proof, but created arguments 

that were not “acceptable” proofs. To prove the diagonals of isosceles trapezoids are congruent, 
Alana marked the figure in a way that would suggest a proof, but claimed two different triangles 
were congruent. Thinking this was an error, she was asked for clarification. At this point Alana said, 
“Nope, nope, nope. Hold on here. No, I just know. I don’t know how to prove it but, I just know it’s 
diagonals are equal.” At that point she was okay with simply accepting the conjecture as true and 
moving on. Alana regularly displayed evidence of having the ritual proof scheme, but rejected 
empirical proofs regularly, despite the fact that she used them and found them convincing. Because 
of this, she would be considered as improving in her understanding of proof on many rubrics.  

Zeybek (2014) similarly felt that PSET Elizabeth had a ritual proof scheme. She primarily 
created arguments to meet her perceived image of how proofs should look. When evaluating a false 
researcher-generated argument in the two-column format, Elizabeth claimed it was valid proof 
despite recognizing a flaw in the argument.  

Contextual Proof Scheme: The Case of Lacy 
Lacy, a PSST, worked on several conjectures about special segments of triangles (medians, 

altitudes, and angle bisectors). In every case, Lacy only considered the special segment that was 
drawn from the apex angle of a triangle drawn with a horizontal base. When Lacy used a Geometer’s 
Sketchpad to construct an isosceles triangle, the figure did not have a horizontal base, and she asked 
the researcher to fix the figure. Because this was a consistent behavior, it seems that Lacy’s 
conception of special segments of triangles was only those drawn from the apex angle. Because of 
this she “proved” several false conjectures.  

Discussion 
Lumping these types of student thinking into one category is problematic because it limits our 

ability to show gains in proof understanding. However, some rubrics seem too lenient. Are we to 
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consider individuals like Alana or Elizabeth an improvement? Understanding the limitations of 
empirical reasoning could be a motivating factor in the search for more secure ways of justification. 
However, Alana consistently rejected empirical proofs, but gained absolute conviction by using the 
empirical proof scheme. Is it the case that she truly understands the limitations of empirical reasoning 
or is it that she has learned it is not part of the game called proof? Simply rejecting empirical 
arguments seems to be insufficient evidence to claim an improvement over those with the empirical 
proof scheme because it was Alana’s dominant proof scheme. We have found success in 
differentiating between students like Alana and those who understand the limitations of empirical 
reasoning by asking participants to evaluate false proofs. 

The differences in these students’ thinking is probably best highlighted by the differences in 
actions one would take as their teacher. Lacy showed great skill at creating proofs, appreciated them, 
and even offered them spontaneously. It seems Lacy needs help in making sense of the segments of a 
triangle. We have found this type of thinking to be common. Proof might even be a vehicle to help 
these students develop concepts as it uniquely requires one to be explicit about their assumptions – 
Lacy’s problem. Therefore, determining whether participants have knowledge of the concepts proofs 
rely on is a necessary part of assessing proof.  

Is there an increase in sophistication in the reasoning of those with a proof method over people 
like Alana and Elizabeth? Consider for example a student who can set up a proportion, cross-
multiply and solve. Few researchers would suggest this student has proportional reasoning. We can 
similarly argue that even though the students with the proof method were more successful than Alana 
and Elizabeth at creating proofs, the fact that they did not see those proofs as providing absolute 
conviction and only used proof when asked to do so suggests that these students have not developed 
a sufficient appreciation for proof. We hope our theoretical argument sparks a discussion about how 
to evaluate these students in terms of their understanding of proof. 
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In this report, we draw from a teaching experiment to report a prospective secondary mathematics 
teacher’s reasoning within frames of reference in quantitative contexts. We pay specific attention to 
her graphing of relationships between two quantities within non-canonical coordinate systems and 
the interplay of figurative or operative thought in her committing to directionality of measure. 
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Quantitative reasoning (Thompson, 2011) is important in the development of numerous K-16 
mathematical ideas such as function and rate of change (Ellis, 2007; Confrey & Smith, 1995; 
Thompson, 2011; Moore & Carlson, 2012). Coordinate systems are used to coordinate sets of 
quantities by establishing frames of reference and obtaining a representational product space in 
which quantities are coordinated. Researchers and educators often assume students have internalized 
coordinate systems and thus—whether intentional or not—provide little attention to how students 
reason within frames of reference implied (to the observer) by a coordinate system (Lee, 2016). In 
this report, we draw from a teaching experiment to report how Lydia, a prospective secondary 
mathematics teacher, reasoned within frames of reference in quantitative contexts and engaged in 
graphing relationships between two quantities within non-canonical coordinate systems. Specifically, 
we present shifts in Lydia’s commitment to directionality of measure across three tasks and provide 
implications and future research directions.  

Theoretical Framework 
We refer to quantity as a conceptual entity an individual constructs as a measurable attribute of 

an object (Thompson, 2011). Joshua, Musgrave, Hatfield, and Thompson (2015) offered a theoretical 
model of mental actions involved in conceptualizing a measurable attribute within a frame of 
reference: committing to a unit, committing to a reference point, and committing to a directionality 
of measure. We draw from this framework the notion of reasoning within quantitative frames of 
reference. Among the three mental actions involved, we narrow in on Lydia’s committing to 
directionality of measure comparison.  

We also draw from Piaget’s distinction of figurative and operative thought. Figurative thought is 
based in, constrained to, and dominated by perceptual elements and sensorimotor experience; 
operative thought foregrounds the coordination and re-presentation of mental actions and the 
transformation of those actions (Montangero & Maurice-Naville, 1997). In developing models of 
students’ graphing activity, Moore (2016) provided examples in which students’ graphing activities 
are dominated by either figurative or operative thought. Drawing on Moore’s work, we use figurative 
and operative distinctions to describe Lydia’s graphing activity and her commitment to directionality 
of measure. In this paper, and emphasizing the notion of re-presentation, we use the term graphing to 
include both constructing graphs and determining whether a pre-constructed graph represents the 
appropriate relationship between two quantities. 

Methodology 
The data we present and analyze is from a semester-long teaching experiment (Steffe & 
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Thompson, 2000) at a large public university in the southeastern U.S. with three prospective 
secondary mathematics teachers. Our goal in the teaching experiment was to investigate how the 
participants conceived of situations quantitatively and represented quantitative relationships under 
particular coordinate system constraints. Among the three participants, we focus on Lydia, who 
participated in 12 videotaped sessions, each lasting approximately 1-2 hours. Through ongoing and 
retrospective analyses (Steffe & Thompson, 2000) we analyzed Lydia’s activity graphing 
relationships between two quantities with specific attention to the interplay of figurative or operative 
thought in her committing to directionality of measure.  

Analysis and Findings 

Lydia’s interplay of committing to directionality and figurative thought 
In Task A, the teacher-researcher (TR) provided Lydia the following prompt: “You are working 

with a student who happens to be graphing y = 3x. He provides the following graph (Figure 1a). How 
might he be thinking about the situation?” As shown in Figure 1a, the student’s graph was presented 
on a non-canonical coordinate system with the horizontal and vertical axes each representing y and x, 
respectively. Lydia rotated the paper clockwise 90-degrees such that the x-axis was horizontal from 
her perspective. She then concluded the “slope” of the line was “rising negative three.” After picking 
two points on the line, Lydia drew a horizontal line segment left one unit and a vertical line segment 
up three units (Figure 1b). Lydia explained, “If I were to rise here…I’m rising this three…and then 
I’m running negative one, which would then [be] three over negative one x still equals negative three 
x.” As such, Lydia related the amount of increase in the y-values to the amount of change in the x-
values that she perceived of. 

 

           
														(a)																																																					(b)																																												(c)	

Figure 1. (a) Graph provided in Task A; (b) Lydia’s actions on graph (a); (c) Lydia’s y =x graph. 

Noticing that Lydia associated moving to the left with “running negative one,” the TR asked 
Lydia the coordinates for the circled point on the line (Figure 1b). Lydia responded x = 5 and y = 15; 
she was aware the quadrant in which she was working entailed positive values for both x and y and 
thus held in mind a spatial orientation that entailed positive values compatible with that designed by 
the research team. Nonetheless, Lydia maintained her meaning for moving horizontally to the left 
with a decrease in the quantity’s value. Her commitment was different from committing to the 
quantitative organization as we implied by the axis and the quantity’s measures. From Task A, we 
inferred Lydia’s committing to a directionality of measure to be figurative in that it was dominated 
by sensorimotor elements of graphical representations (e.g., moving to her left/right implying 
decrease/increase in values).  

Rotating the Graph and Reconsidering Directionality 
In Task B, Lydia revisited a task in which she had constructed the sine graph on a conventional 

Cartesian coordinate plane. We asked her to determine if that graph, when rotated (including axes) in 
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different orientations, shows the appropriate relationship of how arc length and height change 
together. Lydia rotated the paper 90 degrees clockwise. Moving her finger from origin down along 
the vertically oriented arc length axis, Lydia said “And then here we’re increasing in arc length.” 
Moving her finger from origin to the right along the horizontally oriented height axis, Lydia 
explained “We’re having a positive distance in arc length, having a positive distance in height” and 
concluded that the graph showed the appropriate relationship of how arc length and height change 
directionally together; Lydia attended to the direction of change in quantities along the axes of the 
coordinate system. This was different from her engagement in Task A in that her direction of change 
in magnitude was divorced from perceptual/physical orientations (e.g., going left/right implying 
increase/decrease in quantities). From this we infer that Lydia has shifted from committing to 
figurative directionality to committing to the quantitative organization as implied by the axes and 
quantities’ measures. 

We highlight, however, that Lydia continued to verify if graphs, when rotated, represented the 
same quantitative relationship in different orientations by purposefully and sequentially sweeping her 
finger/hand along the axes; when the TR asked her to predict for each case, Lydia was reluctant to 
conclude that the relationship was maintained without carrying out the physical activity of rotating 
the paper, moving her finger/hand along the axes, and considering how the displayed graph 
corresponded to increasing or decreasing values. As Lydia said, “If I'm being skeptical, I don't want 
to say it's going to get…guarantee that it’s going to follow the pattern unless I rotate it and like can 
visualize…” We interpret this to mean that it was necessary for Lydia to carry out sensorimotor 
activity and instantiate each case using the perceptual material of the graph when the physical 
orientation of the axes changed. Lydia was yet to anticipate that each graph represented an invariant 
relationship no matter how rotated.  

Lydia’s Committing to Directionality Supported by Operative Thought  
In Task C, after constructing the graph of y = x on a non-canonical coordinate system in which 

the y coordinates decrease as one moves upward along a vertical axis (see Figure 1c), Lydia reasoned 
about the “slope” of the line and the relationship between the two quantities. In contrast to her 
activities in Task A, when determining the “slope” of the line, Lydia did not physically re-orient the 
graph such that the y-axis behaved in the conventional way, nor did she adhere to the visualization of 
“what we’re used to a negative slope looking like.” Instead, Lydia reasoned about the quantities and 
associated changes by maintaining an awareness of directionality in accordance with the axes as we 
designed them. For example, she explained, “So if x is 1, then y should be 1, which this looks like it 
has a negative slope, but it doesn't have a negative slope… Because if I rise one, then I'm like going 
down, but I'm rising a value, like a positive value.” Further, Lydia explained, “even though [a graph] 
looks like a negative slope,” for any linear function with positive slope “As an x increases, the y 
should increase” and vice versa. This stands in contrast with her activity in Task B, in which she 
engaged in sensorimotor activity to verify the invariance of the quantitative relationship for different 
orientations of the same graph. From this we infer that Lydia’s directionality of measure has shifted 
from dominated by figurative thought to operative thought. That is, Lydia’s directionality of measure 
and her claims of “slope” here were rooted in explicit attention to magnitudes organized in a directed, 
operative system and its transformations.  

Discussion and Implications 
Through our analysis, we presented how Lydia made sense of quantitative relationships 

represented on non-canonical coordinate systems. Specifically, we focused on Lydia’s commitment 
to directionality of measure and its interplay with figurative and operative thought. Based on her 
activities, we found Lydia’s notion of directionality to be critical in her reasoning within frames of 
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reference and quantitative reasoning. Over the course of the teaching experiment, Lydia gradually 
attended to the direction of change in quantities along the axes of the coordinate system and 
established quantities in ways that sustained an awareness of directionality in accordance with the 
axes as were implied by the coordinate system.  

We hypothesize that the questions from the TR to consider graphs in various orientations, her 
physical enactment of sweeping along axes, and her rotating graphs supported reorganizations in her 
notion of directionality. We also propose that the use of non-canonical coordinate systems afforded 
Lydia opportunities to operationalize directionality independent of the perceptual features of 
coordinate systems and particular sensorimotor activity. As suggested in Moore (2016), we 
emphasize the importance of opportunities that afford students engaging in and differentiating 
between figurative and operative frames of reference. 

We envision that further investigations into students’ conceptualization of frame of reference 
with attention to figurative and operative thought may provide insight into instructional support that 
afford powerful tools for reasoning about quantitative relationships independent of coordinate 
systems.  
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REVIEWING STRATEGY TYPES, PARTICIPANT CHARACTERISTICS, AND TASK 
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Mathematics problem solving has evolved significantly since Polya’s and Schoenfeld’s problem 
solving frameworks. This review examines research on strategy use during mathematics problem 
solving in terms of the strategies investigated, context in which problem solving occurs, 
characteristics of the participants, and efficacy of the strategy use on problem solving solutions. We 
are in the process of reviewing 164 studies that examined mathematics strategy use during problem 
solving. Preliminary findings indicate that domain-general strategies proliferate the current 
literature, contexts in which mathematics problem solving is investigated are diverse, studies mainly 
examine younger learners, and positive effects of strategy use on mathematics problem solving is 
conditional. We offer suggestions for future directions of research dealing with strategy use and 
mathematics problem solving. 

Keywords: Problem Solving, Metacognition 

The current study aims to review research related to mathematics problem solving in terms of: 
types of problem solving strategies investigated (e.g., pictorial, metacognitive); characteristics of the 
learners (e.g., grade level); methodologies of the study (e.g., naturalistic, controlled intervention); 
measures of strategy use; types of problem-solving tasks; and salient results of the strategy (ies) used 
and their impacts on problem solving. Using a systematic literature review process, this paper seeks 
to shed light on what contextual and individual characteristics lead to more effective problem 
solving. Additionally, this review will allow an examination of areas (e.g., pictorial mathematics 
strategies) that require further investigation. 

Theoretical Framework 
One influential framework for mathematics problem solving was Polya’s (1957) How to Solve It. 

Polya proposed a general framework of mathematical problem solving which consisted of four steps: 
understanding the problem, devising a plan, carrying out the plan, and looking back. This framework 
showcased 67 heuristic strategies as general rules of discovering mathematical solutions which 
would guide their thinking and reasoning processes towards discovering of mathematically 
meaningful knowledge in mathematical problem solving. 

Schoenfeld introduced his own framework (e.g., Schoenfeld, 1985; 1992) that retained many of 
the same elements of Polya’s. Schoenfeld (1985) discussed two types of decision-making during 
problem solving: tactical decisions and strategic decisions. The former were similar in style to 
Polya’s and included which algorithms and heuristics to implement, while strategic decisions referred 
to actions that guide, monitor, and control problem solving. The latter refers to metacognitive or self-
regulatory processes. Schoenfeld (1985) indicated that the latter had received greater attention in the 
research literature. A study of students’ cognitive processes in mathematical problem solving 
revealed that experts’ use of monitoring and control processes to guide their use of heuristics lead to 
successful outcomes. In essence, while the use of heuristics played a significant role in mathematics 
problem solving, the importance of metacognitive processes seemed to dominate over that of 
heuristic thinking in mathematics problem solving. 

Schoenfeld (1992) reframed mathematics knowledge as a science of patterns in place of the 
traditional view as a body of facts. To develop a broader framework of mathematical cognition for 
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pattern-seeking, Schoenfeld defined mathematics as: 

…an inherently social activity, in which a community of trained practitioners (mathematical 
scientists) engages in the science of patterns – systematic attempts, based on observation, study, 
and experimentation, to determine the nature or principles of regularities in system defined 
axiomatically or theoretically (“pure mathematics”) or models of systems abstracted from real 
world object (“applied mathematics”). (p. 335) 

In this review, we sought to examine if these assumptions of mathematics, and mathematics 
problem solving more specifically, were evident in empirical investigations of strategy use (i.e., 
procedures that are “purposeful, effortful, willful, essential, and facilitative”; Alexander, Graham, & 
Harris, 1998, p. 130). We divided strategy use into two general categories: domain general strategies 
(i.e., processes invoked during problem-solving activities useful in any domain; Alexander & Judy, 
1988) and domain specific strategies (i.e., processes invoked during problem solving that are specific 
to the relevant domain; Alexander & Judy, 1988). Domain general strategies consisted of 
metacognitive strategies (Flavell, 1979), self-regulatory strategies (Zimmerman 1989) and heuristic 
strategies (Polya, 1957). Domain specific strategies are comprised of pictorial strategies (Stylianou 
& Silver, 2004) and symbolic strategies (Zazkis, Dubinsky, & Dautermann, 1996) to represent 
mathematical relationships or patterns using visual-spatial properties or symbols. 

According to Schoenfeld (1992), mathematics also involves social activity and tasks that allow 
pattern finding to occur. Hence, we decided to also investigate the context in which problem solving 
occurred, either in a more naturalistic context (i.e., study takes place in a typical learning context 
such as a classroom or museum) or a more controlled context such as a laboratory environment. 
Additionally, if the study included instruction or intervention we examined if it was: one-on-one 
instruction, group instruction, or peer instruction. We also examined whether the tasks were well-
structured tasks (i.e., have a defined computational path with one acceptable solution; Simon, 1977) 
or ill-structured tasks (i.e., not well structured and may contain symbols with multiple acceptable 
solutions; Simon, 1977). 

Finally, we are sensitive to the idea that low achieving students or students with disabilities may 
influence how effective these strategies are. Hence we also examined characteristic of the 
participants of each study that included age and if the participant were typically developing or if 
there were special development considerations (e.g., cognitive delay). Thus, with these issues in 
mind, four questions guided this review: 

1. What types of strategies (i.e., metacognitive, self-regulatory, heuristic, pictorial, or symbolic) 
are most prevalent in empirical investigations of mathematics strategy use? 

2. What contexts (i.e., settings, instruction types, and task types) are most prevalent in empirical 
investigations of mathematics strategy use? 

3. What learner characteristics (i.e., age and typicality of development) are most prevalent in 
empirical investigations of mathematics strategy use? 

4. What conditions or joint conditions regarding type of strategy, context, and learner 
characteristics promote the most effective problem solving outcomes? 

Method and Data Sources 
To investigate these questions we undertook a systematic literature review. First, we identified 

appropriate studies for the study pool by searching for the terms mathematics, problem solving, and 
strateg* in the abstracts of the PsycInfo database. Further, we narrowed the results to peer reviewed 
empirical studies and English text between 1985 (when Schoenfeld’s framework went to press) and 
2013. A total of 164 studies met these criteria. 

After the initial identification, we developed codes for the type of strategy, measure of strategy 
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use, nature of the sample, type of development, context of the study, and the problem solving task 
discussed previously in the introduction. Additionally, in our table we decided to include descriptions 
of the strategy, the problem-solving outcome measure, and salient results of the study demonstrating 
a relation between the strategy under investigation and student outcomes on the problems given. All 
authors jointly coded five studies, then each independently coded 10 studies and compared the 
results. Once we were satisfied that the coding and descriptions were similar, the first author then 
coded the remainder of the studies (one-third of them currently). 

During the coding process, we found and excluded studies that did not examine learners’ strategy 
use during problem solving. Most of these studies examined teaching strategies during mathematics. 

Results 
Our preliminary findings indicate that studies have primarily: studied strategies that are domain 

general; encompassed both laboratory and naturalistic settings with diverse instructional approaches; 
involved typically developing elementary children; and, suggested fairly constrained findings on the 
effectiveness of the strategy on problem solving based on study conditions. 

With regard to types of strategies, domain general strategies were the focus of 73% of the studies. 
Far fewer studies examined domain specific strategies on open sentence problems. With regard to 
settings, emphasis in the literature was much more evenly distributed among the categories. 
Approximately 45% of the studies were in a laboratory or laboratory type situation, whereas the rest 
where classroom based environment (48%) or computer-based environments (7%). Instructional 
approaches (one-on-one, group, or peer instruction) were also diverse. However, the types of tasks 
that students were asked to do were primarily well-structured (76%), with only 20% ill-structured 
and 4% that did not involve a task. With regard to learner characteristics, studies primarily focused 
on younger children. Elementary-aged students accounted for 52% of the studies, with 10% middle 
school, 7% high school, and 28% undergraduate or adult learners. 83% of studies focused exclusively 
on typically developing students, 14% with students with a cognitive impairment, and only one study 
of English language learners.  

With regard to salient findings of the studies, a few common themes were found among these 
studies. First, strategy instruction did not always result in students’ use of those strategies. Second, 
metacognitive and self-regulatory training can have positive effects on problem solving success. 
Last, success of strategy use is often subjected to certain prior conditions (typically aspects of the 
problem) in order to be effective. 

Discussion 
While the analysis is ongoing, it is apparent that the earlier focus on domain-specific strategies 

(Schoenfeld, 1985) has shifted more toward domain-general strategies. Certainly, metacognitive, 
self-regulatory, and more heuristic strategies are now the lion’s share of the research agenda. This 
may be due in part to Schoenfeld’s urging (among others who have echoed this since; e.g., De Corte 
et al., 2000) and also a broader reflection of the increasing trend in research on metacognition and 
self-regulation (Dinsmore et al., 2008). 

Lastly, while we did not set out to examine how strategies were defined in each study, it was 
interesting to note what these strategies were called and how they were related to other constructs. 
For example, while each studied had something labeled “strategy”, there were seemingly 
synonymous terms concurrently used such as skills (Davis et al., 2009), types of thinking (Groth, 
2005), ways of thinking (Webb et al., 2009), and mathematical thinking (Wood et al., 2006). While 
we certainly would not expect identical use of terms, it may be helpful to clarify the differences in 
these constructs moving forward. It is our hope that an illumination of these and other issues and 
trends in this review can enable more strategic and coordinated research efforts moving forward. 
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UNDERGRADUATE STUDENTS’ REASONING ABOUT MARGINAL CHANGE IN A 
PROFIT MAXIMIZATION CONTEXT: THE CASE OF CARLOS AND MARK 

Thembinkosi P. Mkhatshwa 
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The purpose of this exploratory study was to investigate how business calculus students reason about 
marginal change (marginal cost, marginal revenue, and marginal profit) when solving optimization 
problems in an economic context. To carry out this investigation, task-based interviews were 
conducted with 12 pairs of students and this study reports on one of the pairs of students (Carlos and 
Mark). Analysis of Carlos and Mark’s reasoning about marginal change in a profit maximization 
task (PMT) revealed that these students were able to define or even recall facts about the idea of 
marginal change and its relation to the fundamental principle of economics (FPE), which states that 
maximum/minimum profit occurs at a production and sales level where marginal cost equals 
marginal revenue. However, these students conflated marginal cost and marginal revenue with total 
cost and total revenue respectively in another PMT. 

Keywords: Post-Secondary Education, Instructional Activities and Practices 

Much of the existing research on students’ reasoning about optimization problems has focused on 
problems that lack a real-world context (e.g., Borgen & Manu, 2002; Brijlal & Ndlovu, 2013; Heid, 
1988, Swanagan, 2012) or problems that have a physics or life science context (e.g., Klymchuk et al., 
2010; Maharaj, 2013; White & Mitchelmore, 1996). Research on students’ reasoning about 
optimization problems that are situated in economic contexts are scarce, which is the motivation for 
this study. More specifically, there is a dearth of research on what students’ reasoning about 
optimization problems in an economic context reveals about their understanding of marginal change, 
an important idea in economics. Marginal cost refers to the cost per additional unit produced, 
marginal revenue refers to the revenue generated per additional unit sold, and marginal profit refers 
to the profit per additional unit produced and sold. Mathematically, marginal change can be 
calculated as an average rate of change where the length of the interval of change is one unit. 
Marginal change can be approximated using the instantaneous rate of change. The importance of 
investigating what students’ reasoning about optimization problems that are situated in economic 
contexts reveals about their understanding of marginal change cannot be overemphasized. First, there 
is a large number of students (more than 300,000) who enroll in business calculus nationwide every 
year (Gordon, 2008), and yet we do not know how these students reason about marginal change, an 
important idea in any business calculus course. Second, understanding optimization problems and 
marginal change in an economic context is vital in several fields such as marketing, managerial 
accounting, supply chain management, finance, and economics. The investigation of students’ 
reasoning about optimization problems in an economic context reported in this study was guided by 
the following research question: What does business calculus students’ reasoning about economic-
based optimization problems reveal about their understanding of marginal change? 

Evidence from research (e.g., Ärlebäck, Doerr, & O'Neil, 2013; Flynn, Davidson, & Dotger, 
2014; White & Mitchelmore, 1996) shows that engaging students in solving mathematical problems 
that are situated in real-world contexts helps to reveal students’ conceptual understandings and 
difficulties/misunderstandings of certain mathematical concepts and ideas. In their investigation of 
undergraduate students’ understanding of average rates of change in the context of a discharging 
capacitor, Ärlebäck et al. (2013) found that “a focus on the context made visible students’ reasoning 
about rates of change, including difficulties related to the use of language when describing changes 
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in the negative direction” (p. 314). Flynn et al. (2014) reported on sophomore students who conflated 
rate of change with accumulation in an engineering context. More specifically, these students 
confused the rate flow of water into a roof drain with the total amount of water accumulated. The 
current study reports on what students’ reasoning about economic-based optimization problems 
reveals about their understanding of marginal change. 

Theoretical Framework 
This study draws on the theory of realistic mathematics education (RME) which is both a theory 

of teaching and learning in mathematics education. As a theory of learning, RME emphasizes that 
students should be asked to solve problem situations that are not only realistic in the sense of being 
connected to a real-world context, but also “problem situations which they can imagine” (van den 
Heuvel-Panhuizen, 2000, p. 4). The economic context as it relates to optimization problems is not 
only realistic, but also experientially real for some students taking business calculus. This is 
especially true for students who take business calculus after having taken high school or college 
economics classes. Providing students with opportunities to reason about realistic optimization 
problems in an economic context has the potential to reveal their understanding of the idea of 
marginal change as it relates to the FPE, something that was fostered by the design of the study 
reported in this paper.   

Methods  
This study followed a qualitative design. A task-based interview was conducted with a pair of 

undergraduate students (Carlos and Mark) who had successfully completed a business calculus 
course in the spring semester of 2015 at a research university in the Unites States. In conducting the 
interview, I followed the principles and techniques (e.g., encouraging free problem solving) 
suggested by Goldin (2000). There were four tasks in total (Mkhatshwa, 2016). This study reports on 
the students’ reasoning on one of those tasks: 

The following table shows the marginal revenue (MR) and marginal cost (MC) at various 
production and sales levels (q) for SciTech, a company that specializes in producing and selling 
computer chips. The company knows that total revenue is greater than total cost at all the 
production and sales levels shown on the table.  

 
What advice can you give to the management of the company about when to increase or decrease 
production and sales of computer chips? 

Mark and Carlos were high achieving students. They both were management majors, 
sophomores, and had grade point averages (GPAs) over 3.5 in a 4.0 scale. Mark earned an A grade in 
the business calculus course while Carlos earned a B+ grade. While both students had previously 
taken a college economics course, herein referred to as ECN 200, Carlos had also taken two 
economics classes in high school (AP microeconomics and AP macroeconomics). The task-based 
interview was video-recorded and lasted for about one hour and 45 minutes. The interview was 
transcribed for analysis. Work written by students during the interview was also collected as part of 
the data. Analysis of the interview transcript and students’ written work focused on students’ 
understanding of the FPE. The findings of this analysis are presented in the next section. 
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Results 
There are two findings from this study. First, drawing from their economics background, Carlos 

and Mark demonstrated a good understanding of the relationship between marginal cost and marginal 
revenue at a profit maximizing quantity, that is, the FPE. More specifically, when asked about the 
advice they would give to the management of the company mentioned in the task, Carlos indicated 
that “because marginal cost equals marginal revenue and at that point [402 units], that’s the most 
profitable you going to be”. Mark added, “that’s where the marginal cost equals the marginal revenue 
so it doesn’t make sense to create more just like in the skittles experiment where you keep eating 
them but you are not getting any satisfaction from them, so there is no point taking them.” Prior to 
working on the task presented in this study, both students had recalled examples related to the FPE 
that were discussed in an economics class (ECN 200) they had previously taken together. In 
particular, Carlos recalled that a company has to produce until marginal cost equals marginal 
revenue. He went on to give an example, “like the example, which I kind of like going back to, if you 
have free pizza at the Cafeteria you will produce or eat pizza until the point of having like one more 
slice of pizza is not so appetizing or producing one more unit costs more than it would if you sold it.” 
Mark recalled another example related to eating skittles, “same like eating skittles. That’s the 
example that our professor [ECN 200] gave us.” He added, “he [ECN 200 professor] was like he 
brings back a packet so there is a point where I just don’t want to eat skittles and that’s where 
…marginal cost equal marginal revenue.” Carlos and Mark concluded by advising the management 
of the company mentioned in the task to increase production and sales of computer chips up to 402 
units and then decrease production and sales of computer chips afterwards. 

 Second, I remark that although these students, especially Carlos, correctly explained what 
marginal cost and marginal revenue means, their understanding of these ideas are not robust. When 
asked to comment about marginal cost and marginal revenue (from a graph) at a break-even point in 
another profit maximizing task (Mkhatshwa, 2016), Carlos stated that “so marginal revenue, going 
back to economics, I know is the benefit or the revenue taken from producing one additional unit and 
marginal cost is the cost from producing one additional unit.” On probing Carlos and Mark further 
about their understanding of the idea of marginal change, it appeared that their understanding of 
these ideas was vague. More specifically, Carlos and Mark incorrectly claimed that “marginal cost 
equals marginal revenue” at a break-even point: - a production and sales level where total cost equals 
total revenue. However, marginal revenue exceeded marginal cost at the break-even point. Thus, 
Carlos and Mark conflated marginal cost with total cost and marginal revenue with total revenue. 

Discussion and Conclusion 
This study makes a major contribution in what we know about students’ learning of business 

calculus at the undergraduate level. More specifically, findings of this study indicate that while 
students can memorize the definition of marginal change, recall the FPE (relationship between 
marginal change and profit at a profit-maximizing quantity), their understanding of marginal change 
is not robust in that the students conflated rate with accumulation when they conflated marginal cost 
with total cost (and marginal revenue with total revenue). As noted earlier, undergraduate students’ 
tendency to conflate rate with accumulation was reported by Flynn et al. (2014) in an engineering 
context. Given that the students reasoned correctly about marginal change from a numerical table but 
not so in a graphical task, it might be important for business calculus instructors (applied calculus in 
general) to provide sufficient opportunities for students to reason about marginal change in multiple 
function representations (algebraically, textually, graphically, and numerically) and in different real-
world contexts. Future research might examine the opportunity to learn about marginal change via 
course lectures and business calculus textbooks.  
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In 2008, after the National Mathematics Advisory Panel of the U.S. Department of Education 
acknowledged the necessity of teaching early algebra, the focus in mathematics education shifted 
toward teaching students how to create models as tools for solving word-problems.  Some educators 
concentrate on teaching students how to present word problems using symbols (Dougherty & Slovin, 
2004), others teach schemata approach (Jitendra et al., 2015), which is not always mathematically 
strict. There is no agreement in approaches, which are necessary to increase students’ ability to 
model word problems. We undertook research to analyze what challenges children have when 
creating simple models and what could be done to help them overcome those challenges. 

Twenty elementary and middle school students attending a suburban learning center participated 
in this study. We taught participants schemata for creating (a) verbal model—the description of each 
value involved in word problems; (b) spatial-visual representations; (c) number equation model; (d) 
algebraic model, including defining symbols. We analyzed students’ assignments and individual 
verbal responses. The mistakes of the students were thoroughly analyzed following an open and axial 
coding method.  

Students demonstrated misconceptions when defining measurable attributes. Young students 
frequently mixed-up units with measurable attributes and had difficulties with verbal models for the 
problems involving difference. Many erroneously wrote, 3 is the difference between girls and boys. 
Children demonstrated difficulties with interpreting symbols used in equations. They frequently 
identified symbols as equivalent to objects, units, or words, which was consistent with other studies 
(MacGregor & Stacey, 1997). Students benefited from a 4-model approach. This approach 
pinpointed weak areas for each student, helped create models for simple problems, and prepared 
students for modeling complex word problems.    
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Wilensky and Papert proposed a theory of restructurations, where different computational 
representations can create new ways of thinking (2010). In this paper, we propose a restructuration 
of geometry that replaces the Cartesian plane with integer points on a square lattice. We created a 
constructionist environment called Lattice Land, a dynamic geometry system (DGS), and designed 
complementary activities for geometry classrooms (Sally & Sally, 2011). Now that new 
computational tools are reshaping the way scientists and mathematicians understand the world, we 
need to train students to learn and think in increasingly computational ways (Orton et al, 2016). 

Cuoco and Goldenberg showed DGS have been used to shift the focus from low-level details to 
high-level thinking, to develop mathematical habits of mind (1996), but these DGS did not change 
the fundamental structuration of Euclidean geometry. Lattice Land curriculum tackles many of the 
same proof-based habits of mind we seek to develop, but with two key differences. (1) Using discrete 
geometry, Lattice Land taps into our earliest experiences with counting, making it a natural entryway 
into continuous geometry (Piaget, 1960). Additionally, discrete thinking resonates with 
computational thinking. (2) The curriculum uses empirically based inductive approaches to 
reasoning, which Schoenfeld has shown to strengthen deductive approaches to geometry, as well as 
helps to break students’ tendencies to compartmentalize knowledge (1986). 

Pei implemented and video recorded Lattice Land curriculum in 4 geometry classes at a large 
non-selective urban public high school: 81% Hispanic, 9% African American, 7% White, 2% Asian, 
2% other, 94% low-income. Students in the study relied on a variety of techniques that demonstrated 
a range of mathematical habits of mind. They tinkered with the software and experimented to find 
multiple methods of dissection; built definitions from findings and their intuitions; visualized 
problems; generated and collected data about some subset of polygons; and used inductive reasoning 
to build sensible and testable formulas from patterns. Based on our analysis of 2 groups of 4 
students, and pre/post-interviews, we show how the restructuration using an integer focus allowed 
students to build higher-order abstract thinking without requiring a well-developed sense of the 
density of real numbers. All students showed content gains. Based on the students’ initial reticence 
and the teacher’s surprise at their high levels of engagement and success, these habits of mind do not 
typically manifest themselves in everyday classroom practices. Because the teacher’s role is 
critical—celebrating experimentation and mistake-making, steering conversation, summarizing—we 
plan to continue our study with classroom teachers facilitating. 
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For many students, experience with proof prior to college is limited (Jones, 2000).  Students’ 
prior competence (and interest) in mathematics is typically centered on producing accurate answers 
to easily recognized tasks. These abilities do not support, and may interfere with, students’ work to 
conceptualize, write, or evaluate proofs. This study complements prior work that has focused on 
students’ reasoning on specific problem-based tasks—typically proof construction and evaluation 
(Selden & Selden, 2003). We explored how students (n=14) describe their experiences in one 
“transition to proof” course at a mid-western university. In targeting students’ experience, we have 
focused on what is different for students in elementary proof work and how students reorganize their 
learning to meet the challenge. These issues are important foci for all efforts to assist students in 
understanding the new challenges at this crossroads in their mathematical experience as well as 
supporting students in addressing them. The present study builds on Smith & Star (2007) in its focus 
on the following dimensions of students’ experience of the introduction to proof course: (1) The 
nature of the course and how it differed from prior courses, (2) the reasoning involved in proving, 
and (3) the learning activities that support success. It also drew on that study’s use of student-
constructed graphs to assess changes in students’ confidence.  

Interviews were transcribed and coded using thematic codes based our interview protocol and the 
dimensions of Smith & Star (2007). We found that students were quite articulate about how the 
course differed from their prior mathematics course experiences, but their focus and emphasis varied. 
There were three main characterizations of difference: (1) Work in the transition to proof course 
explained why mathematics worked the way it did, where prior work had focused mainly on 
producing answers, (2) the course valued process over answers, and (3) the course changed students’ 
conceptions about proof and writing in mathematics, noting that mathematical terms have more 
specific meanings than in everyday language. All but two students explained that they employed 
different practices in completing their homework than they had in prior courses (e.g., working with 
classmates, asking questions in mathematics class, using the university’s mathematics learning 
center).  The methodological technique of asking students to construct confidence graphs was 
fruitful, allowing us to uncover several contrasting profiles of students’ affective experience over the 
course of the semester. 
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Research suggests that students’ engagement in writing in mathematics has a positive effect on 
mathematics achievement (e.g., Cross, 2009). Recently, evidence has emerged suggesting a 
relationship between elementary children’s mathematical argumentative writing and their early 
algebraic reasoning (Kosko & Singh, 2016). To explore the phenomenon further, this study examines 
whether engagement in writing and early algebra tasks (i.e., equivalence) affects second grade 
students’ mathematics achievement. 

Data were collected from 46 second grade students across three teachers’ classrooms. Students 
were assigned to one of three classroom conditions: writing and problem-solving (WPS), problem-
solving (PS), and a control (C). The WPS and PS classrooms engaged in weekly tasks focusing on 
number relations (e.g., examining equations of the form a+b=c+d), with accompanying 
manipulatives (e.g., Cuisenaire rods). Students in WPS and PS conditions engaged in small group 
and whole class discussions, but students in WPS were also tasked with describing and justifying 
their mathematics in writing journals. Students in all conditions completed Rittle-Johnson et al.’s 
(2011) assessment on conception of equivalence at three time points across six months. Additional 
data collected includes classroom observations and teacher interviews across classroom conditions 
and over time. Data was examined using Helsel and Frans’s (2006) Regional Kendall Trend Test 
(RKT). Applied to classroom comparisons, the RKT produces a tau coefficient representing the 
proportion of ‘up moves’ to ‘down moves in time, adjusted by students within a condition. Results 
indicate statistically significant growth for students in WPS (𝜏=.66, p<.001) and PS (𝜏=.34, p=.02) 
classrooms, but not for students in MO classrooms (𝜏=-.04, p=1.00). Additionally, the WPS growth 
slope was statistically significant from both PS (Z=1.71, p=.09) and MO (Z=4.12, p<.001) 
classrooms, and the PS growth slope was statistically significant from MO (Z=2.41, p=.02). 

These results indicate that students in the WPS classroom demonstrated larger gains in their 
conception of equivalence scores than students in both PS and MO classrooms. Further, while 
students across all conditions demonstrated statistically significant growth between the first and 
second assessment points, only students in WPS demonstrated growth between the second and third 
time points. This suggests that engaging in argumentative writing may have helped students to 
maintain and expand upon mathematical relationships developed early in the school year. 
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Calculus is a gatekeeper for many aspiring STEM (science, technology, engineering, and 
mathematics) students. My overarching goal is to help students who are blocked from STEM fields 
due to limited ability in mathematics to find a pathway to achieve their goals. This exploratory study 
is the first step in understanding what knowledge of calculus students are constructing. Working from 
the assumption that students construct knowledge to make sense of their experiences (von 
Glasersfeld, 1992), I am exploring what kinds of procedural and conceptual knowledge (Hiebert & 
Lefevre, 1986) these students are able to construct. Many researchers and educators have been 
concerned that K-12 education is too heavily focused on rote, procedural teaching, learning, and 
assessment (Hiebert & Lefever, White & Mitchelmore, 1996). 

My conjecture, in line with some of the past research (Engelbrecht, Bergsten, & Kagesten, 2009; 
White & Mitchelmmore, 1996) is that through traditional instruction, many students construct only 
procedural understanding at the expense of a conceptual understanding and that is problematic for 
students’ continued participation in the STEM fields. My study is differentiated from the other studies 
in that I am looking specifically at non-mathematics majors, students who may have struggled with 
mathematics in the past and whose trajectory into the STEM fields may be blocked by their 
ineffective construction of calculus concepts. My research question is “What kind of procedural and 
conceptual knowledge do students in a college level Elements of Calculus class construct of the 
concept of the derivative.” 

Research Methodology 
This study will employ a task-based clinical interview with undergraduate, non-math majors at a 

state university in New England. In describing the clinical interview, Ginsburg (1981) claims that 
there are “three basic aims: the discovery of cognitive processes; the identification of cognitive 
processes; and the evaluation of competence” (p. 10). It is appropriate then, to use a clinical 
interview to discover the cognitive process students use to make sense of calculus concepts. 

Findings 
In this study the vast majority of the data (about 70%) provided evidence of only procedural 

knowledge. Another finding worth discussion is the students’ lack of precision, in particular, 
precision in verbal communication of mathematical concepts. 
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Problem solving is regarded as a crucial aspect of mathematics learning (NCTM, 2000; 
Schoenfeld, 1985). Past research has clearly highlighted the paramount impact of affective factors 
on problem solving performance (Buchanan, 1987). Despite the close link between representations 
and mathematical cognition, less is known about the relationship among the use of mathematical 
representations and mathematical problem solving performance (Krawec, 2014). This study 
examined an individual’s problem solving practices to explore the following research question: How 
do mathematical resources from which the individual draws when confronted with tasks impact their 
problem solving performance? 

A college student not involved in STEM area served as the subject for the study. Since a major 
goal of the study was to trace the impact of the use of representations when solving problems, data 
collection consisted of two phases. First, the type of representations he accessed during the sequence 
of 4 different tasks from discrete mathematics, measurement, and geometry were documented 
through 4 problem solving interviews. During the second phase, to investigate the potential impact 
of additional representation on his work, a second set of 4 interviews took place during which the 
same tasks were used. During these second sequence of interviews, the researcher asked the 
participant to use a certain tool which included GeoGebra software, a calculator, a measuring cup, or 
a physical paper cylinder. A total of 8 sessions were observed and used as sources for data analysis 
to classify different modes of representation presented in past publications such as Applied 
Mathematical Problem Solving (Lesh, Post, & Behr, 1987). These modes are contextual, physical, 
visual, verbal, and symbolic representations. Interviews were transcribed and analyzed using open 
coding of 157 responses into 18 categories. 

It was found that the individual’s use of representations and overall performance were strongly 
influenced by his self-concept as a mathematics learner, persistence towards solving problems, 
beliefs about mathematics, the desire to be correct, and reliance on his preferred representations and 
heuristics. The individual’s preference for verbal as well as symbolic representations using paper 
and pencil persisted although different tools, which could potentially assist in solving the problems, 
were offered. In most cases, the participant’s performance was positively related with his use of 
verbal and symbolic modes of representations. 
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Despite the importance of proofs in mathematics, research has shown students are more likely to 
construct empirical arguments than deductive proofs when asked to prove a statement (e.g., Healy & 
Hoyles, 2000; Knuth, Choppin, & Bieda, 2009). One possible explanation is that the empirical 
arguments reflect what students are mathematically capable of producing, not what they believe 
constitutes a proof (Healy & Hoyles, 2000). However, both of the studies mentioned used written 
assessments as their primary data source, which did not allow for follow up questions to ascertain 
students’ reasoning for their answers. To fill this gap, this study sought to uncover what criteria 
Algebra 1 students use when they evaluate given solutions for a proof task.Semi-structured 
interviews were conducted with 10 ninth graders enrolled in an accelerated Algebra 1 class. At the 
time of the study, no students had received formal instruction on mathematical proofs. In the 
interview, students were asked to prove that if you add any three odd numbers together, your answer 
will be odd. After students constructed a written argument, they evaluated five sample solutions for 
the previous task: a correct algebraic proof, an examples-based argument, a generic example/visual 
proof, a paragraph proof that drew on the definition of even and odd numbers, and a circular 
algebraic “argument”. Students were asked to explain their evaluations for each solution and then 
select the solution they preferred the most.  

Out of the five sample solutions, students overwhelmingly evaluated the paragraph proof and 
(correct) algebraic solution as being proofs (8/10 for each) and were least likely to consider the 
examples-based argument as a proof (2/10). However, of the eight students who thought the 
algebraic solution was a proof, half justified their response by saying the solution provided examples 
of why it worked. This criterion suggests that some students did not attend to the generality inherent 
in the algebraic argument when evaluating the solution. When justifying their responses, students 
consistently talked about whether the given solution “made sense”. This was particularly true when 
explaining why they thought the paragraph argument was a proof. Even though none of the students 
had been formally introduced to proofs, 7/10 students preferred one of the deductive arguments 
(algebraic, visual, or paragraph) the most.  

These findings extend those from prior studies in two ways. First, not all students who select 
algebraic proofs do so because they recognize the generality within the argument. Second, some 
students are able to recognize non-traditional deductive arguments as proofs when evaluating 
solutions based on whether they “make sense”. One way that teachers can increase students’ access 
to proofs is through leveraging their potential intuition to prefer mathematical arguments that make 
sense. This can be achieved by placing more instructional emphasis on making sense of the 
mathematical content in proofs than on writing proofs in the “proper” form.  
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STUDENTS’ UNDERSTANDING OF PERIODICITY 

Julia L. Berger  
Syracuse University  
jberge07@syr.edu 

The New York State mathematics curriculum has not included extensive mention of periodicity, 
with it appearing only in the context of trigonometric functions (New York State Education 
Department, 2005; National Governors Association Center for Best Practices & Council of Chief 
State School Officers, 2010). Concepts of periodicity extend beyond trigonometry into other areas in 
mathematics and science. I designed a qualitative study, utilizing a questionnaire and interviews, to 
gather data on secondary students’ broader understanding of periodicity. Specifically, I studied the 
characteristics students attend to when identifying representations as periodic and determining their 
periods, and how they reason about periodicity in a context.  

Shama (1998) and Gerson (2010) studied student understanding of periodicity. The authors’ 
studies demonstrate that secondary student conceptions of periodicity were situated in trigonometry, 
which led to limited conceptions of periodicity, such as periodic functions needing to be waves or 
symmetric. Shama concluded that students’ conceptions of a period of a periodic phenomenon were 
restricted to the fundamental period. In Gerson’s study, the precalculus student’s “decisions about 
periodicity [were] not based on the formal definition, but instead upon properties he has generalized 
from prototypical functions in his concept image” (p. 33). Gerson further concluded that the student 
had an understanding of periodicity that was compartmentalized within graphs, meaning that the 
student “was able to make conjectures about periodicity only within the graphical representation” (p. 
35). The findings from my study confirm and extend the findings of both of the above studies. 

Three teachers in a small suburban high school administered my questionnaire in class to their 
students who agreed to participate − five classes of algebra 2/trigonometry students (n = 95) and one 
class of AP calculus students (n = 14). Two girls from the algebra 2/trigonometry classes and two 
girls from the AP calculus class volunteered to participate in the task-based interviews.  

My analysis of the questionnaire data revealed that the majority of students had a basic 
understanding of periodicity as repetitive patterns. There were instances of misconceptions 
particularly for tabular representations and for discontinuous graphs. Overall, the calculus students 
had more robust understandings than the algebra 2/trigonometry students. All students expressed 
understandings of periods as exclusively fundamental periods; they did not demonstrate a conception 
of periodic phenomena as having multiple periods. My analysis of the interviews revealed that 
calculus students engaged in periodic reasoning in a context, but the algebra 2/trigonometry students 
did not. For all students, the task allowed use of contextual vocabulary to discuss periodic concepts, 
which made the concepts more accessible.  
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THE EFFECT OF ITEM MODIFICATION ON STUDENTS’ STRATEGIES FOR 
NEGOTIATING LINGUISTIC CHALLENGES IN MATHEMATICS WORD PROBLEMS 

 Joanna O. Masingila Victoria M. Wambua Louise C. Wilkinson 
 Syracuse University Syracuse University Syracuse University 
 jomasing@syr.edu vmwambua@syr.edu lwilkin@syr.edu 

Some researchers have recommended item modification as a means for accommodating English 
language learners in mathematics tests prepared in English (e.g., Kieffer, Lesaux, Rivera, & Francis, 
2009). Item modification as a measure is based on the notion that complexity in the natural language 
is construct irrelevant (Messick, 1989). In other words, linguistic challenges resulting from the use of 
a natural language, such as English, are not part of the concepts a mathematics test is meant to 
measure. Indeed, “the fundamental notion of test validity is that low test scores should not occur 
because of factors that are irrelevant to the construct an instrument intends to measure” (Solano-
Flores &Trumbull, 2003, p. 3). 

Research has shown differentiated performance between students taking modified test items and 
those taking the original items (e.g., Abedi & Lord, 2001). In these research studies, students taking 
modified test items have performed better, and have expressed preference of the modified test items 
over their original counterparts. While many studies have investigated differences in performance 
between students taking modified and original mathematics test items, there seems to be no research 
investigating how the strategies students use to negotiate linguistic challenges may vary between 
students taking modified test items and those taking original ones. Knowing the differences and 
similarities in how students negotiate linguistic challenges while taking modified and original test 
items can help inform researchers about: (a) the effectiveness of item modification, (b) any additional 
linguistic challenges other than those emanating from the natural language, and, (c) how students’ 
problem solving may be supported. 

This poster will use data collected among eight Kenyan high school (ages 17 or 18) students who 
were assigned modified and original Kenya Certificate of Secondary Education (KCSE) mathematics 
test items. KCSE mathematics is a Kenyan high-stakes examination prepared in English, a foreign 
language, and taken by students completing high school. The original aim of this study was to 
investigate the linguistic challenges students face while solving selected KCSE word problems, and 
ways in which they negotiate these challenges. The findings of this study were presented at the 38th 

PME-NA conference. For this poster, we will compare the strategies students used to negotiate the 
linguistic challenges across the modified and original test items. This poster will thus present the 
salient differences and similarities between strategies students used while negotiating linguistic 
challenges in modified and original test items, as well as the implications for future research and 
practice. 
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AN EXPLORATION OF HOW ASPECTS OF A NOTICING INTERVENTION 
SUPPORTED PROSPECTIVE MATHEMATICS TEACHER NOTICING 

 Shari L. Stockero Amanda D. Stenzelbarton 
 Michigan Technological University Michigan Technological University 
 stockero@mtu.edu adstenze@mtu.edu 

Numerous studies, including our own, have documented that teacher noticing interventions can be 
effective in developing teachers’ abilities to notice salient aspects of the mathematics classroom. In 
this study, we explore how specific aspects of one such intervention may have supported three 
prospective teachers in learning to notice high-potential instances of student mathematical thinking. 
The findings provide evidence that it was not one particular aspect of the intervention that was 
effective in supporting their noticing, but a combination of factors that include the use of a noticing 
framework, interactions with their peers and a facilitator, and targeted learning-to-notice activities. 

Keywords: Classroom Discourse, Instructional Activities and Practices, Teacher Education-
Preservice 

The ability of a teacher to attend to and make sense of important events or aspects of the 
classroom – teacher noticing – is recognized as an important component of teaching expertise 
(Sherin, Jacobs, & Philipp, 2011). However, “the noticing required in teaching is specialized, it is not 
a natural extension of being observant in everyday life” (Ball, 2011, p. xx) and thus is a skill that 
must be learned. Fortunately, research has shown that noticing interventions, in a variety of forms, 
can be successful in helping teachers notice salient aspects of the classroom. For instance, 
interventions have been found to help prospective mathematics teachers become more focused on 
students’ mathematical thinking (e.g., Mitchell & Marin, 2015), more discriminating about what is 
important to attend to in a classroom (e.g., Sherin & van Es, 2005), and better able to make 
connections between teacher actions and student learning (e.g., Roth McDuffie et al., 2014). In 
general, research suggests that teachers can become more attentive to whatever aspect of instruction 
is the focus of an intervention.  

While it is clear that targeted interventions can be effective in scaffolding noticing, it is less clear 
why particular interventions work. Researchers have hypothesized a range of explanations, including 
the use of specific frameworks or targeted prompts (e.g., Roth McDuffie et al., 2014), discourse 
among participants (e.g., Mitchell & Marin, 2015), and multiple opportunities to engage in noticing 
activities (e.g., Santagata, Zannoni, & Stigler, 2007). Facilitation has been found to play a critical 
role in video analysis, a common feature of noticing interventions, since the facilitator must support 
teachers to “not only see what is worthwhile but how to dissect the details of the interactions 
represented in this video…to draw informed interpretations of teaching and learning” (e.g., van Es, 
Tunney, Goldsmith, & Seago, 2014, p. 352). 

Our own work with prospective teachers (PTs) has documented that our noticing intervention has 
helped PTs become more focused on individual students’ thinking, better able to articulate the 
specific mathematics underlying that thinking, and more capable of identifying instances of student 
thinking that have significant potential to be used to support students’ learning (Stockero, Rupnow, 
& Pascoe, 2017). Like others, we have hypothesized aspects of the intervention that supported PT 
learning: using a framework, interacting with peers and a facilitator, and requiring a response 
template to structure PTs’ reflections. We also suspect that some of the learning took place as a result 
of many opportunities to engage in noticing activities over time. The purpose of this study is to begin 
to explore how specific aspects of a noticing intervention may have supported the changes in noticing 
we have documented, and is thus at the crossroads of past teacher noticing research that focused on 
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whether interventions can work and future research that is necessary to understand why such 
interventions work. To do so, we examine the cases of three PTs who formed one cohort that 
engaged in the noticing intervention. Specifically, this exploratory study focuses on the question: 
How do particular features of a noticing intervention support PTs’ ability to notice high-potential 
instances of student mathematical thinking? 

Theoretical Framework 
Although teachers need to attend to a variety of classroom features while enacting a lesson, we 

focus our work on the noticing of students’ mathematical thinking. This choice is grounded in our 
goal of helping teachers learn to enact ambitious teaching (Lampert, Beasley, Ghousseini, Kazemi, & 
Franke, 2010), teaching that is intentionally responsive to students’ current thinking as a means of 
helping all students develop a deep mathematical understanding. We adopt Jacobs, Lamb and 
Philipp’s (2010) definition of professional noticing of [students’] mathematical thinking to include 
the skills of attending, interpreting, and deciding how to respond. In this study, we focus specifically 
on the first two components. We hold the perspective that not all instances of student thinking should 
be given equal attention, however, since they do not all have the same potential to enhance student 
learning. We focus specifically on noticing instances of student thinking that have significant 
potential to be used during a lesson to support mathematical learning. We use the MOST Analytic 
Framework (Leatham, Peterson, Stockero, & Van Zoest, 2015) as a tool to identify such instances—
those that occur at the intersection of student mathematical thinking, significant mathematics, and 
pedagogical opportunity. In the framework, each of these three characteristics has two criteria. 
Student mathematical thinking requires inferable student mathematics and an associated 
mathematical point; significant mathematics requires that the mathematical point is appropriate and 
central to student learning goals; and pedagogical opportunity requires that the instance of student 
thinking creates an opening to build on student thinking and that the timing is right to take advantage 
of the opening at the moment it occurs (for more detail about the framework, see Leatham et al., 
2015). We prioritize the noticing of MOSTs because they are instances that have significant potential 
to advance students’ mathematical understanding if built upon by a teacher – that is if made “the 
object of consideration by the class in order to engage the class in making sense of that thinking to 
better understand an important mathematical idea” (Van Zoest et al., 2017, p. 36). 

Methodology 
This study is part of a larger research project focused on supporting PTs’ ability to notice MOSTs 

that surface during a classroom lesson. In this study, we focus on the last of five iterations of the 
intervention; this iteration was selected because it was found to be the most successful in supporting 
PT noticing (Stockero et al., 2017).  

Intervention 
The intervention took place during a one-semester early field experience course at a Midwestern 

US university. The participants were three PTs who comprised the fall 2014 cohort. Each PT 
completed weekly observations in a local, secondary school mathematics classroom, with the PTs 
taking turns recording a lesson in their classroom each week. The common full-length classroom 
video was analyzed individually by the PTs and by the research team each week. The research team 
used the PTs’ and their own analyses to strategically select video instances to discuss at a weekly 
group meeting among the members of the cohort, facilitated by the first author (see Stockero et al., 
2017, for more detail about the instance selection processes). The participants analyzed 9 different 
videos and attended 11 weekly meetings.  

At the start, all of the PTs’ video analyses focused on identifying “mathematically important 
moments that the teacher should notice”; they tagged such instances on a video timeline and 
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annotated each instance with their reason for its selection. The PTs were introduced to the MOST 
Analytic Framework (Leatham et al., 2015) at the end of the Week 2 meeting to define important 
mathematical instances and provide focus for their video analysis. In Week 3, the PTs used the 
framework to re-analyze the two videos they had analyzed in the prior weeks. Subsequently, they 
used it to analyze each new video for MOSTs. In the Week 9 of the intervention, the PTs completed 
an activity focused on identifying in a set of statements those that represented a mathematical point 
that a given instance of student thinking could be used to work towards and rewriting those that did 
not. When analyzing the last two videos (Weeks 10 and 11), the PTs were provided a template to 
structure their video annotation by requiring them to address all six MOST criteria in their reasoning 
about instances.  

Data Collection and Analysis  
The data for the study include the PTs’ individual video analysis timelines, the research team’s 

weekly meeting plans, and video of each group meeting. In all of the data analysis, the data were first 
coded individually by two or three members of the research team. The team then met to compare 
coding and discuss coding differences until consensus was reached.  

The unit of analysis for the PTs’ video timelines was each instance marked by a PT, including 
their annotation. These instances were analyzed in two ways. First, each was coded according to 
three characteristics: agent (who was noticed), specificity (the level of detail with which the 
mathematics was discussed), and, for instances where the agent included student(s), focus (what 
about the student(s) was noticed) (adapted from van Es & Sherin, 2008; for more detail see Stockero 
et al., 2017). This coding was used to analyze changes in specific characteristics of the PTs’ 
individual noticing in relation to our noticing goals: individual student agent, specific mathematics, 
and a focus on noting or analyzing student mathematics. Second, each instance was coded according 
to whether it aligned in the video with a MOST identified by the research team and whether the PTs’ 
reasoning was consistent with what made it a MOST, an indication of whether the PTs were noticing 
high-leverage instances of student thinking.  

The meeting videos were also analyzed in two ways. The first analysis focused on identifying 
instances of what we call analytic discussion. Here the unit of analysis was a segment of the meeting 
discussion that focused on a single topic; for example, making sense of the student mathematics in an 
instance. Informed by Lohwasser’s (2013) concept of accountable talk in teacher professional 
learning communities, we focused on identifying segments of dialogue that were likely to advance 
the PTs’ learning—those that went beyond sharing their thinking or agreeing with one another. 
Instead, analytic discussion included making sense of ideas, critiquing the thinking of others, and 
providing alternative perspectives. In short, it is discussion that has the potential for “developing and 
creating usable…knowledge for teaching” (Lohwasser, 2013, p. 141-142). In the second analysis, 
each individual facilitator move was coded according to its purpose, using a coding framework that 
was informed by the facilitation moves described by van Es et al. (2014). In the analysis reported 
here, we focus specifically on probing and challenging moves—the moves that were most likely to 
directly influence PT learning. In a probing move, the facilitator pushes for more detail or specificity 
about a PTs’ thinking. In a challenging move, the facilitator may point out a discrepancy in 
reasoning, or push the PTs to consider an alternative explanation or point of view, critique another 
PTs’ explanation, or make a firm decision about the value of an instance. 

The data analysis involved analyzing the coding to compare changes in the PT’s individual 
noticing to key features of the intervention as documented in the meeting notes and group meetings. 
This analysis focused on determining whether changes in the PTs’ noticing could be explained by 
particular aspects of the intervention. 
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Results 
In the following, we first briefly describe the cases of the three participants – Claire, Aaron, and 

Ruth – in terms of the overall trajectory of changes in their noticing. We then use these cases as 
background for considering the extent to which particular aspects of the intervention appeared to 
support the PTs’ noticing. 

Cases of Learning to Notice 
Claire’s baseline noticing data showed that she was focused on the important mathematical ideas 

in the lesson, but in isolation from the students. For example, her annotation of one instance said, 
“Opposites added together always equal zero.” None of her instances in the baseline data were coded 
as being consistent with MOSTs. After the introduction of the MOST framework, Claire quickly 
changed her focus and was able to maintain a productive focus throughout the remainder of the 
intervention. Beginning from the first week she used the framework, Claire consistently focused on 
the students’ mathematics, discussed this mathematics in a specific and often analytical way, and 
noticed instances that satisfied at least some of the MOST criteria. Claire is a case of a PT who was 
quickly able to make sense of the framework she was provided and use it to identify high-potential 
instances of student thinking. 

Aaron’s initial noticing was focused on the teacher and non-mathematical issues, such as “getting 
everyone involved”. It was thus inconsistent with MOSTs. After the introduction of the MOST 
framework, Aaron began to focus more on students, but moved back and forth between a teacher and 
a student focus for several weeks. Aaron was similar to Claire in that he began displaying analytical 
behavior early on. His noticing generally focused on instances that satisfied some of the MOST 
criteria beginning in Week 5, and his noticing became entirely aligned with MOSTs by the last two 
weeks. Aaron is a case of a student who took some time to make sense of the framework, but at the 
end of the intervention was displaying productive noticing skills. 

Ruth’s baseline noticing had a mixed focus on the students as a collective and on the teacher. 
Over half of her noticing was non-mathematical in nature and all of it was inconsistent with MOSTs. 
The introduction of the framework allowed Ruth to shift her focus to the students in the video and 
thus allowed her noticing to become more consistent with MOSTs. She also began to discuss some of 
the mathematics in a specific way, although much of such discussion was still at a very general level. 
She was slower than Claire in developing the ability to identify MOSTs; it was not until Week 8 that 
the majority of Ruth’s noticing consistently focused on MOSTs. Ruth had the most difficulty with 
the interpreting aspect of noticing, as she only had instances coded as analyzing student mathematics 
in the last two weeks of the intervention, and even then only a single instance in each video reached 
this level. Ruth is a case of slow growth over time and of a student who may have benefitted from a 
longer intervention. 

Supports for Noticing 
Noticing framework. We first considered how the use of a framework supported the PTs’ 

noticing. To understand its immediate impact, we analyzed the PTs’ noticing in Week 3, when the 
MOST framework was used to reanalyze the videos from the first two weeks, and Week 4 when the 
framework was used to analyze a new classroom video.  

The data suggests that the MOST framework immediately and effectively supported Claire’s 
noticing. During her first use of the framework, her noticing shifted from teacher to students, and to 
instances that were MOSTs. Impressively, Claire’s annotations were coded as analyzing student 
mathematics in over two-thirds of the instances she identified in Weeks 3 and 4, and nine of her ten 
identified instances were MOSTs. To give a sense of the type of noticing Claire engaged in during 
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her early use of the MOST framework, consider her annotation of an instance that occurred when 
students were being introduced to Pythagorean Triples:   

Student: ‘Times 132’. One student thought that 52 + 122 should be multiplied by 132 to find out 
the hypotenuse length. [T]his concept is not especially difficult, that it should [be] equal to 132, but 
when this is just being introduced, it might be difficult for a student to understand how to know if a 
5, 12, 13 triangle is a Pythagorean triple. At this point it is important to understand that they just need 
to plug the values into the equation a2 + b2 = c2. 

In this instance, Claire not only noticed an important error made by a student, she also 
hypothesized why the concept might be difficult (Pythagoreans triples have just been introduced) and 
explained what mathematical idea she would want the student to understand. 

Aaron and Ruth, on the other hand, seemed to take more time and need more support to make 
effective use of the framework. Although about half of their noticing was focused on MOSTs in 
Weeks 3 and 4, each displayed key inhibitors to their noticing. Aaron’s was his continued focus on 
the teacher, despite the fact that the first MOST criteria is student mathematics (e.g., “The question is 
how to compute the hypotenuse given two legs. The goal is to be able to use the Pythagorean 
Theorem to do this. [The teacher] explains the central goal in detail so the students will understand 
this concept”). For Ruth, it was her vague explanations that lacked evidence that she was engaging in 
analysis and interpretation of the student’s thinking (e.g., “The students are all getting the problem 
wrong, and you can tell what they are thinking mathematically by their misspeaking or wrong 
answers.”). Thus, although the framework provided some focus to Aaron and Ruth’s noticing, it was 
not sufficient to focus them on noticing and interpreting MOSTs. 

Group discussions. The data indicated that, on average, the PTs engaged in 14 episodes of 
analytical discussion in each weekly meeting, with a range from 8 to 19 episodes. The PTs’ 
participation in these discussions was found to be evenly distributed, so they all had equal 
opportunity to engage in discussions that were likely to promote their growth in noticing.  

The Week 1 and 2 analytical discussions focused largely on distinguishing between teachers’ 
noticing and their use of prior knowledge to make instructional decisions, as well as on making sense 
of what it means for something to be mathematically important (versus important for some other 
reason). Inferring the student mathematics (SM) in the video was a primary focus of analytical 
discussions nearly every week, as was articulating a mathematical point (MP) that the student 
mathematics could be used to work towards, after this concept was introduced with the MOST 
framework. Other topics that were the object of analytical discussion were definitions of specific 
MOST criteria and considering these criteria within specific contexts (such as what it means for an 
idea to be central to student learning if it is not the focus of the current lesson, or what the SM is if 
two competing student solutions have been shared). During the second half of the intervention, 
proposing building moves was also a significant topic of discussion, although not the focus of our 
current analysis. 

The SM and MP criteria are the most mathematical of the MOST criteria and are typically the 
components that require the deepest level of analysis to identify whether an instance is a MOST. 
They appear to be the components that were most challenging to Ruth and Aaron and thus affected 
the advancement of their noticing skill. There is evidence that a sustained focus on these topics 
during the meetings was effective, however, since Ruth and Aaron both continually increased in their 
focus on noting and analyzing the student mathematics and their ability to identify MOSTs. Aaron 
did so more quickly than Ruth as his noticing was coded as either noting or analyzing the student 
mathematics in nearly all instances beginning in Week 5, and by Week 6 he noticed mostly MOSTs. 
Ruth gradually increased in the percentage of instances coded as noting student mathematics and that 
were MOSTs, but only showed evidence of analyzing student mathematics in the last two weeks of 
the intervention. To give a sense of how the analytical discussion may have supported the PTs in 
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learning to infer the SM, consider an excerpt from the Week 5 meeting in which the PTs were 
discussing a video instance in which a student said that the coordinates of the x- and y-intercepts of a 
graph “both have a zero”: 

Facilitator: What do you think the student is saying there? 
Claire: I think she is noticing that the x-intercept is when y is zero and the y-intercept is when x 

is zero. That’s not what she says. She says they both have a zero, but I think that’s what she’s 
getting at. 

Aaron: She just didn’t find the right way to explain it, a way that everyone else would understand 
what she meant by saying it, which is why [the teacher] later went into explaining when 
looking for the x-intercept, it’s when y=0, when it crosses the x-axis. She goes over a few 
ways to explain it. Actually explaining it in a way that everyone else would understand 
makes sense. It makes sense for her to interject there. 

Facilitator: I heard Claire say that she didn't really say that. Is there enough there to infer the 
student math? 

Ruth: I feel like she wasn’t entirely clear on what the correct answer was. She just made the 
observation that each coordinate has a zero. That’s what I thought.  

Facilitator: So that's all you're willing to infer, then? That each one has a zero in it. 
Ruth: Yeah, she was just making that observation and the teacher then elaborated on it. 

In this excerpt, we see Claire and Aaron make an inference about the SM that went beyond what 
should be reasonably inferred based on the student’s brief statement. Ruth contradicted their 
inference, however, providing the opportunity for them to reconsider their assertion about the SM. In 
fact, later in the discussion Claire noted that, “We’ve kind of thought that she made an observation 
that might or might not be correct, so [the teacher] needs to elaborate or figure out what she really 
means before it can be opened up to the class to discuss,” indicating that Ruth’s comments had 
caused Claire to reconsider her original inference. 

The meeting data showed that Ruth struggled to articulate MPs related to the students’ ideas 
through much of the intervention. For example, a Week 7 meeting discussion focused on an instance 
in which a student had suggested that to convert the fraction 1/10 to a percent, you could just use the 
denominator, so it would be 10%. When the facilitator asked, “Is there a mathematical point 
associated with that? In other words, what would you want him to understand?”, Ruth replied “That’s 
not how you do it,”—a response that typified her articulation of MPs and lacked the level of 
interpretation that was our goal. Despite participating in numerous discussions where the other PTs 
had articulated MPs, Ruth struggled to do so. This was a primary reason that she was unable to reach 
what we considered the most advanced level of noticing, where she was able to identify and  also 
make sense of students’ mathematics. 

Facilitation. Related to the analytic discussion findings, an examination of the role of the 
facilitator suggests that the meeting facilitation was also important to the PTs’ learning. In the ten 
meetings that focused on analyzing video instances (all except Week 9), 84% (119/155) of all 
analytic discussions were supported by either probing (79) or challenging (6) facilitator moves, or by 
both (34). This was relatively consistent across meetings, with between 69% and 92% of analytic 
discussion supported by such moves. Additionally, 77% (40/52) of all challenging facilitator moves 
during the intervention meetings coincided with analytic discussion, indicating that such moves were 
effective in causing the PTs to grapple with ideas. Together, these results suggest that the meeting 
facilitation played a key role in supporting changes in the PTs’ noticing during the intervention; in 
particular, the facilitator’s moves appeared to support discussion among the PTs that was likely to 
advance their learning. 
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Targeted activity and template. Prompted largely by the observation that Ruth was having 
difficulty advancing her noticing due to her inability to articulate MPs—an important part of the 
identification of MOSTs—in Week 9 we engaged the PTs in an activity where they worked on 
articulating MPs associated with instances of student mathematical thinking that they were provided. 
Following this activity, we also provided a template that prompted the PTs to address all six of the 
MOST criteria in their instance annotation beginning with the Week 10 analysis. Because these 
activities occurred simultaneously, it is difficult to separate their impact on Ruth’s noticing. There is 
evidence, however, that together they had a positive effect on her noticing. 

In Week 8, a typical annotation by Ruth addressed the SM and the MP as follows: “The student 
math is that she discovered what the pattern is for getting the inverse [of a matrix]. Her point was 
closely related to what they're learning because it was the teacher’s next part of the lesson.” Note that 
this response alludes to the SM and to a MP, but does not precisely articulate either. In Week 10, 
however, her response addressed the same two criteria as follows: 

Student Math: She said the absolute value of -5 was 5 because it's the opposite of 5. 
Mathematical Point: The absolute value of a number is always the distance that number is away 

from 0. This is because absolute value is a measure of distance and distance is always 
positive. 

Here, the level of detail and precision are both much improved from the prior example. Thus, it 
seems that the Week 9 activities and template did advance Ruth’s noticing. Even at the end of the 
intervention, however, she did not display the same level of analysis of student mathematics as her 
peers, with only a total of two coded instances reaching this level. In this case, a longer intervention 
may have allowed Ruth to continue to develop her noticing skill. 

Conclusions 
This exploratory study—at the crossroads of past teacher noticing research that focused on 

whether teacher noticing interventions could work to future research focused on understanding why 
they work—examined how various aspects of a noticing intervention that have been hypothesized to 
support teacher noticing appeared to help three PTs learn to recognize and interpret MOSTs in 
classroom video. As hypothesized, a provided framework did in fact support changes in their 
noticing, although the changes for two of the PTs were neither immediate nor drastic; in other words, 
the framework did not serve as an ‘answer key’ and was not by itself sufficient to support noticing. 
Rather, the PTs’ noticing appeared to develop over time though participation in regular group 
discussions that allowed them to grapple with components of the framework. Moreover, the evidence 
suggests that facilitation that probed or challenged the PTs’ thinking was important in supporting 
their engagement in analytic discussions that pushed their thinking and thus promoted learning. In the 
case of one PT, a direct intervention to support her in becoming more analytical of the mathematics 
underlying the student thinking was necessary to improve her noticing, but even then there was room 
for improvement. The results of this study highlight the significant effort required to develop skills in 
a practice as complex as noticing student mathematical thinking. Consistent with research on teacher 
professional development (e.g., Loucks-Horsley, Stiles, Mundry, Love, & Hewson, 2010), this study 
suggests that brief or minimally supported interventions are unlikely to fully develop such a practice.  
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We discuss affordances and liabilities of using a storyboard to depict a written case of a teacher’s 
dilemma that involves race, opportunity to learn, and student community. We rely on reflections by 
the teacher educator who authored the written case and later depicted it as a storyboard to use it 
with his preservice teachers (PSTs). The analysis involved, first, organizing the signifiers in each 
of the two representations of practice into what we call concentric spheres of stratification, and 
secondly, contrasting the various meanings attributed to signifiers by both the author and his PSTs. 
We suggest that the resources of storyboard allow for more inquiry and alternative narratives than is 
available from the single modality of text in the written case. 

Keywords: Equity and Diversity, Teacher Education-Preservice, Technology 

Introduction 
Motivated by the increasing use of multimodal representations of practice (e.g., video, 

animations, storyboards) in mathematics teacher education, we discuss affordances and constraints of 
such media and propose a framework for analyzing them. This contribution helps address the 
challenge of anticipating what meaning a group of preservice teachers (PSTs) will attribute to the 
complex system of signifiers included in a representation. The framework addresses this issue by 
offering a way of organizing those signifiers and suggesting that teacher educators could consider 
where and how the meanings that they and their PSTs attribute to a given representation might differ. 
To demonstrate the value of the framework, we use it to analyze a teacher educator’s use of a written 
case and a storyboard representation of the same classroom scenario.  The scenario was used to 
discuss  a teaching dilemma that involves race, opportunity to learn, and student community – the 
decision to move a student to a more advanced mathematics class. The data comes in the form of the 
reflections by the teacher educator (and co-author) who initially wrote the case and then created a 
storyboard for use with his PSTs. We examine issues of representation illustrated by that data and 
that concern the use of representations of practice to support practice-based and inquiry-oriented 
teacher education. 

Perspectives and Theoretical Framework 
The notion of representation of practice has been a key in developing a practice-based approach 

to professional education (Grossman, et al., 2009). Representations of practice using the written 
narrative modality have been common in professional development (e.g., Stein, Smith, & Silver, 
1999). Written cases are useful because they can help focus attention on important aspects of 
practice. But inasmuch as written cases use abstract symbols (words!) to represent individuals, 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

790 

settings, and actions of practice, they are less effective in immersing their audience into key aspects 
of classrooms such as the simultaneity and temporality of classroom events (Doyle, 1986; see also 
Herbst et al., 2011). As video technology became more accessible and approaches to teacher 
education as inquiry more common, teacher educators have been using video records to immerse 
novices in practice (Brophy, 2004; Lampert & Ball, 1998). Much has been written describing the 
affordances of having teachers watch and discuss classroom video to promote noticing and reflection 
(Rich & Hannafin, 2009; Sherin, Philipp, & Jacob, 2011). The capacity of video to record 
simultaneous multimodal communication (gesture, inscription, voice, movement, etc.) by a diversity 
of individuals has been noted as advantageous for creating an increased sense of presence (e.g., in 
comparison with text; see Kim & Sundar, 2016). That capacity also provides key affordances to 
allow for expanded inquiry pursuing a variety of foci, though the camera always directs attention in 
some way (Hall, 2000). This is not always what teacher educators need or prefer, as quite often their 
students latch onto aspects of a video not particularly germane to the goals of their instructors (Star & 
Strickland, 2008).  

To bridge the gap between the capacity of video to immerse and the capacity of text to focus, 
professional educators have started to explore other media (e.g., animations and storyboards with 
cartoon characters) to represent practice (see Herbst et al., 2011; Tettegah, 2005). Art critics and 
scholars of visual communication have for long used language as a metaphor in examining visuals 
(Barthes, 1972). But more recent progress extending the systemic functional linguistics approach to 
language (Halliday & Matthiessen, 2004) to a variety of sign systems (Kress & van Leeuwen; 1996) 
and levels of realization (including the register of classrooms; Christie, 2002) has brought us closer 
to actually being able to examine the affordances of the comics medium as a language using similar 
approaches and resources as how SFL examines the uses of language. This paper contributes to an 
examination of how the multimodal resources in the comics and animation medium permit the 
production of complex messages about classrooms and the way in which they also enable a degree of 
openness (Weiss, 2011) that allows for inquiry and alternative narratives. Some of these features of 
comics will be exemplified through a comparison of a comics-based representation and a written 
representation of a classroom story. 

Mode of Inquiry 
We collaboratively examined the interaction of a teacher educator (Lawrence Clark) with 

successive versions of a technology for depicting classroom interaction in an effort to translate a 
written case to a storyboard. This examination allows our field to learn about affordances of 
storyboard technology for the representation of teaching practice. Depict (a tool included in 
LessonSketch; www.lessonsketch.org), allows users to upload and manipulate graphics and provides 
cartoon characters designed to create classroom visual meanings. Just as language has the words 
student and teacher to represent roles in a classroom, and other linguistic resources to describe how 
people feel (e.g., the student was happy), where they are (e.g., the student was at the board), or what 
they are doing (e.g., the student was solving an equation), Depict’s graphic language has resources to 
represent those meanings (e.g., see Figure 1). 

Notably, if words report simultaneous happenings, the graphic medium allow us to show this 
simultaneity. Video can also do that, but it might also include other messages about the action that 
might be less relevant to convey (e.g., the style of clothes popular at the time the video was 
captured). In designing a semiotic system for representing classrooms, the developers of Depict 
wanted to make available graphic elements and software features that help communicate classroom 
meanings of particular relevance for the study of teaching practice. One important set of 
considerations has been the dimension Herbst et al. (2011) called individuality, or the extent to which 
the set of graphic resources enables distinguishing individual differences among classroom 
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participants and settings. In this regard, it is worth distinguishing between enacted individual 
differences (e.g., the possibility that one student would do or express something that others would 
not) and enduring individual differences (e.g., based on individual characteristics that recur across 
enactments, such as body size, race, class, or gender). While Depict’s character set (Figure 1) was 
originally conceptualized as a cast of characters with some resources to express enacted individual 
differences (e.g., facial expressions, body orientation), very few resources were originally provided 
for enduring individual differences (e.g., no affordances for body size, hairstyle, or skin color). 
Depict’s characters were nondescript characters whose role was to depict practice rather than 
individuals.  In that context, Chazan and Herbst (2011) had described the affordances of the cartoon 
characters as comparable to variables in algebra and distinct from diagrams in geometry: As Laborde 
(2005) has noted, diagrams have the liability that they spatiographically assert properties that are not 
always theoretically necessary—e.g., a diagram of a rectangle will likely show two sides longer than 
the other two sides. Other properties of rectangles, however, are not only visible but also necessarily 
true (e.g., opposite sides are congruent). Students often latch onto spatiographical properties as they 
use diagrams to learn geometry. While video is like diagrams in geometry in that it enables the 
observation of ancillary events, Chazan and Herbst (2011) argued that Depict’s cartoon language is 
like the generic language of algebra in its capacity to make assertions about practice, as opposed to 
assertions about specific individuals. Yet they also thought of the graphic resources as a developing 
language that would progressively incorporate new semiotic systems to represent more aspects of 
practice. The extent to which considerations of race enter in the way teachers relate to students in 
practice offered an important opportunity to further explore the possibilities of phasing in new 
graphic resources to increase the representation of individuality.  

 

 
Figure 1. A frame from a storyboard using Depict. 

New resources have been recently added to Depict’s graphic language to allow representation of 
some enduring individual differences. The complexion system, operationalized by color wheels that 
enable the user to pick skin tones for characters, affords the user the ability to choose whether to use 
the default blue skin or to choose freely from the color wheels. We wondered whether this particular 
affordance supported the work of a teacher educator in representing a case that he wanted to bring to 
his PSTs, and the extent to which the depicted representation allows for alternative inquiries and 
narrative. We examine the use of Depict by comparing Clark’s Case of Mya (see Chazan, et al., 
2016, p. 1059) and a storyboard Clark constructed to represent the case.  The comparison is of 
interest because the storyboard demanded more graphic resources than were prescribed in the text 
(e.g., things unsaid in the text needed to be depicted to visualize the classroom scene) although it was 
created after the written case; generating the possibility that alternative stories could emerge from the 
engagement of the readers with the media. 
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The Case of Mya 
The Case of Mya describes a dilemma faced by a middle school mathematics teacher, Scott 

Johnston, in his effort to provide a more rigorous and challenging mathematical learning 
environment for one of his students, Mya. Johnston was employed in a middle school and district 
where 8th graders were assigned to one of four mathematics courses (from lowest to highest level of 
rigor): Math 8, Pre-Algebra, Algebra, and Advanced Algebra. A potential byproduct of grouping 
students by performance is grouping students by race and social class:  Racial and class gaps in 
performance have persisted throughout the history of mathematics education in the U.S. The Case of 
Mya acknowledges and incorporates these complexities. Scott Johnston commits his efforts to 
providing Mya, an African American female eighth grade student enrolled in one of his lower level 
mathematics classes, a more rigorous school mathematics experience. Based on Mya’s social and 
intellectual performance in the course she is currently enrolled in, Scott takes on the work of 
enrolling her in a higher-level course.  

Clark was also recruited as a fellow for a project that supported the creation of multimedia 
representations of practice for use in teacher education. He took on the challenge to represent the 
Case of Mya as a storyboard. He describes his challenge thus: 

When faced with moving the written Case of Mya to a storyboard, numerous considerations came 
into play. The first consideration revolved around how I might illustrate the complexities of the 
case context.  I grappled with questions like 

• How can I depict the larger forces at play (context) that shape and direct a 
mathematics teacher’s classroom decision-making and instructional practice? 

• As race and class are ‘in the mix’ of students’ access to mathematics opportunity, 
how can the storyboarding tools serve to illustrate these phenomena? 

For example, in the written case, I had stated: 

[S]he (Mya) was unquestionably the most engaged, inquisitive, and mathematically confident 
student in the entire [Pre-Algebra] class, and she consistently outperformed her classmates on 
tasks and assessments. She thrived in her position as one who I could call on to assist 
struggling students. Her ability to communicate her mathematical thinking and problem 
solving approaches in front of the entire class was unmatched. Mya fared less well in other 
academic areas, but it was evident to everyone, including herself, that she was comfortable 
and in her element when interacting in the [Pre-Algebra] class. (Chazan, Herbst, & Clark, 
2016, p. 1059)  

I had not gone into the specifics of her mathematical thinking in the written case. But I did go 
into specifics of her mathematical thinking when afforded the opportunity to create the 
storyboard. I designed the following scenes in the depiction and asked readers to explore and 
comment about Mya’s mathematical thinking in the lower level class: 
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Figure 2. Mya’s mathematical ideas, represented by speech and boardwork. 

It was also important that both depictions of Scott and Mya reflect their African descent 
through skin tone, so I chose to depict Scott and Mya using dark skin tones. The written text of 
the Case of Mya explicitly refers to Mya as African American, however the text does not 
explicitly refer to Scott as African American, so the reader of the case may (or may not) see both 
Scott and Mya as African American.  This shared racial characteristic can be explored in the 
discussion of the depiction to gauge the reader’s perception of Scott and Mya’s shared racial 
characteristic as relevant or salient to Scott’s decisions. For some readers, Scott and Mya’s 
shared racial characteristic may suggest some form of connection, allegiance, and loyalty. In the 
written case I described the Advanced Algebra class to which Mya transferred as being populated 
predominantly by Caucasian students. Identification of skin tones on the color wheel that 
represent Caucasian students was challenging.  I tended to rely on pinkish or creamy skin tone 
shades.  I had to create multiple pilot scenes to determine if pilot viewers saw the Advanced 
Algebra classroom as populated predominantly by Caucasian students.  In some cases, viewers 
mentioned that the students in Advanced Algebra were unnaturally pink.  Furthermore, when 
choosing pinkish or creamy tones for skin color, the color of the outline edge of the character 
created confusion in the viewer.  For example, a light pink character possessed a dark pink edge.  
A creamy character possessed a brown or tan outline edge. During depiction design, I 
incorporated scenes of small group work in the Advanced Algebra class that showed Mya as the 
only student of color in the group. In these scenes, Mya’s mathematical ability is questioned and 
challenged by others.  The purpose of including these scenes is to further explore viewers’ 
perspectives on whether race could be a salient and relevant influence on student-student 
interaction around the mathematics task at hand. 

Results and Discussion 
From the above example, one may see affordances of a semiotic system embedded in the 

storyboarding environment. While building a storyboard the availability of the empty, but editable, 
whiteboard may make the creator wonder what should be written on the whiteboard in the case of 
Mya. It is more difficult to see those opportunities while writing a case. Similarly to the first example 
described earlier, from this second example one may generalize the affordances that a semiotic 
system could offer in the storyboarding environment. When creating a storyboard in Depict, the 
default skin tone of the students is blue (see Figure 1). One can change the skin tone of one character, 
but then it is likely that one will feel the need to assign skin tones to all characters. The teacher 
educator felt compelled to represent Scott’s skin tone – which, as he suggests, might motivate a 
reader to infer social relationships between Mya and the teacher.  
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Table 1. Meanings attributed to the written and depicted case of Mya. 

Excerpt from 
representation 

Author meaning/intent Reader/viewer interpretation 

(E) - expected; (U) - unexpected 

Written case: 

Excerpts from 
written case 
transcribed 
above (p. 4) 

Mya is successful when completing complex 
mathematics tasks and assessments in the pre-algebra 
classroom 

Mya has a strong mathematics identity in the Pre-
Algebra course, yet may not possess a strong general 
academic identity (across all subjects). 

Unlike the majority of her peers in the Pre-Algebra class, 
Mya possesses confidence and comfort in 
communicating her mathematical thinking publicly. 

Mya may be viewed as a peer resource by other students. 

Mya’s explanations may support the development of 
other students’ understanding. 

PSTs remarked that Mya possesses 
power and agency in the Pre-Algebra 
course. (E) 

PSTs remarked that Mya is a resource 
for other students in the Pre-Algebra 
course. (E) 

Some PSTs felt that the teacher 
should not move Mya from the Pre-
Algebra course to the Advanced 
Algebra course. (U) 

Depiction: 

See Figure 2 

The Pre-Algebra class is composed predominantly of 
students of African descent as signified by student 
skintone; the Advanced Algebra class is composed 
predominantly of Caucasian students. 

Mya’s demonstrates  an understanding of the concept of 
variable. 

Mya’s demonstrates the ability to solve equations in one 
variable and equations in two variables given a value for 
one of the variables. 

Mya may be able to reason through identifying a set of 
values of the two variables that solve the equation 
without being given one of the values. 

 

PSTs focused on many classroom 
signifiers when describing 
differences between the two 
classrooms (seating arrangements, 
calculator use, etc.), yet were hesitant 
to mention racial differences between 
the two classes. (U) 

A PST interpreted Scott Johnston’s 
physical distance from students in the 
Pre-Algebra class as a classroom 
management strategy (‘he needs to be 
able to see all students at all times 
due to behavior problems’) (U) 

PSTs remarked that Mya understood 
that parallel lines have the same 
slope. (E) 

PSTs remarked that Mya would be 
able to solve equations in two 
variables only when given a value for 
one of the variables. (U) 

PSTs remarked that Mya would be 
able to solve systems of equations. 
(U) 

When asked how Mya is perceived by 
her peers,  a PST remarked that her 
peers may view Mya as unrelatable,  
intimidating, and a  ‘know it all’. (U) 
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The case of Mya provides the grounds for a distinction in the kind of storytelling afforded by the 

storyboarding tool. While originally developed to represent practice, Depict also permits to tell 
character-centered stories that happen in practice; indeed, to some extent it uses the latter to flesh out 
the former, much in the way that specific diagrams can represent generic figures – diagrams convey 
important intuitions that help generate geometric theory, might scenes with cartoon characters do the 
same for teaching? By character-centered stories we refer to stories that are focused on the 
individualities of one or more characters and what happens to them as they go through episodes in 
their lives; this contrasts with environment-centered stories that are focused on what happens in 
specific places as different characters interact. The original design of Depict supported the 
representation of practice in classroom-centered stories. The storyboarding of the case of Mya 
challenged Depict’s graphic language and required the development of a framework for us to 
examine character-centered stories.  

The Framework 
We suggest that one can think of the signifiers in a representation of a character-centered story as 

developed in concentric spheres, each of which includes a stratum of graphical elements available to 
choose from in order to graphically communicate strata-specific meanings. The innermost sphere in 
such representations consists of signifiers associated to the characterization of the protagonist(s) of 
the story. These could include signifiers of physical, cognitive, or emotional individual traits. The 
second sphere consists of signifiers of the immediate context of the protagonist(s) at various points in 
the story--resources to represent relations to other characters or to the immediate physical 
environment. A third sphere consists of signifiers of the more general environment in which the 
whole story takes place. Earlier, we described and compared the author’s textual and storyboard 
representation of the case of Mya in which Scott proposes that Mya be moved from the Pre-Algebra 
class to the Advanced Algebra class. In that story, the second sphere will consist of characteristics of 
those classrooms and the third sphere consists of characteristics of the school community. These 
different strata form the first dimension of the framework. We argue that the value of the first 
dimension of this framework is that it helps one organize the many signifiers in a (character-
centered) representation of practice.  

A second dimension includes consideration of whose meanings one is attending to. The value of 
the second dimension of this framework is that it encourages considering what meanings different 
people attribute to a representation, in particular those attributed by the author and by readers, which 
we suggest are the source of alternative inquiries and narratives. As suggested earlier, we argue that 
storyboards allow for more alternatives, as they include not only text, but also other communication 
modalities. A comparison of Clark’s intended interpretations of various signifiers in the two 
representations of the case of Mya and those made by his PSTs is used as example. In some 
instances, PSTs interpretations were aligned with Clark’s meaning or intent; in other instances PSTs 
generated interpretations that were unexpected (see Table 1). We focused here on signifiers in the 
innermost sphere of the representation, similar such tables could be used to consider and compare 
interpretations of the signifiers at each sphere of stratification. 

Conclusion 
The multimodal resources in the comics medium permit creation of complex messages about 

classrooms that allow for inquiry and alternative narratives by different readers (Weiss, 2011). These 
alternative forms of representation also have liabilities. A main gleaning from this paper is that the 
graphics communicate as a system, both for the author and for the reader. The creation of materials 
for the study of teaching is not only a creative endeavor but also an analytic one that involves 
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composing with a language and examining the systems of choice with which that language is built. 
The individuality dimension (Herbst et al, 2011) in representations of teaching is one aspect in which 
this semiotic system can be built, and complexion is one subsystem that contains affordances both for 
focusing the message and for enabling inquiry. 

Indeed while written cases can focus attention on important aspects of practice and video can 
immerse students in the complexity of practice, a graphics-based semiotic system can be used to 
scaffold this complexity, combining inquiry with direction. The case of Mya shows that the 
translation from written case to storyboard included the opportunity to show some interesting 
nuances in the visibility of race, all of which have a lot to do with mathematics education if we think 
of mathematics education as an institutionalized practice: Students are learning mathematics in 
classes and with other students with whom they have particular kinds of social relationships, they are 
being taught by teachers who could be their advocates or mentors, and these relationships are 
mediated by race as well as other factors. 
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EVALUATING PROOFS AND CONJECTURES CONSTRUCTED BY PRE-SERVICE 
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This study focused on investigating the ability of 58 pre-service mathematics teachers’ (PSMTs) to 
construct-evaluate mathematical conjectures-proofs in a mathematics course. The combined 
construction-evaluation activity of conjectures-and-proofs helps illuminate pre-service mathematics 
teachers’ understanding of proof. The result of the study demonstrated that the number of instances 
where the PSMTs constructed conjectures were less than the number of instances where they 
constructed arguments to prove/disprove assertions during the semester. Additionally, the PSMTs 
usually constructed conjectures when they were explicitly asked to do so. The majority of the 
arguments that were constructed by the PSMTs attempted to provide an explanation for why the 
assertion held true which may show that the explanatory role of arguments indeed held an essential 
criterion for the PSMTs. 

Keywords: Teacher Education-Preservice  

Proof is viewed as a cornerstone of mathematics and an essential element for developing deep 
understanding (e.g., Ball & Bass, 2000; NCTM, 2000). Yet, research indicates that students of all 
levels tend to have limited understanding of proof and struggle with constructing proofs (e.g. Harel & 
Sowder, 1998). Many researchers demonstrated that the empirical reasoning is pervasive among 
school students including advanced or high-attaining secondary students (e.g. Coe & Ruthven, 1994; 
Healy & Hoyles, 2000), university students including mathematics majors (e.g., Goetting, 1995) as 
well as prospective and in-service teachers (e.g. Morris, 2002; Simon &Bume, 1996). 

Despite the importance of teachers’ understanding of proof, relatively little research has 
investigated aspects of prospective or practicing teachers’ understanding of proofs (Goetting, 1995; 
Morris, 2002; Stylianides, Stylianides, & Philippou, 2007). Furthermore, previous studies focus 
solely on teachers’ understanding of the distinction between deductive and empirical arguments by 
asking them to evaluate researcher generated arguments. Stylianides and Stylianides (2009) criticized 
that there has been limited research about how instructions can help pre-service teachers’ develop 
their understanding of proof. Thus, this study aims to contribute to literature on pre-service teachers’ 
understanding of proof by reporting on pre-service mathematics teachers’ (PSMTs)processes of 
constructing-evaluating mathematical conjectures-proofs during a course in which PSMTs 
specifically engaged in proving tasks.  

Functions of Proof in Classrooms 
Traditionally the function of proof has been seen almost exclusively as being to verify or justify 

the correctness of mathematical statements (e.g. Ball & Bass, 2000). The “verification” function of 
proof is often interpreted in subjective terms, establishing the truth of a statement with an 
individual’s belief in the truth of a statement and thus allocating proof a role in the subjective 
acquisition of such belief. However, as Bell (1976) argues, proof is not necessarily a prerequisite for 
conviction; proof is essentially a social activity of validation or establishing results, which follows 
reaching a conviction. Duval (2002) argues that a proof can change the logical value as well as 
epistemic value of a statement. That is, a proof may logically validate a statement, but it can also 
affect the belief of the cognizing subject as to the truth of the statement. These two functions of 
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proof—to convince individuals and to establish results in the field—are by no means the only 
functions of proof in mathematical activity.  

Researchers have contributed to such elaboration on the functions of proof both by reflecting on 
its many roles in the discipline of mathematics and by identifying its roles in mathematical 
understanding. These roles are identified by de Villiers by building on the work of others (Balacheff, 
1988; Bell, 1976; Hanna, 1990; Hersh, 1993) as follows: (a) verification (concerned with the truth of 
a statement), (b) explanation (providing insight into why it is true), (c) systematization (the 
organization of various results into a deductive system of axioms, major concepts and theorems), (d) 
discovery (invention of new results), (e) communication (the transmission of mathematical 
knowledge), and (f) intellectual challenge (de Villiers, 1990, p.18). 

Hersh (1993) argues that the role of proof in the classroom and the role of proof in mathematical 
discipline could be different, stating that the purpose of proof in mathematical discipline to be to 
convince, while in a classroom it should be to explain. Knuth (2002) has echoed this theme, arguing 
to teachers that proofs are valuable because they can help students understand mathematics. Hanna 
(1990) distinguishes between “proofs that prove” and “proofs that explain”.Thus, the development of 
proofs in the course where the study took place served two related functions: (a) as means for 
explaining why an assertion was true or false by showing how the statement of a theorem coheres 
and connects with the key properties of the concepts involved in the proof, which will be referred as 
Type P1proof and (b) as a means for justifying that an assertion was true thereby promoting 
conviction, which will be referred as Type P2 proof in the study. 

Methodology  
In this section, the context in which the research reported here took place, the research 

participants and the data collection and analysis processes will be described. 

Participants 
Participants of the study were 58 pre-service mathematics teachers (PSMTs) who are certified to 

teach mathematics in grade 5- 8.  The PSMTs enrolled in a mathematics course during the semester 
of spring of 2016. The course was worth three university credits, and so the class met 3 hours per 
week for a semester. The course was designed to cover a wide range of mathematical topics in three 
major mathematical domains (algebra, geometry and number theory). The PSMTs were offered 
various opportunities to engage with mathematical proofs including constructing-evaluating proofs, 
representing them in different ways (using everyday language, algebra, or pictures), and examining 
the correspondences among different representations. 

Tasks 
A sample of proof tasks in which PSMTs were engaged in during the semester will be presented 

here in order for readers to better conceptualize PSMTs’ conjecture/proof construction and 
evaluation processes (see Table 1). 

Data Collection Process 
The participants were engaged in a course where they were required to work in groups of 6. The 

participants were engaged in solving tasks that were adopted from existing literature (see Table 1). 
All instructions were videotaped during three hours of the instruction time for 14 weeks in the 
semester. The video camera was located at the corner of the classroom where the board was captured. 
These videos served as the main data source for the study. In addition to the class videos, the 
PSMTs’ written responses to some of the tasks and their class assignments were also collected. 
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Table 1: Sample of the Tasks 
Task B was adopted from (Weber, 2003). The task 
was as follows:  
 
For every odd integer n, n2 - 1 is divisible by 8. 
 

Task A was adopted from Wilburne (2014). The 
task was as follow:  
 
A fast food restaurant sells chicken nuggets in packs 
of 4 and 7. What is the largest number of nuggets 
you cannot buy? How do you know this is the 
largest number you cannot buy?  

Task D was adopted from Boaler and Humphreys 
(2005). The task was as follows:  

 

Task C was as follows: 
Justify that the area formula of a kite is !!!!

!
, where 

d1and d2 are the diagonals of the kite. 
 

 

Data Analysis 
The data analysis started with reviewing the videos of the instructions first. After the first review 

of the videos, the parts where the PSMTs were engaged in construction-and-evaluation of 
mathematical conjectures-and-proofs were selected and transcribed. Later, the selected segments and 
the transcript of these segments were viewed again and the PSMTs’ proof constructions were coded 
in one of the following categories: Type P1: valid general argument that explains why an assertion 
was true by standing of the underlying mathematical concepts, Type P2: valid general argument that 
proves that an assertion was true but did not provide any insight into why it might hold true, Type P3:  
general argument that fall short of being acceptable proofs , and Type P4: unsuccessful attempt for a 
valid general argument (invalid, unfinished, or  irrelevant responses (or potentially relevant response 
but the relevance was not made evident). Categories TypeP1 through TypeP4 represent four different 
arguments constructed by the PSMTs in decreasing levels of sophistication (from a mathematical 
stand point), with Type P4 representing the least sophisticated argument. The construction of 
conjectures was coded in one of the following categories: Type C1: conjecture that was constructed 
as a response to a requested wish (usually by the instructor) in a given context, Type C2: conjecture 
that was constructed spontaneously as a natural extension of a task, and TypeC3: incorrect 
conjectures. As opposed to categories for proofs, categories Type C1 through Type C3 for coding 
PSMTs’ conjectures were not listed in hierarchical levels of sophistication. 
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Results 

General Findings 
Table 2 summarizes the distribution of proof-conjecture constructions during the semester. As it 

was evident in the table, the majority of the proofs constructed during the class were Type P1 proof, 
valid general argument that explains why an assertion was true or false by showing how the 
statement of a theorem coheres and connects with the key properties of the concepts involved in the 
proof. Of the remaining 29 proving occurrences, 18 of them were Type P2 proofs, valid general 
arguments that established that an assertion was true thereby promoted conviction, but provided little 
or no explanation for why it held true. 

Type P4 proofs, unsuccessful attempt for a valid general argument (i.e. incorrect, invalid, 
unfinished, or irrelevant responses-or potentially relevant response but the relevance was not made 
evident in the argument), were proposed 8 times during the semester; however, it should be noted 
that the PSMTs were aware of the limitations of these arguments. Therefore, they were able to 
evaluate those arguments as not proofs or as not correct argument during the class discussions. Of 
these 8 unsuccessful attempts to prove the class tasks, 2 arguments were empirical arguments. The 
PSMTs who proposed these empirical arguments as well as the others in the class were able to state 
the fact that generalizing from specific cases was not a valid mode of argumentation. 

The number of the cases where conjectures were constructed during the class happened 
significantly less than the number of cases where proofs were proposed (13 vs. 57). Additionally, the 
majority of the cases where the conjectures were constructed occurred as a response to a request 
made usually by the instructor (Type C1 conjecture). Incorrect conjectures were proposed 3 times 
during the instructions and after these conjectures were proposed the other PSMTs in the class were 
able to refute these conjectures by providing a valid counterexample. 

Table 2: Distribution of Proof-Conjecture Constructions During the Class 

Conjectures Proofs  

Type C3 Type C2 Type C1 Type P4 Type P3 Type P2 Type P1 

3 (23%) 4 (30%) 6 (46%) 8 (14%) 3 (5%) 18 (31%) 

 

28 (49%) 

 

 

Classroom Episodes That Represent Different Types of Proof-Conjecture Constructions 
In this part two classroom episodes will be shared to exemplify some of the codes used to codify 

the PSMTs’ proof –and-conjecture conjectures.  
Episode 1: Chicken tender task. In this episode, the PSMTs were engaged in working on 

chicken tender task in their groups.  

Orhan: Our group has decided that the numbers that can be represented as 28k+27, where k is an 
integer, cannot be bought in the packets of 7 and/or 4. 

Instructor: Ok. Where did 28 and 27 come from? 
Orhan: 7 times 4 is 28, so 28 can be bought in packets of either 7 or 4 or its multiples. 
Instructor: OK, if k=1 then how many nuggets do you think you cannot buy, umm, 55? 
Orhan: Yes 
Instructor: Can we have 55 nuggets in the packets of 7 and/or 4? 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

801 

Merve: Yes. We can have 5 packets of 7s and 5 packets of 4s. So, we can get 55 nuggetsin total. 
Instructor: Ok, so the numbers that are represented as 28k+27 can be bought in packets of 7 and 

4. Anybody else have an argument? Selman?    
Selman: (Writing numbers on the board). You can represent all numbers by adding 4. For 

instance, if you add 4 to 11, you will get 15; if you add 4 to 12 you will get 16; if you add 4 
to 14 you will get 18 and it will continue like this. These numbers cannot be bought in 
packets of 7 or 4 (highlighting the numbers underlined below). Umm, I needed to check 21 
because it is to add 4 to 17 and I know 17 cannot be represented as addends of 4 (or multiples 
of 4) and 7 (or multiples of 7). However, I have found that 21 is 3 times 7, so it is okay too. 
Now you will continue this pattern for all numbers 21+4=25, 
22+4=26,23+4=27,24+4=28...etc.  

 
Ayse: When you get modulo 7, the residue classes will be 1,2,3,5,or 6 (4 cannot be counted here 

because we can get the packets of four). When you get modulo 4, the residue classes will be 
1,2,and 3. When you add all residue classes up you will get the answer-17.  

In this episode, the conjecture proposed by Orhan was coded as Type C3: incorrect conjecture. 
The instructor posed a counterexample as a necessary condition for the realization of falsity of the 
conjecture. The PSMTs were able to explain how the example 55 contradicted the conjecture and 
refuted Orhan’s conjecture. Selman’s argument was coded as Type P1 since it was built on the 
properties of numbers. It was a correct argument to justify that 17 was the highest number of chicken 
tenders that could not be bought in packets of 4 and/or 7.  Ayse identified all residue classes of 
modulo 7 except 4 (since it could be a possible answer) and added them up to reach the answer of 17. 
However, her argument did not include a justification for the assertion that the residues would always 
be the highest number that could not be bought in the packets of 4 or 7. Indeed, when her argument 
was applied to different numbers such as packets of 6 and 4, it would not give the correct response. 
Therefore, her argument was coded as Type P4. 

Episode 2: Area perimeter task. In this episode, the PSMTs were engaged in working on 
geometry task-investigating the relationship between area and perimeter of rectangles. The 
instructor asked the PSMTs to construct conjectures about area and perimeter of rectangles. Cihat 
proposed the following conjecture: “With the same perimeter, the smaller the difference between 
the side lengths of a rectangle, the biggest the area”. The instructor asked the PSMTs to evaluate 
the conjecture and prove whether it was correct. 

Merve:(Drew three rectangles with the side lengths of 12 by 6, 15 by 3, and 9 by 9). It is true. 
These rectangles have the same perimeter, 36. But, the area of the square is bigger than the 
other two rectangles.  

Instructor: Do you think that Merve proved Cihat’s conjecture? 
PST: No, she just demonstrated for those rectangles. 
Instructor: What is missing in her argument? 
PSTs: It is not general 
Instructor: We mentioned that providing examples do not suffice as mathematical proofs. How 

many examples can I draw with a perimeter of 36? 
PSTs: 5? (Said as if they were asking if it was true). Infinitely many? 
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Cihat: Infinitely many, because in between whole numbers, there are infinitely many rational 
numbers 

Instructor: So we can draw infinitely many rectangles with the perimeter of 36, will you be able 
to try all of these rectangles out like Merve attempted to do here? 

PSTs: No! 
Yılmaz: (Volunteered to share his argument). Now we have the lengths of b,c (referring to the 

long and short sides of a rectangle in this order) and x (referring to a side length of a square). 
They should have the following relationships:  b>x>c. Thus, x2>b.c. Let’s assume that x=n 
and c=n-1 and b=n+1. Therefore, x2=n2>b.c=n2-1 

 
Instructor:Why does b have to be bigger than x and x has to be bigger than c? 
PSTs: If these two rectangles have the same perimeter, than this relationship should hold. 
Instructor: Ok, but why should x between b and c? 
Cihat: b and c should be different in lengths, because we consider the rectangles that are not 

squares, so b≠c. Then, we know that x=!!!
!

 since the perimeter of the two shapes should be 

equal. Thus x should be between b and c. We know that x= !!!
!

so, x2= !
!!!!!!"#

!
. We know 

that b-c>0, so (b-c)2>0.b2-2bc+c2>0 ⇒ b2+c2>2bc.  If b2+c2>2bc, Then  !
!!!!!!"#

!
 should be 

bigger than b.c (the area of the rectangle). 
Instructor: Ok, great.Zeynep, would you like to share your method with us? 
Zeynep: (Writing her argument on the board).The perimeters of these rectangles should be the 

same.A1= n2+nx and A2= n2+nx+x2/4. Thus, it is obvious that A2 should be bigger than A1 
since x≠0. 

 
Aysegul: (Writing her argument on the board).  



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

803 

 
Cihat’s conjecture was constructed as a response to the Instructor’s request. Therefore, it was 

coded as Type C1. Merve provided three examples that demonstrated that Cihat’s conjecture was 
true. Since Merve used an invalid mode of argumentation-inductive argument-, her argument was 
coded as Type P4. Stylianides (2007) argues that the main difference between empirical arguments 
and proofs lies in the modes of argumentation: invalid versus valid modes of argumentation. 
Empirical arguments provide inconclusive evidence by verifying the statement’s truth only for a 
proper subset of all covered by the generalization, whereas proofs provide conclusive evidence truth 
by treating appropriately all cases covered by the generalization. When asked to evaluate the 
argument, both Merve and the other PSMTs in the class were able to state this limitation of the 
argument. Stylianides & Stylianides (2009) argued that construction-evaluation tasks can better 
identify prospective teachers’ who seem to posses the empirical justification scheme. Unlike Merve, 
Yilmaz attempted to construct a deductive argument. However, his argument did not provide 
justification for some of the assertions he used in his argument (i.e. b>x>c). Additionally, Yilmaz’s 
argument was constructed based on a condition- the side lengths of the rectangle and the square 
should be consecutive. Yilmaz’s argument was coded as Type P3. Cihatwas able to provide the 
justifications for each step of his argument. Thus, his argument as well as Zeynep’s and Aysegul’s 
arguments was coded as Type P1.  

Conclusion and Discussion 
Given that teachers’ ability to teach mathematics depends on the quality of their subjectmatter 

knowledge, a necessary condition for the realization of the importance of mathematical proofs as 
stated in the current curriculum reforms (NGA/CCSSO, 2010; NCTM,2000) is that teachers of all 
levels have good understanding of proofs (Stylianides & Ball, 2008).  This study reported pre-service 
mathematics teachers’ engagement with proof-and-conjecture tasks.The results of the study 
demonstrated that the number of instances where the PSMTs constructed conjectures, which 
isreferred as one of the essential parts of the process of making sense of and establishing 
mathematical knowledge (Stylianides, 2008), were limited and usually occurred when asked 
explicitly. Constructing arguments to prove and/or disprove assertions, on the other hand, occurred 
more often. Furthermore, the majority of the arguments constructed highlighted the explanatory 
aspect, which is consistent with the results of many studies that claimed that in mathematics 
classrooms, it would be more useful to use proof as a tool to explain than to convince (Hanna, 1990; 
Knuth, 2002). 
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Mathematics teacher education is faced with the challenge of preparing new teachers for ambitious 
instruction, but we have limited understandings of what happens within the courses where this 
preparation occurs. This paper draws on interview data from of a larger investigation of novices’ 
enactment of ambitious instruction in elementary mathematics and language arts across six teacher 
preparation programs. Findings describe the application of the framework developed by Grossman 
et al. (2009) to opportunities to learn to teach in elementary mathematics methods courses and 
associated field experiences, focusing on the range of activities described and their relation to the 
framework.  

Keywords: Teacher Education-Preservice 

A current challenge facing teacher educators is preparing new teachers to engage in ambitious 
mathematics instruction (Lampert et al., 2013). Yet, despite recent research related to specific 
pedagogies for mathematics teacher education (e.g., Lampert et al., 2013), we still know very little 
about the range of instruction and opportunities available to teacher candidates in methods courses 
(e.g., Clift & Brady, 2005). In response to these challenges, as part of a larger study seeking to 
understand the relationships among teacher characteristics, features of teacher preparation programs, 
and novice teachers’ enactment of ambitious instruction, we interviewed elementary mathematics 
methods instructors and program coordinators across multiple teacher preparation programs. Our 
goal is to characterize the opportunities to learn provided through methods courses. Specifically, we 
focus our investigation on the opportunities teacher candidates have to learn to teach, as compared to 
opportunities to learn mathematics content (Schmidt, Bloemeke, & Tatto, 2011).  

Grossman and colleagues (Grossman et al., 2009) developed a framework based on pedagogies 
of practice “to describe and analyze the teaching of practice in professional education programs…” 
(p. 2055). Here, we use their framework to continue that same work. Specifically, in this paper we 
share findings from our efforts to use the Grossman et al. framework (2009) to categorize the 
activities described by instructors and coordinators. In so doing, we explore the range of activities 
shared, note the ways in which these activities do and do not fit the Grossman et al. (2009) 
framework, and consider the importance of variations in the enactment and sequencing of activities 
in terms of the opportunities to learn they might offer. 

Theoretical Framework 
We frame our study of opportunities to learn in elementary mathematics methods courses using 

Grossman and colleagues’ (2009) framework that established three primary pedagogies for teaching 
relational practices, including teaching, to novices – representation, decomposition, and 
approximation. In this paper, we are focusing specifically on representation and approximation, both 
of which we see as also involving aspects of decomposition. Grossman and colleagues define 
representations as, “the different ways that practice is represented in professional education and what 
these various representations make visible to novices,” (Grossman et al., 2009, p. 2058). They noted 
that representations can vary not only in what they do and do not make visible for teacher candidates, 
but also in their “comprehensiveness and authenticity” (p. 2065). Approximations are defined by 
Grossman and colleagues as, “opportunities for novices to engage in practices that are more or less 
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proximal to the practices of a profession,” (p. 2058). They suggest that, similar to representations, 
approximations can vary along a number of dimensions, including the nature of the aspect of 
teaching practice being approximated, “how closely the activity approximates actual practice”, and 
“the role of the [teacher] educator” (p. 2079). This framework focuses attention not only on how 
novices learn to enact teaching practices, but also on how novices learn the knowledge and skills that 
underlie those practices.  

More recent studies have taken up this framework to design and characterize pedagogical 
interventions in methods courses and to understand the relationship between these pedagogies and 
novices’ learning outcomes. For example, Amador and colleagues (2016) explored the differences in 
teacher candidate noticing of teacher practices in the context of a representation and an 
approximation of practice. Ghousseini and Herbst (2016) focused on the importance of sequences of 
representations and multiple approximations for teacher candidates’ opportunities to learn to lead 
classroom discussions. Here, rather than focusing on a specific activity or series of activities, we are 
investigating the range and sequences of activities across multiple teacher preparation programs, with 
a specific focus in this paper on those activities involving teacher educators’ enactment of 
representation and approximation pedagogies. 

Methods 
The findings reported here are part of a larger study of novices’ enactment of ambitious 

instructional practices in elementary mathematics and language arts. The larger study investigates (a) 
how a purposively sampled set of six teacher preparation programs in three states supports 
elementary teacher candidates to develop ambitious math and language arts instruction and (b) 
factors that are associated with how graduates of these programs enact math and language arts 
instruction as first- and second-year teachers. This investigation includes surveys of approximately 
150 teacher candidates from the set of six teacher preparation programs during their final year of the 
program and their first two years of teaching. Additionally, we observe these graduates multiple 
times as they teach mathematics and language arts as first-and second-year teachers.  

For this specific study, we focused on interviews with 12 elementary methods instructors and 9 
program coordinators to better understand their perspectives on the opportunities to learn to teach 
provided in elementary mathematics methods courses and associated field experiences across the a 
subset of three of the six teacher preparation programs in the study. Each participant was interviewed 
once during 2015-2016 for approximately 45-60 minutes. Data was audio recorded and later 
transcribed. Interviews were semi-structured based on a protocol designed to solicit information 
about the backgrounds, instructional activities, and philosophies of method instructors and their 
respective programs. Questions asked included the following: 

1. How would you characterize the overall approach to teaching that you seek to develop among 
the teacher candidates through the course? 

2. What major instructional strategies do you want teacher candidates to learn and know how to 
enact? Why do you focus on these strategies? 

3. How do you engage teacher candidates in learning these strategies? What kinds of activities 
do you use to help them learn about these strategies?  

Analysis  
Our analyses focused on making sense of the interview data from methods instructors and 

program coordinators. Our process involved iterative cycles of coding during which we both 
developed emergent codes from the data and built from theory. Specifically, we began by applying 
grounded theory techniques of initial coding (Saldaña, 2015) to examine a broad sample of our 
interview data looking for common issues discussed across the group of methods instructors and 
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program coordinators. Next, we refined our initial codes by looking for similarities and differences 
across the codes and comparing our emergent ideas to those categories present in existing theoretical 
frameworks (e.g., Darling-Hammond & Bransford, 2005; Grossman et al., 2009). Subsequently, we 
continued multiple rounds of this iterative process to clarify our codes. In particular, we sought out 
examples of interview excerpts that were not well captured by previous versions of codes in order to 
identify those features of opportunities to learn to teach that our codes did not yet capture. Finally, 
we generated code definitions and selected representative examples. 

Ultimately, our analyses resulted in a multi-leveled codebook that distinguishes: (a) what 
knowledge, practices, or content teacher candidates have opportunities to learn, (b) how those 
opportunities to learn are made available to teacher candidates, (c) who provides the opportunities to 
learn, (d) teacher preparation program capacity for opportunities to learn, (e) teacher preparation 
program structure, (e) program and teacher candidate evaluation, and (f) reasoning behind particular 
opportunities. Here we focus on a subset of the codes related to how opportunities to learn are made 
available to teacher candidates.  

Findings 
In the following sections we share initial findings from our early coding work focused on 

interviews with methods instructors and program coordinators. Broadly, we found the theoretical 
constructs of approximations and representations to be a useful starting point to interpret the 
opportunities teacher candidates have to learn to teach during methods courses. Additionally, we 
identify a number of interesting dilemmas with regards to parsing the work of methods instructors 
into these discrete categories. Here we share our codes, summarized in Table 1, along with 
representative excerpts of interview data to illustrate these dilemmas and describe what we have 
learned. 

Table 1: Codes for How Opportunities to Learn are Provided to Teacher Candidates  
Code Name Description 

Representations Opportunities for teacher candidates to watch examples of the work of 
teaching  

Approximations Opportunities for teacher candidates to experience deliberate practice 
immersed in activities of actual teaching.  

Do a math or 
literacy task 

Opportunities for teacher candidates to engage with specific content 
knowledge through tasks  

Learning to learn 
from teaching 

Opportunities for teacher candidates to learn how to be reflective of their 
work as teachers and to use their teaching experiences as a means to grow 
as professionals 

 

Reflection Opportunities for teacher candidates to reflect about their teaching in 
writing or aloud 

Formative 
feedback 

Opportunities for teacher candidates to receive formal or informal feedback 
about their work 

Problems of 
practice 

Opportunities for teacher candidates to learn from challenges that arise 
during instruction. 

Examining 
classroom 
artifacts 

Opportunities to examine samples of student work or other classroom 
artifacts (generated or authentic) as a specific focal point for reflection. 

Connect to other 
coursework/ 
knowledge 

Opportunities for teacher candidates to build on work from previous classes 
or to connect to ideas that will be the focus of courses later in the teacher 
preparation program 

Field Experiences Opportunities for teacher candidates to learn to teach through field 
experiences (e.g., practicum placements, student teaching) 
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This paper explores only our findings related to the codes representations and approximations. In 
our efforts to understand how to organize and apply these two constructs, however, we identified a 
number of additional ways in which methods courses provide opportunities for teacher candidates to 
learn to teach. Thus, an important initial finding is that representations, approximations (and 
decomposition) as proposed by Grossman and colleagues (Grossman et al., 2009) are not sufficient to 
address of all of the opportunities provided in methods courses. Although this paper focuses on 
applying and clarifying definitions of the constructs of representations and approximations, we note 
that there exists an important course of future research to explore the nuances of opportunities to 
learn to teach presented through our other codes in Table 1, especially learning to learn from teaching 
and field experiences. 

Representations 
Following Grossman et al. (2009), we define representations as opportunities for teacher 

candidates to observe examples of the work of teaching. A classic representation of teaching practice 
might be a video recording of a teacher teaching a lesson to a class of students. In our initial analyses 
we did find some discussion of instructors using videos of practicing teachers as representations of 
quality practice. Early coding revealed, however, that instructors more often discussed 
representations of practice other than those involving video, including teacher candidates observing 
their cooperating teachers in action and observing their methods instructors modeling particular 
instructional practices.  

For example, the following excerpt, from an interview with a mathematics methods instructor, is 
representative of some of the issues we encountered related to identifying representations of teaching 
practice.  

Instructor:  Part of the modeling is that I model. If we’re going to do something, like for 
example, we have a giant number line that I made and they had to put decimals and fractions 
on it. And one of them facilitated it. But, I made the materials and then we said, how does 
this help to model? 

Interviewer: Oh, to model a concept or something? 
Instructor:  Yes, model a concept… but modeling how you model a concept. [laughs] 
Interviewer: Right 
Instructor:  And so that’s another thing that, in terms of conversation, a lot – I always 

have them sit in groups. And if there’s something that I think is important, I will either model 
it or I’ll set it up so someone else [a teacher candidate] can help to model it. […] So I try to 
set up experiences for them to experience things like modeling and then they talk about it. 
And I will facilitate their discussion or I will say to somebody else [a teacher candidate], 
could you please facilitate the discussion on… So, that they are doing as much as possible. 

In this excerpt the methods instructor described her strategy of using her own instruction during the 
methods course to model the kinds of teaching activities and strategies she was presenting to the 
teacher candidates. That is, she used her own instruction as a representation of the kind of ambitious 
instruction that she would like her teaching candidates to learn. 

This excerpt also highlights some of the complexity we found in determining the boundaries of 
representations in methods courses. It was not always clear when teacher candidates were engaging 
in opportunities to observe representation of practice as compared to other opportunities to learn, 
such as approximation of practice, or developing content knowledge. For example, in the excerpt 
above, the instructor described how she represented quality teaching practice while simultaneously 
engaging students with mathematical content (e.g., locating decimals and fractions on the number 
line) and providing opportunities for teaching candidates to try out pedagogical strategies (e.g., 
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facilitating discussion). This was typical across our data set, and thus a dilemma arose for us as to 
how to bound the idea of a representation of teaching practice. Could we consider any teaching the 
method instructor does (e.g., share PowerPoint lectures, ask thoughtful questions) a representation of 
teaching practice? Since not all interactions with teaching are necessarily supportive of learning to 
teach (e.g., Lortie 1975) nor intended to serve as representations of teaching, we limited 
considerations of representations to only those instances in which the interviewee explicitly 
discussed the pedagogical reasoning related to the representation. For example, to be considered a 
representation, a methods instructor would need to explicitly describe how their actions provided an 
opportunity for teacher candidates to learn about teaching practice. Additionally, in instances where 
teacher candidates had opportunities to observe the work of teaching in the field (e.g., practicum, 
student teaching) without explicit discussion of the pedagogical purpose, we coded those instances as 
opportunities to learn through field experience, not representations. 

Approximations 
Building from the work of Grossman and colleagues (2009), we define approximations as 

opportunities for candidates to experience deliberate practice (Ericsson, 2002) as they engage in 
activities of actual teaching practice. Through approximations, teacher candidates can experiment 
with their new teaching skills, knowledge, and ways of thinking. Unlike representations, which focus 
on observing practice, approximations necessarily involve teaching candidates in doing aspects of the 
work of teaching. As described by Grossman and colleagues (2009), approximations may be 
simplified or scaffolded versions of practice (e.g., only facilitating a small group discussion instead 
of the whole class, analyzing assessment results with extensive instructor support), or they might 
engage teacher candidates in more explicitly elaborated versions of practice (e.g., detailed unit 
plans). Since approximations are filtered version of reality, they typically involve intervention from 
instructors and/or cooperating teachers.  

A typical example of an approximation we observed in the data was related to engaging teacher 
candidates in planning for a lesson. The following excerpt was from a mathematics methods 
instructor describing how she engaged her teacher candidates in learning teaching strategies. She 
explained, 

So, they will do lesson planning, and they will present a lesson, and they will create an 
assessment that they use with students in their field site and then reflect on that. So, you know, 
reflection is a big part of it. They do journal writings and the journal writings are specific to the 
students in their field sites, whether it be just observing what the teacher does and reflecting on 
that, or when you work with the students, what happens there. 

The instructor described a characteristic methods course activity in which teacher candidates plan a 
lesson, teach that lesson to a small group of students, assess students’ learning, and then reflect on 
what they learned from the experience. This type of activity was pervasive throughout our interviews 
with methods instructors. Lesson planning could be considered a canonical approximation of 
teaching practice. It was simplified in that teacher candidates had to only prepare a single lesson 
plan, usually with extensive feedback from instructors, and often the lesson was taught to only a 
single class or a small group of students.  

Methods instructors also described such lesson planning activities as involving more details and 
complexity than might otherwise occur in a regular classroom. For example, another mathematics 
methods instructor described the major assignment in her course in the following way, 

And even though in some ways it feels silly to have one lesson plan count so much, we really, I 
feel like we use that as a vehicle for learning all kinds of other things. Because we use it as a 
vehicle – it’s essentially an annotated lesson plan, with a lot more required than would be typical, 
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and I continue to tell them that. You will never write this much in a lesson plan as long as you 
live. 

This quote highlights one of our findings that opportunities to learn through approximations, even 
typical lesson planning activities, do not always follow a clear trajectory of moving from simplified 
to more complex activities. Our interviews with methods instructors revealed that the purposes 
instructors have for engaging teacher candidates in an approximation affect how complex or 
simplified that approximation of practice might be. For example, the instructor in the preceding 
excerpt explained that she used the lesson planning approximation to support nearly all of the 
learning to teach activities that occurred throughout her course over an entire semester. Teacher 
candidates were expected to examine content and practice standards, consider student development, 
plan for thoughtful pedagogy and intentionally use instructional strategies. Subsequently, teacher 
candidates also taught the lesson to a group of students, video recorded their teaching, and then later 
reflected on the video recording of their instruction. This level of detail and time commitment to a 
single lesson would likely be impossible in the real world of a classroom teacher. The approximation 
of practice, however, allowed the methods instructor the space to support teacher candidates to 
deeply explore a range of components that go into a single lesson. 

Grossman and colleagues (2009) noted “approximations may require more elaborated versions of 
practice than what novices will enact in their careers” (p. 2077) citing detailed unit plans as an 
example. In addition to more elaborated versions of planning activities, our initial analyses also 
revealed additional examples of approximations with added complexity, including elaborated 
investigations of students’ communities. For example, a mathematics methods instructor described an 
assignment that required teacher candidates to immerse themselves in the community of their 
teaching placement to better understand the specific challenges and resources of their placement 
location. The methods instructor explained,  

[teacher candidates are] not just talking to their mentor teacher. They’re talking to parents. 
They’re talking to shop owners. They’re exploring the space around school and spending time in 
coffee shops and groceries stores and the community where their school’s situated, despite the 
fact that they might live in [another town]. 

Practicing teachers may not always immerse themselves in the community where their students live; 
however, an important part of ambitious instruction involves building on students’ knowledge and 
experiences. This example of an elaborated approximation of practice illustrates another way 
methods instructors provided opportunities for teacher candidates to learn about teaching in ways that 
might have been more complex than their counter-parts outside a methods course. 

Another interesting complexity we found related to approximations was the ways they juxtaposed 
with representations of practice. The illustrative excerpt below was taken from an interview with a 
program coordinator, during which the coordinator described the opportunities to learn to teach 
provided to teacher candidates during their student teaching placements. 

Mentors are trying to help them learn to teach, but I think that they are helping them learn to 
teach in the way that they teach their district teachers. So we do encourage them to do co-
planning, co-teaching, but in terms of the philosophy of teaching, this year we talked about our 
own visions of teaching, how those match with their mentors. But I worry sometimes our interns 
go out and just try to imitate with what they are seeing the mentor doing and consider that good 
teaching or not good teaching.  

The coordinator described opportunities for teacher candidates to learn from their mentor teachers, 
including opportunities to co-plan and co-teach. 
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By engaging in co-planning and co-teaching, teacher candidates have the opportunity to actively 
participate in the work of teaching, engaging collaboratively alongside their mentor teachers. Thus, 
we would consider opportunities to co-plan and co-teach as approximations. This quote highlights, 
however, that participating in co-planning and co-teaching also provides opportunities for teacher 
candidates to observe a representation of practice, the practice of their mentor teacher. In this case, 
the coordinator emphasized the authenticity of this representation, in that mentor teachers teach in the 
ways supported by their district, not necessarily in the model suggested by the university teacher 
preparation program.   

Although co-planning and co-teaching fit within the category of a scaffolded approximation of 
teaching practice, we found that the opportunities to learn provided to teacher candidates are not 
easily delineated to separate an approximation from a representation. When in the field, any 
interactions teacher candidates have with practicing teachers offer potential representations of 
practice. The ways in which teacher candidates interact and engage with those examples of practice 
offer potential approximations of practice. Methods instructors and mentor teachers make use of 
these opportunities to learn in specific and sometimes overlapping ways. 

Discussion and Implications 
We found that methods courses provide a range of opportunities for teacher candidates to learn to 

teach, and Grossman and colleagues’ (2009) framework provided a useful starting place to interpret 
and organize these opportunities. These findings reveal that applying the constructs of 
representations and approximations methods course data is not straightforward and that we needed to 
refine and supplement the definitions. Likewise, these findings build on literature that encourages 
interrelationships between pedagogies (e.g., Darling-Hammond & Bransford, 2005) by illustrating 
how methods instructors and mentor teachers use representations and approximations intertwined 
with one another.  

Additionally, this paper highlights the need for a more detailed taxonomy of methods course 
activities as they fit within the broad pedagogies of practices. Thus, we seek to identify possible 
sequences of learning activities within methods courses. One model of using approximations to learn 
to teach might be that methods instructors move teacher candidates from more distal examples of 
practice, with more scaffolds, to more proximal examples of practice, dropping the scaffolds as they 
progress. For example, teacher candidates might move from facilitating a single small group 
discussion to facilitating a full class discussion. Alternatively, we found that approximations of 
practice do not necessarily progress along a trajectory of complexity, but rather the degree of 
complexity of an approximation may be tied to an instructor’s learning goals for a specific activity. 
For example, some methods instructors discussed how they used a variety of approximations within 
the course to support teachers’ candidates learning of specific instructional practices (e.g., asking 
higher-order thinking questions; learning about students’ communities), but did not discuss the 
progression of these approximations from one activity to the next, suggesting that they may be 
thinking more closely about the alignment of individual approximations to instructional goals than 
the progression of approximations over time. Given the similarities we observed across the methods 
courses, we wonder then if there are also underlying trajectories of particular pedagogical activities 
that support learning to teach, as found by Ghousseini and Herbst (2016) with respect to learning to 
teach through discussion. Relatedly, we seek to explore instructors’ rationales for using particular 
pedagogies with teacher candidates. Additional research is warranted into opportunities to learn to 
teach including further exploration of approximations and representations, as well as additional 
opportunities we identified beyond the scope of the Grossman et al. framework (2009). 
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INTERPRETING AND REPRESENTING STUDENTS’ THINKING IN THE MOMENT: 
PRESERVICE TEACHERS’ INITIAL NUMBER STRING LESSONS 
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Being able to effectively interpret students’ thinking and respond effectively in the moment are 
important skills that preservice teachers (PSTs) need to learn. This study zooms in on 14 PSTs’ 
planning, teaching, and reflections involved in number string lessons, and investigates to what extent 
PSTs anticipate their students’ strategies and incorrect answers.  Further, through a lens focused on 
PSTs’ talk moves, we explore how PSTs supported students’ understanding of the strategies and 
concepts, and handled incorrect answers and unanticipated responses (strategies). Results show that 
PSTs were capable of anticipating many answers and strategies but need more improvement in 
making full use of various talk moves in their questioning. Implications are provided for mathematics 
methods instructors to plan activities to better support PSTs. 

Keywords: Teacher Education - Preservice, Classroom Discourse, Instructional Activities and 
Practices 

The ability to know students’ thinking is a key factor in mathematics teachers’ ability to conduct 
group discussions and improve their classroom teaching (Stein, Engle, Smith, & Hughes, 2008). 
Especially when teaching practices emphasize students’ freedom of exploration and use of 
mathematical processes, the importance of facilitating discussion around students’ solutions to 
problems are paramount (NCTM, 2006). Teachers’ roles in facilitating discussion rely on being able 
to anticipate what students will say and have strategies for dealing with unanticipated responses. Our 
study helps characterize this process with preservice elementary teachers during number string 
lessons, which involve presenting a series of related arithmetic problems that highlight an 
overarching strategy or pattern (Stein et al., 2008). 

Theoretical Framework 

Responding to Students’ Thinking in the Moment 
Even though much literature focusing on PSTs offers teacher educators resources to educate 

PSTs before they actually teach, responding to students’ spontaneous thinking during number string 
lessons is a challenge for PSTs and a demanding task for teacher educators (Bofferding & Kemmerle, 
2015). Responding to students’ spontaneous thinking is complex, involving PSTs’ mathematics 
knowledge, students’ mathematics knowledge, the classroom learning culture, teacher-student 
interactions, and instructional representations (Ghousseini, 2015). Further, PSTs must make quick 
actions to respond to students’ ideas, especially when unanticipated (Stein et al., 2008), under the 
condition where they lack a rich knowledge-and-experience base to handle everything in the 
classroom (Jacobs, Lamb, & Phillip, 2010). Because of this complexity, there are no textbooks to tell 
PSTs how to anticipate or determine the best way to respond to the variety of situations they might 
encounter (Zeichner, 2012).  

Before responding to students’ thinking in the moment, PSTs must unpack and interpret students’ 
reasoning, a process that is aided by the use of restatement and other talk moves to ensure mutual 
understanding among the class (Chapin, O’Connor, & Anderson, 2009). They make use of symbols, 
pictures, gestures and mathematical discourses to represent chosen students’ thinking and assess 
students’ strategies (Leinhardt & Steele, 2005). During this process, PSTs must judge the relative 
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importance of different ideas. The judgment is particularly pertinent to what Ghousseini (2015) 
defined as “mathematical sensibilities” (p. 343), i.e., PSTs’ mathematical knowledge and abilities to 
attend to what proper interpretations to make and how representations are selected and used. 

Anticipating Students’ Problem-solving Strategies 
There are a few steps PSTs should take before engaging students in solving a mathematics 

problem. They should know the correct answer (or answers) and should at least solve the problem 
themselves. However, knowing only one solution to a problem is insufficient to teach students with a 
wide array of answers and strategies for the same problems (Stein et al., 2008). Full preparation for 
possible emergent student thinking is beneficial (Jacobs, Lamb, & Philipp, 2010); without such 
preparation, PSTs might be inclined to feel unprepared and have limited ideas about ways how to 
handle unanticipated answers (Smith, 1996). Therefore, it is important for PSTs to anticipate multiple 
student strategies (both correct and incorrect), different reasoning supporting those strategies, and 
representations utilized by students at different levels of mathematical understanding (Stein et al., 
2008).  

Talk Moves 
Aside from anticipating possible student strategies and reasoning, PSTs also need to utilize this 

knowledge together with appropriate questioning prompts in order to structure the sharing of 
students’ mathematical thinking to the class (Stein et al., 2008).  To solicit students’ thinking in the 
moment, PSTs have access to some discursive tools that are helpful in encouraging students to say 
more about their ideas, support positive teacher-student interactions, and align with instructional 
goals. Much literature has documented such discursive tools. Chapin, O’Connor, and Anderson 
(2009) presented five talk moves that support students’ thinking and help maintain a collective 
learning environment, i.e. teacher revoicing, student restating, applying one’s own reasoning to 
someone else’s, further prompting opportunities and using of wait time. In a similar vein, Ghousseini 
(2015) elaborated the discursive tools from a perspective of discourse routines and divided them into 
five categories, which serve as our lens for analysis. These categories are revoicing (the teacher 
repeats, rephrases and translates students’ saying), orienting (the teacher puts someone’s idea on the 
spot and asks other students to comment on and contribute to that idea), pressing (the teacher pushes 
students to talk more about their reasoning), negotiating (the teacher connects different students’ 
strategies and tries to involve students in the discussion about the similarities and differences), and 
making certain aspects of the discourse explicit. 

In the face of errors or mistakes, many teachers cannot help correcting students (Stein et al., 
2008) and tend to use show-and-tell discourse (Ball, 2001). Especially when these errors are 
unanticipated, PSTs might feel out of control and at a loss for how to appropriately respond to 
students’ ideas (Son, 2016). This study is aimed to contribute to the literature by looking at the 
intersection of PSTs anticipating and use of talk moves in number string lessons. Investigating PSTs’ 
actual and spontaneous responses to students’ strategies and identifying what discursive tools PSTs 
usually fall back on when encountering unanticipated student errors will advance our understanding 
of this intersection. The following research questions guide us in this exploration. 

1. To what extent do PSTs anticipate their students’ mathematical strategies and incorrect 
answers during number string lessons? 

2. What talk moves do PSTs use, and what potential do they have for supporting students’ 
understanding of the mathematical strategies and concepts? 

3. How do PSTs handle incorrect answers and unanticipated responses (strategies), if they 
occur? 
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Methods 

Participants and Setting 
Participants in the study included 17 female PSTs taking an elementary mathematics methods 

course at a Midwestern university. Of these, we selected 14 for further analysis by excluding PSTs 
who worked with only one student, a life skills class, or did a topic besides addition, subtraction, or 
multiplication. Between two sections of the methods course, twelve PSTs came from one section and 
two came from the other. As part of their course, the PSTs each spent nine afternoons teaching, doing 
interviews with students, helping out, and teaching three mathematics lessons and two to three 
science lessons at an elementary school. Our focus—a number string lesson—was one of the three 
mathematics lessons. All but two of these PSTs shared a classroom with a second PST, and their 
placements varied from Kindergarten to Grade 5. 

Design and Materials 
The methods course aimed to raise PSTs’ awareness of students’ strategies and attune them to 

ways of building on students’ mathematical strategies through talk moves and the use of 
representations. In the class, PSTs were asked to read chapters from two books to help them think 
about students’ arithmetic strategies: Fosnot and Dolk’s (2001) Young Mathematicians at Work: 
Constructing Multiplication and Division and Wright, Stanger, Stafford and Martland’s (2006) 
Teaching Numbers in the Classroom with 4-8 Year Olds. With the purpose of interpreting and 
representing students’ thinking in number strings, PSTs read about students’ strategies for solving 
addition, subtraction, and multiplication problems. Drawing on these reading materials, PSTs 
designed their number string teaching plans (as negotiated with their placement teachers in the 
elementary schools).   

Their plans, which were co-written if they shared a classroom with another PST, required them to 
identify the targeted strategies they hoped students would use in the lesson or pattern they hoped 
students would notice, list the problems they would pose, anticipate strategies and answers (both 
correct and incorrect) for each problem, draw possible representations PSTs would use to illustrate 
students’ thinking, and list connections they anticipated making among students’ strategies. Given 
PSTs’ instructor’s written feedback to the teaching plans, some PSTs also revised their plans. PSTs’ 
teaching plans and revised versions serve as one data source.  

Then PSTs implemented their teaching plans in elementary schools, and lessons lasted around 
15-20 minutes. They audio-recorded their lessons and took pictures of any representations they made 
on the board during their lessons. The course instructor (the second author) was on site with PSTs 
and noted down their representations and students’ uses of strategies. Together, the transcripts of 
PSTs’ teaching and the course instructor’s notes served as a second data source. Finally, PSTs each 
wrote a teaching reflection focused on the actual strategies students used, how the PSTs handled 
errors, how they used representations, and any changes they would make to the lesson. Therefore, the 
data includes 8 lesson plans, some with revisions, audio and pictures of the representations used from 
the lessons, and 14 lesson reflections. 

Expected Take-Away from Course Readings 
Fosnot and Dolk (2001) and Wright et al. (2006) discussed in depth strategies of solving 

addition, subtraction and multiplication used by K-5 students (see Table 1 for addition examples). 
We expected PSTs to think about these strategies when they anticipated what their students would do 
as part of their teaching plans and draw on them during their number string lessons as well as their 
reflections.  Aside from the strategies discussed in the readings, PSTs also had their own strategies, 
such as the use of standard algorithms, to use. 
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Table 1: Strategies of Solving Addition Mentioned in Course Readings 
Strategies Explanations 

Counting by ones 14 + 5: Count all or count on starting at either number.  
Doubling 7 + 7: Double same numbers 

Jump Strategies 14 + 7: Start at one number and make strategic jumps to 
add on, e.g., 14 + 6 = 20, 20 + 1 = 21. 

Split Strategies 24 + 13: Split apart the numbers into tens and ones and 
add similar place values, then add the results together, 
e.g., 20+10=30, 4+3=7, 30+7=37. 

 
Split-jump 

 

24 + 13: Split apart the numbers into tens and ones, add 
the tens, and then make jumps to add on the ones, i.e. 
20+10 = 30, 30+4=34, 34+3=37. 

Compensation 26 + 17: Change one number to make the addition easier, 
and then adjust for it later, e.g., change 17 to 20, then do 
26 + 20 =  46, 46 – 3 = 43.  

Manipulatives/tools Use ten frame, double ten frame, fingers, cubes, pictures, 
number line, etc. to help counting 

 

Analysis 
With PSTs’ teaching plans and actual teaching transcripts available, we began our analyses by 

identifying the anticipated vs. unanticipated strategies and answers. We looked at PSTs’ planning 
documents for answers and strategies they anticipated students would have for each problem, and 
compared these to the answers and strategies students used in the lessons. We organized these by 
anticipated answers (anticipated strategies or unanticipated strategies) and unanticipated answers 
(anticipated strategies or unanticipated strategies) with the purpose of revealing the consistency 
between PSTs’ anticipation and actual student action. We looked at totals for each category as well 
as how many of the anticipated and unanticipated answers generated were incorrect. Correct answers 
were assumed as anticipated if not explicitly discussed in PSTs’ lesson plans. 

To better understand PSTs’ talk moves around anticipated and unanticipated answers and 
strategies, we focused on two addition number strings and coded each talk turn within each lesson 
episode using Ghousseini’s (2015) framework. An episode is defined as a round of teacher-student 
exchanges (talk turns) in which a student’s reasoning for his/her answer is sought out in detail. 
Episodes occurred after initial answers were elicited, and certain problems had more episodes if there 
was more variety in how students solved the problems (i.e., the teacher asked several students how 
they solved the problem). If a PST asked a student a question, the student responded, and the PST 
followed up before moving onto a different strategy, that was three talk turns and one episode. Some 
talk turns had no codes if no talk moves were used, and some had multiple codes if more than one 
talk was used. One researcher completed the coding, and a second researcher checked a portion of 
the codes; disagreements were discussed until there was agreement. Finally, we compared and 
contrasted the frequency of different talk moves in order to get a general profile of PSTs’ discourse 
when they responded to students’ ideas. 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

817 

Results 

Discrepancies Between PSTs’ Anticipated and Unanticipated Answers and Strategies 
First of all, we focus on the results of PSTs’ anticipation of students’ answers and strategies 

across the addition, subtraction and multiplication lessons. As Table 2 shows, 53.5% of students’ 
strategies (54 out of 101) were anticipated by PSTs while 33.7% (34 out of 101) were not anticipated 
by the PSTs’ regardless of their successful anticipation of students’ answers. PSTs were able to 
anticipate answers most of the time but missed out on the variety of strategies students used to get the 
same answer. In other words, the PSTs focused mainly on one way to get an answer, even though 
thinking about multiple ways was modeled heavily in their methods course. For instance, for 
8+8+4+4, PSTs in the 3rd grade addition class succeeded in anticipating that students might use 
doubles to get 16 and 8 and then add 16 to 8 to get the final answer; however, the PSTs did not 
anticipate a popular strategy, 8x3, arising from the third graders’ recent focus on multiplication. Even 
though PSTs could anticipate a general strategy, they did not typically anticipate all variants of the 
strategy. In the case of 19+21, PSTs expected students to use a compensation strategy, i.e. 20+21-
1=41; 41-1=40. One student, nevertheless, knew the answer of 19+22 and thus compensated 
differently. 

Table 2: Anticipated Answers versus Unanticipated Answers 
                  Strategies     
Grade Levels     

Anticipated Answers Unanticipated Answers 
Anticipated Unanticipated Anticipated Unanticipated 

2nd Addition 8 (1) * 2 1 (1) 3 (3) 
3rd Addition 6 9 3 (3) 0 

Kinder Subtraction 1 3 3 (3) 0 1 (1) 
Kinder Subtraction 2 6 7 0 1 (1) 
Kinder Subtraction 3 5 2 0 2 (2) 

3rd Subtraction 0 7 0 0 
3rd Multiplication 16 (1) 1 1 (1) 1 (1) 
5th Multiplication 10 (1) 3 0 0 

Overall 54 34 5 8 
Note: 
*: “8” means the number of student strategies PSTs anticipated; the number “1” in the bracket refers 
to the number of those that were incorrect answers. 

 
In consideration of PSTs’ different responses to correct and incorrect answers, we found that they 

mostly anticipated correct answers. A plausible explanation might be that PSTs applied the strategies 
they had learned in the methods class to their teaching plans. When predicting the split-jump 
strategy, PSTs in the second grade addition class anticipated two different usages of this strategy and 
were able to smoothly handle students’ reasoning. By contrast, PSTs without a perception of 
students’ strategies in advance had a more difficult time making connections when questioning 
students. For example, in the third grade addition class, two co-teaching PSTs did not expect students 
to use multiplication (or arrays) in addition problems. When four students claimed that they used 
arrays in three addition problems, PSTs took a lot more talk turns to figure out what students’ arrays 
looked like. For example, given 16+16+4+4, a student claimed to use an array of 8 down, 5 across, 
i.e. 5x8. PSTs repeatedly asked questions about this to ensure they understood what the array looked 
like. Once getting the idea of 8 down, 5 across, PSTs concluded the conversation and moved to the 
next one without making a reasonable connection between the addition and the multiplication. The 
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PSTs later reflected, “Arrays are a drawing strategy taught by teachers to encourage multiplication.” 
Overall, PSTs only anticipated 6 out of 19 incorrect answers. Another 5 incorrect answers resulted 
from students’ improper uses of PSTs’ anticipated strategies and the remaining 8 were unanticipated 
answers preceded by unanticipated strategies.  

PSTs’ Talk Moves in Addition Problems 
PSTs had to utilize different talk moves for anticipated versus unanticipated answers and 

strategies. The two groups that did addition number strings demonstrated an overwhelming use of 
revoicing and pressing talk moves in both classes, i.e. 29 in the 2nd grade class and 62 in the 3rd 
grade class (see Table 3). Also PSTs used more talk moves all together in situations of anticipated 
answers than those in situations of unanticipated answers (2nd: 19>16, 3rd: 45>22). Since the 
number string lessons were meant for PSTs to elicit and represent students’ mathematical thinking, 
PSTs were advised not to tell students how to solve the problems. Consequently, they often repeated 
students’ answers or strategies and pressed for more information to get clarity from students. This is 
consistent with Baxter and Williams’ (2010) results that PSTs deprived of their most familiar show-
and-tell teaching mode likely lean toward silence and avoid telling students anything, expecting 
students can make use of their questioning to discover the right way to correctness. 

Table 3: PSTs’ Talk Moves in Two Addition Classes 
 Anticipated Answers Unanticipated Answers Total 
Strategies Anticipated Unanticipated Anticipated Unanticipated 
 
2nd 
Addition 

revoicing 10 1 3 5 19 
pressing 4 2 3 1 10 
orienting 0 0 0 0 0 
negotiating 2 0 2 2 6 
Total 19 16 35 

 
3rd 
Addition 

revoicing 11 16 7 0 34 
pressing 5 12 11 0 28 
orienting 0 1 2 0 3 
negotiating 0 0 2 0 2 
Total 45 22 67 

 
The aforementioned situation was applicable when students themselves could clearly articulate 

their reasoning. Then PSTs could pretend not to know the strategy and press students to articulate 
their reasoning. In the 3rd  grade addition class, for example, a student proposed multiplication (8x3) 
to solve 8+8+4+4 because of three “8’s.”  A PST argued that she did not see three 8’s, pressing the 
student into saying more about the strategy. The student then made it clear that two 4s were put 
together first in his strategy. This is a successful episode where the PST used pressing to make the 
student’s reasoning clearly accessible to the whole class. On the other hand, revoicing and pressing 
did not move students’ reasoning forward when their reasoning was ambiguous. Students with 
difficulty presenting their strategies logically and meaningfully often revealed more helpful 
information when PSTs oriented the class to these students’ ideas or negotiated with them around 
alternative strategies. Solving 4+4+4+4+2+2, one student relied on “8 times 3” to get his 24 but 
could not offer where three 8’s came from. Then the PST negotiated by asking, “So you thought it 
was like the last problem (8+8+8)?” A “yes” answer was given. Under such a circumstance, the PST 
was able to look far beyond students’ reasoning and associate possible mathematical evidence with 
students’ reasoning so that more information was elicited from the student through the PST’s 
appropriate questioning. 
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Similar to the function of negotiation mentioned above, PSTs were inclined to turn to orienting 
and negotiating talk moves when they addressed students’ mistakes. In the 3rd grade addition class, 
there were three episodes dealing with wrong answers and PSTs either invited the involvement of the 
class to discuss the problems in question, negotiated an alternative with students, or negotiated by 
soliciting other students’ explanations. 

Conclusions & Implications 
Overall, most PSTs did anticipate a majority of students’ answers and strategies after the 

instructional reading in their methods course. But there were still many alternative strategies to the 
same problem that PSTs failed to anticipate. Therefore, we as teacher educators need to guide 
students to try out various solutions to a problem, in particular multiple ways to get the same answer, 
especially considering students’ knowledge at different grade levels (i.e., such as the third graders 
knowing multiplication). The results from this study also indicate that the revoicing and pressing talk 
moves prevailed in PSTs’ classroom discourse. PSTs need to analyze the benefits and use cases of 
the talk moves in more depth; students’ problem-solving procedures were well explored by means of 
revoicing and pressing but student reasoning was ignored to some extent. Admittedly, revoicing and 
pressing helped PSTs continue on in the exploration of student reasoning when they encountered 
something unexpected; but these strategies are far from being sufficient to elicit students’ thinking 
and create learning opportunities that students can take up later.  In this regard, the negotiating and 
orienting talk moves provide students with opportunities to reconsider and compare their strategies 
with others. 

In the case of errors, the fact that most incorrect answers were not anticipated by the PSTs during 
their planning called our attention to the need for PSTs to think more about common incorrect 
answers, especially how students might make mistakes using strategies they anticipated. When 
students presented incorrect strategies, they could not easily jump out of their reasoning and discover 
the expected path to correct strategies when the only talk moves PSTs used were revoicing and 
pressing.  One possible way to better support students is for PSTs to use negotiating and orienting 
question prompts to target students’ reasoning, and bring students face to face with their emerging 
strategies. These discursive interactions with students allow PSTs to help students notice 
unproductive steps in their strategies.  Further, an important next step is to support PSTs in helping 
students move beyond addressing their mistakes to building on their mistakes (e.g, when a student 
did 19+19 by adding only 9 to 9, PSTs should move beyond eliciting what the student was thinking 
when making the mistake, have students build on what they did successfully (9+9), push students to 
fix their mistakes (help them figure out how to make use of the tens).  

When we delve further into PSTs’ interpretations and representations of students’ thinking, it is 
evident that there is room for teacher educators to orient the methods course with how to build on 
student mistakes and encourage PSTs to try the orienting and negotiating talk moves. Therefore, 
teacher educators can encourage PSTs to embrace the uncertainty of what students will say and see if 
the class can collectively make sense of and build on places where students’ strategies are breaking 
down. This could be done through such pedagogical approaches as rehearsals (Grossman, 
Hammerness, & McDonald, 2009), creating opportunities of modeling real classroom teaching to 
help PSTs practice dealing with some specific mathematical topics like unanticipated strategies and 
student mistakes. By means of these rehearsals, PSTs could possibly enhance their teaching skills 
and mathematics expertise when teacher educators focus PSTs’ attention on those specifics of 
teaching as well as those “variations of the practice as it relates to particular students and 
mathematical goals” (Lampert, et al., 2013, p. 238). 
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MATHEMATICAL MAKING IN TEACHER PREPARATION: WHAT KNOWLEDGE IS 
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In this paper, we describe an experience within mathematics teacher preparation that engages pre-
service teachers (PSTs) in Making and design practices that we hypothesized would inform their 
conceptual and pedagogical thinking. With a focus on the design of new tools to support mathematics 
teaching and learning, this Learning by Design experience has PSTs exploring at the crossroads of 
content, pedagogy, and Making. We report our findings of the variety of forms of knowledge that 
PSTs brought to bear on their design work. As the engagement and advancement of these forms of 
knowledge is essential to effective mathematics teaching, these findings suggest the promise of a 
making-oriented experience within mathematics teacher preparation coursework. 

Keywords: Technology, Teacher Education-Preservice, Teacher Knowledge 

Preservice elementary teachers typically come to teacher preparation with limited conceptions of 
mathematics (Association of Mathematics Teacher Educators, 2013) and a model of mathematics 
teaching based solely on their own classroom experiences as students (Lortie, 1975). These models 
can be characterized by appeals to rules and procedures (Ball, 1990; Ma, 1999; Thompson, 1984), 
problems whose solutions are predetermined and predictable (Schoenfeld, 1992; Thompson, 1984), 
and teaching in which mathematical information is imparted from teacher to student with 
unquestioning acceptance (Lampert, 1990; McDiarmid, Ball, & Anderson, 1989). This is a problem 
because this model of mathematics teaching is not consistent with a pedagogy that is viable for 
learning mathematics with understanding. Consequently, as part of their preparation for elementary 
teaching, prospective elementary teachers must be presented with opportunities to challenge their 
current models of mathematics teaching and learning that engage them with both the problems of 
mathematics and the problems of children’s learning of mathematics. 

At the same time, the proliferation of spaces for digital design and fabrication suggests new 
opportunities to teach and learn new mathematical things in new ways and to even think in new ways 
about what teaching and learning mathematics might look like. However, research is only beginning 
to identify the mathematical thinking and reasoning that these technologies might make possible. 
And there is no research that explores what these technologies might offer to support the preparation 
and professional development of teachers. As such, this proposal presents a novel Making-oriented 
experience within mathematics teacher preparation that tasks pre-service elementary teachers with 
designing, fabricating, and evaluating new manipulatives (Post, 1981) aimed at engaging and 
advancing learners’ mathematical thinking and reasoning. Thus, this project addresses the need for 
better preparation of elementary mathematics teachers through education research that seeks to 
understand the processes and potential benefits of teacher learning in a Maker context.  

Proceeding from the hypothesis that Making and doing lead to new ideas and experiments in 
embodied (Johnson, 2007), networked (Latour, 2005), and tool-centric (Vygotsky, 1978) engagement 
that, in turn, will lead to powerful innovation in mathematics teaching and learning, this project seeks 
to address the following question: What forms of knowledge are brought to bear on pre-service 
elementary teachers’ design work as they make new manipulatives to support the teaching and 
learning of mathematics? 
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Theoretical Framework 
In the context of math-focused exhibitions in the designed informal learning environments 

(National Research Council, 2009) of science centers and museums, investigators have identified 
evidence of visitors engaging in algebraic (Pattison, Ewing, & Frey, 2012) and spatial reasoning 
(Danctep, Gutwill, & Sindorf, 2015), and also demonstrating qualitative, intuitive understandings of 
slope (Nemirovsky & Gyllenhall, 2006; Wright & Parkes, 2015). Within Makerspaces (Peppler, 
Halverson, & Kafai, 2016), where activities are designed with a variety of learning goals in mind, 
some research suggests that in order to see and support opportunities for mathematical activity, it is 
necessary to look beyond the content and use a more broadened conception of mathematics –
 “including mathematical dispositions, habits of mind and identity” – to identify the mathematics in 
which learners engage (Author et al., 2016a). These findings of mathematical engagement in 
informal settings point to the possibilities that semi-structured design-centered experiences can offer 
in relation to mathematics teaching and learning. 

As for K-12 educational settings, Shaffer’s (2005) use of design tasks in a microworld (Papert, 
1980) to teach transformational geometry, and Cochran and colleagues’ (2016) suggestions about 
how middle school teachers can use 3D printing as a context to promote geometry understanding, 
lend further credence to the proposition that Making can provide a gateway to meaningful interaction 
and deepened understanding of both content and pedagogy by engaging preservice teachers (PSTs) in 
the design of new manipulatives and corresponding tasks that generate environments for 
mathematical thinking and learning. Research can shed light on the creative and participatory 
practices associated with teachers’ Making experiences and how those experiences inform their 
knowledge and their identities as elementary mathematics teachers.  

Teachers as Designers 
In investigating the experiences of PSTs designing for mathematical learning, we connect with 

other researchers’ conceptions of teachers as designers (Kalantzis & Cope, 2010; Maher, 1987). 
Svihla et al. (2015) refer to “teachers as designers of learning experiences to emphasize teacher 
involvement in designing from pre-instructional designing of lessons, activities, units and learning 
environments to their design work that continues into the classroom” (p. 284). When teachers are 
given agency to craft their own manipulatives and corresponding curricular materials, they assume 
ownership over these materials and the learning environments they generate, thereby coming to see 
themselves as agents of curricular and pedagogical reform (Leander & Osborne, 2008; Priestley, 
Edwards, Priestley, & Miller, 2012). In doing so, they find themselves moving toward more 
legitimate forms of participation (Lave & Wenger, 1998) as they develop their identities as designers 
of mathematical instruction. 

Learning Teaching by Design 
The premise of this project follows from the proposition that it is productive to develop teacher 

knowledge within a context that honors the connections between its constituent forms of knowledge. 
Accordingly, we took somewhat of a Learning by Design approach (Koehler & Mishra, 2005; 
Koehler, Mishra, Hershey, & Peruski, 2004; Mishra & Koehler, 2003), a methodology that was 
developed as a means to advance teachers’ technological pedagogical knowledge, or TPCK (Koehler 
& Mishra, 2010). An environment is created in which teachers naturally confront content, pedagogy, 
and technology so that the connections between are honored and maintained. Within this 
environment teachers assume the role of designers of technology and work collaboratively in small 
groups to develop technological solutions to authentic pedagogical problems. “By participating in 
design, [they] build something that is sensitive to the subject matter (instead of learning the 
technology in general) and the specific instructional goals (instead of general ones). Therefore, every 
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act of design is always a process of weaving together components of technology, content, and 
pedagogy” (Koehler & Mishra, 2005, p. 95). 

Our own Learning by Design approach to mathematics teacher preparation is grounded in several 
principles. First, constructionism (Harel & Papert, 1991) is the theory of learning that undergirds the 
Maker movement’s focus on problem solving and digital and physical fabrication (Halverson & 
Sheridan, 2014, p. 497). Second, Piagetian constructivism, a theory of learning that is well suited to 
the way learning works in an environment of mathematical inquiry (Author et al. 2016b), informs the 
pedagogy. Indeed, the power of manipulatives lies in their capacity to support the construction of 
abstract mathematical concepts from sensorimotor engagement with concrete tools (Kamii & 
Housman, 2000; Piaget, 1970; Vygotsky, 1978), a process grounded in the theory of constructivism. 
Third, knowledge of the content to be taught and a variety of ways in which that content may be 
presented, represented, and experienced (Ball & Bass, 2009; Ball, Thames, & Phelps, 2008; 
Shulman, 1986) informs the mathematics. Finally, Dewey’s (1938) and Pinar’s (2012) broadened 
conceptions of curriculum that frame learning as the product of play, experimentation, and authentic 
inquiry align with our conception of curriculum. Still, the rich scholarship devoted to teacher 
knowledge reflects the complexity of the question of precisely what forms of knowledge might 
actually be brought to bear on PSTs’ design work (Ball, 1990; Borko & Livingston, 1989, 1990; K. 
F. Cochran, DeRuiter, & King, 1993; Grossman, Wilson, & Shulman, 1989; Hill, Ball, & Schilling, 
2008; Ma, 1999; Shulman, 1986).  

Methods 
The study took place in two sections of the first of two required specialized mathematics content 

courses for pre-service elementary teachers at a large public university in the northeastern United 
States. Our Making-oriented experience began with PSTs’ inquiries into the principles that ground 
our Learning by Design approach and that are among the standard course goals and objectives for 
this course. Specifically, these include providing PSTs with opportunities to reconceptualize the 
content of K-6 school mathematics (including number, arithmetic, and algebraic thinking) while also 
promoting an inquiry-oriented pedagogy by fostering an understanding of the nature of mathematics, 
assimilating a constructivist theory of learning mathematics, acquiring a model of how learning 
works in interaction with manipulatives and other technologies, designing instructional tasks that 
both promote and reveal students’ understanding of mathematics, and developing an understanding 
of the way in which students’ content knowledge develops over time, as well as the struggles they’re 
likely encounter. Concurrently, as PSTs learned to use 3D design and fabrication technologies, they 
engaged in an iterative “Design Thinking Process” (Stanford University Institute of Design, 2004).  

As students were permitted to work either individually or in groups on a design project, the 
twenty-six students who consented to participate in the study comprised a total of twenty-one groups. 
The data corpus consists of the following three components of each group’s “design case” (Boling, 
2010): 1) a “Project Idea Assignment,” which describes the group’s initial thoughts about a 
manipulative they want to work on; 2) a “Project Rationale Assignment,” which provides an account 
of why and how a group thinks their project should work from a mathematical learning point of view 
as well as how their design reflects an understanding of what mathematics is and of how learning 
happens; and 3) a “Final Paper and Design Show,” which  includes a short research paper about the 
project and a PowerPoint that describes the intended purpose of the manipulative, the corresponding 
tasks that were created, and the group’s findings from an intended user’s manipulative-mediated 
engagement with those tasks.  

To initiate the analysis of that data, we chose three design cases at random. Three researchers 
individually analyzed the components of those cases and generated codes (Corbin & Strauss, 2008) 
that identify forms of knowledge that were revealed in the elements of PSTs’ written work. Then, the 
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three researchers got together to generate a cumulative list of codes and clarifying definitions (Table 
1). Next, each of the researchers used those codes to analyze all of the remaining design cases. As the 
analysis continued, new codes were also introduced and then shared among the researchers. 

 

Table 1: Analytical Framework for Coding Knowledge Types 
Code (Knowledge of…) Description 

Mathematics Content Common content knowledge of mathematics. 
Specialized Mathematical 
Knowledge 

Variety of ways mathematical ideas can be expressed and 
explained. 

Content and Students Common student struggles and misconceptions; planning for 
student thinking. 

Standards and/or Curriculum 
Acknowledgement of Common Core and/or curricular materials 
as an important aspect driving instruction; knowledge at the 
mathematical horizon. 

Distinction between Concrete 
& Abstract Abstract ideas are abstracted from concrete representations. 

Constructivism 
Knowledge is constructed; model of knowing as understanding; 
role of exploration and experimentation; relevance of prior 
knowledge. 

Research on Student Learning Use of mathematics education research literature. 

Task Design for Problem 
Solving and/or Assessment 

Tasks designed for use with a manipulative require 
challenge/productive struggle, but can also play a dual role of 
learning and assessing. 

Personal Experiences Students’ personal mathematical experiences (both as learner 
and teacher) inform their design. 

Student Affect 
Importance of designing tools and tasks that make learning 
engaging and fun. 
 

Mathematical Tools Knowledge of currently available tools (e.g., integer chips, base 
ten blocks, number lines). 

Manipulatives 
General comments about how learning works with 
manipulatives; as embedded representations of mathematical 
ideas. 

   
Intercoder reliability was calculated using percentage of agreement. Since three coders 

participated in the analysis, each coder was compared to one another in a pairwise manner. Thus, 
every coding decision had a total number of three pairs to check for agreement. The number of 
agreements was noted, and ultimately divided by the total number of possible agreements in order to 
calculate the percentage of agreement. The data presented here had a percentage of agreement of .82, 
well within the standard put forth by Neuendorf (2002). 

Results 
Our analysis showed that students used a variety of forms of knowledge in the course of their 

“Design Thinking Process,” as demonstrated in the table of codes provided above. These knowledge 
types ranged in frequency of occurrence from 68% to 100% (see Table 2). 
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Table 2. Code Frequencies and Match Percentages 
 

Mathematics Specialized 
Mathematical 

Content 
& Students 

Standards 
and/or 
Curriculum 

Concrete/ 
Abstract Constructivism 

Coder 1 21 12 20 12 11 19 
Coder 2 20 20 20 17 20 20 
Coder 3 21 20 19 14 19 20 
Total 62 52 59 43 50 59 
Match % 0.97 0.75 0.97 0.78 0.71 0.87 

 

 

Research on 
Student 
Learning 

Tasks for 
Problem 
Solving & 
Assessment 

Personal 
Experience 

Student 
Affect 

Mathemati
cal Tools Manipulatives 

Coder 1 17 12 11 7 11 21 
Coder 2 13 19 19 9 12 21 
Coder 3 14 18 17 8 14 21 
Total 44 49 47 24 37 63 
Match % 0.78 0.71 0.68 0.87 0.75 1.00 

 
From this analysis, we see that every group drew on both Knowledge of Mathematics and 

Knowledge of Manipulatives in their design process. Comments such as “the manipulative will aid 
students in learning geometry because they will be able to turn, rotate, and reflect on the shapes that 
they will make” and “the main idea behind the design of our tool… is to help students determine the 
area and perimeter of two similar figures” demonstrate that knowledge of mathematics content was 
an extremely important aspect of their design thinking. In particular, these excerpts demonstrate 
some of the ways the groups expressed their knowledge of manipulatives as embedding mathematical 
principles.  

 In the course of thinking about content in this way, each of the groups also leveraged their 
Knowledge of Manipulatives. We saw a diversity of thinking about manipulatives, ranging from the 
more generic (“Manipulatives are defined as concrete objects that aid in classification.”) to the more 
sophisticated (“Manipulatives not only allow students to construct their own cognitive abilities for 
abstract mathematical ideas and processes, but they also provide a concept and common language 
behind it.”). Other students professed a more nuanced understanding of the role of manipulatives in 
instruction, acknowledging they are best used with other teaching techniques: “Fraction circles are a 
simple, clear ‘physical tool’ for teaching this challenging concept, and when used in conjunction with 
other [fraction contexts] (equal sharing, part-whole, etc.) can be very illustrative.” One group drew 
on their own review of the research literature to inform and support their thinking about 
manipulatives, writing that “These concrete materials are meant to assist children at all levels of 
education including understanding processes, communicating their mathematical thinking, and 
extending their ideas to higher order thinking levels (Balka, 1993).” 

Evident in the PSTs’ Knowledge of Manipulatives is the related Knowledge of Constructivism as 
a learning theory that can inform design decisions. Phrases such as “help students construct the idea,” 
“children can tinker with the board and the pieces to find the relationships between the pieces and the 
groups,” and “create a way to teach even and odd numbers that does not revolve around 
memorizing,” all demonstrate the ways the groups were thinking about making tools that allowed for 
exploration and discovery, both hallmarks of the pedagogical implications of a constructivist theory 
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of learning. In this way, students began to seriously consider not only features of an inquiry-based 
pedagogy, but also the ways in which tools can be seen to support those implications in classrooms. 

Although their design assignments hadn’t explicitly called for students to make connections 
between their design ideas and the coursework, almost every group conceived of their design and the 
learning it aimed to promote through the lens of their Knowledge of Content and Students. They 
drew on class readings, the math education literature, and their own experiences as learners of 
mathematics to anticipate concepts that students would be likely to struggle with. These 
considerations were evident in statements like, “Since some children have non-anticipatory 
coordination between groups and shares, my manipulative serves as a way for students to utilize the 
pieces to see the distribution of shares to each group.”  

We also saw evidence of other knowledge categories, though with less frequency than those 
elaborated above. These forms of knowledge include considerations of the relationship between 
concrete and abstract representations, knowledge of task design for problem solving and/or 
assessment, knowledge of currently available mathematical tools, and the importance of considering 
student affect in their designs. 

Conclusion 
At the crossroads of digital fabrication technologies, human-centered design practices, and 

constructivist orientations to mathematical thinking and learning, students and teachers are afforded a 
host of new possibilities. As researchers exploring how these technologies might be used to engage 
teachers and students in new forms of learning, we hypothesized that a making-oriented approach to 
pedagogical and curricular change aligned with the kind of progressive, inquiry-oriented pedagogy 
we aim to cultivate in students preparing to teach mathematics. Accordingly, we developed an 
approach to nurturing students’ inquiry-oriented pedagogy that leverages design practices and digital 
fabrication technologies as a resource for their learning. While we recognize that teacher preparation 
is complex and that pedagogical change is difficult, that we identified in PSTs’ design work a variety 
of forms of knowledge whose advancement is essential to mathematics teaching, these findings 
suggest the promise of a making-oriented experience within mathematics teacher preparation. 
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ROLE OF REPRESENTATION IN PROSPECTIVE TEACHERS’ FRACTIONS SCHEMES  
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This research report explores relationships between fractions’ task representations (discrete, 
rectangular, or circular) and elementary prospective teachers’ (PTs) fractions conceptions. Studies 
show PTs’ conceptions of fractions are centered on a part-whole understanding, which may be 
problematic when teaching children about improper fractions. We studied PTs’ conceptions of 
fractions using a task-based written assessment. The assessment also included PTs’ rankings of task 
difficulty. We found that PTs’ responses involving circles representations aligned best with the 
empirical trajectory of children’s developing understandings of fractions. We discuss implications 
for supporting PTs in conceptualizing fractions as measures.   

Keywords: Rational Numbers, Teacher Education-Preservice, Teacher Knowledge 

Introduction  
Although the conception of a fraction as a measure (Lamon, 2007) is emphasized early in the 

Common Core State Standards (CCSSM, 2010), many middle grades students and prospective 
teachers (PTs) remain focused on part-whole meanings of fractions (Newton, 2008; Norton & 
Wilkins, 2010; Olanoff, Lo, & Tobias, 2014). In this research project, we build off the learning 
trajectory for PTs’ understandings of fractions as measures described by Lovin, Stevens, Siegfried, 
Norton, & Wilkins (2016). Our study aligns well with the PME-NA Conference Theme of “Synergy 
at the Crossroads” because our approach involves looking across both fraction representation and 
fraction task structure to better understand the role of each in understanding and supporting PTs’ 
understanding of fractions.  

Background and Purpose 
Norton and Wilkins (2010) designed written assessments of middle grades students’ fractions’ 

schemes using rectangular and circular representations of fractions. A subset of these (rectangular) 
items were validated via clinical interviews with sixth-grade students (Wilkins, Norton, & Boyce, 
2013). Lovin et al. (2016) used the written items to assess the fractions schemes of PTs before and 
after instruction in mathematics courses for elementary PTs. In examining PTs’ written responses, 
Lovin et al. (2016) noted that PTs often set up proportions and used division to correctly solve 
fractions tasks in ways that would not be available to elementary or middle grades students. They 
mentioned that PTs’ use of such procedures to find equivalent ratios may have been confounding 
researchers’ assessments of some of the PTs’ fractions understandings (potentially producing both 
false positives and false negatives). This could lead to difficulty in assessing and supporting PTs’ 
learning, particularly for fostering PTs’ self-monitoring of their understanding of the mathematical 
goals and constraints that their prospective students may face.  

In this paper, we report on results of modifying Norton and Wilkins’ (2010) items and methods 
to explore relationships between the form of fractions’ task representations (discrete, rectangular, or 
circular) and elementary PTs’ fractions conceptions prior to instruction in their college course. Our 
aim in this study is to understand how PTs’ ways of operating with fractions in different 
representations are connected, so that we, as mathematics educators, can plan to introduce and 
moderate perturbation (von Glasersfeld, 1995) that will help them to construct more powerful 
fractions schemes. With this aim, we modified the assessment approach of Norton and Wilkins 
(2010) and Lovin et al. (2016) to isolate differences in PTs’ responses to fractions tasks.  
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Theoretical Framework  
We adopt a radical constructivist epistemology in modeling PTs’ fractions meanings as the 

product of their organizing mental structures (schemes) to fit their experiences (von Glasersfeld, 
1995). The construct of scheme refers generally to the way researchers model how individuals 
operate mentally in service of a goal. A scheme consists of three parts – recognition of a situation, 
operations (mental actions), and an expected outcome. Individuals’ schemes become established as 
they become refined and generalized through their use, via processes of assimilation and 
accommodation (Piaget, 1970). When a scheme is interiorized, the situation, operations, and 
anticipated result of operating are experienced altogether as a unified and connected structure (a 
concept) that can itself be operated upon (Piaget, 1970).  

Fractions Schemes 
We focus on four specific schemes pertaining to fractions identified by Steffe and Olive (2010) – 

the parts-out-of-wholes fraction scheme (PWS), the partitive unit fraction scheme (PUFS), the 
general partitive fraction scheme (PFS), and the iterative fraction scheme (IFS). The PWS involves 
partitioning a whole into discrete pieces that can be disembedded (removed from the whole without 
modifying the whole) and double-counted to form a numerosity of part(s) within a numerosity of a 
whole. The PUFS builds upon the PWS as the individual conceives of the size of a disembedded part 
and its relation to the size of the whole (i.e., that iterating the amount of 1/n n times results in the size 
of 1). The PFS extends this notion to the size of a composite (but proper) fraction. An individual with 
an iterative fraction scheme (IFS) understands the size of an (im)proper fraction (m/n) as the result of 
coordinating mental operations to include partitioning the size of ‘1’, disembedding a unit fractional 
size (1/n), and iterating the disembedded fractional unit m times.  

In order for an individual’s fraction scheme to become interiorized as a fraction concept, his or 
her fraction scheme must be reversible. For instance, an individual with a reversible IFS could 
reverse his or her ways of operating to determine the size of ‘1’ from a given improper fraction size. 
Reversing the PFS involves forming the size of ‘1’ from a given (composite) proper fraction size, and 
reversing the PUFS involves forming the size of ‘1’ from a given unit fraction size. Reversing the 
PWS involves forming the numerosity of the whole from a given proper fraction (e.g., reasoning that 
if three parts represents the fraction 3/7, then the whole must be 7 parts). In the next section we 
describe specific examples of these four fractions schemes.  

Task Structures 
Figure 1 displays four task structures, two involving proper fractions (Task PFS1 and Task PFS2) 

and two involving improper fractions (Task IFS1 and Task IFS2). Consider that if a task involves a 
discrete representation for a unit fraction (e.g., a dot or a chip) then forming a size (via a counting 
measure) is often indistinguishable from forming a numerosity. Thus, Task PFS1 theoretically 
requires a PWS in the discrete representation and a PFS in the bar and circular representations. In 
each of the three representations, the correct response is 2/5, but an individual with a PFS might 
instead respond with a slightly different fraction (such as 4/7 or 3/8) in the bar and circle models if 
rulers or protractors are not available to make precise measurements. 

Task PFS2 theoretically requires a reversible PFS in the bar and circle representations. To form 
the size of a unit fraction from the proper fraction requires intermediately forming the size of the 
whole. In the dots representation, the task requires a reversible PWS.  

Theoretically, Task IFS1 requires a reversible IFS, as it asks for the size of ‘1’ from a given 
improper size. To form this size, one could partition the given amount into nine equivalent one-
fourths and then iterate that amount four times. However, a PT could potentially solve the task in the 
discrete representation using a ratio understanding. A PT might coordinate partitioning and iterating 
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to solve the task in the bar representation, but not the circular representation, because of an 
established understanding of a circle as necessarily the size of ‘1’.  

 

 

Figure 1. Four fractions task structures with dots, bars, and circles. 

Task IFS2 theoretically requires recursive use of an IFS. One could solve the task by first 
partitioning and iterating to form the size of 1 (using a reversible IFS) and then partitioning and 
iterating to form an improper fractional size (using an IFS). PTs might instead approach the task by 
finding a common denominator by which to determine equivalent fractions without forming the size 
of 1. Lovin et al. (2016) noted that PTs may rely on such procedures when encountering improper 
fractions because they have yet to coordinate three levels of units: the unit fraction, the improper 
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fraction, and the whole–when attempting to iterate a unit fraction beyond the whole, they lose track 
of the size of the whole (Steffe & Olive, 2010).  

Methods 
We administered a written assessment to 76 PTs in an Elementary Math Methods course at a U.S. 

university, prior to class discussion of fractions. To reduce the length of the assessment and to isolate 
differences in task representation, each of the PTs completed one of three forms. On the first form, 
there were four tasks with dots followed by four structurally identical tasks with bars. On the second 
form, the four dots tasks were followed by four circles tasks, and on the third form, the four bars 
tasks were followed by four circles tasks (see Figure 1). The four tasks in each representation were 
consistently given in the sequence: IFS1, PFS2, PFS1, IFS2.   

These tasks use the same wording and form of items from Norton and Wilkins (2010), and our 
process for scoring items also followed their approach. First, a graduate assistant blinded and 
reorganized scanned pages of the assessments so that the two raters (authors) could not identify PTs’ 
names or assessment forms. If there was strong indication that a PT had constructed a scheme, we 
scored it ‘1’, and if there was strong counter-indication that a PT had constructed a scheme, we 
scored it ‘0’.  

Figure 2 displays sample responses scored as ‘0’ or ‘1’ for two items in the bars and circles 
representations. For instance, for Task PFS2, to assign a score of ‘1’, we were looking for evidence 
that the individual had partitioned the given size into three equally-sized pieces and drawn one of 
those pieces. Indication that the individual had instead partitioned the given amount into seven pieces 
would suggest assigning a score of ‘0’ for Task PFS2. Note that we coded Task IFS2 with ‘1’ if the 
PT determined the (approximately) correct fractional size by first using a procedure to determine 
equivalent fractions. 

We calibrated our scoring by discussing our inferences and interpretations of ten randomly 
selected responses to each of the 12 items. As we independently coded the remaining responses, we 
also assigned ‘0.6’ and ‘0.4’ to indicate “leaning” toward indication or counter-indication, 
respectively. The (linear) kappa scores for the two raters across the 12 items ranged between .44 and 
1, with a mean kappa score of .75, suggesting substantial inter-rater agreement (Landis & Koch, 
1977). Agreement was strongest for the dots tasks, for which the PTs’ responses were less ambiguous 
(kappa > .9 for each of the four tasks). The bars and circles tasks had the lower kappa values, as we 
had to make inferences from the PTs’ markings about their intent to create a correct fractional size 
because they were not provided with a ruler or protractor with which to make exact measurements.  

After computing a satisfactory kappa, we reconciled our scores. We assigned a reconciled score 
of ‘1’ if we had each marked either a ‘1’ or a ‘0.6’, and we assigned a reconciled score of ‘0’ if we 
had each marked either a ‘0’ or a ‘0.4’. If one rater had marked ‘0.4’ and the other ‘0.6’, then we 
assigned a reconciled score of ‘0.5’. For the remaining responses, we returned to the data to decide 
on a score of either ‘0’ or ‘1’ for each item. Whereas Lovin et al. (2016) further used the sum of four 
reconciled scores on similar items to assign an overall ‘1’ or ‘0’ regarding an individual’s 
construction of a fractions scheme, our item scoring remained focused at the item level.  

We used the Wilcoxon rank sum (Wilcoxon, 1945) to test whether there were significant pairwise 
differences in mean scores for each item for this group of PTs. The null hypotheses were that there 
would not be significant pairwise differences in mean scores across task types or representations. We 
tested for differences in mean scores across task representations (dots, bars, and circles), controlling 
for the task types (PFS1, PFS2, IFS1, and IFS2), and we also tested for pairwise differences in mean 
scores across items within each of the three representations. 
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 Responses scored as ‘0’ Responses scored as ‘1’ 

Task 

PFS
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Task 

IFS 

2 

 
 

  

Figure 2. Sample responses coded with ‘0’ or ‘1’ in the bars and circles representations. 

PTs’ Rankings of Task Demands 
Each of the three forms included an identical ninth question, intended to assess PTs experiences 

of the cognitive demands of their previous eight tasks. The PTs were asked to rank the previous eight 
tasks they had completed in order from least difficult (1) to most difficult (8) and to then explain 
their ranking decisions. The instructions emphasized that each of the numbers ‘1’ through ‘8’ were to 
be used exactly once in the rankings. We discarded PTs’ responses to the ninth question in the 
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analysis if they repeated more than one of the numbers 1-8, which resulted in including 71 of the 76 
responses. We repeated the Wilcoxon rank sum tests with the PTs’ difficulty rankings to test where 
there were pairwise differences in the PTs’ experiences of difficulty across task type or task 
representation.  

Results 
Table 1 displays the the mean scores and difficulty rankings for each of the 12 tasks. Within each 

of the three representation types, the Wilcoxon rank sum test indicated significant differences (at 
alpha = .05 level) between both the mean performance and difficulty rankings on the two IFS items. 
Task IFS2 was more difficult than Task IFS1 (and was also more difficult than either PFS1 or PFS2), 
and this was in concordance with the PTs’ rankings of the two items’ difficulty. The difference in 
performance was not significant for the two PFS items across all three representations (p=.500 for 
dots, p=.355 for bars, and p=.232 for circles). For dots and bars, the ranking of the difficulty of Task 
PFS2 was significantly greater than Task PFS1; for circles the difference in difficulty was marginally 
insignificant (p = .012, p=.009, and p=.073, respectively). Across each of the four items, scores on 
dots tasks were significantly higher than circles tasks. One PT expressed, “The dots make no logical 
sense to me, and the shapes [bars] are easy until a fraction is more than a whole. What is that 
supposed to look like?” This response affirms that both task structure and task representation are 
important considerations for assessing PTs’ fractions knowledge. 

Table 1: Results Across Task Representation 
 PFS1  PFS2 IFS1  IFS2  

Dots Mean Score 
(Mean Dots Difficulty 
Rank) 

.906a 
(2.062)ab 

.937ab 
(2.917)b 

.760b 
(3.771)b 

.344b 
(5.833)b 

Bars Means Score 
(Mean Bars Difficulty 
Rank) 

.522ac 
(4.467)a 

.622a 
(3.333)c 

.656 
(4.467)c 

.300c 
(6.333) 

Circles Mean Score 
(Mean Circles Difficulty 
Rank) 

.766c 
(4.553)b 

.681b 
(4.021)bc 

.457b 
(5.553)bc 

.128bc 
(6.745)b 

Notes. Score was from 0 (counter-indication of scheme) to 1 (indication of scheme). Difficulty 
ranking was from 1 (easiest) to 8 (hardest). Using Wilcoxon signed rank test, with alpha = .05. 
a Denotes significant difference between dots and bars.  b Denotes significant difference between dots 
and circles. c Denotes significant difference between bars and circles. 

 
Though Task IFS2 was ranked as the most difficult across all three representations, it was 

significantly less likely to be answered correctly in the circles representation than in the bars or dots 
representations. A common explanation for the PTs’ assignment of difficulty rankings was that PTs 
found Task IFS2 “confusing” – particularly in the circles representation. We infer that this was often 
because the PTs were unfamiliar with a whole circle not representing the size of ‘1’ (see Figure 3 for 
a sample response).  

Supporting this inference, PTs were more likely to correctly answer Task PFS1 (in which the 
whole circle represented the amount 1) as representing 2/5 in the circles representation than in the 
bars representation. They more often incorrectly responded with ‘1/3’ or ‘1/2’ in the bars 
representation. This also explains why the difficulty ranking and score were each lower for Task 
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PFS2 in the bars representation than in the circles representation. For instance, one PT mentioned 
that “we didn’t really know what a bar represented, so I just had to divide them up equally and go 
with it.”  

 

 
Figure 3. One PT’s explanation of her difficulty rankings. 

Conclusions 
The results of our study generally concur with the learning trajectory described by Norton and 

Wilkins (2010) and Lovin et al. (2016), in that the PTs in our study were more likely to make sense 
of PFS tasks than IFS tasks. However, some PTs’ familiarity with part-whole interpretations of 
fractions and proportions resulted in their being able to correctly solve tasks with dots but not 
structurally identical tasks with bars or circles, even though bars and circles tasks followed the dots 
tasks in their written assessments. PTs’ ranking of task difficulty aligned best with the empirical 
trajectory of middle grades students’ fractions schemes in the circle representation. This suggests that 
PTs enter their elementary mathematics course well-suited to appreciate the challenges elementary 
students face in constructing fractions schemes, and that instructors can support PTs by introducing 
non-standard circular representations of fractions.  

We believe more investigation is necessary for the disentanglement of differences between PTs’ 
fractions schemes across representations to inform instructional practice. Anecdotally, we have found 
in our teaching that focusing on non-standard circular representations early in a course can be 
frustrating and temporarily reduce some PTs’ confidence, but eventually result in their reorganization 
of their fractions concepts. Future research may investigate the influence of varying the introduction 
of task structures and representations in elementary math courses. Important considerations include 
PTs’ resilience, motivation, and self-efficacy for teaching mathematics. 
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This paper represents research that exists at the crossroad of scholarly practice and scholarly 
inquiry. We share the design, enactment and empirical examination of an elementary methods course 
activity, Exploring and Supporting Student Thinking (ESST) which engaged 18 prospective teachers 
in two sessions of one on one problem posing with 3rd grade students. Results mirror outcomes from 
existing literature on student interviews and letter exchanges.  

Keywords: Teacher Education-Preservice, Teacher Knowledge 

Research suggests that teachers who understand how students think about particular 
mathematical ideas will be better positioned to recognize, interpret and support these ideas in their 
instruction (Brown and Borko, 1992; Fenema and Franke, 1992). Research on Cognitively Guided 
Instruction (CGI) has demonstrated teacher knowledge of student thinking, reasoning and strategies 
can lead to gains in student achievement (Carpenter & Fennema, 1992; Carpenter, Fennema, Franke 
et al., 2000).  Ball and her colleagues’ work on mathematical knowledge for teaching identified 
knowledge of content and students as a crucial facet of pedagogical content knowledge necessary for 
teaching mathematics effectively (e.g. Hill, Ball & Schilling, 2008).  

In light of these findings it has become increasingly important for mathematics teacher educators 
(MTEs) to assist prospective elementary mathematics teachers (PTs) in developing knowledge of 
children’s thinking. Jacobs, Lamb and Phillip’s (2010) work on professional noticing of children’s 
mathematics has become a popular framework to explore the ways in which teachers attend to, 
interpret and respond to students’ mathematical thinking. Mathematics methods course activities 
sometimes provide PTs opportunities to examine and interpret authentic (and/or instructor-generated) 
samples of student work depicting invented computational strategies or mathematical reasoning as a 
means to gain experience interpreting and responding to student thinking (e.g. Tyminski, Land, et al., 
2014). We term these types of interactions as static, in that there is no student to interact with during 
the process of interpreting the work, and once PTs have done so, there is no opportunity to respond 
authentically to students and observe the result. Although we see value in these types of interactions 
in developing PTs’ knowledge of students’ mathematical thinking and include examples of them in 
our methods courses, we sought to design and enact an activity in our early field experience that 
would foster PTs’ understanding of how to elicit and support student’s mathematical thinking and 
which would be dynamic in nature; allowing for a sustained exchange between the PTs and the 
student.  

This paper represents research that exists at the crossroad of scholarly practice and scholarly 
inquiry. We outline the process in the design, enactment and empirical examination of an elementary 
methods course activity, Exploring and Supporting Student Thinking (ESST), and answer the 
question, “What are the experiences of PTs within the ESST activity?” 

Literature Review 

Scholarly Inquiry and Practice 
In methods course activity design and enactment, the authors seek to leverage the interplay 

between research and practice thorough the processes of scholarly inquiry and scholarly practice (Lee 
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& Mewborn, 2009). Scholarly inquiry is the exploration of “issues and practices through systematic 
data collection and analysis that yields theoretically-grounded and empirically-based findings” (p. 3), 
while scholarly practices are “adapted from empirical studies of the teaching and learning of 
mathematics and the preparation of mathematics teachers” (Lee & Mewborn, 2009, p. 3). “Scholarly 
inquiry and practices are interrelated in that MTEs use empirical studies in mathematics education to 
build practices that are labeled scholarly.  In addition, scholarly practices can inform directions for 
scholarly inquiry regarding PSTs’ mathematics teaching and learning” (Kastberg, Tyminski & 
Sanchez, in press). In order to create the ESST Activity as an example of scholarly practice, we 
reviewed the literature on existing scholarly inquiry on dynamic interactions in a methods course in 
order to: 1) synthesize knowledge on the potential impact of these activities on PTs’ learning and 2) 
inform the activity’s design by understanding the variation and commonalities of activities described 
in other researchers’ scholarly inquiry.  

Dynamic Interactions 
Examples of dynamic interaction activities found within the research literature included 

asynchronous activities such as letter writing exchanges (e.g. Crespo, 2000; 2003; Norton & 
Kastberg, 2012), as well as face-to-face activities such as interviews with learners (e.g. Ambrose, 
2004; Jenkins, 2010), scripted interview protocols (Moyer & Milewicz, 2002), and PTs work with 
small group of learners (e.g. Nicol, 1998). A brief summary of the activity, context and findings are 
presented for each example of scholarly inquiry.  

In Ambrose (2004), Elementary PSTs worked in pairs to pose open-ended problem solving 
activities focused on whole number operations and fractions to children. The goal was to impact 
PSTs’ beliefs about teaching, potentially shifting beliefs from teaching as explaining, by leveraging 
their current beliefs as caregivers. Ambrose concluded PSTs developed new beliefs that were 
incorporated in existing belief structures.  

Jenkins (2010) intervention involved six middle grades PTs working in pairs in alternating roles 
to pose open-ended tasks focused on patterns and proportions to students. Jenkins searched for 
evidence of PTs’ “interpretive listening skills and awareness of the different ways that middle school 
students make sense of mathematics” (p. 147). Jenkins reported “the structured interview process 
fosters an interpretive orientation to listening and initial awareness of the variety of ways that middle 
school students think about mathematics” (p. 147). 

Moyer and Milewicz (2002) engaged 48 PTs in using scripted diagnostic interview protocols 
focused on rational number tasks to guide their interactions with children. The PTs conducted 
interviews with children throughout the semester. The final interview was recorded, transcribed, 
analyzed and reflected upon by the PTs and served as evidence of PTs’ experiences and use of 
questioning. Analysis of the interviews revealed a beginning classification for the types of 
questioning: 1)“check listing,” asking the questions in the protocol with little regard for student 
responses; 2) “instructing vs. assessing,” in which PTs explained mathematics directly to the student 
with little regard for students’ reasoning; and 3) “probing and follow up questions,” characterized as 
PTs genuinely listening to student responses and generating follow-up questions meant to elicit 
further student thinking.  

In Nicol’s (1998) activity, 14 PTs were engaged in weekly interactions with small groups of 6th 
and 7th grade students. The PTs solved problems involving multiplicative reasoning in class and then 
posed adapted or extended versions of these tasks to students. Nicol examined PTs’ abilities to 
question, listen and respond to students using prospective teachers’ journal reflections as sources of 
evidence for these behaviors. Across the weekly implementations of the activity, PTs began to shift 
their approaches from those that focused on arriving at a correct answer toward an inquiry-based 
approach focused on eliciting and understanding student thinking.  
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Crespo (2000) examined the ways in which elementary PTs listened to the responses of the 
fourth-grade students in a series of six interactive letter exchanges. PTs’ initial interpretations of 
student work focused on correctness and tended to contain conclusive claims about student 
understanding based upon small samples of student thinking. Reflective journals were used by PTs to 
explore their interactions with students. PTs’ interpretations began to focus on what the student 
intended or meant in a solution by the fifth week of the course. Crespo (2003) used the same letter 
writing activity and data to explore PTs’ abilities to pose problems. Initially, PTs attempted to “make 
their problems less problematic and more attainable to their pupils” (p.251). PTs’ questions were 
worded to avoid student errors or confusion rather than to generate learning opportunities for 
students or themselves as teachers. Problems included in the last three letters “were puzzle-like and 
open-ended, encouraged exploration, extended beyond topics of arithmetic, and required more than 
computational facility” (p. 257).  These questions were posed to challenge or extend student thinking 
and often asked for multiple solutions and explanations.  

Methods 

Participants and Context 
This study examined the experiences of 18 junior-level PTs enrolled in the required elementary 

mathematics methods course for their university program as they engaged in the ESST Activity. Prior 
to this course, PTs had completed four mathematics content courses designed for elementary 
mathematics teachers, including a course on problem solving, and were concurrently enrolled in a 
fifth content course addressing middle grades mathematics topics. Prior to engaging in this activity, 
PTs had engaged in activities involving standards documents, CGI problem types and student 
strategies, responding to students through questioning, number choice and number choice 
progressions, and opening routines in the grade 2-6 mathematics classroom (Drake, Land, et al., in 
press). 

Exploring and Supporting Student Thinking Activity 
The design of the ESST Activity was developed as an example of scholarly practice informed by 

the literature described above on dynamic interactions. From the literature we identified four 
contextual factors as potentially supportive in the design and enactment of such an activity: 1) PTs 
should have opportunities to solve challenging mathematical problems prior to posing them to 
students; 2) PTs should pose the same problems to students in order to give PTs common experiences 
to discuss; 3) PTs require opportunities to reflect on their experiences both in a whole group setting 
as well as through individual, targeted reflection; and 4) MTEs must consistently respond to PTs’ 
reflections.  

The ESST activity engaged PTs in solving, planning, and posing a series of 5 tasks. As the 
instructor of the methods course, the first author provided PTs with 5 tasks designed for use with 3rd 
grade students. As a class, the PTs and the instructor planned for the enactment of each task using an 
adaptation of the Thinking Through a Lesson Protocol (Smith, Bill, & Hughes, 2008). During week 5 
of our course, PTs visited our partner school where each was paired with a student from a third grade 
class. During a half-hour session, PTs were asked to pose as many of the five problems as their 
student could work through, employing extensions and scaffolds as they saw fit. PTs video recorded 
their session and posted them on the Edthena video tool. PTs were asked to reflect on their own video 
in terms of their student’s solution path and their interactions with the student. They watched and 
provided feedback for three of their peers, commenting on similar ideas. The instructor also provided 
feedback on these foci. Following this process, PT synthesized their reflection and feedback into a 
written plan of ways to improve their facilitation of each task. In week 7 of our course, the PTs 
returned to our partner school and enacted the same five tasks with a student from a different third 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

840 

grade class. As before, PTs recorded, uploaded, reflected and commented on the videos of this 
session. The first author provided feedback on these sessions as well. To complete the activity, PTs 
wrote a reflection paper summarizing their work and what they learned through their enactment and 
observations. We utilized their reflection papers to make sense of PTs’ experience with the activity. 

Theoretical Frame 
The synthesis of the above examples of scholarly inquiry suggested PTs’ dynamic interactions 

with student thinking can potentially: 1) develop PSTs’ knowledge of students’ mathematics and 
strategies (Ambrose, 2004; Crespo, 2000); 2) encourage PSTs to shift their focus in working with 
students from attaining correct answers to eliciting and understanding student thinking (Crespo, 
2000; Jenkins, 2010; Moyer & Milewicz, 2002); and 3) develop PSTs’ emerging abilities to use 
student thinking in crafting responses and posing new problems (Crespo, 2003).  We expanded the 
first code to include not only knowledge of student thinking but any example of what has been 
defined as knowledge of content and students (Hill, Ball, & Schilling, 2008). We utilized these 
potential outcomes as our lens as we examined PTs’ experiences with the ESST activity, as described 
in their reflections.  

Data Analysis 
The authors began the process of data analysis by individually coding the written reflections of 

the 18 PTs using the three a priori codes identified within the theoretical frame. Through several 
readings of the data and discussion of our existing codes, these three main codes were refined and 
operationalized using descriptions and sub-codes into our final coding scheme. Excerpts of PTs’ 
written reflection at the conclusion of the activity were taken as the unit of analysis and were coded 
with both a main code and a sub-code if applicable (Table 1). Inter-rater reliability for the coding was 
completed demonstrating 74% agreement across 285 units coded. Disagreements were resolved 
through discussion.  

Table 1: Coding Scheme and Number of Coded Units (N = 285) 
Knowledge of Content 
and Students (n = 48) 

Attain Correct Answers or Support 
Student Thinking (n = 120) 

Learning to Respond Using 
Student Thinking (n = 117) 

Anticipating possible 
student solution paths  14 

Aware – focused on student obtaining 
correct answer                                  13 

 

Conceptions and 
misconceptions            27 

Unaware – focused on student 
obtaining correct answer                  12 

Task difficulty for 
students                         7 

Action  -- eliciting and understanding 
student thinking                                42 

 Reflection - the goal of the interaction 
is to focus on student thinking         53 

 
Beyond the codes developed from our examination of prior scholarly inquiry, we also employed 

open and emergent coding techniques (Strauss & Corbin 1998) in order to identify other themes 
within the data. Two main themes emerged from within the PTs’ reflection on their experiences: “the 
importance of unpacking a task for students” and “PTs’ tendency to label or evaluate students based 
on minimal evidence”.   

Results 
In this section we present our findings related to our five main codes and their applicable sub-

codes. We include illustrative examples of each in order to demonstrate our analysis process. 
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Code 1 - Knowledge of Content and Students (KCS) 
As anticipated based upon pour literature search, our analysis of the data revealed a number of 

instances where PTs identified specific mathematics in their student’s work and potentially 
developed knowledge of content and students from those interactions. There were 48 such examples 
out of the 285 units. To distinguish among the interactions where PTs seemed to sub-codes were 
developed and utilized to identify three specific categories of KCS (See Table 1).  

Anticipating possible student solution paths was utilized when PTs developed new perspectives 
on how a student might solve a problem. Susan (all PTs and student names are pseudonyms) 
provided the following evidence of developing such knowledge while interacting with her first 
student: “Madison struggled with the coin problem trying to use five coins to make 51 cents. I 
thought it was very interesting while watching the videos that so many students started with putting 
out five dimes and a penny. My first reaction is always to make 50 cents with two quarters. Perhaps 
they all started this way because it would get them closer to five coins total.” Of the 48 units 
identified as Knowledge of Content and Students, 14 involved anticipating possible student solution 
paths.  

Instances where preservice teachers described conceptions or misconceptions of students’ 
mathematical thinking were coded as such. There were 27 units within PTs’ reflections identifying 
their attention to student conceptions or misconceptions. In the following quote from Georgia, we see 
an example of this code. 

I noticed that my student thought in a different way than I was used to and had some 
misconceptions about regrouping while doing the standard algorithm for subtraction. In the candy 
problem, she didn’t seem to fully understand how to count up by ones. She was counting by 5’s 
and passed the number she was “counting up to.” Then, when she started to count by ones she 
started at 5 then jumped to 10, 11,12,13. 

Anna, as another example, discussed the following misconception when working with her 
student: “I also found it interesting that once he got a new answer from subtracting, he didn’t realize 
or understand what number he needed to change in the addition problem that was suppose to check 
his answer.” 

In 7 instances, PTs demonstrated developing KCS through recognizing, most always in 
retrospect, the potential difficulty of a task for students. Anna’s comment was typical of these 
responses, “This problem was the hardest for me as a teacher because although he comprehended that 
each person got 9 brownies, he didn’t understand that the last brownie got divided into four pieces 
and became a fraction”. 

Code 2 –Obtain Correct Answers or Support Student Thinking  
Our examination of the existing literature suggested when working with students can support PTs 

shift from a focus on students attaining correct answers to eliciting and understanding student 
thinking. There were 120 units coded as examples of these two mindsets. Within these, we 
categorized PTs’ experiences further using sub-codes. In instances where PTs were focused on their 
student obtaining a correct answer, we differentiated between PTs who were aware of this focus and 
those who did not seem to recognize it.  For units coded as examples of PTs supporting student 
thinking, we identified two categories: PTs moves we viewed as supporting student thinking and PTs 
reflections restating the goal of the activity was to elicit, interpret and support student thinking.  

The code “obtain correct answers – aware” was utilized when PTs self-identified their tendency 
to focus on students arriving at a correct answer. Riley’s reflection serves as a typical example of this 
sub-code. “For the second task, the student struggled in understanding how to approach the problem. 
I made the mistake of telling him that he should possibly add up. Because of the goal of this 
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assignment, I should not have suggested a strategy to him. Then, I guided him too much through that 
strategy. Instead I needed to let him approach the problem on his own.” Of the 120 units within Code 
2, 13 received this code. 

The code “obtain correct answers – unaware” was assigned when PTs seemed unaware of their 
decision or unconscious tendency to lead the student to the correct answer.  Marisa’s reflection 
provides an illustrative example, “She had much more trouble with the Brownie Problem and the 
Coin Problem. I may have prompted her more through these two problems, but she eventually got to 
the right answer.” There were 12 units identified in which PTs were unaware of their actions leading 
a student to the correct answer.  

Action focused on eliciting and understanding student thinking was assigned when PTs’ posed 
tasks or questions intended to help them to better understand the student’s thinking. For instance, 
Heather discussed the following steps she took when interacting with her student: “For example, I 
created a road map to follow for each problem depending on the child’s responses: whether she chose 
a successful solution path but could not explain the procedure, struggled and needed scaffolding, or 
completed the problem successfully and explained her thinking.  The questions were not random, but 
rather flowed with her responses.” Kim’s reflection also exhibited evidence of her actions intended to 
focus on student thinking. “When Maggie was answering the problems, I would ask her throughout 
each one what her thinking was, what ideas she was using and how she was sure that her answers to 
the problems were correct”. There were 42 of 120 instances where PTs focused on eliciting or 
understanding student thinking.  

Reflection stating the goal of the interaction is to focus on student thinking was assigned in 
instances where PTs reflected on the interaction with their student and reminded themselves to keep 
their focus on the student’s thinking. “This was, and still is, an improvement I need to continue to 
work on so I am able to better explore and support student thinking, assess what strategies a child 
knows, and determine a child’s overall cognitive ability” (Leah). Heather also commented, 
“Throughout the coin problem, I did not provide enough wait time and found myself explaining too 
much instead of letting her explore for a longer period of time”. There were 53 of 120 instances 
where preservice teachers reflected on their interaction with the student and stated that the goal was 
to focus on student thinking.  

Code 3 – Learning to Respond Using Student Thinking 
We posited our PTs would have the opportunity to develop their abilities in using student 

thinking to craft responses and pose new problems based on their interactions with students.  There 
were 117 instances where PTs reflected and offered examples of how they might respond if faced 
with a similar situation in the future. Georgia discussed her interaction with a student: “I also, could 
have had him do an extension problem with harder numbers to be able to observe his thinking with 
more difficult numbers.” Georgia’s thought to pose an extension problem based on the interaction 
she had with the student is one example of how PTs considered responses as a result of the activity. 
Landon shared a similar consideration on based on his interaction with a student: “Instead of saying 
‘take away the smaller number form the bigger number’, which is why he put the smaller number on 
top of the bigger number in his solution path, I could have said ‘you have the bigger number and you 
want to take away the smaller number from it.’ This could have prompted him to complete his 
solution path without any confusion.” Landon reflects on his interaction with the student and how he 
could have responded differently to help the student better understand the problem. Lawson provided 
an example of responding using student thinking: “Next I decided that in order to help my next 
student through the problems that I would need to provide my student opportunities to work with 2 
digit numbers if they struggled with 3 digit numbers like my first student did. I also would give my 
student opportunities to work with 1 digit numbers as well if they needed to.” Lawson discusses his 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

843 

responses during the interaction with the student and his goal of helping the student when he or she 
was stuck or struggling.  

Code 4 – The Importance of “Unpacking” a Task for Students 
Preservice teachers often discussed the concept of unpacking the problem for their student before 

allowing the student to explore the problem. The unpacking theme was discovered after many 
preservice teachers reflected on their interactions with the students. For instance, Haley discussed her 
goal of unpacking the problem: “Unpacking the problem is one thing that I could have done 
significantly better - making sure the students understood what the story was about and then the 
method used to solve it. I worked with two students and found that one was on a much higher math 
level than the other student causing me to work and speak toward the upper level student in the 
beginning and the lower student as we began working. When I saw that the higher student understood 
the problem I was quick to move on without checking the lower students understanding. Although I 
moved on from unpacking the story quickly I think that both could have benefitted from a more in-
depth explanation.” Eloise provided an example of her goal of unpacking the problem for her 
student: “Lastly, I want to work on ‘unpacking the problem’ more. I think it’s beneficial for students 
because it really sets them up correctly for the problem and gives them the most help to complete the 
problem.”  There were 58 instances of PT’s commenting on unpacking problems for students. 

Code 5 - Evaluating or Labeling Students Based on Minimal Evidence 
Preservice teachers also had a tendency to evaluate or label students after a minimal time of 

working with the student. There were several instances where preservice teachers broadly evaluated a 
student based on minimum experience. For example, Anna wrote, “I would classify Landon as an 
above average math student who understands most concepts but gets through problems by going 
through the motions and performing the standard algorithm.” Anna had minimal experience working 
with Landon, but was quick to classify him as an above average math student based off of a small 
observation. Margaret evaluated her student after working through a few problems: “I think one of 
the reasons for this was the fact that my student was very smart and she knew how to do all of the 
problems, and she for the most part solved them all correctly on the first try.” There were 16 
instances where preservice teachers worked with their student on a problem and then labeled the 
student based off their ability of a single interaction.  

Discussion and Implications 
As we examine PTs’ experiences with the ESST activity, we can draw several conclusions about 

the design of the activity and its potential to foster the types of outcomes suggested by the literature. 
As presently constituted the ESST activity did not seem to afford PTs the opportunity to develop 
KCS. Perhaps extending the activity beyond two sessions and utilizing a variety of different 
problems would be necessary in order to support this development. The activity did seem to provide 
opportunity for PTs to consider their role of listening to and supporting student thinking as well as to 
provide opportunity for reflection on the ways in which they did and might respond to students. The 
additional themes of unpacking and labeling students imply these are areas of our course we need to 
pay explicit attention to prior to our PTs working with students. The continuing cycle of scholarly 
inquiry and practice will allow us to further refine and empirically examine this activity. 
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Cooney, Shealy, and Arvold (1998) wrote a widely-cited paper that described four belief structures 
of prospective teachers and argued the structures can aid in describing the ways beliefs change and 
the influence of authority on the individual. In this paper, we investigate the impact of this 
manuscript on the field. We first conducted a literature review (n = 48) of journal articles and 
proceedings published since 1998 covering the same population and goals of Cooney et al. 
(changing prospective teachers’ beliefs). We then conducted an analysis of 106 journal articles 
citing Cooney et al. to see why the author(s) cited the piece. We conclude the impact of Cooney, et 
al.’s article differs from that of their results and suggest belief structures should be more carefully 
investigated by the field. 

Keywords: Teacher Beliefs, Affect, Emotion, Beliefs, and Attitudes 

There is a long history of studies focusing on the beliefs about mathematics and mathematics 
teaching and learning of students, prospective teachers, and inservice teachers (Philipp, 2007). These 
studies have argued that being informed about the beliefs of these populations is helpful in designing 
appropriate interventions for shifting beliefs (Philipp et al., 2007) and evaluating the success of a 
teacher preparation program (Charalambous, Panaoura, & Philippou, 2009). Cooney, Shealy, and 
Arvold (1998) sought to understand the development of and opportunities to change prospective 
teachers’ beliefs and the structure of their beliefs. Cooney et al. (1998) concluded with four belief 
structures: isolationist, naïve idealist, naïve connectionist, and reflective connectionist. Each of these 
described the ways the beliefs of the individual were held and could help in explaining the changes in 
beliefs of the individuals. “We posit the notions of naïve idealist, isolationist, and connectionist with 
the intent that a description of preservice teachers can enhance our understanding of the ways 
preservice teachers construct meanings as they progress through their teacher education programs” 
(Cooney et al., 1998, p. 331).  

Although Cooney et al. (1998) is cited frequently in the field (382 times according to Google 
Scholar as of Jan. 2, 2017), we could not find many studies that used their belief structures as an 
explanatory tool to shifts in beliefs. Studies have shown the strength of using Cooney el al.’s belief 
structures: “One of the strengths of the Cooney et al. construct of belief structures is its explanatory 
power with respect to propensity to change and success in changing” (Conner, Edenfield, Gleason, & 
Ersoz, 2011, p. 501) We investigated the influence of Cooney et al.’s belief structures by reviewing 
literature with the same focus, changing beliefs of preservice teachers, and the ways Cooney et al. 
has been referenced since its publication. We provide a summary of Cooney et al.’s report followed 
by the methods used to investigate the influence of the article. We then present our results of both 
investigations and conclude by discussing future research trajectories and issues to be addressed by 
mathematics education researchers.  

Background: Summary of Cooney, Shealy, and Arvold (1998)  
Cooney et al. (1998) conceptualized their study through a constructivist perspective influenced 

by the cognitive and social construction of knowledge. They desired to the students in their 
secondary mathematics methods course to see themselves as participants in a community of 
mathematics educators. Cooney et al. used multiple theoretical frameworks to make sense of the 
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beliefs of the prospective teachers. These frameworks helped them to consider the influence of 
context and reflection (Bauersfeld, 1988; Dewey, 1933), how beliefs are held (Green, 1971), and 
one’s orientation to authority (Belenky, Clinchy, Goldberger, and Tarule, 1986; Perry, 1970). 
Bauersfeld (1988) provided a way to consider the sociocultural aspects within cognitive interactions 
with his description of how communities construct knowledge. This was important to Cooney et al.: 
“Because much of what an individual learns about teaching is through interactions within various 
communities, it seems reasonable to assume that those contexts are important influencing factors in 
what is learned” (1998, p. 307). Dewey (1933) aided in operationalizing reflection and how reflection 
influences the changes of beliefs because reflection is necessary to resolve problematic experiences. 
Green (1971) described the metaphor of a beliefs systems to emphasize how beliefs are held. He 
described three characteristics of a belief system: (a) There is a quasi-logical relationship between 
beliefs; (b) Beliefs are both peripheral or central and derivative or primary; and (c) Beliefs exist 
within clusters that are isolated from one another (thereby allowing the possibility of an individual 
having contradictory beliefs). Finally, Belenky et al. (1986) and Perry (1970) were “two schemes that 
address one’s reliance on authority for knowing… These two schemes are similar in that they 
describe individuals who range from those for whom an authority dictates truth to those for whom 
truth is seen as contextual” (Cooney et al., 1998, p. 311). To Cooney and colleagues these 
frameworks collectively provided a way for them to investigate the beliefs about mathematics and 
mathematics teaching and learning of prospective teachers and gave new insight into the ways 
prospective teacher hold their beliefs. 

Cooney et al. (1998) purposefully selected four participants from a cohort of 15 prospective 
secondary mathematics teachers. The cohort was in the final year of the teacher preparation program 
and all students were enrolled in a mathematics methods course. The participants were selected based 
on survey results as well as observations and assignments completed in the methods course. Each 
participant was interviewed 5 times during the course and student teaching, and Cooney et al. used a 
constant comparison procedure (Strauss, 1987) to identify themes that emerged from the data. They 
reported on four cases. 

Based on the four cases, Cooney and colleagues described four possible belief structures: naïve 
idealist (characterized by uncritical acceptance of ideas presented by authority figures resulting in 
clusters of contradictory beliefs), isolationist (belief are held strongly and nonevidentially so 
contradictory ideas are rejected without reflection), and naïve or reflective connectionist 
(characterized by attempts to incorporate new ideas meaningfully into already present belief structure 
more or less critically and coherently). Cooney and colleagues end the paper with comments on the 
importance of considering belief structures in teacher education. “An analysis of belief structures… 
can provide a forum by which our teacher education programs will be better able to address issues of 
reform”  (Cooney et al., 1998, p. 331). Cooney et al. claimed the goal of teacher education is to 
develop reflective connectionists, though they admit to having difficulty imagining how to do so with 
isolationists and naïve idealists. They call for future research to investigate these possible shifts. 
Based on Cooney et al.’s call to action, we sought to see how researchers had responded after 18 
years.  

Methodology 
We set out to explore the ways Cooney et al. (1998) may have influenced the field. The first 

exploration entailed conducting a literature review of studies published from 1999 to 2016 with a 
similar focus as Cooney et al.’s investigation, changing beliefs of prospective teachers. We began by 
conducting searches in both ERIC and EBSCO using the words beliefs, preservice teacher, change, 
and mathematics, focusing on peer-reviewed hits. The initial search had over 700 hits. As we began 
to look through the 700 publications, we realized many of the pieces found did not match our criteria 
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but instead had within the article the searched for words. To aid in focusing specifically on studies 
about beliefs, we choose to change the search criteria. The second time, we searched both ERIC and 
EBSCO databases for manuscripts with belief in the title, and including the words preservice, 
mathematics, and change anywhere in the text from 1999 to 2016. We repeated the searches 
replacing belief with conceptions and then orientation as we found these words could potentially be 
synonymous with beliefs. Finally, we repeated the previously mentioned searches in both databases, 
replacing preservice with prospective. After duplicates were removed, we had 86 peer-reviewed 
journal articles and proceedings. For this first part the publication was the unit of analysis. In a 
spreadsheet, we collected information from each publication such as: (a) author; (b) title; (c) abstract; 
(d) intervention described to change beliefs; (e) beliefs attempting to influence; (f) grade band of 
prospective teachers; and (g) did they cite Cooney et al. and if yes, then did they use belief structures 
as an explanatory tool.  As we read through the 86 publications we found only 48 pieces fit the 
search criteria (empirical studies about prospective mathematics teachers’ shift in beliefs). Those 
excluded either focused on the wrong population (e.g. students in mathematics content courses, 
prospective science teachers, etc.), wrong phenomenon (e.g. content knowledge) or were not 
empirical. 

The second investigation required us to do a citation analysis similar to Leatham and Winiecke’s 
(2014). Using a Google Scholar citation report for Cooney et al. (1998), of the 382 citations listed, 
we located 106 peer-reviewed English language articles. We then sought out in each article the line 
of text or statement that was a direct citation to Cooney et al. (1998). Four articles did not have 
proper citations and were excluded. For this part of the investigation, the unit of analysis was the 
citation instance in each article (n = 142). We used a constant comparative method (Strauss, 1987) to 
identify categories of the purposes of citing Cooney et al.  

Results 
The results of our investigation are reported in two parts. The first part focuses on the 48 

manuscripts in which the authors investigated aspects of beliefs similar to Cooney et al.’s (1998) 
study. We then report on the citation analysis conducted. Overall, Cooney et al.’s construct of belief 
structures has minimally been used in the field. Two of the 102 manuscripts examined used belief 
structures as an explanatory mechanism for the change in beliefs of the participants. The citation 
analysis revealed the purpose of citing Cooney et al. (1998) was to justify claims of the impact of 
beliefs on teacher perspectives or practices, statements about the influences on beliefs and the 
difficulty in changing them or to describe how beliefs are held. 

Nature of the 48 Publications on Changing Beliefs of Prospective Mathematics Teachers 
Cooney et al. (1998) was focused on changing prospective mathematics teachers’ beliefs about 

mathematics and mathematics teaching and learning. The majority of the studies (n = 29) were 
focused on changing the same beliefs. A number of studies, however, focused on other kinds of 
influential beliefs, for example, teacher efficacy, epistemological beliefs, the incorporation of a 
concept, skill, or philosophy (e.g. social justice), and others on specific mathematical constructs (e.g. 
proof). Table 1 enumerates foci of the beliefs publications. Some publications considered multiple 
beliefs categories, such as Charalambous et al. (2009) who investigated the change of 
epistemological and efficacy beliefs of prospective elementary teachers, thus the total number of 
pieces in the table is greater than 48.  
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Table 1: Foci of Beliefs Publications  
Focus # of Pieces 
Mathematics, Mathematics Teaching and Learning 29 
Teacher Efficacy 8 
Epistemological Beliefs about Mathematics 4 
Technology Use in Mathematics Education 4 
Equity/Social Justice Issues in the Mathematics Classroom 3 
Proof 2 
Confidence in Teaching Mathematics 2 
Mathematics Teaching Incorporating Arts 1 
STEM Incorporation 1 
The Role of Teachers and the Learners 1 
Mathematical Knowledge 1 

 
A number of studies used beliefs to evaluate their teacher education programs (e.g. 

Charalambous et al., 2009). The shift of prospective teachers’ beliefs toward more reform-oriented 
(NCTM, 2014) beliefs provided evidence of success of the content, methods, or general program. 
This was true for both studies focused on beliefs about mathematics and mathematics teaching and 
learning, and those focused on teacher efficacy and epistemology. Cooney et al. did not explicitly 
seek out to evaluate the teacher education program or course in which the prospective teachers were 
enrolled. Their focus was on the beliefs about mathematics and mathematics teaching and learning. 
This matched the majority of studies found. 

Cooney et al. (1998) did not examine the influence of a particular intervention. Instead, the 
intervention was more implicit as the catalyst to change beliefs was the teacher education program 
itself. This can be seen as a macro level intervention because the planned intervention was at the 
group level. This matched the majority of the studies on prospective teachers. Table 2 lists the 
categories of interventions used in the 48 publications. Some studies (Philipp et al., 2007) used 
multiple interventions in different sections of a mathematics methods course for prospective 
elementary teachers. Each intervention in these cases was counted separately. 

Most interventions were more at a macro level or did not intervene at an individual level. The 
intervention was the teacher education program or course (n = 13), a course or program with a 
specific philosophy informing the make-up of the course or program (n = 14), or the inclusion of a 
field component (n = 5). These interventions are not guided towards individuals but instead at the 
group of individuals. This is different from more micro or individualistic interventions like specific 
activities conducted in the course (n = 11), or the addition of a technology component (n = 5). These 
interventions were targeted to individuals to participate in the intervention. A few studies combined 
both micro and macro level interventions (Philipp et al., 2007). 

Finally, Table 3 shows some other characteristics of the 48 publications. Out of the 48 pieces 
about changing beliefs of prospective mathematics teachers, the majority of the studies focused on 
elementary teachers (n = 38). Only three studies focused on secondary mathematics teachers, while 
the remaining seven had a combination of secondary and elementary teachers. The lack of secondary 
investigations could potentially be due to the methods used to investigate beliefs. Quantitative studies 
(n = 25) along with heavily quantitative mixed studies (n = 6) represented about 65% of the 
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publications. The use of quantitative methods requires a large number of participants. Secondary 
mathematics programs typically have fewer students than elementary teacher preparation programs. 
Additionally, research has shown prospective elementary teacher programs have a high percentage of 
students with negative dispositions towards mathematics (Szydlik, Szydlik, & Benson, 2003). 
Therefore, changing beliefs of prospective elementary teachers may seem more relevant to producing 
reform-oriented mathematics teachers.   

Table 2: Interventions Used to Change Prospective Teachers’ Beliefs 
Type of Intervention 
(Micro/Macro) 

Description of Intervention # of 
Pieces 

Philosophy Informing 
Course/Program (Macro) 

Describes a theory, construct, or philosophy guiding the 
structure, activity, and/or goals of the course 

14 

Teacher Education 
Program (Macro) 

Goal is to evaluate or see the changes incurred by the 
current teacher education program or course. 

13 

Specific Activity (Micro) Describes a specific activity or intervention (observations 
during field placement, or pedagogical activity) as catalyst 
for change. 

11 

Field Component (Macro) The addition of a field component to course  5 
Technology Component 
(Micro) 

The addition of a technological tool to the course (e.g. use 
of wikis, online discussion boards; online workshops) 

5 

Program Addition (Micro) The addition of activities outside of courses (mentoring by 
experts, monthly seminar, small discussion groups, etc.) 

2 

Student Teaching (Macro) Goal is to evaluate or describe the changes incurred by the 
student teaching experience. 

2 

Table 3: Characteristics of Manuscripts by Grade Level Focus of Participants 
 Elementary Secondary Elementary & 

Middle 
Elementary & 

Secondary 
Not 

Specified 
Qualitative 13 2 0 2 0 
Quantitative 20 1 1 1 2 
Mixed 5 0 0 1 0 
Cited 
Cooney et al. 
(1998) 

7 2 0 0 0 

Used Belief 
Structures 
for Analysis 

1 1 0 0 0 

 
Of the 48 publications, only nine cited Cooney et al. (1998), although all publications were 

reporting on similar populations and phenomena. Of those nine, two studies (Conner et al., 2011; 
Mewborn, 2000) used belief structures as described by Cooney et al. This demonstrates the construct 
of beliefs structures has not been taken up by the field, at least when investigating similar 
phenomena. Cooney et al.’s study required multiple sources of data and deep qualitative 
investigation. Most of the studies found were quantitative in nature and therefore would not have the 
data necessary to use belief structures. If only 9 of the 48 publications cited Cooney et al., then what 
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explains the 382 publications found in the Google Scholar citation report? This finding led us to 
conduct the citation analysis described below. 

Nature of the 102 Publications Citing Cooney et al. (1998) 
Following Leatham and Winiecke (2014), we conducted an analysis of the 142 citation instances 

collected from 102 journal articles. Using a constant comparative method (Strauss, 1987), we found 
eight categories reflecting the reasons Cooney et al. (1998) has been cited. In this section we briefly 
describe each category and provide examples. These categories represent the impact Cooney et al. 
has had on the field. Table 4 summarizes the primary purposes for citing Cooney et al. 

Table 4: Summary of the Primary Reasons for Citing Cooney Et Al. (1998) 
Reason Cited Percent (n) 
Impact of beliefs on perspective or practice of teachers 25% (n=35) 
Influences on beliefs and difficulty in changing them 18% (n=25) 
How beliefs are held 13% (n=18) 
No mention of beliefs (content knowledge, role of teacher education, etc.) 12% (n=17) 
Casual citation (no specific content of article referenced) 11% (n=15) 
Potential of reflection 8% (n=12) 
Methodology 8% (n=11) 
Different types of beliefs exist 6% (n=9) 

 
The most common reason for citing Cooney et al. (1998) (35 or 25%) was to support claims 

about the ways beliefs influence teachers’ perspectives or classroom practice. These included 
descriptions of the general relationship between beliefs and practice and the way beliefs act like a 
filter when making sense of a situation. Furthermore, some publications used Cooney et al. to 
highlight how beliefs influence certain actions in the classroom. For example, Philipp et al. (2007) 
stated: “Beliefs might be thought of as dispositions toward action, having a motivational force 
(Cooney et al., 1998…)” (p. 450). Although, Cooney et al. discussed the impact of beliefs on 
teachers, the focus of their study was not on these relationships. They conjectured how beliefs 
structures may influence the actions of the prospective teachers, but the relationship between practice 
and beliefs was part of the rationale for the study.   

Researchers also cited Cooney et al. (1998) to describe experiences influencing the development 
of beliefs of teachers (25 or 18%). Claims included the impact of context on beliefs and how the 
background of the individual impacts beliefs about mathematics and mathematics teaching and 
learning. “Beliefs tend to be context specific, arising in situations with specific features (Cooney et 
al., 1998)” (Philipp et al., 2007, p. 450). As before, Cooney et al. justified their work based on these 
conceptualizations of beliefs; these statements were not part of their results. 

The next largest group of statements described how beliefs are held (18 or 13%). This is the 
group that is closest to the main focus of Cooney et al.’s (1998) study. Cooney and colleagues were 
interested in how beliefs are structured and how those structures influence prospective teachers’ 
beliefs about mathematics and mathematics teaching and learning. These statements focused on the 
use of Green’s (1971) metaphor of belief systems, the use of Perry’s (1970) discussion about 
authority and knowing, and in-depth descriptions of belief structures. Discussions of Green and Perry 
were included in Cooney et al.’s theoretical framework, while in-depth descriptions of belief 
structures comprised their findings.  

The next two groups cited Cooney et al. (1998), but they made no specific link to the conducted 
research. The category of no mention of beliefs was made up of a collection of statements that cited 
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suggestions or other aspects of teacher education Cooney refers too. For example, Conner et al. 
(2011) stated: “Cooney et al. (1998) suggest that one goal of teacher education is to help teachers 
become reflective connectionists” (p. 500). Many of these statements were used to back up claims 
about the role of teacher education, characteristics of teachers, or prospective teachers’ mathematical 
content knowledge. The collection of casual citations (15 or 11%) cited Cooney et al. in a generic 
way: “Many studies have been designed to bring about changes in the conceptions of preservice and 
inservice teachers (e.g. Cooney, Shealy & Arvold, 1998…)” (Steele, 2001, p. 140). 

Cooney et al. (1998) emphasized the importance of reflection as a way to change beliefs of 
prospective teachers, and this was highlighted by a number of publications (12 or 8%). Cooney et 
al.’s argument about reflection followed their conceptualization of beliefs and how beliefs are held.  
The claims made focused on the power of reflection to change beliefs or the importance of reflection 
in teacher education. Philipp et al. (2007) highlighted Cooney et al.’s study to stress the importance 
of reflection, “Researchers studying teacher education have added to our understanding of the role 
that reflection plays in teacher education. Cooney et al. (1998) found that…” (p. 471). Many of the 
researchers built on Cooney et al.’s conceptualization of reflection’s role in changing beliefs. 

The final two categories cited Cooney et al. (1998), usually in a list of other researchers, either to 
justify or describe the chosen methods (11 or 8%) or to emphasize the existence of different kinds of 
beliefs (9 or 6%). Though these are valuable contributions, neither of these reasons for citing Cooney 
et al. are explicitly about the results of the study. 

Discussion and Conclusion 
Our results show Cooney et al. (1998), although widely cited, has not significantly impacted 

research on changing beliefs. The most common reasons to cite Cooney et al. demonstrate the 
usefulness of Cooney et al.’ conceptualization of beliefs and beliefs change. Cooney et al.’s belief 
structures, however, are minimally considered by those in the field. Only two publications (Conner et 
al., 2011; Mewborn, 2000) that cited Cooney et al. explicitly used belief structures as an analytical 
tool. A slightly bigger impact was shown by the 18 citation statements (from 14 publications) that 
discussed how beliefs are held. We considered statements about how beliefs change to be potentially 
referencing ideas close to Cooney et al.’s belief structures. The remaining 124 citations cited Cooney 
et al. without reference to their major results. These researchers cited Cooney et al.’s theories and 
interpretations of other researchers, often without clarifying their intention, rather than citing the 
theory resulting from the empirical results of the study. We found this to be problematic. Depending 
on the citation statement, Cooney et al. could be seen as either a study about the relationship between 
beliefs and practice, a study about prospective teachers’ content knowledge, or a study about the role 
of teacher education.  

Cooney et al.’s conceptualization of belief structures and the studies that explicitly use beliefs 
structures suggest more focus on beliefs structures could be a powerful direction for future research. 
Our review of 48 peer-reviewed publications addressing beliefs change in prospective teachers 
demonstrated that trends in research on changing prospective teachers’ beliefs aligns with Cooney et 
al.’s (1998) chosen intervention and focus on beliefs about mathematics and mathematics teaching 
and learning. Studies examining beliefs and beliefs change have established that while change is 
slow, it can happen. However, little is known about why and how beliefs change. That is, researchers 
have established that reflection and particular interventions within coursework and field experiences 
can promote change, but little is known about the mechanisms for that change. Cooney et al.’s beliefs 
structures potentially provide insight into those mechanisms for change. The use of beliefs structures 
as an analytical tool could move forward beliefs research by providing a deeper understanding of 
how beliefs shift over time. This will require the development of instruments and possible ways of 
collecting more pointed data for identifying the belief structures of teachers. Furthermore, specific 
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interventions for different belief structures need to be developed if the goal of teacher education, as 
stated by Cooney et al., is to develop reflective connectionists. 
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Most teacher preparation programs require prospective teachers (PTs) to engage in early field 
experiences (EFEs) prior to completing required coursework. These EFEs, however, may lack 
meaningful connections to course content and provide limited opportunities to experience the 
demands of classroom teaching. In this paper, we share evidence from the implementation of a novel 
kind of EFE, the “University Teaching Experience” (UTE) model, where secondary mathematics 
PTs receive mentoring from teacher educators (TEs) as they teach in a undergraduate mathematics 
course Findings reveal the importance of both guidance from TEs and observations of peer teaching 
for PTs learning in EFEs. 

Keywords: Teacher Education-Preservice 

Field experience is an essential part of teacher preparation (Dewey, 1938; Zeichner, 2010). While 
all certification programs require PTs to complete a capstone field experience (typically called 
“student teaching”), early field experiences (EFEs) emerged around the time of laboratory schools 
with the premise that PTs should have opportunities to work in K-12 classrooms before and/or during 
their professional coursework to ground their understanding of pedagogical theory with practice 
(Dewey, 1938). Typical EFEs involve PTs in observing students in classroom environments during 
or conducting short episodes of instruction (Cruickshank & Metcalf, 1993).  

Recent research indicates that the quality of field experiences matters; having more field 
experience in a teacher preparation program does not necessarily lead to better prepared PTs 
(Ronfeldt & Reininger, 2012). Current opportunities for PTs to gain teaching experience each have 
specific limitations. PTs that only observe in K-12 classrooms for their EFE have limited access to 
understanding the scope of teaching. Activities like microteaching segments of lessons with peers in 
a methods course may offer better opportunities for PTs to practice innovative methods than simply 
observing, as they can receive feedback from a university-based teacher educator. Microteaching is 
limited, however, in that teaching to one’s peers is inherently an artificial instructional situation. 
School-based EFEs where PTs are engaged in instruction provide authentic opportunities for learning 
about the complexity of teaching in school settings. However, research documents a disconnect 
between what PTs see and experience in K-12 classrooms and what they learn about effective 
teaching in on-campus methods courses (Allsopp, DeMarie, Alvarez-McHatton & Doone, 2006; 
Zeichner, 2010). Additionally, school-based EFEs can involve some risk for the mentor teacher if the 
mentor teacher’s performance evaluations are based on value-added measures, not to mention risk for 
students’ learning.  

In this paper, we report results from the implementation of a novel type of EFE that addresses 
some of the typical shortcomings of early field experiences in its design. The University Teaching 
Experience (UTE) model involves an undergraduate remedial, or non-credit, algebra course as a site 
for an EFE. The UTE model entails four components. One component (inquiry-oriented curriculum 
and task design) involves mathematics teacher educators (MTEs) as the methods course instructors 
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collaborating with mathematics faculty responsible for the remedial mathematics course curriculum 
to design curricular sequences for the course that feature tasks (individual or series of problems) 
requiring a high level of cognitive demand (Stein, Grover & Henningsen, 1996). A second 
component (plan and implement) features PTs planning and teaching lessons in the remedial 
mathematics class while enrolled in their initial mathematics pedagogy course (hereafter referred to 
as the “methods course”). A third component of the UTE is the mentoring that is provided by MTEs 
during the planning, implementation, and reflection stages of lead PTs’ teaching in the 
developmental mathematics course. The MTEs include the faculty course instructor and graduate 
assistants with secondary mathematics teaching background. The MTEs also model teaching 
practices and provide in-the-moment coaching, if needed, during PTs’ teaching episodes. Finally, 
MTEs orchestrate a debrief discussion after the lesson with the lead PTs for each lesson and their 
peer PT observers to discuss the development of mathematics students’ thinking and react to the 
decision making of the lead PTs. In addition, the debrief discussion offers an opportunity for PTs 
preparing to teach subsequent lessons to rehearse the beginning, or task set-up, phase of the lesson 
prior to actual enactment in the developmental mathematics course. 

Initial research during the early-stage implementation of the UTE model established the viability 
of the model for ensuring an effective learning experience for the undergraduate students enrolled in 
the remedial mathematics course (Bieda, Wolf & McCrory, 2013; Bieda, McCrory & Wolf, 2014). 
The second phase of the project attended to the viability of this kind of EFE for PTs’ learning. In this 
phase, we analyzed data from several sources to address the following research questions: To what 
extent does the UTE support the development of PTs’ planning for attending to student thinking as 
evidenced in their written lesson plans for UTE lessons? To what extent do PTs teach in the remedial 
math course in ways consistent with the methods and strategies to promote mathematical proficiency, 
(i.e., recognizing and building on students’ prior knowledge, anticipating and responding to student 
thinking, selecting and sequencing students responses to achieve specific mathematical goals, 
pressing for justification and explanation, and maintaining a high level of cognitive demand during 
task enactment)? Finally, how do PTs evaluate the opportunities to learn in the UTE and how do they 
compare those experiences to their work in a school-based placement during the second semester?  

Theoretical Framework 
We use transformative learning theory (Mezirow, 1997) as a frame for thinking about how PTs’ 

knowledge about teaching develops through their interactions with activities and experiences in their 
teacher preparation program. According to Mezirow, transformative learning is the “process of 
effecting change in a frame of reference” (p. 5; italics in original). PTs’ frames of reference with 
regards to teaching practice are composed of both habits of mind and a point of view (Mezirow, 
1997). Habits of mind are “broad, abstract, orienting, habitual ways of thinking…” (Mezirow, 1997, 
p. 5) that are informed by the years of experience PTs have as students in classrooms (Lortie, 1975); 
by participating in the norms of school as students, PTs have absorbed a “set of codes” (Mezirow, 
1997, p.6) that frame their understanding of what teachers do and what they did, as students of 
mathematics, in response. Similarly, Cuoco, Goldenberg and Mark (1996) talk about mathematical 
habits of mind as the “methods by which mathematics is created and techniques used by 
[mathematical] researchers” (p. 376) and, as such, are the ways that mathematicians think when 
solving problems. 

Mezirow (1997) argues that points of view are responsive to feedback and shift as we reflect on 
the outcomes of our actions in the environment. A person’s point of view can shift whenever we try 
to make sense of why something has happened in a way we did not anticipate (Mezirow, 1997). This 
is precisely the state of novice teaching at the K-12 level; by trying out teaching practices in 
authentic settings, teachers get feedback in the form of students’ responses that they can compare to 
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their assumptions about what they intended to happen. Their reflection upon this experience can 
change their points of view on what it takes to achieve the kind of learning outcomes they are 
intending.  

Hence, the feedback that PTs receive from a teaching experience - both intrinsically as they react 
to the setting in the moment and extrinsically as they receive feedback from a mentor or peer – is 
critical to changing their point of view. Yet the kind of feedback they receive is largely dependent 
upon the context in which they teach. For example, in a microteaching setting involving teaching to 
one’s peers, PTs are more likely to accurately anticipate the outcome of their teaching moves, and, 
thus, the intrinsic feedback will be affirmative. Thus, if mathematics teacher educators want to shift 
PTs’ points of view on what it takes to teach in ambitious ways for all learners (Lampert, Boerst & 
Graziani, 2011), we need to ensure that the context in which they practice ambitious teaching offers 
an opportunity to get feedback that is representative of the kind of student responses they would 
receive in K-12 instructional settings.  

The emerging research on rehearsals, where PTs rehearse scripted teaching moves in short 
instructional episodes (Kazemi, Ghousseini, Cunard & Turrou, 2015; Kazemi, Franke & Lampert, 
2009; Lampert, Franke, Kazemi, Ghousseini, Turrou, Beasley, Cunard & Crowe, 2013), is moving 
the field forward in developing teacher education that helps PTs to enact particular teaching 
practices. Our claim is that the UTE model, like rehearsals, offer PTs an opportunity to ground their 
learning of how to do particular teaching practices, but in a setting that helps them develop an 
understanding of what it will take to carry out those practices in live classrooms. A key driver for this 
situated understanding is the involvement of mathematics teacher educators in providing ongoing 
instructional support to the PTs in the UTE. Although this support may be more involved than what 
PTs would normally receive from a mentor teacher in a school-based placement, it is critical support 
at this stage in their preparation to help them to reflect upon their instructional decision making as 
they grapple with multiple competing obligations. 

Methods  
Participants were 19 PTs enrolled in their first semester-long course on mathematics pedagogy 

(Methods I) in a large teacher preparation program at a Midwestern University.  The Methods I 
course included a three-hour seminar meeting per week, a four-hour school-based placement 
experience per week, and a two-hour commitment to participating in the UTE per week. Each PT co-
taught a lesson in the UTE twice during the course of the semester. Prior to UTE teaching, each pair 
received a packet with tasks to be completed during the lesson. Then, each pair submitted three drafts 
of their lesson plan: (1) initial draft completed using the Thinking through a Lesson Protocol (Smith, 
Bill & Hughes, 2008); (2) revised draft based on feedback from MTE a week before teaching; and 
(3) revised draft after teaching the lesson in the UTE. To address the research questions, we collected 
video-recordings of PTs’ teaching in the UTE, along with the lesson plan drafts they completed 
related to their UTE teaching. The results we share in this paper focus on analyses of the first and 
revised drafts of the lesson plan. We also conducted semi-structured interviews with 11 PTs, who 
volunteered to be interviewed from the larger sample of 24 PTs, to learn about their perceptions of 
the value of the UTE for their learning to teach, as well as their reflections on its affordances and 
constraints as compared to their school-based placement experience. Additional information about 
the analyses of these data sources will be presented in the Results section. 

Results 
We will present the results in three parts, with each part corresponding to one of our three 

research questions: (1) To what extent does the UTE support the development of PTs’ planning for 
attending to student thinking as evidenced in their written lesson plans for UTE lessons? (2) To what 
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extent do PTs teach in the remedial math course in ways consistent with the methods and strategies 
to promote mathematical proficiency? and (3) How do PTs evaluate the opportunities to learn in the 
UTE and how do they compare those experiences to their work in a school-based placement during 
the second semester?  

Quality of PTs’ Teaching in the UTE 
To assess the overall quality of PTs’ instruction with respect to promoting mathematical 

proficiency, we rated the video-recorded observations using the Instructional Quality Assessment 
(IQA, Boston, 2012) across two dimensions: Implementation of the Task and Student Discussion 
Following the Task.  The rating scale for the Implementation of the Task dimension is based on the 
levels of cognitive demand (Stein, Grover & Henningsen, 1996), with ratings from 0 to 4 where a 4 
rating indicates that:  

“Students engaged in exploring and understanding the nature of mathematical concepts, 
procedures, and/or relationships, such as: Doing mathematics: using complex and non-
algorithmic thinking (i.e., there is not a predictable, well-rehearsed approach or pathway 
explicitly suggested by the task, task instructions, or a worked-out example); OR Procedures with 
connections: applying a broad general procedure that remains closely connected to mathematical 
concepts.” (Boston, 2012, pg. 9) 

The Student Discussion Following the Task rubric complements the Implementation of the Task 
rubric by focusing in on the question: “To what extent did students show their work and explain their 
thinking about the important mathematical content?” (Boston, 2012, p.10). Similarly to the 
Implementation of the Task rubric, the scale ranges from 0 to 4 with a Level 4 rating indicating: 

“Students show/describe written work for solving a task and/or engage in a discussion of the 
important mathematical ideas in the task. During the discussion, students provide complete and 
thorough explanations of why their strategy, idea, or procedure is valid; students explain why 
their strategy works and/or is appropriate for the problem; students make connections to the 
underlying mathematical ideas (e.g., “I divided because we needed equal groups”). OR Students 
show/discuss more than one strategy or representation for solving the task, provide explanations 
of why the different strategies/representations were used to solve the task, and/or make 
connections between strategies or representations.” (Boston, 2012, p. 10)  

Raters were trained to use the IQA rubric prior to rating, and achieved an inter-rater reliability in 
their scoring (within .5 rating points) of 95% on a sample of 5 lessons of 17 total lessons collected. 
The rating rubric follows a scale from 1-4, without half-point increments. As there were 19 PTs, 
there were a total of 8 pairs and one team of 3 PTs. Because some pairs were reorganized during the 
second round of UTE teaching, we selected only the first and second UTE teaching episodes that 
were taught by the same pairs of students each time. Thus, a total of 6 pairs of teaching episodes, or 
12 total lessons, were analyzed for these results. 

Table 1: Aggregated Mean IQA Rating 
 Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 
First UTE 2 3.5 4 2 2 4 
Second UTE 4 3 3.5 2.5 2 3 

 
Table 1 provides the aggregated mean scores for each episode, combining ratings for Implementation 
of the Task and Student Discussion Following the Task. The aggregated score is appropriate as no 
episode had a difference greater than 1 point in the ratings for each dimension. The table shows two 
findings of interest. First, for the majority of episodes, PTs’ instruction rated at least at a level of 3, 
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indicative of teaching that promotes some level of conceptual understanding. Second, there are no 
significant patterns in the ratings from the first UTE to the second UTE observation. While two of 
the pairs improved in their aggregate scores, four pairs either remained the same or received lower 
ratings. 

Growth in PTs’ Planning to Attend to Student Thinking 
Given that the likelihood of PTs’ teaching significantly improving over the course of several 

weeks during the semester is low, we also analyzed PTs’ lesson plan drafts for their first and second 
UTE teaching to determine whether specific lesson planning practices were improving as a result of 
the UTE mentoring. We focused our analysis on how PTs planned to attend and respond to student 
thinking as evidenced in their lesson plan drafts. Table 2 provides the coding scheme we developed 
from an iterative coding process (Strauss & Corbin, 1998) as well as examples for each of the codes. 
Two researchers coded a sample of lesson plan drafts for IRR. The agreement of what was to be 
coded from the lesson plans was 89%, whereas agreement regarding the assignment of the categories 
reached 65%.  

 After category codes were assigned to the text, the text was also scored for quality using a 4-
point rubric (0 = is not mentioned; 1 = vague/generic, 2 = somewhat specific, and 3 = mathematically 
specific). We used three values to summarize the data. The total quantity was determined by 
counting the total number of coded instances. The total quality was calculated by adding the 
individual scores of codes. The quality average was computed by dividing the quality total for the 
lesson by the quantity to get an “average” response across all instances. In this paper, we focus on 
reporting the quality average. 

Table 2: Categories Coded in Lesson Plan Drafts  
Category Example text from a PT Lesson Plan 

Predictions of students’ 
mathematical thinking 

seeing them write f(x)=???? will be how I know they're putting the 
pieces together 

Students’ mathematical 
talk 

hearing students talk about inputs of functions and outputs of functions 
related to my, or their, examples 

Questions students might 
ask 

students may ask how these extraneous solutions affect the equation’s 
graph 

Student 
misconception/difficulty 

students may not realize that ‘consecutive odd integers’ means that the 
unknown has to be defined as x and x+2 

Student prior knowledge students should be familiar and comfortable with the box method for 
factoring. 

Student learning outcomes I want students to walk away from this lesson looking at mathematical 
functions like they’re operations and tasks rather than random 
grouping of numbers/letters/symbols 

 
Figure 1 below shows results in the form of average quality scores for the entire sample, across 

lesson plan drafts and disaggregated by category type. Across nearly all categories, quality scores 
increased from the first UTE to the second UTE teaching experience. And, not surprisingly, the final 
drafts for each UTE teaching (Lesson Plan 2 and 4, respectively) had higher quality instances of 
planning related to attending to student thinking than initial drafts (Lesson Plans 1 and 3). However, 
it is interesting to note that the quality of evidence linked to predictions of students’ mathematical 
thinking and questions students might ask decreased, somewhat, from Lesson Plan 3 to Lesson Plan 
4. This may have happened because, as the math became more challenging in the remedial class, PTs 
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downgraded their expectations in the revised drafts based on experiences with students during the 
lesson enactment. 

 
Figure 1. Average quality scores for each category across drafts. 

PTs’ Perceptions of Learning to Teach in the UTE  
Finally, we share results from analyses of interviews with PTs who voluntarily agreed to 

participate in semi-structured interviews to learn more about their experiences in the UTE. We asked 
questions such as: What aspects of the experience did you find useful? What did you learn from 
observing others teach and taking observation notes? Did the MTL experience influence your work 
in doing the slices of teaching and lesson studies in your placement classroom? The interviews were 
audiorecorded and then transcribed. For select questions, the transcribed responses were coded at the 
phrase level to capture what participants stated they had learned from participating in the MTL 
experience (a “what” code) and for how participants stated they had learned these lessons (a “how” 
code). Using an iterative coding process following methods of grounded theory (Strauss & Corbin, 
1998), four codes emerged for “what” was learned (teacher moves, comfort in the classroom, specific 
discussion strategies, and lesson planning) and four codes emerged for “how” those aspects of 
teaching were learned (UTE teaching, observing peers in UTE, lesson planning in UTE, peer 
feedback after UTE). 

Not surprisingly, participants most commonly reported that doing teaching in the UTE was the 
most beneficial aspect for their learning to teach. But, when asked why they felt teaching in the UTE 
was beneficial, many acknowledged the importance of the support they received while teaching in 
the UTE. As one participant pointed out, the UTE allowed her to teach “with the guidance of 
someone there you know well enough to jump in and save you if needed.” Another pointed out that 
working with undergraduate students allowed her to teach “real life students” that “aren’t gonna fail 
if you mess up.” However, this pointing to the supportive environment was not universal; other 
participants stated that they saw any teaching as beneficial to them, and the UTE was just another 
place to practice teaching, with no special emphasis on the environment. As one participant put it, 
“the benefit of UTE is getting some experience under you belt, um, kind of getting to know a little bit 
about yourself as a teacher.” 

The two most common aspects of teaching the PTs reported learning in UTE were comfort in the 
classroom and specific discussion strategies. Because teaching in the UTE was among the first 
teaching experience for most of the PTs, many reported that teaching in the UTE helped them gain 
some confidence in the classroom. PTs also reported learning how to facilitate whole-class 
discussions by implementing them while teaching in the UTE. This aspect was discussed as an 
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affordance that the UTE provided that the school-based placement did not. As a PT stated: “in my 
placement class, um, I don’t think the teacher would have stepped in unless it was a real like, um, 
train wreck, I guess? Um, meanwhile [Kristen] or the TAs in the UTE would be willing to step in for 
smaller things, just like, hey, think about this, or whisper in our ears, hey, think about this.” Most of 
the participants reported similar positive gains in learning to implement discussion-based lessons 
from the help and support given by instructors during their teaching experiences in the UTE, 
including the modeling of discussion-based practices by the MTEs early in the semester. This 
opportunity in implement discussion-based instruction was especially valuable for participants who 
were later placed in classrooms with teachers who were resistant to using discussion-based 
instructional practices.  

Finally, most PTs reported learning about teaching strategies from watching their peers in UTE, 
an affordance of the model that school-based placements are unable to offer. Of the 19 instances of 
participants reporting having learned some sort of teaching strategy, 15 reported learning them from 
peer feedback or from observation peers. Participants reported favorable on observing and being 
observed by peers primarily because of the various teaching skills they learned from each other. In 
looking at the times participants reported learning something from either observing peers or receiving 
peer feedback, there were only 2 out of the 17 combined instances that participants did not report 
learning teaching skills.  

Concluding Remarks 
Taken together, the analyses of data sources suggest that the UTE experience affords PTs with an 

opportunity to learn about the complexities of teaching in a supportive environment where they can 
attempt practices such as facilitating whole-class discussions. Findings from our analyses of the 
quality of PTs’ instruction show that, on average, the quality of instruction is often better than what 
the literature typically characterizes the nature of teaching in remedial, non-credit, mathematics 
courses (Larnell, 2016). While the observation ratings show that overall quality does not markedly 
improve for PTs over the course of the semester, the analysis of lesson planning artifacts reveals that 
PTs do improve over time in their preparation to attend to student thinking – a high-leverage teaching 
practice (NCTM, 2014).  

Does the UTE model provide better opportunities for PTs to learn from, and within, teaching 
(Lampert, 2010) than school-based EFEs? Evidence from participants’ reflections about both EFEs in 
the interviews suggests that the curriculum of the UTE, the structure of the setting, and the mentoring 
provided by MTEs may provide better access for all PTs to engage in student-centered teaching 
practices such as leading whole-class discussions. Moreover, the PTs mentioned that opportunities to 
reflect on their peers’ instruction, which rarely happens in typical EFEs where PTs are placed one-
on-one or as a pair with a mentor teacher, was an important aspect of their learning in the UTE. 
Although the design of this initial study into the effectiveness of the UTE model as a EFE cannot 
definitively address whether the UTE model provides better opportunities for learning about teaching 
practice than school-based EFEs, the evidence suggests it is a promising model that would benefit 
from wider implementation to assess its impact on PTs preparation for the challenges of teaching 
mathematics in school settings. 
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We report on efforts to better understand the questioning practices used by preservice elementary 
teachers (PSTs), including the range of preferred question types and the values they invoke when 
evaluating their questions. We sought to determine whether teachers exhibited consistent patterns in 
selecting questions with certain features, such as funneling students to a particular strategy or 
eliciting student thinking, across different instructional situations. We found that such patterns did 
exist; in this paper we use the patterns to propose a trajectory for developing the skill of asking 
questions that elicit and build on student thinking. The trajectory describes the beliefs, values, and 
questioning practices associated with PSTs at each stage.  

Keywords: Learning Trajectories (or Progressions), Teacher Education-Preservice  

Introduction 
Asking questions is central to the work of teaching. Yet research (e.g., Franke et al., 2009) has 

demonstrated that some questions are more likely than others to provide opportunities for students to 
make their thinking explicit. More research is needed to better understand how teachers might 
improve the types of questions they ask in the classroom. This study was conducted to learn more 
about ways to support preservice teachers (PSTs) in developing the skill of asking questions that 
elicit or build on students’ thinking.  

Theoretical Framework and Literature Review 
We view knowledge for teaching as situated in the context of teaching (Borko et al., 2000), 

which means that it should be developed through experiences that approximate, to some extent, the 
practice of teaching (Grossman, Hammerness, & McDonald, 2009). Approximations of practice 
provide opportunities to learn through the decomposition of teaching into components, which can 
then be studied and practiced (Baldinger, Selling, & Virmani, 2016). The learning experiences 
described in this paper use cartoon representations of teaching, developed using the online program 
LessonSketch, that provide opportunities for PSTs to choose from specific pedagogical actions (that 
is, questions), see their (pre-established) impact, and then reflect on those choices (Herbst, Chazan, 
Chen, Chieu, & Weiss, 2011). 

Although this project focuses on developing knowledge about teaching through action and 
reflection (Ball & Forzani, 2009), we also acknowledge the role of beliefs and values in influencing 
teachers’ practice. In particular, values, which involve teachers’ views about what is important, have 
particularly strong impact on teachers’ decisions (Bishop, 2012). Efforts to influence the teaching 
practice of novices must acknowledge and contend with the incoming values of PSTs. In this paper, 
we explore some interactions between PSTs questioning practices and their stated values with regard 
to questioning in mathematics teaching. 

Features of Questions 
The National Council of Teachers of Mathematics’ Principles to Actions (2014) advocates 

teacher questions that “build on, but do not take over or funnel, student thinking,” and those that 
“make mathematical thinking visible” (p. 41). Other productive questioning practices include 
pressing for mathematical justifications, asking students to make explicit connections between 
different strategies, and probing errors (Kazemi & Stipek, 2001). These features are in contrast to 
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questions that invalidate students’ thinking or impose a way of thinking onto the students. For 
example, funneling questions are a sequence of closed questions intended to direct students through a 
series of procedural steps until they obtain the correct answer (Herbel-Eisenmann & Breyfogle, 2005; 
Wood, 1998). These questions reduce students’ opportunities to build on their own understanding 
because the teacher ends up doing much of the cognitive work and the student merely answers with 
the expected response (Franke et al., 2009). Although these categories are helpful, more research is 
needed to articulate how novices improve their questioning practice and what their learning might 
look like as they transition from asking less productive to more productive questions. 

Hypothetical Learning Trajectories 
Hypothetical learning trajectories (HLTs) are constructed to represent a possible progression of 

student learning in a format that is useful for teachers and curriculum designers (Empson, 2011). 
While some researchers draw solely from existing literature to develop their HLT, others also use 
insights developed from the analysis of data collected in the first of two research phases (e.g., 
Meletiou-Mavrotheris & Paparistodemou, 2015). Our study aligns with the latter approach to 
developing HLTs. Once the HLT is developed, researchers then conduct multiple iterations of their 
experiment in order to refine their trajectory until it closely mirrors participants’ actual progressions 
of learning (Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003). Complete HLTs consist of three 
main elements: “the learning goal, developmental progressions of thinking and learning, and 
sequence of instructional tasks.” (Clements & Sarama, 2004, p. 84). In this study, we examined the 
patterns in features of questions selected by PSTs in response to student thinking across multiple 
LessonSketch experiences and sought to characterize these patterns in terms of a hypothetical 
learning trajectory. We will focus primarily on the first two elements of the HLT in this paper. 

Methods 
Participants were 86 elementary preservice teachers (PSTs) in their second of two method 

courses at a university in the Midwestern United States. Data consisted of PSTs’ typed responses to 
prompts within five online LessonSketch experiences, two of which we classified as the pre and 
posttest. In this paper, we will focus on the last three experiences; namely, the Brandon and Cedric 
experiences and the posttest. In the pre and posttest, PSTs were initially presented with a 
mathematical task and one simulated student’s solution to the provided task. PSTs composed and 
gave a rationale for a question they would like to ask the student (e.g., Brandon) and then selected all 
of the questions from a provided list they thought would be good questions to ask the student. In the 
remaining three LessonSketch experiences, PSTs were again presented with a mathematical task and 
one student’s solution to the task; this time, they went through two rounds of selecting a question and 
seeing the student’s (pre-determined) response, evaluating the question after each round. At the end 
of the experience, PSTs decided which of their two selected questions they thought was more 
effective and explained why. See Table 1 for examples of the questions used in the different 
experiences, classified according to their question feature. We developed the categories of question 
types drawing on the literature on effective questions described earlier.  
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Table 1: Classifications of Question Types 
Category Examples 
Suggest a specific 
alternate strategy (not 
eliciting) 

•  (Brandon experience) “Do you know what you need to do to the 
denominators before you can add fractions?” 
•  (posttest) “Why don't you try dividing each sub into three parts?” 

Specific to student’s 
work, but invalidates 
and funnels 

•  (Cedric experience) “If it is 4 SQUARE yards, can you just multiply 
by 3?” 
•  (posttest) “When you are comparing fractions, don’t you need to use 
the same whole?” 

Funnels •  (Brandon experience) “In the problem it says that there are three 
fourths and three sixths. Are fourths the same as sixths?”  
•  (Cedric experience) “Are we talking about one-dimensional units or 
two-dimensions?” 
•  (posttest) “Is it 1/3 of a sub, or 1/3 of half of a sub?” 

Elicits student’s 
thinking  

•  (Brandon experience) “Can you tell me more about where the fourths, 
the sixths and the tenths are in your picture?” 
•  (Cedric experience) “Can you show me the square yards in your 
picture?” 
•  (posttest) “Can you tell me more about how you were thinking about 
the 1/3?” 

Help students build 
on their own thinking  

•  (posttest) “Let’s look at your pictures for Car A and Car C. Based on 
the picture, who would get the most?” 

Analysis 
We began constructing the hypothetical learning trajectory by describing the learning goal, 

drawing on features of effective questions cited in literature, and hypothesizing which features of 
questions might be more difficult for students to adopt based on our findings from the Phase 1 data. 
Next, we looked for patterns among the types of questions PSTs selected and composed in response 
to student thinking on the posttest and then examined their responses in the earlier experiences to 
determine whether these groups of PSTs were more likely to select questions with similar features 
(e.g., funneling or eliciting) in the earlier experiences. As the patterns arose, we identified ways to 
categorize the different groups of PSTs and adjusted our learning trajectory as needed. During this 
process, we hypothesized what values and beliefs about teaching might be motivating different types 
of questions. For example, we conjectured that PSTs would be more likely to ask questions that 
reference students’ work if they valued understanding students’ current thinking. In order to gain 
insight into the PSTs’ values, we analyzed their evaluations of selected questions using open codes, 
which we later condensed into the categories shown below:  

• Building on student thinking: PST claims that the question provided an opportunity for 
Brandon to come to a new realization on his own 

• Understanding student thinking: PST claims that the question helped the teacher to 
better understand Brandon’s thinking or allowed the student to explain his thinking  

• Addressing misconceptions: PST claims that the question helped the student 
understand, focused on a misconception, or failed to “fix” a misconception 

• Leading to correct answer: PST claims that the question helped get the student to the 
correct procedure or answer 
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Finally, we investigated the links between PSTs’ values (what PSTs believe is important) and 
practices by examining the relationships between the criteria they used to evaluate questions (i.e., the 
value codes just described) and the types of questions they tended to prefer (Table 1).  

Findings 

Patterns of Features of Questions PSTs Selected 
After examining the questions PSTs composed and selected on the posttest, we formed groups of 

participants according to specific features of these questions. We initially classified PSTs as 
“funnelers” if they a) selected both of the funneling questions or b) composed a funneling question. 
We used similar criteria to create an initial “eliciters” group. These criteria yielded 51 funnelers and 
54 eliciters, including 29 PSTs who were listed in both groups. We reclassified these 29 PSTs as 
“funnelers-eliciters.” This resulted in three distinct groups: 22 funnelers, 29 funnelers-eliciters, and 
25 eliciters. 

A chi squared test of independence showed that in neither the Brandon experience (Χ2 (2) = 7.08, 
p = .029) nor the Cedric experience (Χ2 (2) = 5.95, p = .051) were the question types independent of 
the group. Overall, PSTs tended to select a question that funneled or directed the student in the 
Brandon experience and a question that elicited or built on student thinking in the Cedric experience 
(see Figure 1). However, an examination of the standardized residuals revealed that in the Brandon 
experience, fewer funnelers (std. res. = -1.92) and more eliciters (std. res. = 1.1) selected the question 
that elicited or built on student thinking than statistically expected. In the Cedric experience, the 
inverse was true: namely, more funnelers (std. res. = 1.45) and fewer eliciters (std. res. = -1.56) 
selected a question that funneled or directed the student than statistically expected. Figure 1 shows 
the percentage of PSTs within each group who selected the eliciting and funneling questions in the 
Brandon and Cedric experiences. Notice that the percent of funneling questions decreases and the 
percent of eliciting questions increases between each group in both experiences. 

 

 

Figure 1. Percent of PSTs in each group who selected either a question that funneled/directed 
students or elicited/built on student thinking in the Brandon and Cedric experiences.  

Criteria for Evaluating Selected Questions 
Recall that after viewing the simulated student’s responses to two questions they selected, PSTs 

indicated which question they preferred and why, which we analyzed in order to characterize the 
PSTs’ values underlying their question selection. Over three-fourths of the PSTs in the funneler 
category gave justifications that focused on whether or not their question resolved Brandon’s 
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misconception, compared to less than half of the funneler-eliciters or eliciters (see Figure 2). One 
PST in the funneler group stated that she preferred the funnel question, “because it made [Brandon] 
realize that the pieces were not able to be added because they were not the same. He is not realizing it 
with [the eliciting question], he just keeps labeling his picture and justifying his original answer.” 
Notice that the PST is evaluating both the funneling and eliciting questions based on whether or not 
they resolved Brandon’s misconception. Additionally, her negative evaluation of the eliciting 
question suggests that the PST does not realize that Brandon could have discovered the error on his 
own in the process of justifying his original answer.  

 

 

Figure 2. Percent of PSTs who focused on each criterion when evaluating questions in the Brandon 
experience. 

PSTs in the eliciters group were more likely to evaluate their questions based on whether it 
allowed them to understand or build on the student’s thinking. For example, one eliciter stated that 
she liked the eliciting question “because we actually get the chance to observe Brandon's thinking 
and strategies. He is able to explain his thought process for us. The other [funneling] question was 
more of the teacher telling Brandon what is right and what is wrong.” Here, the PST appears to 
recognize the value in understanding Brandon’s current thinking before seeking to move his thinking 
forward. Overall, patterns in the types of evaluations given suggest that not only were PSTs in 
different groups more likely to select different types of questions, but they also valued different 
things when asking Brandon a question. We looked for similar patterns in the Cedric experience, but 
in this case, the differences were not statistically significant. Despite this, the consistency individuals 
exhibited in the questions they selected and their evaluations in Brandon’s experience lend support to 
our framework in the next section. 

Hypothetical Learning Trajectory 
Our trajectory is comprised of three layers – PSTs’ beliefs and knowledge about mathematical 

understanding, their values about students’ learning, and the features of questions they pose when 
asking a student about their mathematical work. We propose four main stages that PSTs progress 
through in the development of asking effective questions. In our descriptions of the stages below, we 
begin by talking about the features of questions PSTs in the given stage might prefer and then draw 
connections to the associated values and beliefs/knowledge.  
We separated the proposed trajectory for PSTs’ beliefs from values and practice in order to 
emphasize the distinctions between the components of the trajectory that were based in our data 
(values and practice) and the components were not explicitly measured, but were emphasized in the 
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methods course and may be connected to the value/practice constructs. The dashed arrows represent 
the tentative nature of these proposed connections. Although our trajectory depicts four distinct 
stages, we acknowledge the potential overlap between categories and that some PSTs may not 
develop understanding in the linear path implied by the figure. Nonetheless, the trajectory serves as a 
model for understanding a general progression of PSTs’ understanding.  

 

 
Figure 3. Hypothetical learning trajectory for asking effective questions.  

Leading to correct answer (initial position). Based on literature and our prior experiences in 
methods classes, we began with the assumption that many PSTs enter into undergraduate programs 
with an unsophisticated view of teaching as telling, and default to using questions as a vehicle for 
directing students towards specific strategies. For example, one PST explained in the pretest why she 
thought the question, “why don’t you try dividing each sub into 3 parts”, was good by saying, “it 
might make more sense to the student if he divides each piece into thirds and can add them up more 
easily”. Here, the PST projected her own strategy onto the student and assumed that her strategy 
might make it easier for the student to solve the problem than his current strategy. This reflection 
lends support to the idea that PSTs who ask questions designed to get students to the correct answer 
may equate answer-getting with understanding and may have a broad, vague idea of what they think 
is important for student learning. 

Addressing misconceptions (yellow). At this stage, PSTs recognize the importance of asking 
questions that are specific to the student’s work and begin preferring questions that directly confront 
the student’s misconception. Funneling questions, such as “In the problem it says that there are three 
fourths and three sixths. Are fourths the same as sixths?” fit within this category as the question 
focuses the student’s attention on their misconception without directly telling the student what to do. 
Of the 49 PSTs who initially selected this question, 34 preferred this question to the eliciting question 
they viewed subsequently. Nearly all (32/34) of the PSTs who preferred their initial funneling 
question gave justifications focused on whether they believed the question resolved Brandon’s 
misconception. “My first question was better because he realized that fourths and sixths were not the 
same. The [eliciting question] just led him to point out where things are in his picture without 
realizing he was wrong.” This response shows a PST who only considers whether the question 
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helped Brandon “realize he was wrong” and failed to consider whether the question revealed more 
about Brandon’s thinking or positioned Brandon as capable of discovering his own error. 

Eliciting student thinking (gray). PSTs in the third stage value understanding students’ current 
thinking in addition to helping them develop correct conceptual thinking. As a result, they tend to 
select questions that elicit the student’s thinking about a specific aspect of their work. For example, 
the question in the Brandon experience, “Can you tell me more about where the fourths, the sixths, 
and the tenths are in your picture?” focuses the student’s attention on how his answer of tenths relates 
to his drawing of fourths and sixths. This question also elicits his current understanding instead of 
directly pointing out his error. At the end of the Brandon experience, 19 of the 22 PSTs who 
preferred this eliciting question provided justifications that highlighted a desire to understand 
Brandon’s thinking or allow him to come to his own understanding. For example, one PST liked the 
eliciting question because “we actually get the chance to observe Brandon's thinking and strategies. 
He is able to explain his thought process for us.” As PSTs begin to value understanding students’ 
current mathematical thinking, we hypothesize that they begin to realize the effort involved in 
understanding student thinking and recognize that the student’s thinking influences what he/she 
learns.   

Building on student thinking (learning goal). The final box represents the learning goal, where 
teachers pose questions that aim to build on, but not take over, the student’s thinking. Such questions 
often do elicit student thinking, but the description implies that there are additional ways to use 
questions to help students move forward in their thinking without reducing the cognitive demand or 
taking over the mathematical work. This corresponds to a value for teaching that not only draws out 
student thinking, but positions students as capable of developing, questioning, and refining their own 
ideas. For example, in the posttest, the simulated student Toby determined that sharing two 
sandwiches with three people equally would result in each person getting 5/6 of a sandwich. The 
question, “Can you show me the 5/6 of a sub that each person will get?”, asks Toby to pictorially 
represent his solution without indicating that his answer was incorrect. In doing so, Toby would have 
an opportunity to see that three shares of 5/6 of a sandwich would constitute more than two 
sandwiches—an unreasonable solution. Although 62 PSTs selected this question on the posttest, only 
38 picked a similar question on the other posttest item. The PSTs who selected both of these 
questions did not exhibit clear patterns in the earlier experiences that suggested a consistent 
preference for questions that built on, but did not take over, student thinking. We interpret these 
findings to suggest that our sample did not include a sufficient number of PSTs who were at the final 
stage in the learning trajectory.  

Discussion 
Our data suggest that, across different instructional situations, PSTs show consistent patterns in 

the kinds of questions they select. PSTs who funneled in some situations tended to also funnel in 
others, and those who chose eliciting questions tended to be consistent in this choice as well. In 
addition, PSTs who selected both funneling and eliciting questions fell between the two groups in 
terms of preferences for questions that, on the one hand, take over student thinking, and, on the other, 
draw out and build on student thinking. These patterns suggest that PSTs were at different stages in 
their thinking about the questioning practice. We hypothesize that some PSTs (funnelers) prefer 
questions that lead students to correct answers and do not see value in questions that merely elicit 
student thinking. Indeed, several PSTs we placed at the beginning of the trajectory expressed dismay 
when questions seemingly left students still confused, even if those confusions were exactly the ones 
students needed to work through. At the next stage (funneler-eliciter), PSTs value questions that 
elicit students’ thinking, but they also continue to value questions that lead students to the correct 
answer or resolve their confusion. Finally, PSTs farther along the trajectory (eliciters) value 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

868 

questions that draw out and build on students thinking, and in this study were also less likely to select 
questions that imposed a teacher’s idea. PSTs at this stage were more likely to criticize questions for 
being too leading and to value questions that prompted a student to figure something out “on his 
own.”  

Establishing these stages is an important first step to designing experiences that support 
movement along the trajectory. What does it take, for example, for PSTs who value resolving student 
confusion, to begin noticing and appreciating how questions can help them understand students’ 
current mathematical thinking? Once PSTs value building on student thinking, what kinds of 
experiences might support them in moving towards a preference for asking eliciting questions? 
Answering these questions involve consideration of the questioning practices themselves, the PSTs’ 
skills in enacting them, and their values in teaching. In our future work, we hope to further refine this 
trajectory and continue to develop interventions to help PSTs get closer to enacting the questioning 
practices in the ambitious goals endorsed by NCTM (2014).  
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In this paper, we integrate a set of theoretical considerations that together serve as a model for 
investigating how high-leverage practices could be generative of teacher learning. We use the 
context of rehearsals to investigate how the use of a specified question sequence aimed at eliciting 
student mathematical thinking can afford opportunities for novices and instructors to consider goals 
of ambitious mathematics teaching. In our results, we provide thematic categories for the problems 
that arose as novices used the sequence of questions, and demonstrate how they afforded the teacher 
educator opportunities to connect novices’ work to goals of ambitious mathematics teaching. In 
particular, we highlight how these opportunities arose in the midst of modifying to the question 
sequence and investigating the consequences of its enactment. 

Keywords: Teacher Education-Preservice, Rehearsals, Classroom Discourse, Instructional Activities 
and Practices 

Much of the work of teaching is non-routine, requiring a capacity to improvise in the midst of 
contingent interactions, marshalling knowledge and skill in the service of professional goals 
(Grossman, Compton, et al., 2009). Mathematics teachers, for example, must make judgments about 
how to respond to students individually and in groups, drawing on specialized knowledge of both 
mathematics and student thinking to further instructional objectives. All the while, they must treat all 
students as sensemakers and provide them with access to cognitively demanding tasks. For 
mathematics teacher educators, this problem of complexity is associated with another problem, one 
of enactment. Novice teachers must learn not only to analyze teaching but also to enact it. Some 
current approaches to teacher education employ “pedagogies of enactment” to engage novices 
directly in the interactive work of teaching (Grossman & McDonald, 2008). Within these pedagogies, 
teacher educators are organizing teacher learning around a set of core teaching practices derived from 
research on student learning and professional standards. These practices include, for example, 
eliciting and responding to student reasoning, representing student thinking, orienting students to 
each other’s ideas, and attending to students’ errors.  

To help novice teachers learn to implement these practices, there is also increasing interest in 
developing enactment tools, such as talk moves or specific activity frameworks. Tools translate 
abstract conceptual tasks into more concrete steps and objectives (Wertsch, 1998), supporting the 
user in implementing particular practices toward a goal. There is concern, however, that a focus on 
enactment tools may reduce teaching to a set of techniques, without attention to important purposes 
and commitments that guide teachers’ practice (Kennedy, 2015). In this study, we conceptualize the 
idea of “generative routines” as tools that support beginners to enact core teaching practices while 
simultaneously learning to use goals and professional commitments to guide decision-making. We 
ground the idea of generative routines in Hatano and Inagaki’s (1986) notion of adaptive expertise, 
where they distinguish between routine and adaptive experts and argue that the latter are those for 
whom performance of procedural skills is enhanced by an understanding of their purposes. Adaptive 
performance, they argue, requires developing both efficiency in routines and the professional 
knowledge and judgment to be able to innovate and adapt to new situations. Research on the 
development of expertise suggests that this balance is achieved through deliberate practice (Ericsson, 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

870 

Krampe, & Tesch-Römer, 1993), which allows the developing practitioner to gradually refine 
specific aspects of performance through cycles of repetition with feedback. 

Our study examines how generative routines can mediate novice teacher learning of ambitious 
mathematics teaching. We focus on a particular routine, a well-specified question sequence designed 
to support novices in the beginning work of eliciting and responding to multiple student strategies in 
mathematics: What did you see (or get)?  → Did anyone see (or get) anything different? → How did 
you see it (or figure it out)? →Did anyone see it (or figure it out) in a different way? As initial 
prompts, these questions serve a technical purpose by providing the novice with a set of moves to 
elicit a range of ideas that represent student thinking and their different levels of understanding. As a 
result, the novice utilizing this tool is confronted with a suite of demands associated with responding 
to students’ contributions that arise in the spaces in between consecutive questions.  

Our overarching research question is How can an enactment tool be generative for mathematics 
teacher learning? More specifically, we address this question by investigating (1) the problems of 
practice that arise for novices in the context of using the question sequence, and (2) how these 
problems afford opportunities for novices and instructors to connect the sequence to goals of 
ambitious mathematics teaching. We focus on problems of practice because research suggests that 
they open spaces that are generative of teacher learning (Horn & Little, 2010).   

Theoretical Framework 
We conceptualize learning to teach as increased participation in a community of practice where 

people coordinate their efforts to accomplish culturally-valued activities using tools that mediate 
goal-directed actions and shared cultural understandings. This sociocultural perspective on learning 
posits that there is circularity between tool use and the learning it is meant to facilitate (Sfard & 
McClain, 2002). Cultural tools mediate a learner’s participation in a practice while being themselves 
products of this process. A key aspect of this mediation process is the way tools direct participation 
toward various goals around which activities are organized. Wertsch (1998) theorizes two 
complementary ways in which tools mediate activity. First, a tool mediates action by translating what 
may stand as an abstract conceptual problem for a beginner into a series of concrete operations at 
which one can become proficient. Thus, learning to use a tool entails developing technical skills. 
Wertsch also argues that a tool can support enactment through the affordances (and constraints) it 
contributes to the development of goal-directed activity. In the case of practice routines, affordances 
arise when the use of a routine towards particular ends opens up “problem spaces,” problem solving 
situations in which the user can work through her understandings of particular concepts (Salomon & 
Perkins, 1998). 

Context and Methods 
The context of this study is a mathematics methods course taught by two teacher educators, 

designed around a summer learning institute (SLI) that provides four weeks of daily remedial 
instruction in mathematics and language arts for approximately 140 rising third graders of variable  
mathematics skills. The institute serves as a field setting for twenty-five novice teachers. To prepare 
for, and subsequently learn from, their work with children, novice teachers participated in daily 
Cycles of Enactment and Investigation of instructional activities that are common to the elementary 
mathematics curriculum, designed for novices to work on principled instructional practices and 
mathematical knowledge in integrated ways (Lampert et al., 2013).  

Each cycle begins with the novice teachers observing and analyzing an enactment of an 
instructional activity (IA) in a classroom context, either live or on video. Following the observation 
and analysis of the IA, novices next prepare to teach it to the SLI students, rehearsing it first publicly 
in front of their peers and the teacher educator who participate as students, exhibiting understanding 
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of how children think about disciplinary ideas. The teacher educator acts as coach, enabling both the 
rehearsing novice and others in the group to study a range of actions a teacher might take in response 
to particular student performances. All novice teachers then enact the IA with students in elementary 
school classrooms, video-recording themselves and writing analytic essays on their own 
performance. Continuing the cycle, the teacher educator guides a collective analysis using records of 
the enactments. 

A Question Sequence as a Generative Routine 
In ambitious teaching, student ideas and contributions are the essence of mathematics discourse; 

thus, a teacher’s work to elicit multiple student conjectures is particularly crucial. However, this 
practice is often at odds with many beginning teachers’ instincts to seek correct answers. For this 
reason, we specified a sequence of four questions to be used routinely across different IAs to provide 
a beginning structure for some of the initial elicitation work novices must do to facilitate collective 
problem solving within instructional activities.  

The first two questions, “What did you get?” and “Did anyone get a different answer?” (or 
variations of these questions), enable novice teachers to start gathering a set of possible solutions 
from multiple students while responding in a non-evaluative manner that positions different answers 
as conjectures for the group to evaluate. Once a representative set of conjectures has been elicited, 
the second pair of questions, “How did you figure that out?” and “Did anyone figure it out a different 
way?” provide novices with initial prompts to begin to elicit students’ reasoning about these 
strategies. These initial prompts serve a technical purpose by providing the novice with a set of 
moves to elicit a representative range of student thinking. As a result, the novice utilizing this tool is 
confronted with a suite of demands associated with responding to students’ contributions that arise in 
between the consecutive questions. Demands include pressing students to articulate their reasoning, 
establishing productive exchanges among students around key mathematical ideas, and representing 
different contributions clearly for collective consideration (Staples, 2007). These demands constitute 
a rich problem space associated with responding purposefully to student contributions that can be 
worked on collectively in rehearsals. In this way using the sequence as a tool creates affordances for 
novices to experiment with adapting to student performances.  

Data Sources and Analytic Procedures 
We analyzed 19 video-recorded rehearsals, representing the rehearsals facilitated by one of the 

teacher educators during the second and fourth weeks of the SLI. These two weeks of rehearsal 
videos were selected due to the prominence of the focal question sequence in the structure of the IAs 
being rehearsed. 

To analyze the rehearsal videos, we used Studiocode©, a software package that connects analytic 
codes directly to segments of video. We identified all rehearsal segments in which the question 
sequence (QS) in its entirety was being rehearsed, hereafter referred to as QS segments, and then 
narrowed in on portions of these segments where there were pauses in the simulation for exchanges 
between the teacher educator (TE) and novice teachers (NTs).  We refer to these sub-segments as 
TE/NT exchanges. There were 72 TE/NT exchanges within QS segments in our data set. Guided by 
our theoretical framework, we characterized the problems of practice that were discussed during 
these exchanges as a direct result of using the question sequence. To characterize this set of 
problems, we began with the two broad conceptual categories theorized by Wertsch (1998) and noted 
earlier: problems related to technical aspects of using the question sequence; and problems afforded 
through its use, i.e. problems arising as a consequence of asking questions in the sequence and 
eliciting student responses. Problems associated with aspects of practice unrelated to the question 
sequence were categorized as “other” and excluded from subsequent analyses. We then followed a 
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process of thematic analysis (Boyatzis, 1998) to identify sub-categories, developing short 
descriptions of the problems worked on in each exchange and labeling them for themes. We then 
discussed our emergent thematic categories to refine a final set of inductive sub-categories for each 
of the two broad categories. 

Inside both broad categories of problems, we then used open coding to characterize how 
participants drew on goals and professional commitments of ambitious teaching in addressing 
problems of practice. We developed analytic vignettes (Erickson, 1986) for a representative set of the 
TE/NT exchanges in order to characterize how a teacher educator can leverage work with an 
enactment tool, like the question sequence, to create opportunities to explicitly connect novice 
teachers’ work on eliciting and responding to a set of professional commitments like treating all 
students as sensemakers and providing equitable access to content (see Ghousseini, Beasley, & Lord 
(2015) for more details).  

Results 
Our analysis demonstrates how the use of the question sequence as an enactment tool, both in its 

technical aspects and through the problem spaces afforded by its use, brought forward a number of 
problems of practice that the novice teachers and teacher educator then collaboratively addressed in 
the rehearsal context. In managing these problems, participants engaged in a form of inquiry during 
which the teacher educator guided novice teacher participation in considering questions and solutions 
related to the use of the tool and its consequences. In the process, the teacher educator had repeated 
opportunities to connect judgments about adapting the question sequence to commitments of 
ambitious teaching, like providing students equitable access to learning and treating them as 
sensemakers. The problems of practice related to the technical use of the QS emerged when novices 
considered both adaptations to the wording of specific questions within the sequence and to the order 
of these questions. The problems related to the affordances of using the QS emerged when the NTs 
had to manage unanticipated student responses. Such responses required the TE and NTs to 
determine how to respond to student solutions, support their collaboration, and represent their 
strategies. We share illustrative vignettes from each of these categories of emergent problems.  

Problems Related to Technical Aspects of the QS 
How to adapt the order of the questions in the QS. During one rehearsal, novice teachers 

practiced the IA of Quick Images, which focuses on helping students determine the total number of 
items in two ten-frames that are flashed quickly. Specifically, the novices used the QS to engage 
students in using the five- or ten-structure of the ten-frames to determine the total quantity. A novice 
teacher asks, “As we go down the list of questions, if the first student [who was] asked to explain 
their strategy is understanding the five- and ten- structure, can we just stop at that part, or do we need 
to [use the other questions in the QS] to ask for different strategies?” In other words, the problem of 
practice that the novice teacher is considering is “If the teacher hears the correct answer to the 
problem and the student communicates sound reasoning about it, is it necessary to solicit different 
answers and strategies?” In her question, the novice mentions the instructional goal of the ten-frame 
activity as a way of legitimizing the problem of practice that she is bringing forward for everyone’s 
consideration. The TE, in response, provides several reasons why it still makes sense to continue 
with the next question in the sequence. 

TE:  So you want to look for other strategies because you want to find out as much about what 
students are thinking as you can, because you are still kind of assessing. And it is not about 
“this is the only strategy that is legitimate.” There are other strategies that are legitimate and 
valid strategies. 
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NT: But if we identify a student who is understanding the five and ten structure, could we not ask 
him to explain to the students too? 

TE:  That would be one move, or you could have other students revoice that strategy and see if 
they understand it. 

This example illustrates the way practicing the question sequence afforded opportunities to attend 
to novices’ personal understandings of the goals of teaching. In this example, the NT seems to be 
operating with the assumption that teaching is about getting quickly to an explanation of the correct 
answer.  Ambitious teaching rests on a different set of assumptions— like the importance of 
investigating alternative explanations and incorrect answers— which the TE can negotiate in 
exchanges like this one. The TE’s response stresses that the question sequence serves multiple goals 
beyond merely identifying the correct answer, and the correct strategy. It also emphasizes some 
aspects of the commitments of ambitious teaching: the importance of knowing the students as 
learners (finding out what they know and making instructional decisions accordingly) and treating 
students as sensemakers (legitimating different ways of reasoning about mathematics). Her response 
also underscores the importance of allowing students to collaboratively judge what is to be taken as 
shared. For instance, she suggests that even when a student proposes a correct strategy, the teacher 
should orient other students to his thinking and give them the space to make sense of it. 

Problems Related to the Affordance Aspect of the QS 
Representing students’ ideas as a result of using the QS. In this example, the novice teacher is 

faced with a situation that, from an ambitious teaching perspective, demands that she respond to a 
student contribution in a way that makes their thinking visible to other students and connects it to the 
mathematical goals of the lesson. This situation occurred during the third rehearsal of a Quick 
Images activity. The rehearsing novice teacher (R-NT) has flashed a card that showed 12 dots (a full 
ten-frame on the left side of the card, and another ten-frame with only two dots on the right side). She 
asks a variation of the question “How did you figure that out?” to elicit a student’s strategy for 
recognizing that a full ten-frame and two more dots was twelve in total: “How did you see 12?”  As 
one student explains that she saw 12 as “the full ten-frame and two more,” the R-NT attempts to 
represent the strategy on the card, roughly pointing with her fingers to the full ten-frame and then the 
two dots, while saying “10 and 2.” The TE deems the R-NT’s response appropriate by noting, “What 
you just did was a good idea, to use your finger [to represent the strategy on the card].” However, the 
TE points out that the manner in which the R-NT has represented the strategy on the card did not 
convey meaningful mathematical ideas to the students because she did not deliberately point to 
where “10” was on the card. One goal of this Quick Images activity is to help all students see that the 
ten-frame represents 10, which can be done by highlighting that the top and bottom rows each 
contain 5 dots when they are filled, and together the two rows add up to 10. The TE’s comment 
indirectly underscores a key commitment of ambitious mathematics teaching—to provide equitable 
access to learning by visually representing student strategies for collective consideration, and to 
target particular mathematical concepts.  

The TE then directs the R-NT to replay her response to the student strategy and practice using her 
finger more deliberately, tracing with her fingers where the 10 is while revoicing the student’s 
strategy.  Before she replays her response, however, the R-NT raises a concern about her own pattern 
of response in this kind of situation:  

R-NT: Should I ask, umm, I feel when I [represent her idea in this way] that I validate her answer 
by saying it. 

NT: Yeah, I was doing that yesterday in my class. I was repeating everybody’s answer. I don’t 
think that’s what we’re supposed to be doing. 
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R-NT: Like her answer will only be valid if the teacher says it again.  
TE: So what would you do instead?  

Two problems of practice are identified here by the NTs: one is concerned with how a teacher’s 
revoicing move may be unintentionally interpreted by students to be a form of validation of particular 
answers; the other relates to the frequency of teacher revoicing of students’ answers. Herbel-
Eisenmann, Drake, and Cirillo (2009), in fact, documented similar concerns on the part of their in-
service middle school teachers. They argued that teachers face dilemmas in using revoicing; they 
worry that an unintended function of revoicing could be to shift ownership of mathematical ideas 
from the students to the teacher. As a result, students may stop listening to their classmates and 
simply wait for the teacher to repeat different ideas. These unintended consequences of revoicing 
operate counter to a commitment of ambitious teaching: to treat students as sensemakers by giving 
them ownership of their intellectual work. By voicing their concerns in this example, the NTs seem 
to be acting on an implicit awareness of this commitment of ambitious teaching. With her question 
“What would you do instead?” the TE guides the NTs’ participation in considering the use of 
revoicing as a form of representation of student thinking. The R-NT, in response, offers that as the 
student is explaining a strategy, she could just represent it on the card without doing a lot of talking.  
The TE directs her to try it; however, as the R-NT replays her response to test it out, she mainly 
represents the student strategy (of adding ten and two more) by roughly pointing to the ten frames on 
the card. Her replay of the response opens up an opportunity to investigate its consequences. The 
investigation starts when the TE intervenes again.  

TE: So, the reason why you have to [restate the student strategy] is because what you’re doing is 
you’re taking her strategy and making it accessible to all the students by representing it on 
the card…. If you were just to use your finger, it’s not- it’s not connecting her strategy to 
what’s on the card.  So, you kind of have to say it in a way.  Does that make sense?” 

What the TE underscores in her intervention is that, in this case, the R-NT’s response must support 
students’ understanding of the meaning of “ten” by helping them connect verbal and pictorial 
representations of it. In this way, the TE connects the work of eliciting and responding to a guiding 
commitment of ambitious teaching: that giving equitable access to learning requires making explicit 
the different mathematical ideas that are shared during the lesson explicit.  

In another example also taken from a Quick Images activity, a R-NT was standing in front of a 
white board, flashing different cards to a group of seven students who are sitting in a semi-circle. 
After flashing a card representing the problem 9 + 4, and asking the first two questions in the 
elicitation sequence (What did you get? Did anyone get anything different?), the R-NT gets two 
responses, 13 and 14. In responding to the two different answers, she turns the card face up for 
students to check their answers.  However, as she does that, she orients her body and the card in the 
direction of one student who had incorrectly seen 14 dots. Given that this student was sitting at one 
end of the semi-circle, the TE intervenes, noting that by mainly angling the card toward that student, 
the R-NT was limiting the access of the students sitting at the other end of the semi-circle. She 
explains,  

TE: Remember, this is about everybody processing. So be careful not to walk over and make it 
about you and this student. So if you could stay [in the center of the semi-circle] and show 
the face of the card so everyone can see. You can ask her to explain [while you are standing 
there]. 

R-NT:  They really wanted to—and I made this mistake yesterday—they wanted to come up and 
show everybody how they did it. And I was letting them, but I think that I would not let them 
do this anymore. 
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TE: I would try to cut that out. You can just tell them “explain to me with your words,” and just 
help them articulate their strategy.  

In this instance, the novice gets in a problem space after trying to respond to the two strategies that 
she elicited with the first two questions of the sequence. The problem of practice that is at play 
pertains to managing the position of the representation so that students can have access to the 
mathematical ideas that the group is attempting to address. Positioning the representation in a way 
that allows every student to see it communicates to them that they are all accountable for judging the 
reasonableness of answers. Twice in her intervention, the TE reminds the R-NT about this important 
commitment of ambitious teaching: “Remember, this is about everybody processing” and “show the 
face of the card so everyone can see it.” The R-NT’s justification for her move underlines a 
problematic situation that she was trying to remedy and suggests that she was trying to attend to the 
goal of students’ joint collaboration: “they wanted to come up and show everybody how they did it.”  

Discussion  
Our study illustrates the potential of deliberate practice with a generative routine for supporting 

the learning of adaptive performance. Generative routines, like the question sequence, can function 
as a stable procedure that can reduce some of the initial complexity of relational practice. At the 
same time, enacting the procedure opens up a rich problem space for novices, who must confront the 
contingencies of students’ improvisational responses. As such, generative routines can be more than 
scripts or processes that scaffold performance. When novices have opportunities to navigate these 
problem spaces in the company of more experienced others, generative routines can mediate learning 
about goals of professional practice, including the commitments that enable practitioners’ judgment 
in situations of uncertainty. 

Our analysis reveals the important role played by the teacher educator in connecting the use of 
the tool to professional commitments of ambitious teaching. She participates in this role through 
various interpersonal engagements with the novice teachers, allowing them space for practicing the 
work of teaching while at the same time guiding their participation in it through various forms of 
interventions aimed at making explicit connections between particular courses of action and 
commitments of ambitious teaching. Our findings provide evidence of the teacher educator focusing 
the novices’ attention on the problematic situations that arise in practice and framing considerations 
for possible solutions around particular commitments of ambitious teaching. Without the teacher 
educator in this early stage of novice teachers’ experimentation with enactment tools like the 
question sequence, it may be difficult for them to recognize the problematic nature of situations and 
to translate their current understanding of the commitments of ambitious teaching into practice.  
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The Common Core State Standards Mathematical Practice, Model with mathematics, specifies that 
students should be able to apply the math they learn in school to “everyday life, society, and the 
workplace.” However, the way that mathematics is traditionally taught in school has led to an 
ingrained belief about what school math is and how it should be solved which may hinder PSTs from 
being effective at cultivating modeling practices in their students.  This study reveals both roadblocks 
and openings that can be explored to improve teacher education in the future, specifically regarding 
transferring mathematical concepts between settings and contexts. 

Keywords: Teacher Education-Preservice, Modeling, Instructional Activities and Practices 

It is frequently assumed that school mathematics provides students with the preparation they will 
need for life, however there are multiple barriers in place that prevent this goal from being achieved.  
Lave (1992) suggests that trying to both provide students with a variety of tools and procedures and 
preparation for life are “not…compatible values – they are contradictory.”  Stigler and Hiebert 
(1998) also reveal how the teaching of mathematics in schools is a cultural practice and that in the 
United States that practice leads to the belief that “school mathematics is a set of procedures.”  
Simultaneously, the Common Core State Standards for Mathematics (CCSSM) Standards for 
Mathematical Practice 4, Model with mathematics, emphasizes the need for students to be proficient 
at applying the mathematics they know to “everyday life, society, and the workplace.”  Recognizing 
that Preservice teachers (PSTs) beliefs and understandings about mathematical tasks will influence 
what they convey to their students, it is important to develop instruction geared towards guiding them 
towards embracing the CCSSM guidelines which have influence many schools’ curricula. 

White and Mitchelmore (2010) describe traditional mathematics teaching as the “Abstract Before 
Concrete” method where procedures are taught with the expectation that students will be able to 
apply them to other contexts.  This has not been shown to be effective and instead resulted in 
students viewing math as separate from life.  A different approach has been met with more success in 
understanding and application. 

The well-known Brazilian street-vendor study by Carraher, Carraher, and Schliemann (1985) 
revealed that children were able to correctly solve 98% of the given arithmetic problems when given 
in the context of their street vending responsibilities, 73.7% when given as a traditional word 
problem, but only 36.8% on a written formal assessment.  Other studies have shown similar results 
comparing the quality of responses and reasoning on tasks that varied in their levels of authenticity 
(Palm, 2008; Walkington et al, 2013).  These outcomes demonstrate the benefit of learning and 
solving math problems within a context that is relevant or authentic to the students’ prior 
experiences.  This is especially important given that the culture of schooling in the United States 
dictates that math is taught primarily in a classroom setting, and educators need to adapt best 
practices to the given setting. 

Studies done by Cooper and Harries (2002) and Palm (2008) show that students in school 
settings struggle with problems that are intended to be realistic and relevant to the students’ lives.  
Cooper and Harries suggest that the difficulties arise due to the students reacting to the “ground rules 
for school mathematics word problems,” that allow them to only consider the numbers introduced 
and the expected operation to complete the problem.  By comparing student responses on two sets of 
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story problems, one considered “less authentic,” the other considered “more authentic,” Palm 
concluded that increasing the “authenticity” of the tasks will increase the students’ ability to create 
realistic responses that incorporate their background experiences. 

We can use information gathered by investigating PSTs’ understandings of and approaches to 
mathematical problem solving to combat the perpetuation of the “mathematics as a set of 
procedures” mindset (Stigler & Hiebert, 1998).  The following research questions were explored to 
elicit this information: 1. How do the approaches PSTs take to solve two similar sets of mathematical 
tasks, one presented in a real-world context, and the other presented without context, compare? And 
2. Which tasks are preferred by the PSTs and why? 

Method 
Two sets of mathematical tasks were designed in different contexts.  One included a hypothetical 

financial scenario that was deliberately designed around their intended profession as a teacher.  The 
actual average salary for a fifth-year teacher in the same state as the university was selected for the 
salary base provided.  Also included were common expenses faced by professionals including a cell 
phone bill, a car payment, rent for housing, and income tax.  There was a description of a certificate 
of deposit (CD) account with compounding interest.  The housing costs were based on actual prices 
of two bedroom apartments in the state while the other bills were taken from statistical averages for 
the country since more local data was not available.  The PSTs were asked to solve tasks related to 
the scenario. When they asked for clarification, they were encouraged to make their own assumptions 
about what the question required.   

The second set of tasks consisted of one percentage problem that was devoid of any context, and 
one compound interest problem.  All of the necessary information regarding the interest account was 
provided including rate, initial deposit, length of time and compound frequency.  The formula for 
compound interest was provided as a “hint” but they were not asked specifically to use the formula. 
This set is referred to as the “abstract” set. 

Two first year PSTs, Elizabeth and Rachel, were recruited to complete a videotaped interview.  
Their teacher preparation program focuses on preparing teachers for grades k-8.  They were not 
given any information regarding the tasks prior to being interviewed.   

During the interview, the PSTs were asked to vocalize what they were thinking while solving the 
tasks.  They were given the tasks in opposite orders to examine whether one style of tasks influenced 
the solution strategies used on the other.  They were not allowed to look at the first set of tasks they 
completed while solving the second set of tasks.   After each set of tasks, the PSTs were asked 
questions relevant to that particular set of tasks. After both sets of tasks had been completed, they 
were asked more questions about which set they preferred, whether they were now uncertain about 
other answers that had given in the first set of tasks, and what they found interesting about the two 
sets while they were solving the tasks.  The PSTs had access to a scientific calculator throughout the 
interview. 

The transcripts were coded using a combination of a priori coding along with open coding 
techniques.  Some of the codes included were “numerical calculations”: calculations devoid of unit 
labels, “contextual calculations”: units, items, or labels were indicated while performing calculations, 
“relevance”: whether the situation or the tasks currently relate to the PSTs own lives or may be 
relevant to a situation they find themselves in later, and “preference”: indication of a preference of 
one style of tasks or one method of solving a task. 
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Results 
Two primary findings emerged through the analysis.  First, both PSTs expressed a preference for 

formulas when provided demonstrating a reliance on procedural computations. Second, both PSTs 
voiced appreciation for and favored the tasks that they considered relevant to their lives. 

Both PSTs demonstrated a preference for the formula when solving the tasks related to 
compound interest even though neither task required use of a formula to determine a correct 
response.  Elizabeth, who had been given the tasks related to the finance scenario first said 
emphatically, “oh, they give the formula, good!” when presented with the interest task with the 
formula provided.  More importantly, even though she had correctly figured out the interest when 
first solving the interest task for the set of tasks based in context without the formula, when she was 
given the opportunity to solve with the formula at the end of the interview, she solved it incorrectly.  
When asked which method she thought was correct, she said the first way she did it was wrong, even 
though that was, in fact, the correct solution.  “I feel like it should be the same, but they made a 
formula for it and this is what the formula says. [Elizabeth, 33 min. 10 sec.]”  She had more faith in 
using formula than she did in her own logic and reasoning using the contextual clues given in the 
scenario.   

Rachel, who had been given the abstract tasks first, had similar inclinations regarding her school 
math experience, “I…remember this formula from previous classes in high school [6 min 30 sec.]” 
but she would have liked to have been told the meaning of each of the letters in the formula, “saying 
like, P equals your initial deposit, or like n equals your, I’m not exactly sure, but like r equals rate [16 
min 15 sec].”  She clearly recognizes this as math she’s seen before in previous high school classes 
and rather than desiring to understand why the formula works in order to use it more effectively, she 
preferred to be told where to put the numbers in the given formula.  She later says that “I feel like 
this would work with the formula from the previous task [26 min 15 sec]” when approaching the task 
in the contextual set of tasks that included compound interest.  The formula was not provided on the 
task paper itself, but she wrote it on her own paper in order to use it.  It is important to note that while 
she showed that she understood how formulas work in general, and what the compound interest 
formula was used for, she was not able to use it correctly in either context.   

In fact, neither PST was able to compute the correct answer using the formula.  They particularly 
struggled with what “n” represented, 

 “Now I’m looking at the semi-annually part and seeing if I can do anything with that…Maybe 
it’s, okay well if I say like twice a year? Then maybe ‘n’ could be maybe I’m either thinking like 
two or point five [Rachel, 9min 20sec]” 

 “…and then ‘n’ I would believe would be two cause it’s twice a year, ... and I have nowhere else 
to put that number, so I’m just going to go for it and see if this makes sense. [Elizabeth, 27min 
45sec].” 

If either PST understood the relationships between the variables involved in the formula, they 
may have had more confidence in determining the value and placement for “n.”  Instead, both PSTs 
frequently mentioned the need to put the numbers in the formula, but neither elaborated on their 
understanding or interpretation of any of the other variables outside of how they knew which letter 
the numbers would replace in the formula.  Neither attempted alternative methods of solving the 
problem without the formula while working on that set of tasks. 

Both PSTs found the contextual set of tasks more relevant as well as more interesting.  Elizabeth 
likened the bills to her future living arrangements where she will be responsible for paying for her 
part of a shared apartment.  She also said that “it’ll be even more relevant to me in the future [18 min 
20 sec].”  Rachel admitted that she was not currently responsible for paying any of her own bills, but 
did acknowledge future relevance, “I should have a car and an apartment and … stuff like that so I 
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should, in the next four years, have to be paying all these sorts of things [42 min 5 sec].”  Their 
mutual preference for the contextual scenario tasks ties into their appreciation of the relevance of the 
scenario.  Rachel articulates this connection well when she said, “You’re given this problem where 
you’re directly looking at something you’re going to have to do in the future, then it’s more 
interesting because … you will eventually have to take all these things into consideration.  So it just 
makes more sense than just, like, stick this into this formula and find some answer [44 min 0 sec].”  

Conclusion 
The PSTs interviewed both showed a strong inclination towards the use of procedural methods 

and formulas over reasoning and alternate solutions.  This indicates that both of them have 
internalized the belief that “math is a set of procedures (Stigler & Hiebert, 1998)” This has the 
potential to be problematic later as teachers when they try to teach their students proficiency in the 
use of mathematical skills for “everyday life, society, and the workplace. (NGAC, 2010).” 
Encouragingly, both PSTs recognized their own interest in solving interesting and relevant tasks 
which may help them understand the importance of providing similar tasks to their own students. 

Many PSTs currently in teacher preparation programs likely did not encounter many modelling 
opportunities in their own classrooms.  For this reason, further investigating their current 
understandings and beliefs on mathematically similar but contextually different tasks could inform 
the creation of more effective instruction on the importance of incorporating modelling in their own 
math classrooms.  Smaller scale comparison activities can also be used within teacher preparation 
programs to demonstrate to PSTs their current biases and the importance to overcome them to 
potentially make math more inviting to their own students who will then no longer have to wonder, 
“when will I use this?” 
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“WELL, THEY UNDERSTAND THE CONCEPT OF AREA”: PRE-SERVICE TEACHERS’ 
RESPONSES TO STUDENT AREA MISCONCEPTIONS  

 Cristina Runnalls Dae S. Hong 
 University of Iowa University of Iowa 
 cristina-runnalls@uiowa.edu dae-hong@uiowa.edu 

The purpose of this study was to explore how elementary pre-service teachers responded to student 
misconceptions about area, within the context of their mathematics content knowledge. We carried 
out pre-assessments and interviews with 24 pre-service teachers enrolled in a geometry and 
measurement course. Findings indicated a misattribution of understanding to students, conceptual 
use of visual representations, and differences in response types depending on initial content 
knowledge. In many cases, pre-service teachers leveraged their understanding towards productive 
responses. Recommendations for supporting pre-service teachers in navigating the intersection 
between content and pedagogical knowledge are discussed. 

Keywords: Measurement, Teacher Education-Preservice, Teacher Knowledge 

The knowledge required for successful mathematics teaching is complex and made up of several 
components, including common and specialized subject matter knowledge, as well as knowledge of 
students and teaching (Ball, Thames, & Phelps, 2008). Specialized knowledge for teaching is 
significantly related to student achievement gains (Hill, Rowan, & Ball, 2005), highlighting the 
importance of developing this knowledge in pre-service teachers (PSTs).   

Considering the importance of specialized subject matter knowledge, there exist concerns 
regarding the content knowledge of elementary PSTs. One content area that has drawn attention is 
area measurement. Past research has found that PSTs struggled with area concepts, exhibiting 
procedural understanding and misconceptions like those of students (Baturo & Nason, 1996; Livy, 
Muir, & Maher, 2012; Murphy, 2012). This apparent lack in content knowledge may lead to 
apprehension about the effectiveness of the PSTs’ future area instruction.  However, there is neither 
time to completely readdress the topic, nor would this be useful for all PSTs.  Instead, it is fruitful to 
explore the ways in which PSTs put the area-specific knowledge they do possess to use, and the ways 
in which we can support their own personal transformations of knowledge. 

The purpose of this study was to explore how elementary PSTs leveraged their knowledge to help 
address student misconceptions about area. We were interested in the connections between PSTs’ 
content knowledge, responses to student work, and how PSTs negotiated the intersection between 
multiple types of knowledge. To this end, the research questions guiding the study were the 
following: (1) What types of pedagogical strategies do elementary PSTs engage in when responding 
to student area misconceptions? (2) How do elementary PSTs leverage their own understanding of 
area concepts into responses to student area misconceptions? 

Related Literature 
Geometric area has strong connections to experiences with the physical world, as well as other 

topics in mathematics (Sarama & Clements, 2009). Learning about area marks an early shift for 
students into two-dimensional mathematics, and has the potential to be used as a tool for estimation, 
manipulation, and visual representation. Unfortunately, several studies have found that students 
frequently do not understand these deep concepts, and instead take away from area instruction the 
formula length × width (Zacharos, 2006). PSTs have also exhibited the same area misunderstandings 
as students and may take these forward with them (Livy et al., 2012; Murphy, 2012).  Despite some 
misconceptions, however, PSTs do have valuable knowledge about area measurement. PSTs in past 
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studies have exhibited an understanding of area as two-dimensional space and a concrete measure 
which can be calculated (Baturo & Nason, 1996; Livy et al., 2012).  While perhaps not ideal 
conceptual understandings of area, this knowledge represents a key starting point in mathematics 
content courses and for PSTs’ future interactions with students. 

One approach for understanding how PSTs knowledge may be used in teaching is to analyze their 
responses to hypothetical student work. This method allows PSTs a longer time for reflection and 
offers a low-risk setting for exploring pedagogical strategies. At the same time, responding to student 
work is a central component of mathematics teaching. Analyzing student work in the past has 
clarified how PSTs respond to errors and student-invented strategies (e.g. Busi & Jacobbe, 2014; 
Son, 2016). This method can provide insight into how we may support PSTs in developing their 
content knowledge into relevant and useful pedagogical knowledge. 

The framework for this study is that of a mathematical knowledge for teaching composed of 
multiple components: common content knowledge, specialized content knowledge, knowledge of 
content and students, and knowledge of content and teaching (Ball et al., 2008). We were interested 
in exploring our PSTs’ existing common and specialized content knowledge, and the transformation 
of this knowledge into mathematical knowledge for teaching.  

Methodology  
The study took place at a large Midwestern public university. The participants (n=24) were 

elementary PSTs enrolled in a 15-week geometry and measurement content course.  The course is 
one of several available mathematics courses recommended in the first semester of enrollment.  The 
participants were all female, and had diverse educational and mathematical backgrounds.  

Data Collection 
Data collected included an area pre-assessment, given prior to the course measurement unit. The 

assessment consisted of seven questions designed to assess both common and specialized content 
knowledge, as well as knowledge of students. Four questions addressed conceptual understanding of 
area (e.g. area as a covering of units). Three questions asked for responses to hypothetical student 
work. Assessment tasks and student transcripts were adopted from prior studies (e.g. Sarama & 
Clements, 2009; Zacharos, 2006). A sample task is given in Figure 1. 

 

 
Figure 1: Written pre-assessment sample task. 

Following the pre-assessment, interviews were conducted with all participants. Each semi-
structured interview was conducted by the first author, and was approximately one-hour long. 
Participants revisited pre-assessment questions, providing further detail about their responses. 
Special care was taken to probe responses to student misconceptions, exploring in depth participants’ 
knowledge of content and students as well as knowledge of content and teaching.  
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Data Analysis 
Pre-assessments were examined first to determine participants’ procedural and conceptual 

understanding. Responses were analyzed using a 3-level scale to determine approximate content 
knowledge, ranging from 0 points for an incorrect response (e.g. suggesting comparison of perimeter 
when asked for area), to 2 points for correct responses with accurate justification. Participants were 
divided into three levels according to natural divisions in the range of scores.   

Once interviews were complete, these were qualitatively analyzed with pre-assessments and 
reflective memos.  Our analytical framework for pedagogical strategies was borrowed from Son and 
Sinclair’s (2010) framework for analyzing PSTs’ responses, and consisted of categories such as 
conceptual versus procedural focus, show-tell versus give-ask, and pedagogical actions (re-explain, 
probe thinking, etc.). After an initial coding, the data were revisited to examine the ways in which 
specific levels of content knowledge interacted with pedagogical strategies.  Responses to student 
misconceptions were viewed within the context of content knowledge, forming a bridge between 
specialized content knowledge and content-specific knowledge for teaching. 

Findings  
Analyses of the pre-assessments indicated that most participants possessed a procedural and 

formula-driven understanding of area.  Participants applied the formula length × width whenever 
possible, and struggled in the absence of numerical computations.  Four PSTs were categorized as 
high CK, twelve as medium CK, six as low CK, and two were excluded due to missing data.  

Choices of pedagogical strategies differed among participants, varying according to content 
knowledge and personal preference.  PSTs’ pedagogical strategies were split somewhat evenly 
between procedural and conceptual responses, but were frequently teacher-focused and centered on 
showing or telling the student how to proceed.  While most participants could identify key gaps in 
understanding exhibited by student work, they struggled to supplement those gaps.  One frequent 
suggestion (11/24 participants) for Figure 1 task was for the student to carry out more practice 
problems, suggesting a high value on procedural fluency. Other recommendations included 
presenting alternate procedures (18/24 participants) or suggesting the student simply needed a re-
explanation of the concept of area (14/24 participants).  

Additionally, there was frequently a misattribution of understanding to students.  Several 
participants claimed that the student from the Figure 1 task understood area, and only needed to 
review correct application of the formula.  One participant stated that “They know you multiply base 
times height for simple shapes…they understand that, they just don’t understand that you can divide 
this shape into those shapes that they know how to find the area of and then add them all together” 
(Participant #12). Through their responses, PSTs relegated errors in student work to procedural 
mistakes, rather than conceptual misconceptions. This belief then tended to limit the pedagogical 
strategies employed to a procedural focus.   

Several interesting points arose from analyses of the connections between strategies and content 
knowledge. All four participants with high content knowledge preferred show-and-tell strategies, 
levering their content knowledge to provide multiple procedural approaches to the problem.  These 
approaches tended to focus on arriving at the correct answer through multiple methods. Meanwhile, 
participants with low content knowledge were more likely to adopt give-and-ask strategies, offering 
questions and prompts for students even if they were not necessarily sure of the answers themselves. 
Participants with medium content knowledge tended to employ all varieties of pedagogical strategies, 
ranging from telling the student how to carry out a procedure to suggesting cognitive conflict and 
conceptual probes. 

Another finding was the use of visual representations in conceptual responses. This type of 
response introduced cognitive conflict via visual representations of a “full” rectangle (compared to 
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the partial shape as in Figure 1) and asked the student to note the discrepancy in areas. For some 
participants, a preference for visual diagrams seemed to stem from an inability to verbalize 
conceptual ideas, and they struggled in explaining the mathematics behind their diagrams. Despite 
this, they could still transform their understanding of visual diagrams into conceptual student help, 
drawing attention to key ideas even if they were unable to verbalize them.   

Discussion 
Despite exhibiting a lack of deep conceptual knowledge of area, many PSTs in this study were 

able to identify sources of error in student work and attempted to formulate appropriate responses.  
While pedagogical actions were frequently teacher-centered, there was a mix of both procedural and 
conceptual responses, and many participants succeeded in transforming their own understanding into 
productive advice for students.  Most notable is that a high level of content knowledge was not 
required for this process, and many students at low and medium levels of content knowledge could 
provide conceptual feedback. While there were at times mathematical errors in this feedback, such 
approaches reflect a positive starting point for teacher educators to build upon. On the other hand, 
participants with high content knowledge preferred procedural responses, indicating that these PSTs 
may require an approach focusing on pedagogy rather than content. While a few participants 
reinforced errors in their responses, these were participants who had particularly weak content 
knowledge not reflective of the group. 

These findings indicate that PSTs at all levels of content knowledge are able to identify and 
address common area misconceptions among students. While their pedagogical strategies may not be 
considered ideal, they form a key starting point from which teacher educators can begin to move 
forward. Encouraging students to not only identify misconceptions, but shift towards addressing 
them both conceptually and with mathematical accuracy is a key step towards supporting the 
transition to specialized content knowledge and knowledge about students and teaching. Most 
importantly, it remains critical to acknowledge the understanding that PSTs bring to the classroom, 
and to work from it towards common educational goals. 
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ADDRESSING MINDFULNESS, MINDSET, CONTENT KNOWLEDGE, AND ANXIETY IN 
MATHEMATICS FOR PRESERVICE TEACHERS  

 Natasha E. Gerstenschlager Janet L. Tassell 
 Western Kentucky University Western Kentucky University 
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Research has demonstrated a connection between teachers’ ability to teach and their content 
knowledge, attitudes, and beliefs (Ball, 1991; Ernest, 1989; Fennema & Franke, 1992; Wilkins, 
2008). As such, Wilkins (2008) suggested that teacher education programs address these components 
alongside content knowledge. To address this, we developed and implemented seminars that 
incorporated strategies for improving mindfulness, reducing anxiety, improving self-efficacy, and 
shifting toward a growth mindset for our teacher candidate participants. Our project also included a 
personalized learning pathway component, designed to develop participants’ self-efficacy and 
content knowledge in mathematics and their knowledge of how to use such pathways in their future 
classrooms. In this paper, we present preliminary qualitative results from this research.  

Keywords: Affect, Emotion, Beliefs, and Attitudes, Teacher Beliefs, Teacher Education-Preservice 

Perspectives  
Research has consistently shown a link between mathematics teachers’ content knowledge, 

attitudes, and beliefs and their ability to teach effectively (Ball, 1991; Ernest, 1989; Fennema & 
Franke, 1992; Wilkins, 2008). Similarly, links have been found between elementary teachers’ 
mathematics anxiety and their students’ anxiety (Beilock, Gunderson, Ramirez, & Levine, 2010). 
Likewise, Hadley and Dorward (2011) found that when elementary teachers had lower levels of 
anxiety about teaching mathematics, their students had increased mathematics achievement scores. 
This could be explained by the fact that as teachers’ mathematics anxiety increases, their self-
reported level of efficacy decreases (Swars, Daane, & Giesen, 2006). Unfortunately, even with years 
of research, students and teachers are still developing anxieties toward mathematics that is affecting 
students’ ability to learn and teachers’ efficacy.  

Given this issue, Wilkins (2008) noted that teacher education programs must attend to these 
components in conjunction with content knowledge to improve the value of learning the content. 
Although these components are certainly necessary as a focus, new research on the ideas of 
mindfulness and mindsets in the classroom indicate that these might also need to be considered to 
help the mathematics education community overcome many barriers. In a recent study of fourth and 
fifth grade mathematics classrooms, students that engaged in mindfulness exercises did 15% better in 
mathematics than their peers (Schonert-Reichl et al., 2015). This study asserted that mindfulness is 
also connected to the teacher and subsequently to his or her classroom. Specifically, Schonert-Reichl 
and colleagues (2015) observed that teachers in the study who participated in mindfulness exercises 
indicated having less stress. In regard to mindset, Boaler (2016) recently noted the importance of 
mindset in learning mathematics. She stated, “the fixed mindsets that many people hold about 
mathematics often combines with other negative beliefs about mathematics, to devastating effect” (p. 
ix). Hence, the importance of the combined effect of mindset, mindfulness, anxiety, self-efficacy, and 
content knowledge needs to be explored. 

In this project, we developed professional learning community seminars that incorporated 
strategies for addressing many boundaries within mathematics education including improving 
mindfulness, reducing anxiety, improving self-efficacy, and shifting toward a growth mindset for our 
participants, preservice elementary teachers (PSETs) currently enrolled in a mathematics methods 
course. Our project also addressed issues of access by including a personalized learning pathway 
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component that was designed to develop PSETs’ self-efficacy in mathematics, their content 
knowledge, and their knowledge of how to use and incorporate personalized learning pathways in 
their future classrooms. In this paper, we present preliminary results from our analysis that is 
currently underway.  

Methods 
Our research questions were: How does involvement in the project influence participants’ 

mathematics mindfulness, anxiety, and mindset; and how does involvement in the project influence 
participants’ mathematics self-efficacy? Given that both qualitative and quantitative data were 
needed to make inferences (Tashakkori & Creswell, 2007), we employed a mixed-methods research 
design. Specifically, we used a concurrent embedded design so that the quantitative and qualitative 
data could be triangulated to better understand how PSETs’ participation in the project influenced the 
constructs of interest.  

Quantitative data included a pre- and post-survey that assessed participants’ mindfulness (Brown 
& Ryan, 2003), anxiety (Fennema & Sherman, 1978), mindset (Dweck, Chiu, & Hong, 1995), and 
self-efficacy (Enochs & Riggs, 1990; Enochs, Smith, & Huinker, 2000; Riggs & Enochs, 1990). To 
compare, the control group also took the surveys but did not engage in the seminars. All participants 
had taken the PRAXIS by the culmination of the project. This assessment provided an additional 
reference point that is an accessible reflection of their growth in content knowledge. Finally, we 
collected results from PSETs’ engagement with the personalized learning pathway, Khan Academy. 
Khan Academy was chosen as the personalized learning platform due to it being free software and 
because it is frequently used in classrooms. This choice was intended to reveal both the potential 
usefulness and pitfalls of the platform.  

Qualitative data collected from the intervention group included interviews, observation notes 
from seminars, and response to journal prompts. These sources were analyzed first using an open-
coding scheme, and then, using these results to develop themes. All students in the project were 
enrolled in a mathematics methods course at a large university in the southeast United States. 
Participants could self-select into either the intervention or control group based upon their 
availability to participate in the seminars. Participants from the project’s Fall 2016 semester included 
13 PSETs in the intervention group and 16 in the control group. Participants in the intervention group 
were expected to participate in three professional learning seminars during the semester, each lasting 
approximately two hours, as well as engage in a personalized learning pathway during their personal 
time.  

Results 
In examining the correlations for both groups, the intervention group showed significant 

relationships between math anxiety (AMAS) and Personal Mathematics Teaching Efficacy (PMTE) 
(r = -.753), Mindset and teaching efficacy (PMTE) (r = .451), AMAS and Mindset (r = -.496), 
Mindset and GPA (r = .435), and PRAXIS score and GPA (r = .462). Significant relationships were 
also noted for the control group between PMTE and AMAS (r = -.60), Mindset and Mindfulness (r = 
.523), Mindset and GPA (r = -.487), PRAXIS scores and GPA (r = .405), and PRAXIS scores and the 
results on the proficiency exam (r = .540). Additionally, we used a paired sampled t-test to explore 
the relationship between variables assessed from pre- to post-test. Results revealed statistically 
significant changes from pre- to post-test for the intervention group for AMAS (p = .000), PMTE (p 
= .000), and Mindset (p = .025). Significant differences were not found for Mathematics Teaching 
Outcome Expectancy (MTOE) and Mindfulness. Statistically significant results were found for the 
control group for the variables AMAS (p = .025) and PMTE (p = .006).  
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Examining the Khan Academy data, we found a strong, positive correlation between the amount 
of time students practiced skills and the amount of concepts marked as mastered within the platform 
(r = .940). This is not surprising, but can be used to demonstrate to students the importance of 
practicing certain skills. As part of the participants’ journals, they were asked to comment on their 
use of Khan Academy. These journals revealed that common topics students studied were fractions 
and topics they were expected to teach in their placement. Additionally, we also found that many 
enjoyed the personalized pace and focus, however, several did not regularly engage because of a lack 
of time or because they forgot.  

The preliminary analysis of the qualitative journal entries revealed interesting results. In regard to 
mindfulness, analysis of participant journals indicated that, over the course of the project, several 
participants developed mindfulness in two areas of their life: their personal life and academic life 
(i.e., as a teacher candidate). As an example of the former, one participant described being more 
aware of their surroundings “rather than being on autopilot” (Journal 2, Participant 1). As an example 
of the latter, another participant claimed becoming more aware of their students so that they “can 
better teach them core math strategies” (Journal 2, Participant 2).  

Similar results were found with respect to participants’ math anxiety and mindset. For example, 
many participants indicated a general awareness of when their internal dialogue aligned with a fixed 
mindset and tried to change this internal dialogue. We see this in Participant 4’s response on the third 
journal: “I have tried to intentionally speak growth mindset words to myself.” Additionally, anxiety 
toward teaching mathematics seemed to decrease for participants. One participant stated that she 
“was less afraid [of] teaching [her two] math lessons this semester” (Journal 3, Participant 5). For 
math anxiety and self-efficacy, the preliminary qualitative results were sorted into three main themes. 
One theme was that many revealed an increase toward acknowledging their own ability to reduce 
their anxiety and/or increase their self-efficacy. Another theme was that some connected their 
anxiety/self-efficacy to events done to them (e.g., timed multiplication tests) or as something done by 
them (e.g., choosing to avoid “difficult” math classes). The last theme was that many acknowledged 
the tools that we introduced to them as a way to reduce anxiety and increase self-efficacy. In regard 
to mindset, awareness of participants’ personal mindset and the importance of a growth mindset 
increased. Second, many saw a disconnect in certain areas where they were fixed in one area and 
growth in another. Last, many made a direct connection to teaching. After the seminars, they 
purposefully monitored their body language and speech inside their school placement so as not to 
indicate their fixed mindedness in a topic in hopes that their students will not have the same mindset 
that they do. 

Conclusion 
The “Improving Mindfulness, Anxiety, and Content Knowledge in Mathematics Pre-Service 

Teachers” project was designed to develop PSETs’ self-efficacy in mathematics, their content 
knowledge, and their knowledge of how to use and incorporate personalized learning pathways in 
their future classrooms. The results from this study indicated that participants in the project 
developed a heightened awareness of their mathematics mindset and mindfulness. Participants also 
demonstrated lower anxiety related to teaching mathematics and increased self-efficacy in 
mathematics due to engagement with a personalized learning pathway (i.e. Khan Academy). If the 
analyses of the remaining data indicate similar results, implications for the teacher education 
community might include addressing how to incorporate similar activities and projects in teacher 
education programs. 
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DEVELOPING CRITERIA TO DESIGN AND ASSESS MATHEMATICAL MODELING 
PROBLEMS: FROM PROBLEMS TO SOCIAL JUSTICE 

 Ji Yeong I Hyunyi Jung Ji-Won Son 
 Iowa State University Marquette University  University at Buffalo-SUNY 
 jiyeongi@iastate.edu hyunyi.jung@marquette.edu jiwonson@buffalo.edu 

Despite the interest in modeling and the importance of social justice, there has not been much 
attention to connecting modeling with social justice. To fill this gap, we developed criteria for 
mathematical modeling problems that embrace the characteristics of problems and social justice 
through three phases: literature analysis, thematic categories, and piloting. The criteria will help 
teacher educators when selecting modeling problems to be used in teacher preparation programs 
and assessing the modeling problems posed by PSTs. 

Keywords: Modeling, Equity and Diversity, Teacher Education-Preservice, Problem Solving  

The purpose of this study is to develop criteria to design and assess mathematical modeling 
problems that embrace social justice contexts and to reflect on ways in which the criteria can be used 
to assess preservice teachers’ (PSTs) ability to pose problems. Mathematical modeling has been 
emphasized since the Common Core State Standards for Mathematics (CCSSM) include model with 
mathematics as both content and process standards (National Governors Association Center for Best 
Practices & Council of Chief State School Officers [NGA & CCSSO], 2010). The CCSSM define 
modeling as “the process of choosing and using appropriate mathematics and statistics to analyze 
empirical situations, to understand them better, and to improve decisions” (p. 72). Although the 
emphasis on mathematical modeling grows in learning and teaching critical mathematics as 
described in the CCSSM, PSTs are not yet adequately prepared to design and implement effective 
modeling problems. The characteristics of modeling, especially linking mathematics to real-life 
situations and involving students into decision-making processes, are shared with social justice 
problems. However, there is little consideration of social justice in frameworks related to 
mathematical modeling. For example, frameworks for developing thought-revealing modeling 
activities (Lesh, Hoover, Hole, Kelly, & Post, 2000) or rubrics developed for evaluating students’ 
processes and solutions to modeling problems (Anhalt & Cortez, 2015) address important real-life 
contexts in general, rather than focusing on social justice issues. Gutstein (2003), on the other hand, 
developed mathematics problems with real-life contexts that reveal the injustice world but did not 
provide criteria for developing such problems. In this paper, we describe how we initiated and piloted 
the criteria that help teachers pose modeling problems with social justice contexts and use it to assess 
modeling problems posed by PSTs.  

Process of Developing Criteria for Modeling Problems with Social Justice Contexts 

Phase 1: Analysis of Prior Research  
Lesh and Lehrer (2003) define modeling as a “process” of developing mathematical descriptions 

for specific purposes in particular situations. In this sense, modeling is placed in a spectrum of 
problem solving because problem solving is a process that requires solvers to understand a puzzling 
situation and to find a solution of the situation (Baroody, 1992). Problem solving seems a broader 
range of mathematical processes than modeling because problem solving do not specify the puzzling 
situations while modeling is required to involve a real-world situation (Anhalt & Cortez, 2015). A 
similar relationship appears between problems and modeling problems. Although many teachers 
mistakenly use the term problems for any mathematical tasks, only the tasks satisfy certain criteria 
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can be “problems.” Charles and Lester (1982) argued that problems must not show an obvious way to 
find a solution, and Van de Walle (2003) agreed problems must not have a predictable solution. 
When we compared the process of modeling with that of problem solving, more similarities revealed. 
Pólya (2004) proposed four phases of problem solving as understanding the problem, devising a plan, 
carrying out the plan, and looking back, which are similar to the mathematical modeling cycle. 

The difference between problems and modeling problems is their contexts: the situations of 
modeling problems are articulated within a specific situation in the real world while problems do not 
necessarily include a real-world context. Some studies focus on a specific context of modeling 
problems without using the term, modeling. Among these, the problems involving social justice have 
a unique characteristic because these problems not only use the context of critical parts of the real-
world but also encourage students to change their perspectives and take an action to solve the real 
problem. For social justice, it is critical to help students “understand, formulate, and address 
questions and develop analyses of their society” (Gutstein, 2003, p. 40).  

Phase 2: Thematic Categories to Define Mathematical Modeling with Social Justice 
We reconceptualized the relationships among problems, mathematical modeling problems, and 

social justice problems as shown in Figure 1. Because learners choose appropriate mathematics to 
analyze empirical situations when working on modeling problems, a specific solution pathway 
should not be given during this process. Therefore, modeling problems must satisfy the crucial 
condition of problems and need to be included in the set of problems (Figure 1). In addition, 
modeling problems are more inclusive than social justice problems. 

 

 
Figure 1. The relationships of problems, modeling problems, and social justice problems. 

Although various types of contexts can be integrated into modeling problems, the goals of the 
problems of social justice is to support students not only to learn mathematics but also to actively 
develop their capability to read the world and become an agent of change. Thus, we placed the set of 
social justice problems within the set of modeling problems. The social justice problems are not 
defined as the tasks that just involve social justice contexts. If a task includes a social justice context 
only but provides a specific solution pathway, it is not a “social justice problem.” Within this 
operationalization, we developed a draft of criteria based on the related literature, which was refined 
through the piloting phase. 

Phase 3: Piloting and Finalizing Criteria for Mathematical Modeling with Social Justice 
The third phase was to use the criteria to analyze the modeling problems that PSTs developed. 

We collected data from 30 PSTs in two 4-year university-based teacher preparation programs in the 
Midwestern United States. Participants were sophomores to seniors enrolled in K-8 teacher 
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preparation programs in each of their programs. The PSTs had some experience of solving modeling 
problems within their class before assigned the modeling problem development assignment. The 
criteria draft was not introduced to the PSTs although they learned the definition of modeling through 
reading relevant articles and discussions in class. The PSTs worked as a group of 3 people for 
approximately 2-3 weeks to develop their modeling problems. The first and second authors analyzed 
the collected 10 problems using the initial criteria and managed to reach a consensus through several 
discussions while finalizing the criteria.  

Finalized Criteria for Social Justice Mathematical Modeling  
Table 1 is the finalized criteria. The first three columns shown in Figure 1 indicate the subset 

relationship among problems, modeling problems, and social justice problems. 

Table 1. Criteria for Modeling Problems that Address Social Justice Issues  

   

Criteria  Description 

Social Justice Problem
s 

 

 

Social Justice Context 
(Gutstein, 2003) 

• The context involves unjust situations of the real world and encourages 
learners to be an agent of change by identifying mathematical conflicts 
and resolving the conflicts. 

M
odeling Problem

s 

Realistic Context, 
Problem, and Solution 
(Lesh et al., 2000; 
Schukajlow et al., 
2012) 

• The embedded context must be realistic and familiar to the target 
students.  

• The embedded problem(s) requires learners to identify variables and 
should likely happen in their lives. 

• The solution(s) must be realistic in the given real-world context.  
Multiple 
Representations (NGA 
& CCSSO, 2010) 

• Multiple representations (e.g., tables, graphs, symbols, words) can be 
used to describe the problem situation.  

Generalizable/Transfer
able Knowledge  
(Lesh & Lehrer, 2003) 

• The problem requires learners to apply their findings to other related 
problem solving situations. 

• The problem requires learners to develop mathematical knowledge that 
can be used in other similar situations. 

Shareable Approach  
(Lesh & Lehrer, 2003) 

• Learners solve problems for a client outside classroom.  
• The problem-solving process and solutions can be shared with other 

people for their own use. 

Problem
s 

Focus on Mathematics 
(Van de Walle et al., 
2007) 

• The problematic aspect should be due to the mathematics that learners 
are expected to learn as they solve the task. 

• Solving the task without using mathematics (e.g., common sense) 
should not be possible. 

Unpredictable 
Methods (Baroody, 
1992) 

• The task does not directly show how to solve it.  
• The task requires student’s own method. 

 
A social justice problem is most specific and must satisfy all seven criteria. The tasks that satisfy 

all criteria except for social justice context are categorized as modeling problems. The tasks 
satisfying only the last two criteria, focus on mathematics and unpredictable methods, are problems 
but neither modeling problems nor social justice problems. Our analysis revealed that most PSTs’ 
modeling problems generally satisfied the criteria of problems but did not sufficiently meet other 
criteria. Among the criteria shown in Table 1, the most missed one was social justice context. None 
of the problems demonstrated any relevance to social justice. Additionally, the PSTs tended to ignore 
the characteristics of modeling problems, such as generalizable/transferable knowledge and sharable 
approach. Only one of the ten problems included some related features of generalizable or 
transferable approach.  



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

892 

Discussion and Implications 
This study contributes to the extension of literature of mathematical modeling and social justice 

by demonstrating the process of designing criteria and using them with PSTs. The criteria can be 
used to develop and assess modeling problems. In our study, most PSTs did not address some of the 
other components in their problems, such as social justice contexts, generalizable/transferable 
knowledge, and shareable approach. We realized that these missing components require careful 
attention when introduced to PSTs. Furthermore, this study provides ideas for future research studies 
around modeling including social justice contexts. Hernandez, Morales, and Shroyer (2013) present a 
result that few PSTs identified the role of mathematics teachers as agents of change in society and 
assumed that one reason might be PSTs’ lack of experiences or environments in which they lived and 
trained. Future studies can focus around changes in PSTs’ awareness of social justice issues as they 
discuss the criteria developed in this study. The criteria have the potential for further investigations 
and validations in practice, which can initiate discussions among teachers, teacher educators, and 
researchers as they consider ways to achieve social justice through mathematical modeling. 
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DEVELOPING PRESERVICE TEACHERS’ UNDERSTANDING OF PRODUCTIVE 
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This study examines the development of preservice teachers’ (PSTs) understanding of productive 
struggle in a semester-long mathematics content course. Our qualitative study includes 85 PSTs in 
four sections of a mathematics content course for prospective elementary and middle school teachers 
that focused on numbers and operations. Findings suggest that the PSTs develop the ability to attend 
to and interpret the mathematics underlying the student struggles.  They also begin to identify 
strategies and practices that appear potentially useful for supporting productive struggle. 

Keywords: Teacher Education-Preservice, Instructional Activities and Practices, Mathematics 
Knowledge for Teaching  

Introduction 
Principles to Actions (NCTM, 2014) calls for teaching practices that support productive struggle 

in learning mathematics. However, struggle is often seen in a negative light (Hiebert & Wearne, 
2003) rather than as opportunities for learning. By productive struggle, we mean what occurs when, 
“students expend effort in order to make sense of mathematics, to figure out something that is not 
immediately apparent” (Hiebert & Grouws, 2007, p. 387). Studies suggest that providing students 
with opportunities to engage in struggle is an integral part of doing mathematics (Hiebert & Grouws, 
2007; Warshauer, 2015). Research also suggests that teachers play an important part in productively 
supporting student struggles (Warshauer, 2015). Despite recent studies suggesting productive 
struggle as an important component of learning with understanding, teaching practices often attempt 
to remove the cause of student struggles and rarely to engage students in productive struggle with 
key mathematical ideas (Hiebert & Wearne, 2003; Hiebert & Stigler, 2004).  

Our study attempts to address this issue by examining ways to prepare teachers to 
cultivate a productive struggle mindset in a mathematics content course for preservice teachers 

(PSTs). We introduced PSTs to student struggle episodes in video clip form where the PSTs 
observed the student and teacher interactions as the student struggled over a task.  As a writing 
assignment, the PSTs were instructed to analyze the episodes aligned with a productive struggle 
framework (Warshauer, 2015) to identify student struggles, teacher responses, and the struggle 
resolutions.  The PSTs were instructed to use the teacher noticing framework proposed by Jacobs, 
Lamb, & Philipp (2004) as a lens to guide them towards attending to, interpreting, and responding to 
the student struggles in each episode. In addition, they reported on what they noticed of the teacher 
responses in the struggle episodes that they observed as well as the resolution that was reached in the 
episodes. The Productive Struggle Framework that we refer to is given below. 
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This study aims to answer the following research questions: 

1. What are the kinds of mathematical interpretations PSTs make about the student struggles 
they observe in video clips of student/teacher interaction about a task? 

2. What teacher responses and actions do PSTs recognize as potentially useful to promote 
productive struggle?  

This study seeks to provide insight into what are PSTs understanding of the mathematics that 
underlie student struggles and the kinds of teacher responses that appear to support the struggles 
productively.  In particular, how are the PSTs coming to understand the role of productive struggle in 
the context of students’ understanding of mathematics. 

Methodology 

Context 
Setting and Participants. This study was conducted in 2016 over a 14-week period at a large 

university in the southern United States. The participants for the study consisted of 85 PSTs, each 
enrolled in one of four sections of the first of two mathematics content courses for elementary 
PSTs. Each author was the instructor for one of the four sections. The PSTs experienced three rounds 
of intervention throughout the semester to introduce them to productive struggle and its role in 
teaching and learning mathematics. The intervention consisted of analysis of video clips and 
transcripts of a student struggles aimed to expose PSTs to what a student struggle could look like in a 
classroom and how teachers respond to struggle in a productive manner that supports students 
learning of mathematics with understanding. 

Data Collection. The PSTs completed open-ended pre/post surveys, which included questions 
about PSTs’ familiarity with the concepts of productive struggle, accounts of their personal 
experiences with productive struggle, views of struggle as an opportunity for learning, and 
perceptions of how teachers support student struggles. The PSTs also completed three productive 
struggle writing assignments. The three approximately 3-page writing assignments spaced equally 
throughout the semester provided PSTs opportunities to witness real instances of struggle with 
mathematical content that they studied in their course work, examine teacher responses to the 
struggle, and consider how productive the struggle was for the student.  

Data Analysis. The writing assignments and surveys were analyzed using qualitative content 
analysis. We coded inductively, with the goal of identifying themes and topics of discussion in the 
PSTs’ responses as they aligned with the Productive Struggle Framework (Warshauer, 2015). In 
general, we examined the attending of student struggle, the interpretations of the mathematics behind 
the student struggle, description of teacher response, and the productive resolution of the 
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struggle. Prior to coding, the researchers met with a sample of the writing assignments to discuss the 
coding scheme to promote high interrater reliability. 

Findings 
We report preliminary findings for our research questions: 
Research Question 1: What are the kinds of mathematical interpretations PSTs make about the 

student struggles they observe in video clips of student/teacher interaction about a task? 
In our preliminary analysis, we looked at the data from writing assignments 2 and 3 of the 85 

PSTs. We found that the PSTs interpretation of the students’ struggle ranged from minimal 
mathematical basis to those with a detailed mathematical explanation for what could be the source of 
the struggle. The PSTs identified a variety of mathematical sources to be the cause of the struggle 
which included: (1) procedural errors and misconceptions; (2) incorrect memorization of 
mathematical facts; and (3) underdeveloped conceptual understanding. Some PSTs related to the 
students’ struggles in the videos and imposed their source of similar experience and struggle into 
their interpretation. In both writing assignments 2 and 3, PST generally attended to the students’ 
struggles that they observed in the video clips, identifying the kinds of struggle as getting started, 
carrying out a procedure, error or misconception, or give a mathematical explanation. Their 
interpretation of the mathematics behind the student struggles, however, were more limited to errors 
of procedure or memorization.  Interpreting the mathematical concepts often lacked depth and at 
times were misinterpretations of the mathematics behind the struggle. Table 1 provides some 
examples. 

Table 1: Mathematical Sources of Student Struggles 
Procedural Errors and 
Misconceptions  

Incorrect Memorization   Underdeveloped Conceptual 
Understanding  

Example: “Doesn't understand that 
you would have to 'borrow' a 
number from the next column when 
subtracting with a zero, so that the 
zero would turn into a ten.”  
  

Example: “…she needs to 
remember that the number on 
the ‘bottom’ is always 
subtracted from the number on 
‘top’”. 

Example: “She doesn't fully 
understand the concept of 
regrouping and base ten.” 

 
Research Question 2: What teacher responses and actions do PSTs recognize as potentially useful 

to promote productive struggle? 
The PSTs were asked to describe the teacher responses they noticed in the videos and identify the 

types of teacher responses according to the Productive Struggle Framework: (1) telling, (2) direct 
guidance, (3) probing guidance, and (4) affordance. Through analysis of writing assignments 2 and 3, 
we found that students considered probing guidance and affordance to promote productive struggle in 
the students. 

Table 2: Teacher Responses 
Probing guidance Affordance 
Example: “She asked questions and used 
clarification to guide the student...asking him why 
and reiterating his explanations...allows the student 
to think for himself.”  

Example: “...teacher responds with patience and 
allows him the opportunity to once again focus on 
the problem in solitude and even steps away with the 
promise of returning on call...” 
   

It is interesting to note that PSTs changed their opinions of affordance with respect to promoting 
productive struggle. In writing assignment 2, PSTs thought affordance was not productive due to 
students being unable to answer the problem, but PSTs viewed affordance as a crucial part of writing 
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assignment 3 because the student was given the opportunity to think on his own. In their final survey 
for the course, some of the PSTs noted teacher’s affordances included giving students time and 
providing encouragement. In their words, let students, “... struggle for a while before returning to 
provide the students with time to think for themselves.” 

Conclusion 
. As we examined the PSTs’ identification of the types of student struggles observed in the 

videos and their mathematical interpretations, we found that most PSTs could identify when a student 
was struggling and describe the mathematical sources of student struggles, but many PSTs did not 
describe clear connections to the mathematical topics behind the struggle. Instead, some focused on 
describing the struggling student’s actions, commenting on their body language and behaviors, and 
briefly mentioning the underlying content. 

However, we found that the PSTs’ descriptions of the teacher responses and their considerations 
of the productiveness of the struggle improved between writing assignments 2 and 3. In writing 
assignment 3, instead of just describing the teacher actions, the PSTs also included their perceived 
justifications for the teacher’s actions. The PST’s explanations of how productive the struggle was 
also moved away from being focused on whether the student got the right answer by the end of the 
clip to consideration of how the student could make sense of their mistakes and learn from them. The 
PSTs also placed emphasis on the teacher being patient and encouraging without giving the student 
the answer. 

Overall, we found that the writing assignments helped the PSTs begin to make sense of 
recognizing not only when a student is struggling, but identifying what they are struggling with and 
how to interpret the mathematics behind that struggle. The writing assignments especially helped the 
PSTs make sense of how teachers respond to student struggles, and why teachers choose certain 
actions, particularly probing guidance and affordance, to help students through the struggle and build 
understanding.  As PSTs reach the crossroad that connects their mathematical content knowledge to 
teaching practices, more research is needed into how to help them connect their mathematical content 
knowledge to interpreting the mathematics underlying student struggles and recognizing teaching 
practices that support student struggles productively. 
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DIAGRAMS TO EXPLORE DIVISION BY ZERO  
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We conducted an interview study to investigate how pre-service K-8 teachers explored a 
diagrammatic model of division. To create the diagram, we adapted the classic procedure for 
constructing the quotient of two segments to a dynamic geometry environment. The diagram had 
moveable points that allowed participants to set the directed (positive/negative) lengths of segments 
to be divided and the lengths of these segments determined the directed length of the quotient. Twenty 
pre-service K-8 teaches were interviewed in pairs. We report episodes of how they explored the 
diagrammatic representation of division by zero.    

Keywords: Number Concepts and Operations, Teacher Education-Preservice  

Introduction 
Physical manipulatives (Green, Piel, & Flowers, 2008) and intuitive models (Jansen & Hohensee, 

2015) can be effective aids that help preservice K-8 teachers hone their understanding of arithmetic. 
In this study, we adapted the classic procedures for constructing the quotient of two segments 
(Hilbert, 1902; Mcloughlin & Droujkova, 2013) to a dynamic geometry environment. The diagram 
had moveable points that allowed participants in the study to set the directed (positive/negative) 
lengths of segments to be divided and the lengths of these segments determined the directed length of 
the quotient. The purpose of the study was to investigate how pre-service K-8 teachers related their 
knowledge of division to a diagrammatic model.  

Theoretical Framework 
The division diagram is an example of a virtual manipulative (Reimer & Moyer, 2005; Steen, 

Brooks, & Lyon, 2006). It allowed users to explore ranges of quotients through dynamic dragging 
(Sinclair, Zazkis, Lilljedahl, 2004). Variations in color, line-thickness, and the gauges of the points in 
the display (Dimmel & Herbst, 2015) were used to group and emphasize different features of the 
diagrams: the segments that represented factors were blue and yellow, quotients were green, and the 
moveable segments of the diagrams were thicker than those that remained fixed (see Figure 1, 
below). The segments to be divided were perpendicular to each other and aligned with the x and y 
axes. The quotient of the blue (dividend) and yellow (divisor) segments is the intersection of the y-
axis and the line drawn through (0,1) parallel to the segment (not shown) between the yellow and 
blue points. By dragging either the blue or yellow points, users can modify the diagram to show 
different quotients. 

We focused on a diagrammatic model of division because it has mathematical advantages over 
physical manipulatives (e.g., base ten blocks, cuisenaire rods) that warranted study. In particular, the 
diagrammatic model of division provides a visual representation that shows division by 0 to be 
undefined. When the divisor is 0, the line that defines the quotient (i.e., the quotient-line) is parallel 
to the y-axis and there is no point of intersection. Research has shown that both practicing and 
preservice K-8 teachers have difficulty explaining why (or even knowing that) division by zero is 
undefined (Ball, 1990; Crespo & Nicol, 2006; Colleague, Author, & Colleague, date). Given these 
challenges, a model of division that naturalizes division by zero could be a valuable instructional 
resource. We asked: How do pre-service K-8 teachers relate their knowledge of division by 0 to a 
diagrammatic model?  
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Figure 1. Diagram showing that (-1) / (-2) = (.5). In the diagram, the yellow point and blue point can 

be slid along the x and y axes. As they move, they determine the location of the green point. 

Method and Participants 
We conducted an interview study (Drever, 2003; Zazkis & Hazzan, 1998) of pre-service K-8 

teachers. Participants were enrolled an elementary geometry content course at a mid-size university 
in New England. Twenty (20) students accepted the invitation. Participants were interviewed in pairs. 
Each of the ten (10) interviews we conducted were approximately 50 minutes in duration. 
Participants were compensated for their time with $20 Amazon gift cards. 

Semi-Structured Interview Protocol 
The interviews began with participants exploring the diagrammatic model. The prompts were 

initially open-ended, e.g.: “Please describe what you see”, and then progressed to more specific 
prompts used at the discretion of the researchers to guide student interactions with the diagram. The 
more specific prompts included cues for exploration, such as: “What parts of the diagram can you 
move ?”, and cues to engage participants’ conceptions of division, such as: “How could you describe 
the position of the green point in terms of the position of the yellow point and the position of the blue 
point?”  

Data 
The interviews were screen and audio recorded. The audio recordings of each interview were 

transcribed. We prepared multimodal transcripts (Jewitt, 2009) to capture participants’ actions on the 
diagram. We report below on segments of interviews where participants used dragging to explore 
division by 0.  

Findings 

Do They Become Parallel for a Second?  
A feature of the diagrammatic model of division is that it visually shows that the quotient (i.e., 

the length of the green segment) increases without bound as the yellow point (the divisor) approaches 
0. As the yellow point approaches 0, passes through 0, and moves away from 0, the quotient segment 
grows arbitrarily large, disappears for an instant (when the quotient-line is parallel to the y-axis), and 
then reappears the next instant. When it reappears, it is arbitrarily large and pointing in the opposite 
direction compared to when it disappeared.  

Elli and Stella (interview 3, pseudonyms) investigated this switching behavior by moving the 
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yellow point back and forth across the y-axis 11 times (over 3 minutes), at which point one 
participant asked: “Do they become parallel for a second?” where “they” referred to the quotient-line 
and the y-axis. The participants continued to explore the behavior of the diagram when the yellow 
point was at 0 or very near 0, and concluded: “They're not forming the triangle. And then that line 
that was making the hypotenuse is parallel to [it].” These participants convinced themselves that the 
quotient-line does become parallel to the y-axis when the yellow point moves to 0, but they did not 
explicitly relate this to the notion that division by 0 is undefined. 

When It’s on 0, the Lines Become Parallel.  
Rather than repeatedly dragging the yellow point back and forth across the origin, some 

participants immediately noticed the special behavior of the diagram when the yellow point passed 
through 0. Becca and Michelle (interview 9, pseudonyms) initially conjectured that the green line 
must be “under the blue line” when the divisor goes to zero. Michelle stated that: “Both the yellow 
and the green are at zero”, and then asked Becca (quietly): “Is that correct?” Becca can be heard 
saying “Ummmm…” while she considers the question. During this exchange, the divisor is at zero 
and the quotient-line is parallel to the y-axis. Michelle answers her own question: “I believe”, and as 
she does so, Becca says: “Ohhh….”. Once Michelle finishes describing the positions of the points, 
the interviewer asks Becca what she thinks:   

Author 1: What do you think Becca?  
Becca: Negative 4…you would do like the blue divided by the yellow…so negative 4 divided by 

0 is undefined…that’s why the slope is undefined.  
Author 1: And so is that the insight that you…it looked like you 
Becca: Yeah, the light bulb.  
Author 2: And what on the diagram represents undefined?  
Becca: Like what line? The intersecting-line…if it’s like, vertical, the slope’s undefined.  

Michelle and Becca continue this conversation and conclude that the green is just “not there” or 
else would be “infinite”. Jenny and Terry (interview 1, pseudonyms) expressed a similar idea. They 
brought in division by 0 explicitly to make sense of the parallel quotient-line when the yellow point 
was set to 0. Jenny and Terry interpreted the parallel line to mean that the quotient could be 
“anywhere or nowhere...because you could subtract 0 from 4 however many times you want, and you 
are never going to get 0.” 

Conclusion and Scholarly Significance 
We reported an interview study of pre-service teachers explorations of diagrammatic models of 

division. We found that participants in the study explored the diagrams systematically and were 
particularly drawn to the state of the diagram that represented division by 0. That all pairs of 
participants examined configurations of the division diagram where the yellow point was equal to 0 
and that some pairs of participants related this to division by 0 being undefined provides evidence 
that preservice K-8 teachers could be receptive to the mathematical advantages of these virtual 
manipulatives.  

Elementary mathematics educators are positioned at a crossroads: the basic mathematical ideas 
they are responsible for teaching rest on deep mathematical footings. How can we best prepare our 
K-8 mathematics teachers to recognize the intersections of advanced and elementary mathematical 
ideas they routinely encounter in their classrooms? Our study is significant because a theme in the 
literature is that elementary teachers have incomplete or incorrect conceptualizations of 
multiplication and division (Green, Piel, & Flowers, 2008). At the same time, researchers have called 
for the development of mathematical experiences that can help preservice teachers develop the 
capacity "for teaching mathematics with understanding" (Crespo & Nicol, 2006, p. 84). This study 
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contributes to the work of creating such experiences by showing the viability of a virtual 
manipulative that could help preservice K-8 teachers deepen their mathematical knowledge and 
appreciate the connections between arithmetic and geometry.  
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The present communication is only focused on a few episodes registered in two interviews developed 
with Tania (an undergraduate teacher of primary education); this methodological tool contributed to 
Tania’s case in the context of a broad research about fractions. The study object considered here 
was the exploration of multiplication and division of fractions (through problem solving) as well as 
her identification of the relation between both operations. It also recovered Tania’s productions and 
problems designs for a potential approach to aforesaid operations in primary school classrooms. 

Keywords: Teacher Education-Preservice 

Introduction 
It is necessary to investigate how the future teacher of primary school accomplishes semantic 

processes immersed in the construction of multiplication and division operations of fractions, 
considering that the effectiveness of her/his teaching practice in basic education will depend on the 
strength with which she/he develops these ideas and their corresponding didactic integration. 

The previous statement is our research problem, from which we pose the following questions and 
analyze them in the present paper: Which are Tania’s thoughts when she multiplies and divides 
fractions within the design and solving problems scope? How this young future teacher relates both 
operations in the semantic field of fractions?  

In the next section we present some theoretical categorizations sustained by some authors, in the 
study of various general forms of thoughts, as well as with respect to the multiplicative thinking 
linked to fractions. 

Theoretical Framework 
In the study of thought, Piaget (1986) distinguished the concept, which is established as the 

inclusion of an object in a class as well as one class into the other. It is interesting to highlight that 
thus the construction of the concept is achieved by multiple modes of abstraction. 

Vygotski (1993), regarding thought, conceived concept in terms of a generalization that appears 
in the subject consciousness as a complex act of thought, a process of words significance, instead of 
assimilation through memory. Concepts are constructed around pre-concepts, that is, none conscious 
content is eliminated only transformed into another of superior level, from a major generalization of 
the object. 

Another point of view related to thought is the one provided by Lonergan (2008), who mentioned 
that elaboration of concept implies the identification of interrelated aspects in an “object” as well as 
in the saying. To say and to conceive are not isolated. The elaboration of a concept requires a 
process of selection among data, empirical representation and image. The concept is what can be 
expressed beyond empirical. 

In contrast to the previous statements, Shön (1996) identified reflection in action as a production 
of a spontaneous and intuitive thought related to everyday life experience. He also mentioned that the 
teacher can reflect in action from the own experience and change a routine teaching practice using 
all her/his thought to act facing a new situation.  

Valdemoros, Ramírez, and Lamadrid (2015) propose that in the discourse of a learner may 
appear “signification and thinking cores” full of sense for he/she, this is, words and phrases that 
give consistency and clarity to the own praxis, in an elementary way. Such “signification and 
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thinking cores” offer cohesion to the cognitive products, despite the fact that the thinking of those 
who learn could be developed currently at the intuitive level, not having reached even the widespread 
expressions of the formation of concepts. 

Related to the set of rational numbers, Kieren (1988) pointed in his semantic network that 
multiplicative domains are linked to formal construct of equivalence and to multiplicative structure 
related to functional and scale relations. Scale relation is assembled through meanings of fraction 
such as ratio, which indicate a numeric comparison between two magnitudes and an operator (the 
last construct refers to expand or to contract a whole with reference to another unit). 

Fraction is based on two fundamental relations: part-whole relation and part-part relation 
(Piaget, Inhelder & Szeminska, 1966). The first of these relations is defined as the existing link 
between whole and a determined number of parts when the latter, continuous or discrete, is divided 
in equivalent parts. Part-part relation refers to the possibility that all parts can be divisible by 
themselves and considered as new wholes (Piaget et al., 1966). Such statements were ratified by 
Kieren (1988).  

Conceptual field of multiplicative structures is composed of all situations that mutually involve 
multiplication and division, such as: simple and composed proportions, direct and inverse scales of 
ratio, fraction, ratio, rational number, among other ideas (Vergnaud, 1988). In particular, the product 
of measures as multiplicative relation shows the difference among diverse types of multiplication 
problems when, given basic measures, the measure-product is found; concerning division, given 
basic measures and measure-product, another basic measure should be found (Vergnaud, 1991).  

Method 
In this report, we show some relevant contents of Tania’s multiplicative thought and detailed 

which are the main mathematical and didactical ideas manifested in her discourse during interviews, 
which emerged as some signification and thought cores. 

We decided to interview Tania because she was the most outstanding student among her study 
group, during the fourth semester of the bachelor’s degree in primary education. In this mentioned 
degree, future teachers are trained for teaching in all subjects that form part of the school curriculum 
in elementary education (that is the development of these studies in Mexico). 

At the time Tania interviews took place, she had already coursed the subject of Arithmetic (third 
semester in this academic level). Though this research we could not have access -as observers- to 
Arithmetic and Teaching Practices courses, for this reason the relevance of Tania interviews was 
ratified for the recognition of some susceptible processes of thought within a possible development in 
the teacher in training. 

We carried out two interviews of didactical cut with Tania because such a methodological 
proposal from Valdemoros (1997, 1998), and Valdemoros & Ruiz (2008), considered two moments 
of the development of the interview: a) an exploratory phase in which interviewer only deeply 
inquire for contents and mathematical processes of the interviewed; and b) a feedback phase, through 
which interviewer tries to promote a reflection that evidence the contrast between thinking contents 
and calculus procedures, and thus validate them based on their own production and refine its 
inconsistencies. 

Qualitative validation of these results was obtained by mean of a methodological triangulation at 
different moments, during interviews. 

Analysis of Results 
Next are some relevant results from Tania’s interviews, linked to multiplication and division of 

fractions, included in the scope of problem solving focused in the teaching of fractions. Quoted 
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expressions correspond to words and phrases of Tania that we interpret as signification and thought 
cores, linked to the reflection in action. 

Situation 1 
Tania was asked to solve a division problem of fractions (centered on the recognition of the 

inverse operation of a product of measures). Such task was designed for 6th grade of primary school 
and Tania must communicate her didactic and mathematical reflections about it. The text of the 
problem requested to calculate an unknown side of a rectangle board for a bookcase, given area (!

!
 

m2) and a side (!
!
 m); this task was complemented with the graphical representation of the rectangle 

and the corresponding measures. Tania thought for a while and then expressed:  “you have to solve 
for the formula of the rectangle area [she holds up] and divide one-half into two-third”. The phrase 
“solve for formula of the rectangle area” represented a heavy semantic load for Tania; it was a clear 
manifestation of a signification and thought core.   

Situation 2 
We asked Tania to write a problem referred to a division of fractions. She did not provide any 

oral evidence that she was capable of designing division problems of fractions for the teaching 
(inside or outside of a geometric field).  

Situation 3 
Tania continued striving to contrive a multiplicative problem referred to fractions. After 

proposing an ambiguous elaboration that remained incomplete, she opted to fold a sheet of paper 
while she was saying “…this sheet represents a cake that I'm dividing in thirds and quarters, to 
recognize within it  !

!
  and  !

!
  fractions”. Thus, Tania was intuitively leaned on the relation part-part, 

which emerged as a result of the “paper folding”. Finally, Tania colored the intersection among both 
fractions in the piece of paper (appointed the prior as “the whole” and “the unit of reference”). When 
we asked Tania which arithmetic operation has employed in both fractions, she could hardly express 
that she had obtained “the product  !"

!
 by !

!
”. 

Overall, although Tania was eloquent during Situations 1 and 3, many of her mathematics and 
didactic difficulties were evident in the multiplicative field of fractions. Her mathematical thought 
did not show conceptualized multiplicative proposals, as of progressive generalizations and 
successive abstractions (according to those theoretic formulations from Vygotski and from Piaget). 

Tania thought was manifested as outstandingly intuitive, partially fragmented, and linked to the 
own praxis (which promoted plenty of reflections in action, followed by pertinent adjustments to her 
proposals). For all this, ideas within identified signification and thought cores, provided a kind of 
strength and a link to such thought. In all this, we do not know in which extent the occasional 
influence that the Arithmetic course of the Bachelor’s degree exerts on Tania.  

Conclusions 
The aforesaid signification and thought cores that Tania expresses in her present discourse, in 

terms of words and phrases either mathematical and didactical that regulate and define her design 
activity for the teaching, do not become concepts or pre-concepts yet, but it is possible that such 
elaborations in the future would constitute roots of thoughts more systematic, general and 
increasingly better integrated into the multiplicative processes of fractions. 

During the interviews, intuitive thought immersed in Tania’s explicit discourse was sometimes 
supported by reflections oriented towards teaching practice and a suitable reflection in action for 
those activities that she wants to promote in the classroom. 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

904 

References 
Kieren, T. (1988). Personal knowledge of rational numbers: Its intuitive and formal development. In J. Hiebert & M. 

Behr (Eds.), Number Concepts and Operations in the Middle Grades, 2 (pp. 162-181). Reston, USA: National 
Council of Teachers of Mathematics and Erlbaum. 

Lonergan, B. (2008). Conocimiento y aprendizaje. México, México: Universidad Iberoamericana.  
Piaget, J., Inhelder, B. & Szeminska, A. (1966). The child´s conception of geometry. London, England: Routledge 

and Keagan Paul. 
Piaget, J. (1986). La formación del símbolo en el niño. México, México: Fondo de Cultura Económica.  
Shön, D. (1996). La crisis del conocimiento profesional y la búsqueda de una epistemología de la práctica. En M. 

Pakman (Ed.), Construcciones de la experiencia humana. Volumen 1 (pp. 183-212). Barcelona, España: Gedisa 
Editorial.  

Valdemoros, M.E. (1997). Recursos Intuitivos que favorecen la adición de fracciones: estudio de caso. Educación 
Matemática, 9 (3), pp. 49-99.  

Valdemoros, M. E. (1998). La constancia de la unidad en la suma de fracciones. Estudio de caso. En F. Hitt (Ed.), 
Investigaciones en Matemática Educativa II (pp. 465-481). México, México: Editorial Iberoamericana.  

Valdemoros, M. E. & Ruiz, E. F. (2008). El caso de Lucina para el estudio de las fracciones en la escuela de adultos. 
Revista Latinoamericana de Investigación en Matemática Educativa, 11(1), pp. 127-157.  

Vergnaud, G. (1988). Multiplicative structures. In H. Hiebert and M. Behr (Eds.), Number Concepts and Operations 
in the Middle Grades, 2 (pp.141-161). Reston, USA: National Council of Teachers of Mathematics and 
Erlbaum.  

Vergnaud, G. (1991). El niño, las Matemáticas y la realidad. México, México: Trillas.  
Vygotski, L. S. (1993). Estudio del desarrollo de conceptos científicos en la edad infantil. En Pensamiento y 

lenguaje. Obras escogidas. Vol. II (pp.181-285). Madrid, España: Visor.  
Valdemoros, M. E., Ramírez, M. M. E & Lamadrid, P. (2015). “Núcleos de significación y pensamiento” en la 

enseñanza de fracciones. Educación Matemática en las Américas 2015. Vol. 1 (pp. 195-204). www.ciaem-
iacme.org 
 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

905 

EXAMINING PRE-SERVICE TEACHERS’ UNDERSTANDING OF THE COMMON CORE 
STATE STANDARDS FOR MATHEMATICAL PRACTICE 

Jillian P. Mortimer 
University of Michigan 

jbpet@umich.edu 

This study seeks to probe pre-service teachers’ (PSTs’) understanding of the Common Core State 
Standards for Mathematical Practice (SMPs) (NGAC & CCSSO, 2010) by having PSTs identify the 
potential for SMPs to be practiced and assessed through assessments, curriculum materials, and in 
practice. The ratings of the PSTs will be compared to those of curriculum authors, as well as to the 
other PSTs in the sample, in order to determine the amount of agreement based on specific 
characteristics such as mathematical knowledge for teaching and beliefs about mathematics. After 
patterns have been identified, PSTs will be strategically chosen for interviews to probe their thinking 
further. The results of this study will be useful to elementary mathematics teacher educators in 
thinking about ways to support PSTs in understanding the SMPs as well as helping PSTs to support 
students’ development of the SMPs.  

Keywords: Teacher Education-Preservice, Standards, Curriculum, Assessment and Evaluation  

Introduction 
The Standards for Mathematical Practice (SMPs), part of the Common Core State Standards 

(CCSSs) (NGAC & CCSSO, 2010), stress the importance of processes and proficiencies that span all 
grade levels and mathematical content. The work in this study stems from two previous studies 
(Silver and Mortimer, 2015; Mortimer, 2016) in which the researchers asked what SMPs 
mathematics teacher educators’ and mathematicians’ saw potential to be assessed by assessment 
items. One of the most compelling findings from these studies suggests that, though the SMPs can be 
seen throughout an international mathematics assessment, experts are not always in agreement about 
what it looks like to assess the various SMPs. When probed about their differing assignments, experts 
reported that in many cases the SMPs were vaguely described. In other cases the assessment task 
could be solved using multiple strategies and thus it was challenging to know exactly what SMP 
someone would employ. As teachers are expected to be able to support students in learning and 
assess students’ progress in the SMPs, more research is necessary on how to recognize and assess 
SMPs in assessments and classroom materials.  

In this study I will examine the ways that PSTs make sense of the SMPs in the contexts of a 
lesson from a teacher’s manual, a video of teaching and an assessment. Additionally, I will look at 
the PSTs’ mathematics knowledge and beliefs in order to understand how these factors may 
influence their understanding and interpretation of the SMPs. This study lies at the crossroads 
between research and teacher education and the results of this study have the potential to provide 
insight for teacher educators on ways to support PSTs in developing their own understanding of the 
SMPs as well as support students in practicing and gaining skill in using the SMPs. 

Theoretical Justification 

Teachers’ Mathematical Knowledge  
Shulman (1986, 1987) began examining teachers’ knowledge and how the ways of knowing 

content differ between teachers and other professionals. He explained teachers’ knowledge as falling 
into three categories: content knowledge, pedagogical content knowledge, and curriculum 
knowledge. Building on this work, the research group involved in the Study of Instructional 
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Improvement (SII) endeavored to build a theory around what teachers need to know to teach 
mathematics, but began by examining practice and what teachers actually do in classrooms (Ball & 
Bass, 2003). This group went on to develop measures to assess teachers’ mathematical knowledge 
for teaching (MKT). Studies implemented by this group have gone so far as to attempt to link teacher 
knowledge to student performance (e.g., Hill, Rowan, and Ball, 2005).  

Teachers’ Beliefs  
In addition to teacher knowledge impacting instruction, McLeod and McLeod (2002) suggest that 

looking between the cognitive and affective processes, specifically at teacher beliefs, is important to 
understanding how teachers’ approach instruction. Much of the research on teacher beliefs in relation 
to mathematics education has focused on teachers’ beliefs about the nature of mathematics and 
mathematics teaching and how those beliefs impact their instructional practices (e.g., Thompson 
1984).  

Research Questions 

1. Are PSTs able to identify places in the different domains of practice (e.g., the lesson, video of 
teaching, and assessment) that they will be expected to use as practicing teachers with the 
potential to assess or develop students’ proficiency in the SMPs? To what degree do they 
agree with the curriculum authors? To what degree do they agree with each other? 

2. How does PSTs’ mathematical knowledge influence their ability to identify and make sense 
of SMPs in different representations of teaching? How does PSTs’ mathematical knowledge 
impact their agreement with the authors of the curriculum materials? Does it differ by task?  

3. How do PSTs’ beliefs about mathematics influence their ability to identify and make sense of 
SMPs in different representations of teaching? How does PSTs’ mathematical knowledge 
impact their agreement with the authors of the curriculum materials? Does it differ by task?  

Methods 

Participants 
The twenty-four PSTs in this study are third and fourth year undergraduate students at a large, 

Midwestern public university earning a Bachelor’s degree and teaching certificate, pending 
successful passing of the state teacher certification assessment. Similar to many pre-service and in-
service teachers, these PSTs have had little to no explicit instruction on the SMPs. Though their 
mathematics methods course includes mathematics practices, as the doing of mathematics always 
does, the practices specified in the CCSS are not a focus of the course.  

Instrumentation  
Mathematical Knowledge for Teaching (MKT). Stemming from the work of the Study of 

Instructional Improvement (SII), The Learning Mathematics for Teaching (LMT) project created an 
assessment to measure school and classroom processes as well as teachers’ facility in using 
mathematical knowledge in their classroom teaching (Learning Mathematics for Teaching Project, 
n.d.). The PSTs in this study are given the LMT assessment at two points during their program; the 
most recent implementation of the assessment will be used as the measure of their MKT.  

Mathematics Beliefs Instrument (MBI).  In order to measure PSTs’ beliefs about mathematics 
the Mathematics Beliefs Instrument (MBI) will be used (Peterson, Fennema, Carpenter, & Loef, 
1989, as modified by the Cognitively Guided Instruction Project). The instrument consists of three 
subscales: 1) Curriculum: the degree to which one believes that mathematics should be taught in 
relation to problem solving and understanding rather than focusing on facts and memorization; 2) 
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Learner: the degree to which one believes that students can construct their own mathematical 
knowledge; 3) Teacher: the degree to which teachers should organize instruction to facilitate 
children’s construction of knowledge. The instrument is scored on a five-response Likert scale that, 
when added together, higher scores indicate that the teacher’s beliefs are more aligned with cognitive 
beliefs.  

The Tasks 
Curriculum materials task. PSTs will be given a lesson from the Everyday Mathematics 

(EDM) curriculum materials as well as a copy of the SMPs. The curriculum materials will include 
pages from the Teachers’ Manual. Though the authors already included places where they believe 
students have the opportunity to practice the SMPs, these designations will be removed so that there 
is no indication of which SMPs the authors intended to be addressed in the lesson. The PSTs, 
working independently, will examine the SMPs and the lesson. They will go through the lesson and 
indicate each instance in which they think an SMP is or has the potential to be practiced by students. 
PSTs will be asked to explain their judgments.   

Lesson enactment task. PSTs will view a video of an elementary teacher teaching the 
mathematics lesson that they examined in the curriculum materials task. In the video the teacher will 
not explicitly name the SMP that she is intending to teach, but the SMP will be embedded in the 
work that the teacher and students are doing. Using the online video program Edthena, PSTs will be 
asked to identify which SMP or SMPs that they see being practiced in the video. They will do this by 
tagging specific places in the video and explaining their thinking in writing in the tag.   

Assessment task. PSTs will look at a formative assessment, the journal pages that correspond to 
the lesson in the curriculum materials task, and indicate for each problem which of the SMPs have 
the potential to be assessed. PSTs will be asked to explain their judgments.  

Analysis and Expected Results 

PST and Expert Rater Comparisons 
For each of the three tasks I will compare the ratings given by the authors of the curriculum 

materials and the ratings given by the PSTs. This comparison will result in descriptive statistics 
showing the frequency with which all PSTs agreed with the authors, if PSTs were more likely to 
agree with authors on particular tasks, or if specific characteristics of PSTs made them more likely to 
agree with the authors (e.g., PSTs with high MKT were more likely to agree with the curriculum 
authors than those with low MKT). Additionally, I will conduct a comparison among PSTs based on 
the PSTs’ characteristics (i.e., PSTs’ MKT and mathematical beliefs).  

PST Interviews  
I will choose PSTs to interview, selecting representatives of various groups based on the patterns 

that arise when comparing PSTs’ ratings to the authors and other PSTs. These interviews will focus 
on probing PSTs’ ratings in each of the three tasks to understand both why they chose the SMP that 
they chose in the tasks as well as the processes they used to determine their ratings.  

Discussion 
As the SMPs are a part of the CCSSs, they are part of the intended curriculum for all states that 

have adopted the CCSSs. As part of the intended curriculum, teachers are expected to have achieved 
expertise in the SMPs and feel confident supporting their students in developing the SMPs. Currently 
many schools of education do not address the SMPs in an intentional way. As discussed, the SMPs 
are challenging to identify, even for experts, so more support is needed for PSTs in this area. In order 
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for the SMPs to be taught to PSTs in a meaningful way, more understanding of what PSTs already 
know and understand about the SMPs is needed.  

The results from this study will provide the teacher education community with information about 
PSTs’ understanding of the SMPs. The three different tasks may illuminate that PSTs are more 
skilled at identifying potential for SMPs to be practiced and assessed in different representations of 
teaching. Additionally we may learn that particular background knowledge and beliefs are important 
for PSTs in order to complete the tasks successfully. Ultimately the results of this study will support 
teacher educators in thinking about ways to provide instruction and practice to PSTs so that they 
enter the teaching field confidently able to support their students in developing their skills in the 
SMPs.  
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EXPLORING AN INTEGRATED NOTICING FRAMEWORK FOR SECONDARY 
MATHEMATICS TEACHER EDUCATION FIELD EXPERIENCE  
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Traditional models for teacher education field experience often perpetuate a split between theory 
(university) and practice (school classrooms). One way for prospective secondary mathematics 
teachers to engage with theory at the classroom level is to involve them in a professional learning 
community during their field experience (internship). This paper shares research on the development 
of an alternative model for internship and for faculty supervision through the creation of a learning 
community and an integrated professional development process (incorporating lesson study, video 
analysis and the discipline of noticing). The research emphasizes the value of community and 
collaboration when reconceptualizing traditional models for internship, for the role of the faculty 
advisor, and for being/becoming a mathematics teacher. 

Keywords: Teacher Education-Preservice 

Research Purpose  
Traditional models for teacher education field experience often perpetuate a split between theory 

(university) and practice (school classrooms). One way for prospective secondary mathematics 
teachers to engage with theory at the classroom level is to involve them in a professional learning 
community during their field experience (internship). This paper shares research on the development 
of a model for internship and for faculty supervision through the creation of a learning community 
and an integrated professional development process (incorporating lesson study, video analysis and 
the discipline of noticing). The overall research project has a tri-focal outcome of: (1) disrupting 
traditional discourses on theory-practice transitions in mathematics teacher education, (2) 
reconceptualizing the role of the university supervisor (faculty advisor) within the triad of 
prospective teacher, cooperating teacher and supervisor, and (3) positioning university-school 
partnerships and collaboration at the centre of professional development approaches in teacher 
education programs. 

Research Context and Modes of Inquiry 
My research in the area of secondary mathematics teacher education focuses on the structures 

and roles of that specific component of teacher education programs referred to as the school 
practicum or field experience (Nolan, 2012). Specifically, I conduct self-study research into my role 
as a university supervisor (faculty advisor) during teacher education field experience. In my 
university's four-year undergraduate teacher education program (located in a Canadian province), the 
culminating field experience is a four-month internship in schools. Each prospective teacher (intern) 
is paired with a cooperating (mentor) teacher in the school and assigned a faculty advisor, who is 
expected to visit, observe, and conference with each intern  only 3-5 times during this internship. 
Over the years, as a faculty advisor for prospective secondary mathematics teachers, my role in this 
internship model felt superfluous, even token (Nolan, 2015).  

To move my role beyond tokenism in the field, I initiated a research project to design and 
facilitate an alternative internship model for secondary mathematics teacher education field 
experience. I refer to this model as the Teacher-Intern-Faculty Advisor (TIFA) Internship Learning 
Community model. During each of four distinct internship semesters (2013-2016), the TIFA learning 
community consisted of three interns, their cooperating teachers, and me as faculty advisor (and 
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researcher). In the model, TIFA participants engage in a unique professional development process in 
which I integrate three components: a modified approach to lesson study (Gorman, Mark, & Nikula, 
2010), the video recording and editing of classroom teaching episodes, and a video analysis process 
based in the discipline of noticing (Mason, 2002). I refer to this professional development process as 
an Integrated Noticing Framework.  

Theoretical Perspective: Introducing the Integrated Noticing Framework 
The Integrated Noticing Framework (herein referred to as INF) is based on a belief that “it is 

critical for teachers to first notice what is significant in a classroom interaction, then interpret that 
event, and then use those interpretations to inform their pedagogical decisions” (van Es & Sherin, 
2008, p. 247). In addition, teachers (both novice and experienced) need to feel safe within a non-
judgmental environment in order to further their growth and development as teachers, especially in 
this age of inquiry (reform-based) mathematics pedagogy. The INF professional development 
process developed for my internship community model values the experiences and interpretations of 
teachers, providing an environment for working collaboratively and for sharing experience, expertise, 
and multiple perspectives on teaching and learning in secondary mathematics classrooms. 

The three individual components of the INF involved in my TIFA learning community (lesson 
study, video analysis, and noticing) are not entirely dissimilar from those described in other research 
on mathematics teacher education noticing (see, for example, Coles, 2013; Sherin, Jacobs, & Philipp, 
2011). What is unique about this research project and professional development initiative lies not so 
much in WHAT is done but in HOW the process serves to disrupt normalized practices in the 
education of new mathematics teachers. The INF is conceptualized and enacted in two parts. 

Integrated Noticing Framework Part I  
In the first part, the TIFA learning community meets together at my university for one full day 

each month (over the duration of the four-month field experience, or internship) to participate in a 
modified lesson study process. The outcome of this part of the process is the creation of a ‘research 
lesson,’ which is then taught by each of the interns in her/his own school classroom setting. The 
teaching of the lesson is video recorded, then edited by the intern to create a 12-minute video clip, 
and finally brought back to the next TIFA professional development day at the university.  The 
lesson study process used in part one of the INF is referred to as ‘modified’ since, as a community, 
we adopt the position that it makes the most sense for each cooperating teacher and intern pair to 
further develop the main outcomes and activities of the lesson (as initially planned by the TIFA 
community) based on their own specific school and classroom contexts, rather than fully developing 
a uniform and context-free script for all to follow. 

Integrated Noticing Framework Part II  
During the TIFA learning community meeting, the team engages in video viewing and analysis 

based in the discipline of noticing. As Mason (2011) explains, the discipline of noticing is a 
collection of techniques for preparing to notice in the moment; for reflecting on past events to 
understand what one wants to, or is sensitized to, notice; and for learning to notice in the moment so 
as to act freshly rather than habitually (p. 48). As a group, the TIFA community views all three intern 
teaching videos, using a noticing framework to stimulate discussion and reflection on the videos. My 
INF noticing process (adapted primarily by drawing on Coles (2013)) consists of four phases: (1) 
View each video, taking individual ‘noticing notes’ while viewing; (2) remain in silence for 2 
minutes, organizing one’s noticing notes to highlight what will be shared with the TIFA community; 
(3) give an account of what was observed in the video (sharing what was observed directly, in detail, 
avoiding all interpretation at this stage); and (4) account for what was observed (this is the 
interpretive stage where possible meanings or explanations for what was observed in the video are 
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presented and discussed). The four phases are enacted, in turn, for each of the three intern videos, 
being especially careful to separate phases (3) and (4) so as to allow the observations to be voiced 
and heard, prior to any interpretations, questions, or discussion being introduced into the process. 

Data and Discussion of Results 
As Coles (2013) notes: “If I am not careful I will only see... that which I already think and 

believe” (p. 11); this is especially true for mathematics teacher education field experience practice 
and supervision. In my university’s teacher education program, the prospective teachers and school 
mathematics cooperating teachers already feel that they ‘know’ what internship is all about and the 
role of the faculty advisor within. Research indicates that prospective teachers view the practice-
based experiences of teacher education as the most important part of their program and the most 
significant influence on be(com)ing a teacher and shaping a professional identity (Britzman, 2003). 
There is little surprise, then, that introducing disruptions into the usual, normalized internship 
experience can be met with skepticism, even frustration. However, my research data indicate that 
those participating in this community’s integrated noticing framework embraced change (the 
‘disruptions’) because of the benefits they saw and experienced firsthand.  

Benefits of the TIFA community approach have been noticed on a number of levels, including 
those beyond what was anticipated in my original goal of disrupting my token role as a supervisor. 
For instance, there have been noticeable influences on interns’ desires and abilities to be reflective on 
their process of becoming a teacher; they articulate the many benefits of having “more eyes on what 
you’re doing and how you’re working with students” (intern, TIFA 2014) through this collaborative 
community approach to video analysis. Similarly, cooperating teachers have expressed surprise by 
the ways in which the learning community and INF have had such a major impact on them – not only 
in their roles as cooperating teachers but as classroom mathematics teachers who, like the interns, are 
also trying to grow and develop as inquiry-based teachers. Each year of running the TIFA 
community and collecting research data, cooperating teachers were asked about challenges and 
rewards of being involved in this enhanced internship project and if the community played any the 
role in their own professional development as mathematics teachers. One cooperating teacher 
responded: 

As far as rewards… just seeing what other cooperating teachers noticed, and then getting the 
opportunity to give feedback on other intern's lessons, and even getting to know other interns and 
other cooperating teachers… that collaboration piece is nice. (Cooperating teacher, TIFA 2014) 

As alluded to in the above quote, the community approach has also had a significant impact on 
the intern and cooperating teacher’s relationship with each other, as well as their relationship with the 
other intern and cooperating teacher pairs in the learning community. Participants commented on 
how beneficial it was to plan a lesson together, to video record aspects of that lesson and then engage 
in the noticing process as a collaborative and supportive group. Additionally, the overall impact of 
the internship learning community on connecting and building relationships between university 
teacher education programs and schools cannot be overlooked. School principals and teachers 
throughout the province have requested involvement in this internship model, recognizing it as a way 
to enhance the processes of both becoming and being a mathematics teacher.  

Finally, related to the originally articulated goals of the enhanced internship and INF, my role as 
a faculty advisor, as explored through self-study approaches, has unquestionably moved my role 
beyond tokenism in the field. For example, when I asked my interns about my role as a faculty 
advisor in comparison to what they know about other interns’ experiences, one intern responded: 

Just based off of the experiences of my friends who aren't in the TIFA community, the faculty 
advisor came out once or twice; they didn't really have a relationship established with them. This 
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[TIFA community] is good 'cause we were able to establish a relationship and then actually get 
effective feedback on what we could improve. [Intern, TIFA, 2015] 

Scholarly Significance 
The complexity of mathematics teacher education field experience means that there is little 

overall agreement on many issues: the role of the cooperating teacher, the role of supervision, and 
even the role of practicum in general. Bullough, et al. (2002) suggest that "[t]here is a growing need 
for experimentation with configurations of field experience and for the generation and study of new 
models to determine their effectiveness" (p. 69). My professional learning community model, 
operationalized through the use of the INF, responds to this suggestion, reflecting my efforts as a 
mathematics teacher educator and supervisor to experiment with and generate new models. In this 
research, my role as a faculty advisor creates spaces for a collaborative community of teachers to 
witness the power of transforming theory-practice transitions into engaging and reflective 
pedagogical practice in mathematics classrooms. 
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Despite the importance of teachers’ conception of mathematical modeling, limited attention is given 
to this area in the current literature. In this study we examined 78 preservice teachers’ (PSTs) views 
of mathematical modeling and how their conceptions are reflected in their performance of 
mathematical modeling problems. Analyses of survey responses revealed that our PSTs seem to 
develop narrow views of mathematical modeling. In addition, although a large portion of PSTs 
mistook mathematical modeling with mathematical models or with traditional word problems, we 
found a positive association between PSTs’ conceptions of mathematical modeling and their 
mathematical modeling abilities.  

Keywords: Modeling, Teacher Education-Preservice 

Introduction  
Mathematics education community at large has recognized the importance of mathematical 

modeling at school level, which concerns how well students are prepared to solve real-world 
problems that they encounter beyond school, to solve problems in their future professions, as citizens 
and in further learning (Galbraith & Stillman, 2006). The Common Core State Standards for 
Mathematics (National Governors Association Center for Best Practices [NGA] & Council of Chief 
State School Officers [CCSSO], 2010) also highlights mathematical modeling as one of the eight 
Standards for Mathematical Practice for all grades but also as conceptual category in high school. 
Thus, preparing effective teachers of mathematics who promote students’ conceptual understanding 
and mathematical modeling abilities is one of the most urgent problems facing teacher educators. The 
purpose of this study is to explore PSTs’ conceptions of mathematical modeling and effective 
modeling instruction and to investigate any relationship that might exist among PSTs’ conceptions of 
effective modeling instruction, mathematical modeling, and their mathematical modeling 
performance. In exploring the relationship between PSTs’ conception of effective mathematical 
modeling instruction and their mathematical modeling abilities, we specifically focus on two popular 
modeling problems – (a) Deciding a departing time for airport and (b) finding the best estimate of the 
total number of people in concert. The research questions that guided this study are: (a) What are the 
characteristics of PSTs’ thinking about effective mathematical modeling instruction and 
mathematical modeling? and (b) Is there any relationship among PSTs’ conceptions of effective 
mathematical modeling instruction, mathematical modeling, and their mathematical modeling 
performance? 

Theoretical Perspectives 
Mathematical modeling is a powerful vehicle for students’ mathematical learning. However, the 

term “mathematical modeling” is easily confused. Research reported several confusions teachers and 
students have. For example, the term of mathematical modeling is often considered as mathematical 
models or traditional word problems. Although there exist distinct differences between “modeling as 
content” and “modeling as vehicle” (Galbraith & Stillman, 2006), teachers tend to “treat 
[mathematical modeling] more as a venue for learning other mathematics” (Zbiek & Conner, 2006, p. 
89). Mathematical modeling involves a cyclical process as shown in Figure 1 in which real-life 
problems are understood and translated into mathematical language (formulate), solved within a 
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symbolic system (compute), and the solutions tested back within the real-life system (interpret, 
validate, and report).  

 

 
Figure 1. The basic modeling cycle introduced in the CCSSM (NGA & CCSSI, p. 72). 

In this study, using the three meanings of mathematical modeling by Stanic and Kilpatrick (1989) 
and the three teaching approaches to mathematical modeling by Schroeder and Lester (1989), we 
explored PSTs’ conceptions of mathematical modeling and effective mathematical modeling 
instruction. Building on Schroeder and Lester’s framework, the following three perspectives of 
mathematical modeling instruction can be identified in mathematics classrooms: (1) teaching for 
mathematical modeling, (2) teaching about mathematical modeling, and (3) teaching through 
mathematical modeling. In addition, drawn from Stanic and Kilpatrick, we believe that mathematical 
modeling as art should be a goal of effective mathematical modeling instruction. According to them, 
three different meanings were attributed to the notion of mathematical modeling in mathematics 
education-- mathematical modeling as means to a focused end (content), mathematical modeling as a 
skill, and mathematical modeling as art. In the first perspective, mathematical modeling can be 
viewed just as content to practice skills. Similarly, the second perspective considers mathematical 
modeling as one skill taught in school mathematics. In contrast, in the third perspective, 
mathematical modeling should be viewed as an act of discovery through creative use of mathematical 
thinking.  

Methods 
78 PSTs from two different university sites were invited for this study. Participants had some 

experience of solving modeling problems within their class work. In the beginning of the semester, 
all participants completed the tasks shown in Figure 2. They showed misconceptions on 
mathematical modeling and did not provide a realistic answer to the problems. Two 3-hour sessions 
were devoted to help them understand mathematical modeling. By the end of the semester, a written 
task (see Fig. 2), was used for the study as part of final assessment. 

 
Part 1: Please answer the following questions in as much detail as possible.  
1. When people say mathematical modeling, what does the word “mathematical modeling” mean to you?  
2. What do you believe constitutes effective mathematical modeling instruction? 
Part 2: Solve the following problems.  
1. Your best friend is coming to visit. She told you that her bus arrives at 4:00 pm. You live 10 miles away from 

the bus station. The speed limit is 40 miles per hour. When should you leave your house? Explain your 
reasoning. 

2. A popular band recently came to a music festival. A field of size 100 m by 200 m was reserved for the audience. 
The concert was completely sold out and the field was packed with all the fans standing. Which one of the 
following is likely to be the best estimate of the total number of people that attended the concert? 10,000, 
20,000, 100,000, 200,000, or 400,000? Explain your reasoning. 

Figure 2. Main task of this study. 

For the analysis of PSTs’ written response to mathematical modeling and effective mathematical 
modeling instruction, we used an inductive content analysis approach. PSTs’ responses to the notions 
of mathematical modeling and effective mathematical modeling instruction were categorized based 
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on themes emerging as researchers read multiple cases. Then we explored the subcategories under 
each analytical aspect according to the framework (see Table 1 later). For the modeling task, we first 
created a rubric based on correctness of PSTs’ responses to each item and then assigned a score for 
each item. To examine relationship among PSTs’ conceptions of mathematical modeling, effective 
mathematical modeling instruction, and their mathematical modeling performance, we run SPSS 
statistical program (e.g., ANOVAs).   

Summary of Selected Findings 

Psts’ Conceptions of Effective Mathematical Modeling Instruction  
To investigate PSTs’ conception of effective mathematical modeling (MM) instruction, we 

reviewed their responses and classified the responses into four aspects based on common themes (see 
Table 1). Out of the four aspects, the most popular category is teaching aspect (i.e., what 
instructional strategies or teaching practice need for effective MM instruction?), followed by 
mathematical modeling steps aspect (i.e., what step is required for MM lesson?), problem features 
aspect (i.e., what is considered as a good problem for MM instruction?), and purpose aspect (i.e., 
what is a good MM lesson aimed at?).  

Table 1: Four Aspects of PSTs’ Conception of a Good Mathematical Modeling Lesson and 
Frequencies 

Category Sub-category # of 
PSTs 

Relation to 3 MM 
approaches  

1. Purpose aspect 
(29) 

a. To find a realistic solution 10 For 
b. To develop critical/ logical /reflective thinking  14 Through 
c. To develop a good understanding of math 5 Through 

2. Problem aspect 
(39) 

a. Real-life problems 14 Through 
b. Problems that requires student prior knowledge 5 Through 
c. Practice problems that use the same technique 4 For 
d. Problems that require multiple solutions 11 Through 
e. Problems that require explanations 5 Through 

3. Mathematical 
modeling steps 
aspects (42) 

a.   Structuring a lesson for all five modeling steps 14 About 
b.   Identifying problem 12 About 
c.   Devising a strategy 3 About 
d.   Carrying out 2 About 
e.   Interpreting  11 About 

 f.   Validating 5 About 
4. Teaching 

aspect (78) 
a.   Emphasizing different ways of solving problems 20 Through 
b.   Giving examples about how to solve 10 For 
c.   Giving definitions on mathematical modeling 9 For 
d.   Giving enough time to work on problems 6 For/Through 
e.   Providing a direct, clear direction and structure 25 For/About 
g.   Lessons that are interesting to students 8 Through 

Note. Majority of PSTs addressed multiple categories. These responses were coded in multiple categories as long 
as the categories were present in their written responses.  

 
After identifying the four aspects, we collectively considered them to categorize PSTs’ 

conceptions of effective MM instruction into the three groups by referring to Schroeder and Lester’s 
(1989) identification. Out of 78 participants, 42 participants considered effective MM instruction as 
teaching about mathematical modeling, 13 participants as teaching through mathematical modeling, 
and 20 participants as teaching for mathematical modeling. This finding indicates that despite the 
consistent emphasis on teaching through mathematical modeling in current mathematics education, a 
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large portion of our PSTs still did not have a clear view of teaching through mathematical modeling. 
In a similar way, we categorized PSTs’ conception of MM into three groups by referring to Stanic 
and Kilpatrick’s (1989) identification. Out of 78 PSTs, 42 PSTs considered MM as content, 22 PSTs 
as a skill, and 14 PSTs as art of discovery.  

Relationship between PSTs’ Conceptions and Their Modeling Performance 
For the first problem that asks students to decide when to leave their house, about 42 % PSTs 

responded that they would leave their house at times before 3:45 pm to go pick up their friend 
(correct realistic answer); 58% responded that they would leave their house at 3:45 pm. For the 
second modeling problem that requires students to determine the best estimate of the total number of 
people that can attend the concert in the size 100 m by 200 m, 42 % PSTs responded that there were 
100,000 fans (correct realistic answer) whereas 38% provided a mathematically correct answer, 
20,000. After coding PSTs’ written responses and grading mathematics tasks, we quantified the data 
analysis result to examine relationship among PSTs’ conception of mathematical modeling, a good 
mathematical modeling lesson, and their mathematical modeling performance. A chi-squared test 
showed that there is a positive relationship between PSTs’ conception of mathematical modeling and 
their conception of effective mathematical modeling instruction, χ2 = 16.888, df = 2, p = 0.002. In 
addition, there was a significant difference of mean scores concerning mathematical modeling 
competence among groups of PSTs who perceived different views on mathematical modeling, F(2, 
73) = 3.292, p = .024. PSTs who perceived mathematical modeling as art showed highest mean 
scores in the mathematical modeling tasks, followed by PSTs who with mathematical modeling as 
means to a focused end.  

Discussion and Implications 
This study contributes to the current literature on mathematical modeling and the knowledge base 

of teacher education. The findings of this study suggest that teacher educators need to find a better 
way to help PSTs perceive mathematical modeling as art and effective mathematical modeling 
instruction as teaching mathematics through mathematical modeling (Son, 2016). One approach 
would be: Have PSTs experience three different perspectives of teaching mathematical modeling and 
compare affordances and limitations of each approach. Then teacher educators need to give PSTs 
more opportunities to experience teaching through mathematical modeling in their mathematics 
methods courses where PSTs engage in mathematical modes of thought by analyzing and interpreting 
the problems. Furthermore, intervention studies that experiment with these suggestions are needed to 
find a better way to support PSTs’ conceptions regarding mathematical modeling, modeling lessons 
and their mathematical modeling abilities.  
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HOW PRESERVICE TEACHERS’ CONCEPTIONS OF PROBLEM-POSING RELATE TO 
THEIR PROBLEM-POSING COMPETENCY WITH FRACTION OPERATIONS 

 Ji-Won Son Mi Yeon Lee 
 University at Buffalo-SUNY Arizona State University	
 jiwonson@buffalo.edu mlee155@asu.edu 

Despite the importance of teachers’ conception of problem-posing and their problem-posing 
competency, limited attention is given to this area in the current literature. In this study, we 
examined preservice teachers’ conception of problem-posing and their problem-posing performance. 
We asked preservice teachers to define problem-posing. We then investigated how their conceptions 
of problem-posing were reflected in their mathematical problem-posing performances in the context 
of fraction operations. Analyses of 67 preservice teachers’ written responses revealed that a large 
portion of the preservice teachers defined problem-posing as general actions for teaching. However, 
preservice teachers who viewed problem-posing as a means of improving problem-solving tended to 
provide correct word problems that include multiple solution paths in a realistic context.  

Keywords: Teacher Education-Preservice 

Introduction  
The purpose of this study is to examine elementary preservice teachers (PSTs)’ conception of 

problem-posing. We also investigate how their conceptions of problem-posing are reflected in 
mathematical problem-posing performance. With increased interest in curricular and pedagogical 
innovation in mathematics education, mathematics educators have paid attention to problem posing. 
According to Principles and Standards for School Mathematics (NCTM, 2000), the use of problem-
posing activities in the mathematics classroom should be encouraged to improve students’ 
mathematical understanding and creativity. In a similar vein, Kilpatrick (1987) highlighted that 
“problem posing should be viewed not only as a goal of instruction but also as means of instruction” 
(p. 123). However, problem posing has been used with multiple meanings that range from “the 
generation of new problems” or “the re-formulation of the given problem” to “a means to improve 
students’ problem-solving” or “a window into students’ mathematical understanding” (Silver, 1994). 
While the first two meanings of problem posing are related to doing mathematics (Brown & Walter, 
2005), the rest two meanings are associated with the features of inquiry-oriented instruction. Thus, 
what is meant by problem posing is often subject to interpretation in a particular context, which 
suggests the need for exploring how mathematical problem posing is conceptualized by teachers and 
whether there exists any relationship between their conceptions of problem posing and their problem-
posing abilities. The research questions that guided this study are: (1) how do PSTs view problem 
posing?; (2) how do PSTs pose word problems related to fraction multiplication and division?; and 
(3) how is their notion of problem posing reflected in their ability to pose word problems related to 
fraction operations? 

Theoretical Perspectives 
Problem posing has long been recognized as a critically important component of the mathematics 

curriculum, and is considered to be an essential part of doing mathematics (NCTM, 2000). Kilpatrick 
(1987) conceptualized problem-posing as reformulating an existing problem in order to make it your 
own. Different from Kilpatrick (1987), Stoyanova and Ellerton (1996) defined problem-posing as 
“the process by which, on the basis of mathematical experience, students construct personal 
interpretations of concrete situations and formulate them as meaningful mathematical problems” (p. 
518). The subjective nature of this definition—one should decide in which aspect the problem is 
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meaningful and for whom—is apparent. Silver (1994) identified six different perspectives on 
mathematical problem-posing, which include: (1) problem-posing as a feature of creativity or 
exceptional mathematical ability; (2) problem-posing as a feature of inquiry-oriented instruction; (3) 
problem-posing as an important component in the creation of mathematics by professional 
mathematicians; (4) problem-posing as a means to improve students’ problem-solving; (5) problem-
posing as a window into students’ mathematical understanding; and (6) problem-posing as a means 
of improving students’ disposition toward mathematics. Then, what would be a good conception of 
problem-posing for teachers? Among Silver’s six categories, some are related to doing mathematics 
whereas other conceptions are considered to be strategies for developing students’ mathematical 
problem-posing abilities. There is no clear distinction in Silver’s six categories of problem-posing. 
Thus, the notion of “problem-posing” is used with a variety of not-always-compatible meanings and 
is applied to a variety of not-always-compatible teaching/learning situations. In this study, by 
reconceptualising Silver’s six categories, we intended to explore PSTs’ conception of problem-
posing and its relation to their problem-posing abilities.   

Methods 
Data for this study came from 67 PSTs at two different university sites. Each PST was enrolled in 

either an elementary mathematics content course or an elementary mathematics methods course 
jointly designed and taught by the two authors. A written task was used for the study, which consists 
of two parts (see Fig. 1). We purposefully selected three fraction multiplication and division 
problems because these types of problems require deeper understanding of fractions, fraction 
multiplication and division. 

 
Part 1: Please answer the following questions in as much detail as possible.  

1. When people say problem posing, what does the word “problem posing” mean to you?  
2. Create a metaphor that describes your conception of problem posing:  
3. Why do you think that metaphor is relevant in describing your conception of problem posing?  

Part 2: Suppose you are posing a word problem to help students develop a good understanding of 
fraction multiplication and division. What word problem would you pose teach each fraction operation 
below?  Describe your problem in a way that you pose it to your students. 

1.  ¼ x 2/3 = 
2.  4/3 x 48 = 
3.  3 ÷ ⅕ = 

Figure 1. Main task of this study. 

In order to answer the first research question, PSTs’ responses to the notion of problem-posing 
were categorized first based on Silver’s (1994) six perspectives on problem-posing. As we identified 
emerging themes from multiple cases, we modified Silver’s perspectives on problem-posing into 
seven categories and then coded the data. For the second research question related to problem-posing 
task, correctness of PSTs’ responses was determined and then various contexts and common 
misconceptions/errors in the creation of word problems were explored. In answering the third 
research question that examines the relationship between PSTs’ problem-posing performances and 
their notions of problem-posing, correctness of PSTs’ three word problems relating to fraction 
operations was determined first. After that, we explored patterns that existed between their problem-
posing performances and their notions of problem-posing by looking at the number of PSTs with 
correct word problems, the existence of multiple path ways and problem contexts in the word 
problems with respect to the different notions of problem-posing. 
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Summary of Selected Findings 

PSTs’ Conceptions of Problem-Posing 
In order to categorize PSTs’ conceptions of problem-posing, we first re-conceptualized Silver 

(1994)’s six perspectives on mathematical problem-posing based on the following four questions in 
order: (1) do PSTs define problem-posing from the mathematics perspective of doing mathematics or 
from the teaching perspective?; (2) if they define from the teaching perspective, do they consider 
problem-posing as a general action for teaching or an action for creating reform-oriented 
instruction?; (3) if it is for creating reform-oriented instruction, who is the one posing problems?; and 
(4) if the main problem poser is the teacher, what is the purpose of the action of problem-posing? We 
thus sorted PSTs’ conception of mathematical problem-posing (PP) into the seven categories:  

1. PP as a feature of exceptional mathematical ability or creativity,  
2. PP as a necessary component in good problem-solving,  
3. PP as essential student actions for inquiry-oriented instruction,  
4. PP as essential teacher actions to improve students’ problem-solving,  
5. PP as a means of formative assessment for students’ mathematical understanding 
6. PP as a means to increase student interest, disposition, motivation on doing math 
7. PP as general teacher actions of teaching,  

Table 1 shows the number of PSTs categorized into each of the seven perspectives of problem-
posing. While the first two perspectives (PP1 and PP2) define PP from mathematical action, the 
remaining perspectives consider PP as a means for instruction. However, depending on the 
pedagogical purposes for and emphasis on PP, PSTs’ conceptions of PP can be further divided into 
the subcategories ranging PP3 to PP7. About 20% PSTs defined PP only focusing on mathematical 
action and around 80% considered the purpose and subjects of problem-posing in in defining PP. 

Table 1: PSTs’ Conception of Problem Posing and Their Frequencies 
Criteria Math-focused Instruction-focused 

Reform-oriented General 
Special General Student 

Action 
Teacher  
Action 

Teacher 
Action 

Instruction Instruction Assessment Disposition Instruction 
Conceptions PP1 PP 2 PP3 PP4 PP5 PP6 PP7 

# of PSTs 2 (3%) 12 (18%) 1 (1%) 10 (15%) 2 (3%) 0 (0%) 38 (57%) 

PSTs’ Problem-Posing Competencies in Fraction Multiplication and Division 
In order to explore how their conceptions of problem-posing were reflected in their problem-

posing actions, we asked PSTs to create a word problem to three fraction number sentences: (1) 4/3 x 
48, (2) ¼ x 2/3, and (3) 3÷ ⅕. Among the three problems, we considered the first problem the most 
challenging (4/3 x 48), followed by the third problem (3÷ ⅕) and the second problem (¼ x 2/3). In 
the analysis of PSTs’ word problems, we considered the following three aspects: (1) whether to focus 
on mathematics correctly; (2) whether to be realistic; (3) whether to provide multiple solution 
pathways. We first determined PSTs’ word problems based on correctness. As we expected, the first 
problem, finding 4/3 of 48 was the most challenging to our PSTs; only seven PSTs provided a correct 
word problem. We further analyzed each PST’s word problem with respect to the context and 
whether multiple solutions/representations are required (Table 2). 
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Table 2: Frequency of Realistic/Multiple Solutions Among Correct/Partially Correct Responses 
Problems Correct Partially Correct 

Realistic Single path Realistic Single path 
4/3 x 48 = 7 out of 7 7 out of 7 4 out of 6 6 out of 6 
¼ x 2/3 33 out of 33 33 out of 33 5 out of 5 5 out of 5 
3 ÷ ⅕ = 20 out of 20 20 out of 20 2 out of 2 2 out of 2 

 
Table 2 presents although our PSTs tended to create realistic contexts, if they were not asked to 

do, they seem to not consider the tasks that can be solved in different ways by using multiple 
representations or strategies.  

Relationship between the Notion of PP and PP Competency  
In order to further understand the relationship between PSTs’ conception of problem-posing and 

their problem-posing competency, we categorized each student based on the correctness of three 
word problems, which resulted in the following six groups of PSTs: (1) Group 1: students with 
correct answers to all three problems; (2) Group 2: students with correct answers to #2 and #3; (3) 
Group 3: students with correct answers to #3 and #1; (4) Group 4: students with correct answers to 
#1 and #2; (5) Group 5: students with correct answer to #3; (6) Group 6: students with correct answer 
to #2; (7) Group 7: students with correct answer to # 1; (8) Group 8: students with incorrect answers 
to all three problems. We found that when PSTs had limited PP competency (Groups 5-8), they 
tended to view PP as general teacher actions of teaching that focus only on creating the problem or 
delivering the problem to the students. In contrast, PSTs in Group 2 tended to possess different 
conceptions of PP, which are related to the features of inquiry-oriented instruction. These findings 
suggest that we need to consider not only how to develop skills related to PP but also how to change 
their conceptions of PP.  

Discussion and Implications 
This study has implications for teacher educators working to design mathematics education 

courses for PSTs, as well as for researchers interested in better understanding of teacher knowledge, 
beliefs and strategies. That is, the findings of this study suggest elementary mathematics teacher 
education programs need to include more problem-posing activities so that PSTs can experience the 
benefit of problem-posing from a variety of perspectives. This study also suggests the importance for 
future research to continue to investigate preservice and in-service teachers’ conceptions of problem-
posing.  
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IDENTIFYING CRITICAL TOPICS FOR TEACHING MATHEMATICS FOR SOCIAL 
JUSTICE IN K-5 SETTINGS: CONNECTIONS AND TENSIONS 

Marrielle Myers 
Kennesaw State University 
mmyers22@kennesaw.edu 

This study examines PSTs selections of critical topics for a social justice project in a K-5 methods 
course. This study builds on previous work focused on using students’ funds of knowledge in 
instruction. Using the Flint water crisis as an authentic context, I looked for evidence that PSTs 
selected topics that would allow elementary students to read the world with mathematics. Findings 
indicated that although PSTs chose topics that “raised awareness,” lessons did not fully address 
issues of power, privilege, and resource inequities. Implications for PST preparation, suggestions for 
scaffolding, and future research are discussed. 

Keywords: Equity and Diversity, Teacher Education-Preservice 

Introduction 
As a mathematics educator focused on equity and social justice, preparing pre-service teachers 

(PSTs) to disrupt stereotypes and engage all students in meaningful mathematics is a focal point of 
my practice. After using a funds of knowledge (FOK) approach in a K-5 mathematics methods 
course for three semesters, findings from my research indicated that what PSTs learned via the FOK 
project was compartmentalized to that assignment. I also found that PSTs did not use this knowledge 
when planning additional lessons and small group activities throughout the duration of the course. 
Additionally, the lessons that PSTs planned were very shallow in their treatment of culture and only 
included topics such as students’ names, foods, favorite toys, and other general interests. In short, 
their understanding of real world knowledge was shallow and their work lacked substantive evidence 
of community-based funds of knowledge (Gonzalez, Moll & Amanti, 2005). 

Background  
For decades, scholars have articulated the need for teachers to teach using culturally relevant 

practices and build connections between students lived experiences and classroom instruction 
(Ladson-Billings, 1995; Moll et al, 1992; Gonzalez, Moll & Amanti, 2005). To meet this need, a 
funds of knowledge framework has been previously implemented in mathematics methods courses 
(Aguirre et al, 2012). Moll & Greenburg (1990) argued that students’ homes and communities are 
“valuable educational resources for teachers.” Moreover, Jiménez and Semingson (2011) argued that 
funds of knowledge is an additive approach to schooling in which teachers learn to “build on students 
and families strengths” as opposed to a subtractive model or deficit model (p. 5).  

Many students’ community experiences and knowledge can be critical depending upon the 
student’s background and current sociopolitical contexts (Gutstein, 2007). Because there can be 
overlap between community mathematics and critical mathematics, it is necessary to think about the 
ways in which the constructs work together as well as PSTs beliefs about teaching using such an 
approach. In a study of 92 PreK-8 PST, Simic-Muller and colleagues found that although PSTs 
initially had a “narrow” definition of real-world situations, they could articulate more controversial 
topics when pressed to do so (Simic-Muller, Fernandes, & Felton-Koestler, 2015). They go on to 
suggest that PSTs could benefit by starting this trajectory with topics that are more widely accessible. 
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Methods 

Context  
The study involved 17 PSTs enrolled in my K-5 mathematics methods course in the spring 2016 

semester. These PSTs were in a cohort and were simultaneously enrolled in a literacy methods, social 
studies methods, science methods, and health/PE course. Additionally, PSTs had a 200-hour field 
component that accompanied their methods block. This course occurred during the first semester of 
their senior year and preceded their full-time student teaching practicum. 

In an effort to move PSTs from focusing on students’ interests, I modified the course to include 
assignments that focused on current events with the ultimate goal of creating “critical tasks.”  I 
defined critical mathematics tasks to be tasks that are based on a current societal ill, inequity, or 
injustice. To introduce this concept to my PSTs we did an in-depth study of the Flint water crisis, 
what led to this crisis, and how it was being addressed. I chose to study Flint so that I could model an 
authentic context (Leonard & Evans, 2012) and so that the PSTs could first engage in this pedagogy 
as a learner before being expected to take it up in their own instruction (Felton-Koestler, 2017). 

Before starting this activity, I provided PSTs with a list of articles to read and hash tags to follow 
on social media for one week prior to starting our discussion. As we unpacked the Flint water crisis, I 
drew from Gutstein’s work in which he defined critical knowledge as, “knowledge about the 
sociopolitical conditions of one’s immediate and broader existence. It includes knowledge about why 
things are the ways that they are and about the historical, economical, political, and cultural roots of 
various social phenomena” (2007, p. 110). We then talked about how we could use mathematics to 
better understand multiple facets of this crisis. PSTs worked in grade-level groups to create lesson 
plans that were directly connected to the Flint water crisis. After this group project, PSTs were asked 
to select their own critical context and develop an accompanying mathematics lesson. 

Findings 
These findings are based on analysis of PSTs group lesson plans, individual lesson plans, and 

post-project reflection survey. A number of themes emerged among the critical topics selected 
including: raising awareness, current events (local and national news), student connections, as well as 
influences from other courses. In the following paragraphs, I share examples from a few of the 
themes that emerged from PSTs topic selection and justification. I also share tensions that PSTs 
faced while identifying these topics. A more detailed report of all themes can be found in a 
forthcoming paper. 

Raising Awareness 
Some PSTs selected critical topics intended to raise awareness for the students they served. These 

tasks included world poverty, school poverty, world hunger, and the rice shortage in the Philippines. 
PSTs explained these selections with the following comments: 

I chose this topic [poverty] because most of the students come from very affluent families.  These 
students pretty much have everything they need to survive.  I wanted them to have an opportunity 
to see that not everyone lives like they do…There are children my students [sic] age that go 
hungry everyday.  Many of these children die of starvation. By showing them with fractions what 
portion of the world has what they have and what does not, I think the students will come away 
with a better understanding and be grateful for the things they do have. 

Although these examples have the potential to address power, class, and resource inequities, 
PSTs failed to fully capitalize on that potential in developing their mathematics tasks. For example, 
the PST indicates that fractions can be used to make comparisons between what some children have 
compared to others. This lesson could have been enriched by simultaneously discussing issues of 
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privilege with issues of poverty. A subtext to these PSTs explanations is that they wanted to make 
their students grateful by comparing their current situations to those less fortunate than themselves.  

Current Events (Local and National News) 
Other PSTs selected topics based on current events. Among these tasks were job creation, 

flooding in the Midwest, the 2016 election, and school lunch. These task selections were particularly 
pertinent as one PST suggested that this project caused her to, “pay more attention to the 
mathematics in current events.” Other PSTs indicated that although they did not initially stay abreast 
of current events, they chose to follow various news sources on their social media outlets. Although 
each of these examples came from local and national news sources, it is important to note that PSTs 
justifications for why they were critical varied.  

As stated, the 2016 election and the structure of government was selected as a topic. The PST 
stated that: 

The students in my … classroom are currently studying the three branches of government and 
how they work together to pass laws and run the country. Also, since the presidential election is 
coming up, I felt like this was a good task to use to integrate social studies and math using a topic 
students are interested in and already have background knowledge on. This is a critical topic 
because it is an issue that people are divided on and that Americans are interested in and playing 
a role in right now…Students hear about the election and government from their friends, home, 
and school, and encounter many different opinions that might not be based in fact. If I use this 
topic in a math task, I am able to give them more information in an unbiased setting that lets 
them form their own opinion of the critical topic. 

A second PST reported on The Frankfurt Company breaking ground in the community 
surrounding her school. This company was set to invest over $20 million into a local project and 
create 100 permanent jobs for the area. She commented that The Frankfurt Company, “will employee 
many families in and around the Bunby County area beginning in 2017 and the years to follow. This 
is an event that will make an impact on the community, one in which I felt they should be aware of.” 
This topic could have been extended to acknowledge issue of power and class. For example, how can 
we assume equitable access of job opportunities at the Frankfurt Company? And will there be equal 
pay for equal work for the given positions?  

Tensions 
A few tensions arose while analysing this data. First, some PSTs selected topics that they were 

interested in while others chose topics that they thought their students would be interested in. This 
shows that PSTs were struggling to balance their interests with students’ interests. Some of this 
tension was because PSTs indicated that they needed to do their own research on a topic prior to 
developing a task for their classrooms. Another tension that resulted from this analysis was age and 
grade level tensions. Some PSTs thought that certain critical topics were not appropriate for young 
students and went on to say that critical topics would have to be adapted to make them “grade 
appropriate.” This tension mirrors findings from other scholars in the field (Simic-Muller, Fernandes, 
& Felton-Koestler, 2015). 

Implications 
There are a number of findings that have emerged from this work that demonstrate promise for 

using this type of pedagogy in a methods course. First, some PSTs were able to use their 
understanding of the Flint water crisis project to identify other topics and use those topics to develop 
critical tasks appropriate for their field placement grade levels. Others had difficulty identifying a 
critical topic. It also clear that PSTs need more information on the historical, political, and social 
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implications of societal issues to help them better frame their understanding of what makes an issue 
problematic, therefore leading to the development of a critical task. These findings support Bartell’s 
(2013) piece in which she found that in-service teachers had varying definitions of what it meant to 
teach mathematics for social justice ranging from awareness, to cultural exposure, to student 
empowerment. 

This study highlighted the layers involved in this process, particularly that PSTs may need 
assistance teasing apart the elements or their critical topic such that any resulting lesson plans fully 
address issues of social justice. A final implication of this work is that the selection of a critical topic 
and the development of a task should be an iterative process. PSTs could have benefited from 
additional conversations that pushed or challenged their thinking even more. 
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Responding to student contributions during whole-class discussions is a complex instructional 
practice. Coached rehearsals are a way to support teacher candidate (TC) learning. This study 
investigates TCs’ practice of responding to student contributions during rehearsals of leading whole-
class discussions. Two key findings emerged through video analysis. The rehearsing TC had general 
patterns of responding, with some nuanced variation when responding to a contribution that was 
mathematically problematic. Second, analyzing teacher responses as sets of interactions contingent 
on student contributions and key mathematical ideas provided greater insight into the practice of 
responding. These findings have important implications for research on this complex practice.  

Keywords: Instructional Activities and Practices, Teacher Education-Preservice; Classroom 
Discourse 

Rehearsals are a valuable pedagogical tool to support teacher candidates (TCs) in learning 
complex instructional practices, such as leading whole-class discussions (e.g., Boerst, Sleep, Ball, & 
Bass, 2011). One challenge in leading whole-class discussions is responding to student contributions 
in ways that position them as resources to advance the class’s learning of key mathematical ideas. In 
this paper, we describe emerging understandings about the practice of responding to student 
contributions, as well as strategies for analyzing TC practice during rehearsals of leading whole-class 
discussions. 

How teachers respond to students’ ideas is consequential for students in shaping their beliefs and 
mathematical understandings (e.g., Borasi, 1994). There are many different ways that teachers 
respond to students during whole-class discussions, such as re-voicing what the student said or using 
other talk moves (Chapin, O’Connor, & Anderson, 2013), steering the discussion toward the 
mathematical point (Sleep, 2012), building on student thinking (Leatham, Peterson, Stockero, & Van 
Zoest, 2015), allowing other students to respond, recording the student contribution on the board, and 
more. Skillfully responding to student contributions rests on noticing and interpreting student’s 
mathematical ideas (e.g., Jacobs, Lamb, & Philipp, 2010) and can be particularly difficult when the 
contributions have mathematical ambiguities or errors.  

Theoretical Framing 
We take the view that whole-class discussions are a complex set of interactions among teacher 

and students. The teacher engages in interrelated moves to elicit student participation, encourage 
students to respond to one another, and further student understanding of the mathematical concepts 
being discussed (Boerst et al., 2011). These teacher moves are necessarily situated in the context of 
the classroom and the type and purpose of the discussion. Developing skill in the practice of leading 
discussions is challenging for TCs, though they can develop such skill through purposeful 
opportunities to approximate and reflect on practice (e.g., Grossman et al., 2009), such as rehearsing 
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leading a discussion in a methods class (Lampert et al., 2013). Rehearsals afford opportunities for 
teacher educators (TEs) to deliberately construct moments for TCs to respond to student thinking; 
rehearsals also afford opportunities for the TE to provide in-the-moment feedback or engage TCs in 
collectively reasoning about how to respond (Lampert et al., 2013; Singer-Gabella, Stengel, Shahan, 
& Kim, 2016). We examine ways rehearsals can support TCs in learning to respond to students’ 
contributions during whole-class discussions. We investigate this through the use of a discussion 
structure deliberately designed to surface multiple types of student contributions and provide TCs 
opportunities to respond. 

Methods 
Our analysis of TC practice takes place in the context of secondary mathematics methods courses 

at two large, public universities. TCs rehearsed leading sorting discussions (Baldinger, Selling, & 
Virmani, 2016), where “students” (other TCs) sorted cards with examples and non-examples of linear 
functions in order to develop and refine their definition of linear function. In each rehearsal, an error 
was introduced as a way to construct an opportunity for the rehearsing TC to navigate responding to 
a mathematically problematic student contribution, in addition to correct student contributions. Each 
rehearsal was video recorded.  

The video analysis occurred in two phases. The first phase involved defining the unit of analysis 
and chunking the videos into segments. The structure of a sorting discussion involved the teacher 
asking students to share cards that were easy or hard to sort. Based on this structure, one frequent 
student contribution during the rehearsals was naming a specific example or non-example. For 
example, in one rehearsal, the rehearsing TC said, “Can you share an example of what you think a 
linear function is?” The “student” replied, “y = 3x + 5.” The TC followed up, saying, “Good, y = 3x + 
5…why did you come up with that?” The student responded, “…because it’s in y = mx + b form.” In 
other cases, a student contributed the card and reasoning in a single talk turn. Student contributions 
also occurred as a card was discussed. These contributions tended to expand on or disagree with what 
another student said. The teacher’s response occurred in the teacher talk immediately following 
student talk, but also in subsequent interactions. To capture the complex and interactive nature of 
teacher responses to students, we used the introduction of a new card and all the discussion related to 
that card as our unit of analysis. We then had to determine what counted as a student contribution 
and what counted as the response to that contribution. The initial student contribution was considered 
to be the card and associated reasoning, and the teacher response was considered to be the set of 
interactions—including teacher talk, student talk, and recording—that related to that card. This 
chunking method enabled us to identify patterns that occurred in response to different types of initial 
contributions. This follows work of others who argue that building on student thinking is more than a 
single teacher move (Van Zoest, Leatham, Peterson, & Stockero, 2016). 

The second phase of analysis involved coding the initial student contributions as having errors 
(i.e., being mathematically problematic in some way) or not, and identifying the patterns of moves 
made by the teacher over the course of their response to the initial student contribution. All four 
researchers independently watched and annotated rehearsal videos to document patterns of 
responding. The annotations were discussed and synthesized to reach consensus about how to 
describe the teacher response around each card brought up in the rehearsal. In this paper we present 
data from one of the six rehearsals. 

Preliminary Findings 
Our initial analysis of one of the rehearsals revealed two primary findings. First, we documented 

patterns of practice in how the TC responded to student contributions, and noticed nuanced 
differences in the nature of the responses based on whether or not the student contribution contained 
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an error. Second, we found that analyzing teacher responses as sets of interactions contingent on 
student contributions and key mathematical ideas provided greater insight into the practice of 
responding to students during whole-class discussions.  

Patterns of Practice in Responding to Student Contributions 
Our analysis revealed patterns of responses across cards. For example, the TC was fairly 

consistent in her use of a set of talk moves to respond to student contributions. Typically, this TC 
would elicit student reasoning if it was not initially offered, she would re-voice and often record the 
student reasoning, and she would orient the other students to the initial contribution by asking other 
students to elaborate. In some cases, this TC would purposefully steer the conversation toward the 
definition of linear function, or probe student reasoning. The sequence and frequency with which the 
TC utilized these moves varied across the six cards discussed during her rehearsal; however, this set 
of moves was common for every card. 

Despite a clear pattern of responding, our analysis also revealed subtle differences in responses 
when the student contribution was mathematically problematic. For example, the TC often asked 
questions like, “Can someone else add in why they think that is also an example?” as a way to 
encourage students to build on the mathematically correct reasoning already shared during the 
discussion. The TC used a very similar move when a student shared that the card y = 17 – 5x was an 
example of linear function, but incorrectly reasoned that it was linear because it had a slope of 17 and 
a y-intercept of 5. In this case, the TC said, “Does anyone want to elaborate on that, or give another 
opinion, agree or disagree?” In response to initial contributions that are correct or contain errors, this 
TC used an orienting move. However, in response to the error, the TC explicitly asked about the 
possibility of disagreement, which was not part of her questioning when there was not an error. 
Despite using the same general sequence of moves, the TC’s response to the error revealed 
differences in how those moves were used as compared to responses to contributions without errors. 
This also raises the question of how different moves interact with one another in the context of 
different types of student contributions. 

Analyzing Teacher Responses as Sets of Interactions  
Our approach of analyzing sets of moves that included teacher talk, student talk, and recording 

had many affordances for capturing the complex practice of leading a mathematical discussion. For 
example, the orienting moves used by the TC are very similar, but they played out differently. When 
discussing mathematically correct reasoning, the orienting move resulted in another student adding 
more reasoning, and the TC incorporated that contribution into the discussion and moved on to the 
next card. When discussing the incorrect reasoning, right after the orienting move, the TC made an 
additional re-voicing move, reiterating the part of the student reasoning that was incorrect. The TC 
used numerous additional re-voicing, probing, and recording moves, and allowed students to respond 
directly to one another before she brought the discussion of this card to a close. This contrasting use 
of common teacher moves highlights the importance of considering sets of teacher moves in concert 
with the student contributions themselves – for instance, whether there is an error or not, or whether 
the mathematics of the idea is of central importance in that moment. Different moves are more or less 
effective at different times in the discussion as they are contingent on and interact with student 
contributions. 

Discussion 
Rehearsals of sorting discussions provided valuable insight into how TCs respond to student 

contributions. Through analysis of sets of interactions, we were able to identify common patterns of 
responding that utilized productive talk moves. At the same time, by considering the complexity of 
leading whole-class discussions, we identified subtle differences in how these talk moves were used 
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based on the nature of the student contribution. The work of responding to student thinking is 
contingent on the mathematics being discussed and interactions among the teacher and students 
(Lampert et al., 2013; Leatham et al., 2015). The particular structure of the sorting discussion 
allowed for an intentional opportunity to insert incorrect mathematical thinking, and to provide 
opportunities to respond to different types of student contributions. Using the card under discussion 
as the unit of analysis potentially makes it easier to see patterns and regularities, and also highlights 
nuances in teacher practice around responding to student contributions, because the boundaries for 
different segments of the discussion are clearly marked. This promising analytic technique could also 
provide a tool for comparing TCs’ practice when leading sorting discussions across settings, such as 
rehearsals and enactments in field placements. On-going work to explore patterns in how TCs 
respond to student contributions is important for developing more systematic uses of pedagogies of 
practice for teacher learning. 
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We traced the impact of a designed unit of instruction on mathematical modeling on Prospective 
secondary teachers’ knowledge about and efficacy towards teaching modeling. Analysis indicate that 
although teachers maintained modeling to be an important skill to be developed, absence of extensive 
experiences with mathematical modeling in the course of their own mathematical preparation 
hindered their ability to access pedagogical actions to be used in teaching.   

Keywords: Modeling, Secondary Teacher Preparation, Mathematical Knowledge for Teaching 

The demand that mathematics teachers will infuse mathematical modeling in curriculum is now 
paramount in the educational reform efforts in the US as pioneered by the Common Core State 
Standards of Mathematics (CCSSM, 2010). There is some evidence that due to absence of 
information regarding the nature of mathematical modeling misconceptions exist among teachers 
regarding modeling and its associated pedagogies (Gould, 2013). The international community of 
researchers on teaching and learning of mathematical modeling have stressed the need to explore 
models and programs that might assist teachers to meet implementation challenges and to document 
potential impact of these efforts on teachers (Cai et al. 2014). The current paper addresses these two 
areas. One question guided our inquiry: 

8. What is the impact of a unit of instruction on teaching mathematical modeling on teacher 
candidates’ perceptions of teaching mathematical modeling in schools? 

Background  
The methods course that served as the site for the current study is the second of a sequence of 

two courses on methods of teaching high school mathematics. The focus of the first course is on 
teaching of Algebra, Calculus and number theory concepts. Using Principles of Inquiry based 
Learning and Teaching (Artigue and Blomhøj, 2013) the course draws attention to connections 
among student thinking, instruction and assessment. The second course addresses teaching and 
learning of Geometry, Measurement, Probability, Statistics and Discrete Mathematics.   
Mathematical modeling strand was to be addressed explicitly during three weeks of instruction.  

Methodology 
First, a survey of knowledge of mathematical modeling for teaching was designed and 

administered to collect base line data on the candidates’ perceptions about teaching mathematical 
modeling in schools. Second, in light of survey results and areas that seemingly needed developing, a 
unit of instruction on mathematical modeling for teaching was conceptualized and implemented 
during three course sessions (approximately 8 hours). A post implementation survey was then 
administered on the last session of the academic semester to trace impact of the experiences provided 
for participants as expressed by them.  

Participants 
The participants consisted of 11 prospective secondary mathematics teachers. The participants 

had completed all coursework towards a major in mathematics and were enrolled in the second 
course of a sequence of two methods courses on teaching in secondary schools.  
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Survey 
The survey consisted of 20 items and addressed four areas. The first part of the survey collected 

biographical information from the participants, the range of mathematics courses they had 
completed, and their assessment of courses in which they believed they had gained mathematical 
modeling experiences as learners.  

 Four items addressed the participants’ claimed comfort level with mathematical modeling, 
teaching it, and their perception of the importance of modeling for school learners. Additionally, they 
were asked to identify how frequently they had observed mathematical modeling be implemented in 
classrooms. 

The third part of the survey consisted of open response items that collected data on the 
participants’ description of mathematical modeling, similarities and differences they observed 
between modeling tasks and other kinds of activities used in classrooms, and processes they 
associated with mathematical modeling. The participants were asked to provide illustrative examples 
in each part.   

The last portion of the survey aimed to obtain specific data on the participants’ ability to identify 
suitable examples of modeling tasks to be used with middle and high school students as well as how 
they envisioned gauging learners’ progress when engaged in such tasks. We had anticipated that the 
participants’ responses to the last set of questions would allow us to more carefully detail their 
knowledge related to modeling based curriculum and instruction. 

The same survey was administered again during the last session of the academic semester and 
upon conclusion of the experimental unit of instruction.   

Findings 

Phase I: What Teachers Felt They Knew 
All 11 participants reported having had exposure to mathematical modeling and having gained 

knowledge of mathematical modeling in their Discrete Mathematics course. A half of the participants 
reported that they felt they had adequate exposure to modeling experiences in their calculus, 
differential equations, and probability and statistics courses.  

In describing mathematical modeling and its process, 7 (64%) participants characterized it as 
using mathematics to represent and analyze real world situations. The participants’ responses 
however varied according to the amount of detail they chose to include in outlining their thinking. 3 
(27%) participants perceived mathematical modeling as using manipulative, simulations or world 
problem to demonstrate a mathematical concept.  

In explaining specific actions associated with modeling two common themes emerged.  One 
group equated mathematical modeling process with problem solving. The second type of description 
concerned data modeling with a focus on statistical context. None of the participants referenced 
defining variables, setting parameters, building a mathematical representation of the situation, and 
refining the model (Blum and Leiβ, 2007) as part of the modeling process.   

On the follow up question that asked the participants to report how they would assess school 
learners’ mathematical modeling progress, all but one participant offered general descriptions that 
ignored the unique features of mathematical modeling. In order to illustrate differences between 
modeling tasks and other types of mathematical activities, participants relied on phrases such as 
“open ended”, “multiple approaches”, “multiple solutions” to describe their thinking. 

Phase II: Course Design 
In light of the survey results, we set four goals for our work with the participants so to help them: 

(1) develop a deeper understanding of the mathematical modeling process and its intricacies, (2) 
discriminate between mathematical modeling as a process and solving routine application problems, 
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(3) learn about suitable resources that could be used for simulating modeling tasks, and (4) 
understand how student learning could be gauged using the modeling cycle as a platform for 
assessment.  The participants were introduced to the modeling cycle on the first day of implementing 
the modeling unit and revisited it during each session.  

Each course session was divided into two parts. During the first part of the session, the 
participants worked on one or two modeling tasks, compared and constructed their answers, and 
engaged in refining their solutions. These discussions also granted us the space to introduce how 
different mathematical tools the participants may not have considered either independently or 
collectively, could be used to construct more robust models (Approximately 3 hours).  

The second part of the session was devoted to deliberations on how the same tasks could be 
implemented in schools. The participants were introduced to specific resources they could use in 
designing modeling experiences and available simulations they could utilize in instruction to ground 
learners’ activities. Participants were encouraged to identify the type skills they could address as 
school learners worked on the specific tasks they examined (approximately 3 hours). 

Phase III:  Course Outcomes 
Descriptions of mathematical modeling and its process. On both surveys the participants were 

asked to describe mathematical modeling and what they perceived as specific processes involved in 
this sort of mathematical work. In the post implementation survey, 9 (82 %) participants described 
mathematical modeling as using mathematics to represent, analyze and solve real-world problems. 
Comparing these responses to those on pre-implementation survey, their remarks were more 
reflective of modeling as a process (Blum and Leiß, 2006).  

In the post implementation survey, when asked to outline actions that may be involved in 
mathematical modeling process, 8 (72 %) participants noted specific cognitive actions (making sense 
of the situation, identifying/defining variables, making assumptions, using mathematics to build a 
model, interpreting the model, and revisiting the initial model). Compared to their responses to the 
same question on the pre-implementation survey, these descriptions more closely match stages 
depicted in the modeling cycle.  Two of the participants associated modeling with using manipulative 
or simulation to demonstrate concepts.  

Example generating. In the post implementation survey, when asked to illustrate the differences 
between modeling activities and other types of mathematical activities, phrases such as “open 
ended”, “multiple representations”, “real world connection”, “multiple approaches”, “a variety of 
directions” and “multiple entry and exit points” “minimal constraints”, “opportunity to define 
relevant variables”, and “revisiting solutions” were referenced by all 11 participants. 10 (91 %) of the 
participants referenced “minimal constraints”, “revisiting solutions”, and “define relevant variables” 
to describe modeling tasks, which were not present in their responses in the pre-implementation 
survey.  

Assessing modeling progress. Compared to pre-implementation survey on which none of the 
participants appeared to have had a platform for gauging learners’ modeling progress on the post 
implementation survey 7 (64 %) of them offered specific plans relying on the language of modeling 
cycle for identifying specific behaviors they would seek out.  

Discussion 
A majority of the participants in our study did perceive mathematical modeling as the process of 

using mathematics to solve real world based tasks and their understanding of the complexities 
associated with teaching it increased. The participants also believed modeling cognition to be 
difficult to nurture. Because of this, compared to teaching other content areas, they felt less 
efficacious in helping children develop proficiency in the area. Two particular challenges they 
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articulated included how to effectively build on the learners’ extra mathematical knowledge when 
engaging them in model building process as well as managing diverse student backgrounds. These 
issues have not been adequately addressed in the literature. 

Analysis of the post implementation survey data revealed that although course experiences did 
not have any significant impact on the participants’ sense of efficacy towards teaching mathematical 
modeling, their description of the modeling process, knowledge of task design, available resources, 
along with ways they could monitor student progress towards establishing more sophisticated 
mathematical models increased. Participants felt vulnerable towards gauging their own instructional 
interventions in the course of learners’ modeling process. This is not surprising since developing 
strategic intervention skills (Blum, 2011) has been identified as a particularly complex one to acquire 
and one that demands time and practice to mature. 

Data also indicated that the participants possessed greater control when generating modeling 
activities suitable for the middle grades learners. Examples of tasks they provided contained detail 
and tended to precision in describing specific mathematical skills that could be taught or reinforced 
with them. Lastly, it appeared that the course managed to provide the participants with a language 
through which they could articulate ideas about mathematical modeling, its form and content. 
Because of this we argue that while inclusion of experiences we designed appeared to have had been 
useful in familiarizing the participants with some key issues and methodologies, they were not by 
any means sufficient to have helped them reach proficiency level. Significant need exists for 
additional reports by scholars around different models used for assisting prospective teachers develop 
pedagogical capacities towards implementing modeling based curriculum and instruction. 
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This study examined how preservice elementary teachers’ (PSTs’) ability to facilitate productive 
mathematics discussions on problem-solving tasks developed during a 6-week field experience. Data 
were collected in 6 weekly cycles of planning (written plans), enactment (video of co-teaching 
sessions with pairs of children), and reflection (collaborative reflections based on video). Data were 
analyzed using cognitive demand of a task implementation (Stein, Smith, Henningsen, & Silver, 
2000) and math-talk (Hufferd-Ackles, Fuson, & Sherin, 2004). Problematic aspects of data analysis 
led to the revision of the math-talk framework. I share the process used to modify an existing 
framework to fit the context of this study and the data analysis used to determine changes in the 
PSTs’ ability to facilitate mathematical discussion. 

Keywords: Classroom Discourse, Teacher Education-Preservice, Research Methods 

Facilitating a mathematics discussion is a high leverage practice, one that novices need to be able 
to carry out (Ball & Bass, 2000) and that has a big payoff for student learning (Ball, Sleep, Boerst, & 
Bass, 2009). Yet, enacting mathematics teaching practice focused on discussion poses several 
challenges, especially for novices: balancing productive struggle (NCTM, 2014) with student 
frustration and progress on a task; knowing when and how to intervene (Ball, 1993); and requiring 
students explain and justify, not memorize and apply, algorithms. Nathan and Knuth (2003) found 
that teachers “seemed to have in their minds what they expected of their students in terms of dialogue 
and a solution” (p. 121) and when teacher expectations were unmet, a one-way dialogue resulted. 
This study focused on preservice elementary teachers’ (PSTs) abilities to facilitate mathematics 
discussions with pairs of children during a field experience. I describe the study design and 
problematic issues of analysis that led to revising an existing framework. 

Existing Frameworks 
Several frameworks for studying discourse-based classrooms have been described, but their 

usefulness for investigating novices who are learning to facilitate mathematical discussions is 
limited. Knuth and Peressini (2001) categorize discourse as univocal (speaker delivers message with 
intended meaning to audience) or dialogic (multiple speakers generate meaning of a message), which 
borders on “stereotyping mathematics class discussions as either good or bad” (Crespo, Oslund, & 
Parks, 2011, p. 130). Truxaw (2004) adds to dialogic-univocal discourse with categories of inert and 
generative verbal assessment, but these broad characterizations still only provide snapshots of 
practice, not development over time. Yackel and Cobb’s (1996) sociomathematical norms provide a 
more detailed picture of mathematics discourse. However, the specific elements of discourse they 
attended to (what counts as mathematically different and sophisticated solutions and what constitutes 
an adequate explanation) represent complex issues of practice whose negotiation may not be 
accessible to novices.   

Hufferd-Ackles, Fuson, and Sherin (2004) developed a framework for studying math-talk that 
addresses some of these problematic issues. Organized hierarchically as a 4x4 matrix, it includes four 
levels (0-3) and four components: questioning, explaining mathematical thinking, source of 
mathematical ideas, and responsibility for learning. The four components allowed me to zoom in on 
specific teacher moves and compare them to other features of class discussion. The multi-leveled 
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feature of the framework ranging from a strictly teacher-directed classroom to a description of 
dialogic discourse allows for a study of changes over time. In this study I used math-talk to examine 
how teacher moves to facilitate mathematical discussion influenced cognitive demand of a task 
implementation (Stein et al., 2000). 

Methods  
This study was conducted via a 6-week field experience integrated within my mathematics 

teaching methods course. For the field experience PSTs and methods instructors made weekly visits 
to an elementary school where PSTs worked with children on problem-solving tasks. PSTs were to 
facilitate mathematics discussions that elicited and explored children’s thinking without advancing 
PSTs’ ideas. Classroom teachers and methods instructors had purposefully structured the experience 
to focus on problem-solving tasks not related to the children’s classroom work to relieve PSTs of the 
need to “cover” material and to give them the freedom to focus on practices coherent with university 
course work. In methods class, PSTs solved the tasks and hypothesized how students might solve 
them while I modeled practices for facilitating discussion.  

I selected 4 groups of 3 PSTs each from my methods course based on class assignments and 
observations. Classroom teachers chose 5th graders who they considered to be academically average. 
In the first 3 weeks, PST groups enacted two high-demand tasks with a different pair of elementary 
children each week. They repeated this process for the second 3 weeks with two new tasks. 
Repeating each task three times with new children helped familiarize PSTs with children’s 
approaches to tasks and provided opportunities to refine their responses to children’s strategies. Each 
week was based on a cycle of planning, enactment, and reflection (Kazemi et al., 2010). At the start 
of each 3-week block PSTs constructed a hypothetical student-teacher dialogue to follow each of 
several typical (correct and incorrect) solutions for each task (modified from Crespo et al., 2011). 
Then, using my feedback on the dialogues, PSTs wrote a plan that listed hints and questions they 
would provide in several scenarios: a child who could not start the task, a child with a specific 
misconception, a child who was on the right track but had not solved the task, and a child who had 
solved the task but not connected it to any mathematics concept. I provided feedback again before 
task implementation. The enactment of the weekly cycle was captured on video by one PST while the 
other two group members co-facilitated, with recorder role rotating weekly. After each weekly 
session, each PST group reviewed video to compose a collective written analysis of their and their 
children’s work and to revise their plans based on what they learned from working with children. 

To analyze the reflection data I noted excerpts of thoughtful analysis and issues that recurred 
over several sessions. To analyze planning and video data, I intended to assign a level 
(memorization-0, procedures without connections-1, procedures with connections-2, and doing 
mathematics-3) for cognitive demand, and a level (0-3) for each of questioning, explaining, ideas, 
and responsibility. I hypothesized that a teaching episode could be assigned different levels for each 
component of math-talk (e.g., Level 2 in questioning, Level 1 in explaining, etc.) which differs from 
Hufferd-Ackles et al.’s (2004) idea that the four components developed together (e.g., all 
components should be assigned the same level). However, I encountered several difficulties with the 
video analysis that led to revisions I discuss in the following section. 

Results: Revised Framework  
The first problem encountered during data analysis was an inability to cleanly apply levels of 

cognitive demand and levels of components of math-talk to a single task enactment. The guideline 
for applying a level was to look at what more than half of the students were doing more than half the 
time (Stein et al., 2000),but this guideline proved too coarse a grain-size and did not capture 
interesting conversational turns. What might start as a doing mathematics implementation would 
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decline to memorization when a PST used leading questions, and later the PST would pull out of a 
downward trend of low-level questioning when a child began to generate his or her own ideas. Even 
if I had been able to assign one level from each category to a task implementation as a whole the 
different contributions to the task enactment made by each participant in the group meant I was not 
able to attribute the pedagogical decisions and moves to a single individual. Therefore, I decided to 
parse each task enactment into segments that allowed me to cleanly apply one level for each of the 
five categories to the pedagogical moves of one PST. To be consistent with plans, which required 
PSTs to respond to no solution, a correct solution, an incorrect solution, and a partially correct 
solution, these events also defined the start of segments in the video data where PSTs responded to 
children’s work. When watching the first group’s full video data PSTs responded to more than just 
children’s solutions.  I identified additional segment markers: responding to an idea (a question or 
observation about the task) and responding to a strategy (either described by the child or as they 
executed but had not complete it). A segment started when a PST responded to a child’s idea, 
strategy, solution, or lack of solution and ended when the child offered a new idea, strategy, solution, 
or when the PST intervened to help a child who stalled out.  

The second issue was that the math-talk framework, originally developed from studying one 
experienced teacher’s whole class discourse, did not translate smoothly to the context of two novices 
working with a pair of children. Within the first group’s transcripts I found exemplars for each level 
of each category and added more specific detail to the descriptions of category levels to help me 
more easily identify them in my data. I revised the Level 2 descriptions to have the common thread 
of the teacher prompting student-to-student interactions. Because many of the Level 3 descriptions 
included activities the teacher “expected” and my participants’ intentions and expectations were not 
discernible from the video data I rewrote Level 3 descriptions to focus on observable data. I then 
composed a general description of each level so that a feature common to all components within a 
level distinguished it from previous and subsequent levels. Level 0 is solely teacher directed, in Level 
1 the teacher makes attempts to elicit student thinking but is unable to use that thinking to move work 
on the task forward, in Level 2 the teacher prompted students to talk to one another, and in Level 3 
students exercise mathematical authority.  

Third, periodically a segment had features of two consecutive levels or fell into a “gap” between 
the levels. PSTs also made pedagogical changes that improved the discussions, but that did not 
warrant increasing them to the next level of a math-talk category. Therefore, I concluded mid-levels 
were needed and searched for examples of them in the data and composed corresponding 
descriptions. The addition of these levels to the framework occurred in cycles, similar to the process 
used to develop the original framework (Hufferd-Ackles et al., 2004). When I identified several 
similar segments that did not fit into the 0 to 3 levels of a component in the framework I coded those 
segments with the appropriate mid-level, composed a description for that cell of the matrix based on 
the newly coded segments, and composed a general description of the mid-level. I then recoded any 
earlier video segments to ensure the assignment of levels for that component was consistent across 
the data. As I found more examples of mid-levels for a math-talk component I refined the 
descriptions for that cell. This process continued until I coded all segments of the first group to fit in 
exactly one level for each component. Using the 7-level revised framework I coded all the other 
groups’ data.  

Several types of charts were useful to determine how the PST’s pedagogical moves in facilitating 
mathematics discussions influenced cognitive demand. Plotting in chronological order each PST’s 
segments of all implementations of all tasks along the x-axis and the levels for cognitive demand 
along the y-axis, I was able to see trends in each PSTs’ implementations over the course of the study. 
To understand how the four components of the math-talk framework were associated with the 
cognitive demand I plotted in chronological order each PST’s segments of all three implementations 
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of each task along the x-axis and the levels for each category along the y-axis. Plotting segments of 
particular types of solutions, strategies, or ideas, (none, incorrect, partially correct, correct) on the x-
axis against the levels for each category along the y-axis allowed me to examine how the questioning, 
explaining, ideas, and responsibility for different types of segments were associated with cognitive 
demand. 

Conclusion 
These revisions were necessary to fit the context of this study, and analyzing the video data using 

two frameworks in the manner described was essential for allowing me to systematically examine the 
relationship between cognitive demand and quality of the mathematical discussion. This analysis 
revealed examples of how a teacher might use instances being overly directive to catapult the 
students’ work to a higher cognitive demand and examples of how a teacher’s response to student 
thinking could dramatically shift the cognitive demand and quality of the mathematical discussion. 
My revisions to the use of the frameworks supported a fine-grained analysis of discussions that 
highlighted pedagogical moves, key conversational turns within one discussion, and an image of how 
novices developed and facilitated children’s work over a session of problem solving and over 
multiple sessions. 
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This study investigated the nature of written modeling tasks reported by instructors of required 
courses in five secondary mathematics teacher education programs. These tasks were analyzed based 
on a framework addressing potential cognitive orientation (simple procedures, complex procedures, 
and rich tasks) and purpose (epistemological, educational, contextual, and socio-critical modeling) 
of the tasks. Our analysis suggests that most tasks included questions of more than one cognitive 
orientation and more than half of the tasks were coded as contextual modeling. We also found that 
tasks that were coded as contextual modeling offered opportunities for future teachers to engage with 
questions at all levels of cognitive orientation. The nature of several modeling tasks, along with the 
ideas for refining the current frameworks, are presented for future implications of analyzing and 
developing modeling tasks.  

Keywords: Modeling, Teacher Education-Preservice, Algebra and Algebraic Thinking 

Connecting educational theory to practice is critical in supporting future secondary mathematics 
teachers to develop the skills and understanding necessary to enact effective mathematical modeling 
tasks. The Common Core State Standards for Mathematics included modeling as a mathematical 
practice and content standard; modeling is described as a full iterative process used to solve rich 
mathematical tasks (NGO & CCSSO, 2010). However, the meaning and purpose of mathematical 
modeling has been found to vary widely in both theory and practice (e.g., Anhalt & Cortez, 2015; 
Kaiser & Sriraman, 2006). To connect current theories to practice, we applied two frameworks with 
distinct perspectives to analyze the nature of modeling tasks. We collected tasks as part of a larger 
research project Preparing to Teach Algebra (PTA), which investigated opportunities secondary 
teacher education programs provide for future secondary teachers to learn about mathematical 
modeling. As we focus on the nature of these tasks, we answer the question, “What is the nature (i.e., 
potential modeling purpose and cognitive orientation) of modeling tasks reported by secondary 
teacher preparation programs?”  

Theoretical Framework 
In this secondary analysis of the larger PTA study, we use two frameworks proposed to 

characterize intended modeling purposes (Kaiser & Sriraman, 2006) and cognitive orientations 
(White & Mesa, 2014) of mathematical tasks. Kaiser and Sriraman (2006) conducted a historical 
analysis of research papers focused on mathematical modeling and, based on their findings, proposed 
five categories of purposes of mathematical modeling. Of their five categories, we focus on four we 
found relevant to our analysis: epistemological, educational, contextual, and socio-critical modeling. 
Kaiser and Sriraman described epistemological modeling as mathematical modeling with the purpose 
of developing mathematical theory. Educational modeling occurs when “real-world examples and 
their interrelations with mathematics become a central element for the structuring of teaching and 
learning mathematics” (p. 306). In this type, modeling is used explicitly as a tool for teaching and 
learning other mathematical content. Contextual modeling occurs when the purpose of modeling is to 
develop further understanding of modeling itself by engaging in the modeling process to solve a task 
embedded in a real-world context. Socio-critical modeling supports “critical thinking about the role 
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of mathematics in society” (p. 306); with this purpose, mathematical modeling is used as a tool to 
critically investigate and potentially change real-world situations that are relevant to students.  

White and Mesa (2014) proposed a framework for differentiating potential cognitive orientations 
of mathematical tasks. The framework includes three main categories: simple procedures, complex 
procedures, and rich tasks. Simple procedures are defined as those tasks requiring students to draw 
on factual or procedural knowledge; they must “remember factual information” or “recall and apply 
procedures” (p. 14). Students are told which fact or procedures to use, and they must remember them 
and apply them in the task. Complex procedures include tasks requiring students to draw on 
procedural and conceptual knowledge: to “recognize and apply procedures” (p. 14). In these tasks, 
students are not told explicitly which procedures to use, but instead are expected to draw on their 
understanding to choose an appropriate procedure and apply it in the task. Finally, rich tasks include 
any tasks that prompt students to write explanations of procedures, to interpret, compare, or make 
inferences, or to analyze, evaluate, or create situations or structures. Rich tasks involve high-level 
mathematical thinking and offer students more opportunities to make their own decisions when 
solving tasks.  

Method  
As a part of the larger PTA study, we focused on the potential cognitive orientations and purposes 

of modeling for nine written tasks involving mathematical modeling in instructional materials 
collected from five universities. Because almost all tasks included multiple subquestions in which 
each of them varied in terms of richness, we defined our coding unit as a subquestion rather than a 
task. We coded subquestions in terms of potential cognitive orientation (i.e., simple, complex, rich) 
and purpose of modeling (i.e., epistemological, educational, contextual, socio-critical). Two 
researchers each coded the questions independently, and resolved all discrepancies. When we coded 
a question, we also considered questions prior to the one we were coding. For instance, a question 
was coded as rich the first time it appeared because it prompted students to analyze. But if similar 
questions follow in later sections, those later questions might not present new challenges to students. 
Answering similar questions lowers the cognitive orientation by becoming a routine procedure, thus, 
we coded such a question as either simple or complex rather than rich.  

Results 

Cognitive Orientation of Mathematical Tasks 
Table 1 presents an analysis of task purposes (first column) and cognitive orientations (remaining 

columns). If a task is designated in one of the seven categories (e.g., R, SC) in Table 1, it means that 
its subquestions were coded by the cognitive orientation(s) in that category. For example, the Traffic 
Flow task is under the category of “Simple & Rich (SR)”. This means that all questions in this task 
were coded as either simple or rich, with at least one in each category. 

Overall, three out of nine tasks included subquestions that fell into only one cognitive orientation. 
For example, all questions from the task Bezier’s Curve were coded as simple. One question asks to 
find x(0) in terms of the constants a0, a1 and a2 if x(t) = a0 + a1t + a2t2. Even though the overall task 
presented an interesting mathematical problem, each smaller question required using simple 
procedures (e.g., substituting 0 for t). Only one task (i.e., Traffic Flow) included questions that fell 
into exactly two cognitive orientations. Most tasks included a variety of questions, with at least one 
in each of the three cognitive orientations. For instance, the Wooody’s Film Frame task focused on 
using computer animators to tell stories about changes in Wooody’s position using linear 
transformations. One question that was coded as simple asked to compute the product of two 
matrices. Another question stated, “Wooody discovered a pensieve at (1, -2). What is the linear 
transformation here?” Though this question required students to analyze, students were asked similar 
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questions immediately before, but because the question does not specify a particular procedure, we 
coded it as complex. At the end of the task, a question asked students to write an ending to the story 
of Wooody’s moving and to describe how to illustrate it. This question involved creating and 
analyzing a new situation and was coded as rich. We found that most tasks included questions from 
more than one cognitive orientation and thus provided students with multiple cognitive orientations 
in modeling tasks.  

Table 1: Task Richness According to Questions: Simple (S), Rich (R), Complex (C) 
 S C R SC SR CR SCR 
Educational Modeling        

Traffic Flow      X  
Heat Transfer  X      
Bezier’s Curve X       

Contextual Modeling        
Wooody’s Film Frames       X 
Google Page Rank Algorithm       X 
Movie Money Making       X 
Ferris Wheel Problem       X 
Egg Launch Problem       X 

Epistemological Modeling        
Quadratic and Its Secondary Difference   X     

Socio-critical Modeling        
(none)        

Modeling Purpose of Mathematical Tasks 
Overall, we coded three tasks as educational modeling, five as contextual modeling, and one as 

epistemological modeling. We saw no socio-critical modeling tasks. Although we were open to 
coding individual questions within a task with multiple purposes (similar to our cognitive orientation 
analysis), we did not find any with multiple purposes. Subquestions presented in the Traffic Flow 
task, which we coded as educational modeling, provided detailed guideline for preservice teachers 
(PSTs) to solve the problem that embedded specific concepts in linear algebra (e.g., write the 
augmented matrix). The instructor’s main purpose seemed to be for PSTs to practice linear algebra 
skills rather than building their own models. The Google Page Rank Algorithm task, on the other 
hand, involved a realistic context and provided PSTs an opportunity to explore different structures of 
web networks; thus we coded it as contextual modeling. Specifically, this task provided opportunities 
for PSTs to investigate how Google uses a stochastic matrix along with a Markov chain and its 
steady-state vector to determine the PageRank of each page on the website. The Quadratic and Its 
Secondary Difference task was coded as epistemological modeling because of the potential for PSTs 
to generate relationships between quadratics and second differences through modeling. We found 
that more than half of the tasks addressed realistic problems and sometimes instructors used 
modeling mainly to practice the newly learned concepts. Another intriguing point was that tasks 
coded as Contextual Modeling included subquestions of all types of cognitive orientations.  

Discussion and Conclusion 
In this study, we described the use of two theoretical frameworks addressing purposes and 

cognitive orientations of tasks to support the analysis and potential construction of effective 
modeling tasks. We noticed that tasks’ subquestions coded as “rich” can entail varying degrees of 
richness. We saw three ways to structure a potential rich task in our data. One way was to give an 
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open question (e.g., in the Egg Launch task, one question asks students which of the three teams will 
win the contest and to explain why) without providing subquestions for scaffolding. The second way 
is to give a series of questions with each question building on the previous ones. The open question 
appeared at the end of the task. We argue that even though both tasks included open questions, the 
first type was richer than the second because the first type required PSTs to create their own process 
to reach the final goal. The third way is a combination of the first two cases: starting with an open 
question, providing a series of questions, and restating the same open question at the end of the task. 
The benefit of the last type is to provide students with differentiated instruction because the instructor 
can provide the opportunity for students to either explore the task or follow the scaffolding questions 
depending on students’ academic needs. 

White and Mesa (2014) argued that the “rich task” category included the subcategories: 
Understanding, Applying Understanding, Analyzing, Evaluating, and Creating. They mapped these 
five categories across four types of knowledge: factual, procedural, conceptual, and meta-cognitive. 
In our analysis, we found that tasks in which students were asked to create a mathematical object or 
process were much richer than tasks where students were asked to simply explain a result or process. 
As we see different levels of cognitive demand within the “rich task” category, we suggest that 
instructors pay attention to these differences and present various opportunities for students to 
experience different types of rich tasks.  

In terms of our analysis on purposes of modeling, we found no tasks to be socio-critical in nature 
and would recommend that PSTs are given opportunities to design and modify such tasks. PSTs need 
to encounter thinking processes, such as those described by Cirillo, Bartell, and Wager (2016) when 
they converted a modeling task “Dairy Queen” into a task involving social justice. PSTs can also be 
benefited by posing modeling problems as they lean about characteristics of modeling problems that 
address social justice issues (I, Jung, & Son, 2017). Opportunities for PSTs to learn about modeling 
can be enhanced when instructors consider different modeling purposes and cognitive orientation of 
tasks described in our study. 
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This paper describes the implementation of a traditional (face-to-face) and an online module aimed 
at developing preservice elementary teachers’ (PSETs’) professional noticing skills and the extent to 
which participation in these modules affected their attitudes toward mathematics. Using the Attitudes 
Toward Mathematics Inventory (ATMI, Tapia & Marsh, 2004), statistical analyses revealed 
significant increases in each of the instrument’s four factors (value, enjoyment, motivation, and self-
confidence) for those enrolled in a traditional experience, while the online participants experienced 
significant change in only two factors (enjoyment and self-confidence). Overall, both groups 
experienced significant improvements in attitudes toward mathematics with no significant differences 
in the changes between the two groups. 
 
Keywords: Teacher Education-Preservice; Technology; Affect, Emotion, Beliefs, and Attitudes 

Introduction 
Research exploring mathematics teacher noticing has experienced exponential growth following 

the work of Sherin, Jacobs, and Philipp (2011). Professional noticing is an ability to recognize and 
act on key indicators significant to one’s profession. In the area of mathematics education, such 
noticing typically involves the enactment of key skills aimed at facilitating an instructional 
environment that is responsive to students’ mathematical needs and development (Jacobs, Lamb, & 
Philipp, 2010). Professional noticing has been examined with respect to classroom teaching practices 
(Sherin & van Es, 2009), preparation and planning (Santagata, 2011), and teacher knowledge 
(Thomas, Jong, Fisher, & Schack, in press) to identify just a few examples of the breadth of research 
in this area. Germane to the inquiry described in this paper is the manner in which professional 
noticing relates to attitudes and if the relationship varies depending upon the delivery mode of the 
professional noticing instruction. It has long been argued that teachers’ attitudes and beliefs are an 
important part of the way teachers understand mathematics (Jong & Hodges, 2015; McLeod, 1994; 
Schoenfeld, 2011). As changes to postsecondary systems advance towards experiences that are 
increasingly mediated by technology, examinations of the relationships between professional 
noticing experiences and attitudes toward mathematics across varying instructional contexts is 
warranted. Towards that end, this study addresses the following research questions: (1) To what 
extent does participation in a professional noticing module influence preservice elementary teachers’ 
(PSETs’) attitudes toward mathematics? (2) To what extent do PSETs' attitudes toward mathematics 
vary in response to participation in a professional noticing module in varied learning environments 
(face-to-face or online)?  

Methodology and Data Sources 

Measure Description  
PSET attitudes and beliefs toward mathematics were measured using a modified version of the 

Attitudes Toward Mathematics Inventory (ATMI, Tapia & Marsh, 2004, Schackow, 2005). The 
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ATMI was selected based on its high level of reliability (α=.97) and ease of administration. This 40-
item Likert-scale inventory consists of the following four factors: value, enjoyment, self-confidence, 
and motivation. It was administered online for both the online and face-to-face participants.  

Sites and Participants  
The PSETs in this study participated in an instructional module focused on the development of 

professional noticing and knowledge of an early numeracy trajectory, the Stages of Early Arithmetic 
Learning (SEAL, Steffe, 1992). All PSETs were enrolled in an elementary mathematics methods or a 
content and methods blended course at one of five participating public universities in a south central 
state. The module was a component of the methods or blended course at each institution. PSETs 
either completed the online module (n = 152) as a component of a face-to-face course or a course 
delivered via interactive video, or they completed an in-class instructional module (n = 285) as part 
of their traditional instruction. 

Professional Noticing Module Descriptions 

Face-to-Face Module  
The face-to-face module, four class sessions embedding authentic video vignettes of children 

engaging in mathematics, used whole-class discussions, small group discussions, homework practice, 
and a culminating experience in which PSETs completed a video-based diagnostic interview with an 
elementary student. The ATMI was administered near the beginning and end of the semester in 
which the module was implemented. 

Online Module 
The asynchronous online module consisted of four lessons that closely resembled the four days 

of the face-to-face module. It was embedded in a Learning Management System through which 
PSETs watched the same video vignettes as the face-to-face participants and attended to their 
observations through online survey tools. PSETs in the online setting engaged in similar activities as 
the face-to-face setting, however discussion was asynchronous and a variety of tools were 
incorporated for small group activities. The pre- and post-tests were completed prior to starting the 
module and at the conclusion of the modules, typically a two-week period. Students participating in 
the online module were not required to complete the final assignment of a video-based diagnostic 
interview that was part of the face-to-face course. 

Results  

Attitudes and Beliefs in a Face-to-Face Environment 
The four factors of the ATMI (value, enjoyment, motivation, and self-confidence) as well as the 

total scores (sum of each) were analyzed using a repeated measures ANOVA of the pre- and post-
assessments. Results from the face-to-face environment (n = 285) revealed a statistically significant 
increase in all four factors of the ATMI as well as the total score as shown in Table 1. 

Table 1: Descriptive Statistics and Repeated Measures ANOVA from Face-To-Face 
Environment  

Variable Pre Mean Post Mean Pre SD Post SD F Sig 
Value 44.50 45.07 4.259 4.472 6.978 .009* 
Enjoyment 34.51 35.63 9.330 8.986 16.906 <.001* 
Self-Confidence 50.92 53.61 14.069 13.742 49.364 <.001* 
Motivation 15.27 15.97 4.045 4.121 23.618 <.001* 
Total 145.20 150.28 28.354 27.800 49.038 <.001* 
*Significant at p = .05 
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Attitudes and Beliefs in an Online Environment 
Initial analyses of the descriptive statistics of the four factors and total scores among the online 

participants revealed that all four factors of the ATMI, as well as the total, increased between the pre 
and post-assessments. Repeated measures ANOVA were also conducted (n = 152) to determine if 
those increases were statistically significant. The enjoyment and self-confidence factors, as well as 
the total score, were found to have statistically significant increases, while the changes in the value 
and motivation factors were not significant. The results, along with their descriptive statistics, are 
shown in Table 2. 

Table 2: Descriptive Statistics and Repeated Measures ANOVA from Online Environment  
Variable Pre Mean Post Mean Pre SD Post SD F Sig 

Value 44.89 45.06 4.30 4.43 .312 .577 
Enjoyment 35.40 36.14 8.78 9.43 4.267  .041* 
Self-Confidence 50.93 52.41 14.67 14.25 7.674  .006* 
Motivation 15.95 16.18 4.04 4.39 .973 .326 
Total 147.18 149.8 28.09 28.84 6.949  .009* 
*Significant at p = .05 

Face-To-Face or Online: Does it Matter? 
A one-way ANOVA was conducted to determine if the two participant groups’ pre- and post-

assessment total scores were significantly different. The results revealed that there was not a 
statistically significant difference in the pre-test total scores and the post-test total scores between the 
face-to-face and the online groups (Fpre = .487, p = .486; Fpost = .029, p = .866). Significant 
differences between the online and face-to-face groups could have called into question baseline 
assumptions between the delivery format of the two groups. The changes (post-pre) in each factor of 
the ATMI as well as the change in the total scores were analyzed to determine if there were 
statistically significant differences between the growth of the two groups. The total ATMI score of 
the face-to-face group was statistically significantly higher than the total ATMI score of the online 
group, but none of the four factors of the ATMI score were found to be statistically different as 
shown in Table 3.  

Table 3: One-Way ANOVA Results Comparing Mean Change Scores in Face-To-Face and 
Online Groups 

Change Variable Change Online Change F2F F Sig 
Value .16 .57 1.227 .269 
Enjoyment .74 1.12 .679 .410 
Self-Confidence 1.49 2.69 3.397 .066 
Motivation .23 .70 3.262 .072 
Total 2.63 5.08 3.986 .047* 
*Significant at p = .05 

Conclusions 
We hypothesized that participation in the professional noticing module, embedding a video-

intensive design aimed to capitalize on PSETs' nurturing perspective toward children (Ambrose, 
2004), would result in significant changes in PSETs’ attitudes toward mathematics. All PSETs, 
whether participating face-to-face or online, experienced statistically significant changes in total 
score and two of the four factors, enjoyment and self-confidence. The lack of significance in the 
motivation and value factors in the online group could be a function of the limited number of items in 
the ATMI attributable to these factors coupled with the smaller sample size for that group. While 
both delivery methods revealed statistically significant increases in some factors, indicating that both 
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delivery methods can result in positive attitudinal changes, the significant difference between the 
change scores of the online and face-to-face groups warrants future research in this area. The results 
imply that the growth of attitudinal changes in a face-to-face format is significantly higher than those 
changes in the online format. This can be attributed to the amount of time and intervening events 
between the pre and post assessments since the face-to-face participants had a longer time period 
between the two. Or, it could be attributed to the potential lack of depth of online conversations 
similar to the findings by Wallace (2003). Further study in this area would do much to support or 
dispel prevailing expectations regarding the design of not only professional noticing instructional 
materials but also the delivery mode of a mathematics methods course. 
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PRE-SERVICE SECONDARY TEACHERS’ MEANINGS FOR RADIANS AND DEGREES 
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We report the results of a teaching experiment that examined two pre-service secondary mathematics 
teachers’ meanings for angle measure in degrees and radians. Our results suggest that an 
instructional focus on degrees prior to radians might obstruct pre-service teachers’ development of a 
quantitative way of understanding angle measure. 

Keywords: Measurement, Cognition, Teacher Education-Preservice 

Introduction 
Moore and colleagues (Moore, 2013, Moore et al., 2016) have demonstrated the affordances of 

leveraging students’ quantitative reasoning (Thompson, 1990, 2011) to support their understanding 
of several foundational trigonometry concepts, including angle measure. Quantitative reasoning is a 
characterization of the mental actions involved in conceptualizing situations in terms of quantities 
and quantitative relationships. A quantity is an attribute, or quality, of an object that admits a 
measurement process (Thompson, 1990). One has conceptualized a quantity when she has identified 
a particular quality of an object and has in mind a process by which she might assign a numerical 
value to it in an appropriate unit. Quantification refers to the mental actions involved in 
conceptualizing an appropriate unit of measure as well as a measurement process, and results in an 
understanding of “what it means to measure a quantity, what one measures to do so, and what a 
measure means after getting one” (Thompson, 2011, p. 38). 

A Quantitative Understanding of Angle Measure 
Achieving a quantitative understanding of angle measure involves identifying an attribute of a 

geometric object to measure and conceptualizing a process by which to measure it. One might 
conceptualize quantifying the “openness” of an angle as measuring the length of the arc of a circle 
centered at the angle’s vertex that the angle subtends. For the measure of the angle to be independent 
of the size of this circle, the subtended arc length must be measured in units that covary with the 
length of the subtended arc so that the ratio of subtended arc length to unit length is invariant for an 
angle with a fixed amount of openness. In other words, the unit of measure must be proportional to 
the subtended arc length and, by extension, the circumference of the circle that contains it. Because 
the size of the circle centered at the angle’s vertex is immaterial to the angle’s measure when the 
subtended arc length is measured in units proportional to the circle’s circumference, measuring the 
length of any single subtended arc amounts to measuring them all. Conceptualizing angle measure in 
units of radians entails understanding that the angle’s measure is an equivalence class of arc lengths, 
each measured in units of the length of the radius of the arc the angle subtends (Thompson, 2008; 
Moore et al., 2016). Analogously, conceptualizing angle measure in units of degrees involves 
understanding that the measure of an angle is an equivalence class of arc lengths, each measured in 
units that are 1/360th of the circumference of the circle, centered at the vertex of the angle, containing 
the subtended arc.  

In summary, achieving a quantitative understanding of angle measure involves: (1) identifying 
subtended arc length as the attribute being quantified when measuring an angle; (2) recognizing that 
any unit of angle measure must correspond to a magnitude proportional to the circumference of the 
circle containing the subtended arc; (3) realizing that radians and degrees satisfy the criterion 
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specified in (2); and (4) understanding the measure of an angle as a measure of a class of subtended 
arcs. 

The process by which students construct a quantitative understanding of angle measure is indeed 
complex. Identifying a concrete attribute (i.e., a quantity) to measure and conceptualizing units of 
measure whose magnitudes vary presents unique challenges that make the process of measuring 
angles considerably more elaborate than other measurement processes. Although researchers (e.g., 
Moore (2013)) have shed light on the trajectory by which students construct a quantitative 
understanding of angle measure, much remains to be understood about the conceptual operations 
involved in developing particular meanings that comprise components of a robust and coherent angle 
measure scheme. The present study seeks to build upon the work of Moore (2013), Moore et al. 
(2016), and Thompson (2008) by clarifying the implications of any of the four understandings listed 
above on students’ development of subsequent meanings that are necessary for conceptualizing angle 
measure quantitatively. 

Methodology 
We investigated the development of two pre-service secondary mathematics teachers’ meanings 

for angle measure in radians and degrees as they participated in a teaching experiment (Steffe & 
Thompson, 2000) designed to support their construction of a quantitative understanding of angle 
measure. In a teaching experiment, the schemes that students construct through spontaneous 
development are brought forth through exploratory teaching and the interest of the researcher is to 
discern how students reorganize their cognitive schemes as they experience specific teaching actions. 

During the teaching experiment the two participants, Melissa and Kyle, were enrolled in a 
mathematics content course for pre-service secondary teachers at a large university in the 
Midwestern United States. Melissa and Kyle participated in four teaching episodes, the first and 
fourth individually and the second and third together. Each teaching episode lasted between 60 and 
75 minutes and all episodes occurred within a span of two weeks. All teaching episodes were video 
recorded and selectively transcribed. Members of the research team met between teaching episodes 
to discuss provisional hypotheses about the development and current state of Melissa and Kyle’s 
meanings for angle measure and to modify tasks for subsequent teaching episodes. 

We employed grounded theory procedures (Corbin & Strauss, 2008) to analyze the video data. 
Specifically, we began by performing an iteration of open coding to identify instances in which 
Melissa or Kyle revealed characteristics of their meanings for angle measure. We then conducted an 
iteration of axial coding to construct and refine categories of episodes identified with particular codes 
from the initial open coding. For each category, we articulated the conceptual operations that 
appeared to inform Melissa and Kyle’s language and actions. Finally, we identified shifts in the 
meanings Melissa and Kyle demonstrated and described the instructional actions that appeared to 
initiate these shifts. 

Results 
We limit our discussion of the data to the second and third teaching episodes, and primarily to 

Melissa’s understandings of angle measure. 
We began the second teaching episode by supporting Melissa and Kyle’s identification of 

subtended arc length as the quantity one measures when assigning numerical values to the openness 
of an angle. We accomplished this by presenting Melissa and Kyle with a dynamic animation that 
showed an angle in standard position with its terminal ray rotating counter-clockwise and asking, 
“What are some things you notice?” After a few minutes of discussion both Melissa and Kyle 
abstracted the property that a particular point on the terminal ray traces out a circle centered at the 
vertex of the angle. They noticed that the openness of the angle covaries with the portion of the 
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circle’s circumference traced out by the point on the varying ray of the angle, which allowed them to 
recognize that the angle’s openness is in direct correspondence with the portion of the circle’s 
circumference that the angle subtends. This recognition prompted Melissa and Kyle to conclude that 
measuring the length of the subtended arc is one way of quantifying the openness of the angle. 

After Melissa and Kyle had identified subtended arc length as an attribute one might measure to 
quantify an angle’s openness, the interviewer used the dynamic animation to place the angle’s 
terminal ray in a particular position and asked, “If we wanted to somehow assign a numerical value 
to the size of the angle, what are some suggestions you have for doing that?” Melissa suggested 
partitioning the circumference of the circle centered at the angle’s vertex into eight equal pieces and 
then counting the number of these pieces contained in the subtended arc. She drew an image of the 
angle in standard position on a sheet of paper, sketched a circle centered at the angle’s vertex whose 
circumference was split into eight equal pieces, and approximated that the terminal ray extended 
between the first and second tick marks on her circle. Melissa then concluded that the angle has a 
measure of “1.5 out of 8.” The interviewer then asked, “What in this picture has a measure of 1.5?” 
Had Melissa conceptualized angle measure quantitatively, she would have identified a quantity (i.e., 
a measurable attribute) that has a measure of 1.5 and she would have specified a unit of measure. 
Specifically, she would have explained that the length of the arc the angle subtends has a measure of 
1.5 in units of 1/8th of the circle’s circumference. Melissa’s response, “Just the angle. … Just back to 
the openness; the openness that appears between the two rays” suggests she was not conceptualizing 
the value of 1.5 as the measure of a quantity. With prompting she subsequently elaborated: “The 
angle has a measure of 1.5 and everything else has a measure of a ratio of 1.5 out of 8 … the arc, the 
area, the angle could all be made as a ratio of 1.5 out of 8.” Although Melissa acknowledged that the 
angle has a measure of 1.5, she did not recognize that this implied that the length of the subtended arc 
must also have a measure of 1.5 in units of a fractional portion of the circle’s circumference. Instead, 
she claimed that the subtended arc (and the area of the subtended sector) have “a measure of a ratio 
of 1.5 out of 8.”  

Melissa reasoned similarly with degrees. She conceptualized an angle’s measure in degrees as 
conveying the fraction of the circle’s circumference subtended by the angle. While a useful 
understanding—and indeed necessary for abstracting the property that any unit of angle measure 
must satisfy—for her it appeared fundamentally non-quantitative since she did not describe an 
angle’s measure in degrees as resulting from a multiplicative comparison of a measurable attribute 
and a unit of measure. 

The interviewer introduced the idea of radians at the end of the second teaching episode. He 
showed Melissa and Kyle an image of an angle and stated that its measure is 2.5 radians. The 
interviewer then asked, “What in this picture has a measure of 2.5?” After a long pause Melissa 
replied, “The arc length. … That length is 2.5 times the radius.” She subsequently explained that to 
measure an angle in radians, one must divide the length of the subtended arc by the length of the 
radius of the circle centered at the angle’s vertex. Melissa described the value resulting from this 
division as “the number of radius-lengths in the arc.” She also correctly drew an angle with a 
measure of 3.4 radians and in response to the interviewer’s question, “What does it mean to say that 
an angle has a measure of 3.4 radians?” explained, “The arc length is 3.4 times the length of the 
radius.” These occasions, and others, suggest that Melissa conceptualized angle measure in radians 
quantitatively—as a measure of subtended arc length in units of the arc’s radius. 

Melissa continued to demonstrate her quantitative understanding of angle measure in radians at 
the beginning of the third teaching episode. She accurately approximated the measure of an arbitrary 
angle in radians and described an angle’s measure in radians as resulting from a multiplicative 
comparison of the subtended arc length and the length of the arc’s radius. However, when the 
interviewer reintroduced degrees a few minutes later by prompting Melissa to describe what it means 
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to say an angle has a measure of 51.7 degrees, she claimed that the angle subtends 51.7/360ths of the 
circumference of the circle centered at the angle’s vertex. After being prompted to identify the length 
of the arc that an angle with a measure of 51.7 degrees subtends, Melissa attempted to convert the 
angle’s measure to radians so that she would know “how many radius-lengths are in the subtended 
arc.” By failing to recognize that the angle subtends an arc that has a length of 51.7 measured in units 
of 1/360th of the circumference of the circle centered at the angle’s vertex, Melissa again 
demonstrated a non-quantitative way of understanding angle measure when reasoning about degrees.  

Discussion 
The findings of this study suggest a different learning trajectory for angle measure than that 

proposed by Moore (2013). Moore argues for the importance of students recognizing that an angle 
subtends the same fraction of all circles centered at its vertex. We observed Melissa demonstrating a 
non-quantitative way of understanding angle measure in degrees that differed from her quantitative 
understanding of angle measure in radians. We conjecture that her difficulties stemmed from a focus 
on a multiplicative relationship between a subtended arc length and the circumference of the circle 
containing it. Our results suggest that introducing radians prior to degrees might support students’ 
construction of quantitative scheme for measuring angles in both radians and degrees.  
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PRE-SERVICE TEACHER TASK DESIGN: COLLABORATIONS WITH MASTER 
TEACHERS 
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Pre-service mathematics teachers collaborated with Master Teachers to experience rich problem 
solving, design of rich tasks, and authentic implementation of rich tasks in high school classrooms. 
The pre-service teachers made small strides in their own ability to design tasks. There were 
indications that the pre-service teachers became more open to open-ended tasks and student struggle 
but their were limitations in their ability to enact these ideas in task design. 

Keywords: Teacher Education-Preservice, Teacher Knowledge, High School Education 

Introduction 
As teacher candidates make the journey to being teachers one of the greatest challenges is 

designing quality tasks that will engage students in inquiry-based mathematics and be accessible to 
all students. Adding to the inherent challenge of this task is the fact that typically lesson plans and 
tasks designed in pre-service contexts, prior to student teaching, are never taught in classrooms 
making it difficult for teacher candidates to develop and refine their task design. In order to address 
this challenge we designed the CRAFTeD cycle (Meagher, Edwards & Ozgun-Koca, 2011b), 
inspired, in part, by Lesson Study research, to give teacher candidates the opportunity to see tasks 
that they designed implemented in classrooms and, therefore, promote growth in their individual task 
design. 

 

 

Figure 1. CRAFTeD cycle. 
 
The cycle emerged from our previous work (Meagher, Ozgun Koca, Edwards, 2011a) where the 

decisive influence of the field placement in terms of exemplars became apparent. 
(i) A class of preservice high school teachers will write Lesson Plans on a given topic and then 

work together to develop improved lessons/short units designed often for technology-rich 
environments; (ii) experienced inservice teachers will review the lessons/short units and present an 
initial redesign; (iii) the inservice teachers will teach the lessons, observed by the preservice teachers; 
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(iv) the preservice teachers and inservice teachers will meet together to reflect on and redesign the 
lesson based on their experiences in the classroom.  

This paper reports the early results of a pilot project designed to measure growth in teacher 
candidates’ ability to design tasks for mathematics classrooms that require “higher level demands” 
(Stein & Smith, 1998) with the intervention of CRAFTeD cycles. 

Literature Review and Relationship to Research 
Pre-service teachers early in their program develop lesson plans - typically in isolation - that are 

never taught in a classroom, creating a disconnect between planning, implementation, and assessment 
of student learning (Allsopp et al. 2006; Meagher, Edwards & Ozgun-Koca, 2011a). While university 
methods instructors laud the merits of student-led inquiry, exploration, and discovery-based teaching 
methods, secondary mathematics teachers in too many schools “set aside” such teaching in favor of 
instruction directly focused on student preparation for high-stakes, multiple choice state tests (Seeley, 
2006). Developing communities of practice (Wenger, 1999) and lesson study groups (Fernandez, 
2002) can help candidates and practicing teachers adopt a more research-based focus in their lesson 
planning and develop a shared repertoire of resources which transcend individual contributions. 
Providing candidates with opportunities to experience their lessons taught by Master Teachers in 
authentic classroom settings increases motivation for lesson writing. Preservice teachers demonstrate 
a trajectory of learning about lesson plans in a cycle of designing a lesson to be taught by a Master 
Teacher and reflecting critically on the implementation of that lesson (Meagher, Ozgun-Koca & 
Edwards, 2011b) 

Methods and Methodologies 
Participants in the study were students in the second semester of a two-semester sequence of 

methods classes both involving field experience and both prior to student teaching. 
At the very beginning of the semester the teacher candidates, working in pairs, revised tasks that 

were part of the final project of the previous semester (Version 1). The teacher candidates then 
participated in three CRAFTeD cycles wherein they experimented with different degrees of 
scaffolding of the tasks. Finally, the teacher candidates, working in their original pairings, revised 
their tasks from the beginning of the semester (Version 2). Both versions of the tasks were 
independently scored by two of the research team using a rubric based on Stein & Smith (1999) as 
measure of growth among the teacher candidates in their ability to design tasks with the potential for 
higher order mathematics. 

We collected (i) Versions 1 and 2 of the Teacher Candidate's lesson plans; (ii) Candidate 
commentaries on their lesson plans; (iii) Candidate reflections on the semester. 

To analyse the data Version 1 and Version 2 tasks were graded independently by two members of 
the research team. The qualitative data was analysed using the constant comparative method (Glaser 
& Strauss, 1967) to establish trends in the data. 

Results 

Quantitative data 
Each version of the tasks designed by the students was scored independently but two members of 

the research team using a rubric based on Stein and Smith (1998) with the scores averaged. Each 
section of the task was given a score as follows: Memorization: 1 point, Procedures without 
Connections (2 points), Procedures with Connections (3 points), Doing Mathematics (4 points). The 
scores were then averaged for the entire task to get an overall score for each task as written by the 
teacher candidates. The scores for each pair of teacher candidates for each Version of the task are 
presented in Table 1 below: 
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Table 1: Scores from Version 1 and Version 2 of the Tasks 

 
 
As can be seen in the table there was some improvement over the course of the semester (the 

class average increased from 1.96 to 2.13) with a movement toward “higher order demands” (Stein 
and Smith, 1998). Furthermore, the number of sections within the tasks scoring 3 or 4 improved 
slightly from 19 to 22. The improvements were not very large and some possible reasons are 
explored in the qualitative data analysis. 

Qualitative Data 
When teacher candidates submitted Version 2 of their tasks they also submitted a commentary on 

the task in general and responded specifically to a prompt on what they changed from Version 1 to 
Version 2 and what motivated those changes. 

The following significant trends emerged in the data: 
(i) A recognition of the need for student struggle with abstract and open-ended tasks. 

Through experiencing iterations of the CRAFTeD cycle the teacher candidates recognized the need 
for more open-ended tasks although that recognition did not always result in the design of quality 
open-ended tasks. The teacher candidates reflected on this with comments such as: 

“In my second revision of the materials, I felt it was important to put more abstract thinking in 
the problems rather than simple procedures . . . Getting an answer is one thing, but having an 
understanding of what is actually going on is entirely different, so I added understanding 
questions to my procedural tasks.” (Teacher Candidate 1) 

and 

[In the revision] the teacher . . . will skip a lecture on the triangle inequality and instead allow the 
students to discover it on their own.” (Teacher Candidate 3) 

Other revisions to tasks included moving an open-ended portion to the beginning of the lesson 
and using a brief open-ended element as a launch in place of the, now widespread, “mini-lesson” of, 
for example the Santa Cruz New Teacher Project. 

While there was a recognition of the need for more open-ended questions the successful design of 
such questions was not always in place with many of the questions being far too open-ended and 
therefore unproductive e.g. “With the students around you, see if you can come up with some real-
world examples of derivatives and slopes” (Teacher Candidate 1). 

(ii) An unsophisticated view of “higher level demands” and a view that differentiation 
means “easy” and “hard” tasks. There was evidence throughout the teacher candidates’ revisions 
that their notion of “higher level demands” was often tied to more complicated procedural work 
rather than an engagement with “conceptual ideas that underlie the procedures to complete the task 
successfully and that develop understanding.” Teacher candidate 7 noted that he “ordered the 
problems on this worksheet in such a way that the least difficult and closed questions are in the 
beginning” (Teacher Candidate 7). Teacher candidate 9 revised an “angle chase” to involve the 
students chasing 10 or 12 angles instead of 2 or 3 but without adding any new concepts to the work 
required to identify the measures of the angles. 

(iii) A recognition of the need to give students an opportunity to discuss mathematics. The 
successive iterations of the CRAFTeD allowed teacher candidates to see their task design in action 
on classrooms and, in particular, to see students engage with the materials. With this came a 
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recognition that structuring opportunities for students to discuss mathematics is an important element 
of task design. Teacher candidate 13 noted “math learning is a social activity. When the team 
communicates using math language, student’s memory of the terms learned in this lesson will be 
deepened. Also, students will be more engaged when they learn together.” Another candidate noted 
that “In this final revision of my lesson plan I chose to add a section where students were asked to 
discuss what the algebraic properties in the chart really meant. This is something that I had 
previously ignored but . . . now find important” (Teacher Candidate 12). 

(iv) A recognition of the potential of technology to help students engage in mathematics. 
The instructor of the class and the Master Teachers that were participants in the project emphasized 
the affordances of technology in designing higher order tasks as well as engaging students. The 
exemplars experienced by the teacher candidates in the CRAFTeD cycles resulted in changes in the 
revisions of the tasks. Teacher candidate 14 noted that “Technology seemed to hold students’ 
attention more easily in our field experiences and engage them in an interactive way.” Teacher 
candidate 2 revised her task to allow students to explore limits with technology “When this lesson 
was originally given, the class had a hard time visualizing the nature of these limits that approach 
infinity. With the sketch [created in Geogebra], they can explore the infinite limits with more ease” 
(Teacher candidate 2). 

In a similar fashion to the poorly designed open-ended questions discussed in the previous 
section there was evidence in the teacher candidate’s revised tasks that, while they were eager to 
deploy advanced digital technologies, the tools they provided to students were often unannotated 
sketches with no instructions as to how they can be used to explore the mathematical content of the 
task. The potential for students to aimlessly engage with the sketch and discover very little was often 
quite high. 

Conclusion 
The pilot study described above was designed to provide pre-service mathematics teachers with 

experiences in rich problem solving, experiences in designing rich tasks for implementation, and 
experiences in how those tasks can be authentically implemented in high school classrooms. The pre-
service teachers make small strides in their task design but, arguably larger strides in their openness 
to the importance of open-ended tasks, student struggle and student collaboration in mathematical 
work. However, there were notable limitations in their ability to enact these ideas in task design. 

References 
Allsopp, D. H., Kyger, M., & Lovin, L. (2006). Teaching algebraic thinking. Designing and implementing 

mathematics instruction for students with diverse learning needs, 432-488. 
Meagher, M., Ozgun-Koca, A., Edwards, M. T. (2011a). Pre-service teachers experiences with advanced digital 

technologies: The interplay between technology in a pre-service classroom and in field placements. Current 
Issues in Technology Education (CITE), 11(4). 

Meagher, M., Edwards, M. T., Ozgun-Koca, A. (2011b). Project CRAFTeD: an adapted lesson study partnering 
preservice mathematics teachers with a master teacher. In Wiest, L. R., & Lamberg, T. (Eds.). Proceedings of the 
33rd Annual Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education. Reno, NV: University of Nevada, Reno. PME-NA. 

Fernandez, C. (2002). Learning from Japanese approaches to professional development: The case of lesson study. 
Journal of Teacher Education, 53(5), 390-405. 

Glaser, B., & Strauss, A. (1967). The discovery of grounded theory. 1967. Weidenfield & Nicolson, London, 1-19. 
Seeley, C. (2006). Teaching to the test. Reston, VA: National Council of Teachers of Mathematics (NCTM).  
Stein M. & Smith M. (1998). Mathematical tasks as a framework for reflection: From research to practice. 

Mathematics Teaching in the Middle Grades, 3(4) 268-75. 
Wenger, E. (1999). Communities of practice. Learning, meaning and identity. Cambridge: Cambridge University 

Press. 
 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

953 

PRESERVICE ELEMENTARY TEACHERS’ PERCEIVED PREPAREDNESS OF HIGH-
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This study examined elementary pre-service teachers’ (PSTs’) perceived preparedness of high-
leverage practices (HLPs) in mathematics. Eighty-one elementary PSTs who enrolled in four sections 
of an elementary mathematics methods course participated in a survey that involved identifying their 
self-reported confidence and competence levels on HLPs. This study specifically investigated the 
comparison between PSTs’ perceptions of HLPs and the mathematics teacher educators’ 
expectations. Findings showed some glaring differences between the PSTs’ perceptions and experts’ 
perceptions in regards to the complexity of some HLPs. This study suggests that initial teacher 
training programs should include more specific investment in PSTs’ insights into details of each 
teaching practice in mathematics by deliberate decompositions. 

Keywords: Instructional Activities and Practices, Teacher Education-Preservice, Teacher Beliefs  

Purpose of the Study 
The recent recognition of the significant work teachers actually do in classrooms suggests teacher 

preparation programs offer pre-service teachers (PSTs) more explicit opportunities to be engaged in 
key teaching practices (Ball & Forzani, 2009; Grossman et al., 2009; NCTM, 2014). An example of 
these efforts is the establishment of a set of “high-leverage practices” (HLPs), which are considered 
to be the basic fundamentals of teaching practice (Ball, Sleep, Boerst & Bass, 2009; Davis & Boerst, 
2014). This is a critical shift in teacher preparation programs, so it is essential to assess PSTs’ current 
understanding of HLPs as well as to develop activities which promote PSTs’ use of HLPs. To do so, 
teacher educators should first understand how PSTs perceive HLPs in mathematics teaching and 
learning; however, research regarding PSTs perceptions of HLPs is limited. In response to the need 
for investigating PSTs’ own perceptions, this study intended to accomplish two specific objectives: 
(a) Identifying PSTs’ perceived preparedness for specific HLPs in mathematics and (b) Comparing 
between PSTs’ perceived preparedness and the experts’ (mathematics teacher educators’) expected 
learning progressions. Ultimately, this study aimed to gather information on PSTs’ 
conceptualizations of HLPs and provide insight into how to best support the development of practice-
based teacher preparation programs. 

Theoretical Framework 

High-leverage Teaching Practices 
There have been continuous efforts towards developing a common set of indicators for the 

disposition, knowledge, and skill that are required for beginning teachers; however, it is still 
challenging to define what should be taught in teacher preparation programs across many institutions 
(Levine, 2006). One of the recent movements in teacher education is focusing on a set of HLPs that 
support high-quality student learning. By seeing the work of teaching as an ‘unnatural’ act that 
should be taught, this view highlights the importance of doing and practicing teaching, rather than 
simply ‘teaching about teaching’ (Ball et al., 2009; Grossman & McDonald, 2008). This involves 
decomposing complex teaching practices into small, teachable HLPs in order for novice teachers to 
access various components of the work of teaching (Ball & Forzani, 2009; Grossman et al, 2009). 
This should be done by attending to developing teachers’ adaptive expertise to be sure that it does not 
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serve to de-professionalize teaching (Ball & Forzani, 2009; Hamerness, Darling-Hammond, & 
Bransford, 2005). 

Research on Pre-service Teachers’ Perceptions of Teaching Practices 
Research on PSTs’ perceptions of good teaching practices shows mixed results for various 

aspects of teaching. Some researchers address PSTs who enter teacher education programs with a 
positive, but generally simplistic view of teaching (e.g., Whitebeck, 2000). Many of them also enter 
the program with high confidence in terms of their ability to perform well, which may be a display of 
“unrealistic optimism” (Weinstein, 1988). Some PSTs believe that teaching is easy and that it is 
about transmitting information (Feiman-Nemser, McDiarmid, Melnick, & Parker, 1989). In contrast, 
other studies report that PSTs consider a ‘teaching personality’ more important than content or 
pedagogical knowledge. This view is in line with the popular myth that some people are ‘born 
teachers.’ Whitebeck (2000) suggests that some PSTs enter teacher preparation programs to learn the 
‘tricks of the trade’ and others believe that they are ‘born teachers.’ 

Overall, previous research on PSTs’ views of good teaching was very focused on the entry-level 
PSTs and examined the beliefs, expectations, and perceptions that they bring to the teacher 
preparation program. It is expected that this study will extend previous research in this area by 
exploring the perceived self-efficacy of PSTs on specific HLPs and offering suggestions for 
mathematics teacher educators on how this baseline data can be incorporated when designing PSTs’ 
experiences in mathematics teacher education programs. 

Methods 
Eighty-one elementary PSTs who enrolled in four sections of a mathematics methods course at a 

Midwestern university in the United States participated in the study. For most participants, this was 
one or two semesters prior to the culminating, semester-long, full-time student teaching experience in 
an actual classroom. At the beginning of the semester, PSTs had a chance to review the descriptions 
of each HLP (from teachingworks.org). They were asked to select five HLPs they felt they could 
perform confidently and competently at the time of responding. PSTs completed this listing activity 
individually followed by a subsequent group debriefing session. For the purpose of this report, we are 
focusing on reporting the quantitative analysis of PSTs’ perceived preparedness as reflected in their 
lists of HLPs. A pair of mathematics teacher educators (experts) provided their expected learning 
progressions in teacher preparation programs in order to compare expert judgment to the information 
coming from the PSTs in this study.  

Results 
This section reports on three distinct clusters of HLPs from the results of the larger study by 

highlighting aspects that contrast PSTs’ perceived level of preparedness and the researchers’ 
expected learning progressions.  

Complexity of Interactive Structure 
This study clustered four HLPs together to view PSTs’ perceived level of preparedness in 

facilitating varied interactions with students as well as creating a classroom climate that promotes 
such interactions: Leading a Group Discussion (LGD), Setting up and Managing Small Group Work 
(SGW), and Eliciting and Interpreting Individual Students’ Thinking (EIIS). Experts’ expected 
learning progression was having PSTs gradually exposed to increasingly complex and challenging 
situations, starting from working with individual students and small groups to the whole group 
discussion. However, unlike the experts’ expected progressions, PSTs responded that they felt more 
prepared in LGD and SGW than EIIS (see Table 1).  
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Table 1: Perceived Preparedness on Complexity of Interactive Structure (N=81) 
 Listed as 5 most confident HLPs Listed as 5 least confident HLPs 

LGD 44 (54%) 12 (15%) 
SGW 47 (58%) 7 (9%) 
EIIS 12 (15%) 27 (33%) 

Subject-Matter Knowledge 
Another cluster consisted of two HLPs that rely on teachers’ subject-matter knowledge and their 

ability to identify common patterns of student thinking in subject knowledge. This cluster includes 
Explaining and Modeling Content, Practices, and Strategies (EM) and Diagnosing Particular 
Common Patterns of Student Thinking and Development in a Subject-matter Domain (DST). 
Although experts believe these two HLPs should go hand-in-hand, diagnosing students’ patterns of 
thinking in mathematics can provide an effective way of explaining and modeling. PSTs’ responses 
showed different perceptions (see Table 2). 

Table 2: Perceived Preparedness on Identifying and Using Subject-Matter Knowledge (N=81) 
 Listed as 5 most confident HLPs Listed as 5 least confident HLPs 

EM 18 (22%) 18 (22%) 
DST 6 (7%) 44 (54%) 

Knowledge of and Relationship with Students 
Experts examined several HLPs that rely on teachers’ knowledge of and relationship with 

students: Building Respectful Relationships with Students (BRR), Talking about a Student with 
Parents or Other Caregivers (TSP), and Learning about Students’ Cultural, Religious, Family, 
Intellectual, and Personal Experiences and Resources for Use in Instruction (LS). Experts expected 
that LS would provide a good basis for accomplishing BRR and TSP. Table 3 shows PSTs’ 
predominant perceived confidence in BRR. It was the most frequently selected HLP as a confident 
practice among 19 HLPs.  

Table 3: Perceived Preparedness on Knowledge of and Relationship with Students (N=81) 
 Listed as 5 most confident HLPs Listed as 5 least confident HLPs 

BRR 66 (81%) 2 (2%) 
TSP 23 (28%) 36 (44%) 
LS 22 (27%) 19 (23%) 

Discussion 
These results are based on PSTs’ perceived preparedness on HLPs, which do not necessarily 

represent their actual competencies on HLPs. Regardless of this limitation; however, the data 
provided valuable information on discrepancies between mathematics teacher educators’ and PSTs’ 
perceptions on HLPs. The data also indicated the need for ways to best to support PSTs’ learning in 
teacher preparation programs. 

Teaching is complex, and the 19 HLPs provide a new perspective on teacher preparation by 
decomposing the complex work of teaching (Ball & Forzani, 2009; Grossman, Compton, et al., 
2009). However, this study indicates that ambiguity of understanding still exists among PSTs on the 
meaning and constructs associated with each HLP. For example, the work of leading a group 
discussion requires multiple practices such as eliciting student thinking, probing, orchestrating, and 
making contributions (Selling et al., 2015). This contrasts PSTs’ high level of confidence in leading a 
group discussion and low level of confidence in eliciting and interpreting individual students’ 
thinking. This result leaves a question about PSTs’ conceptions of “leading discussion,” which may 
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rely significantly on their unexamined assumptions. This suggests that there is a need for more 
deliberate and detailed decomposition of each teaching practice. The practices with a low level of 
preparedness perceived by PSTs (e.g., Implementing norms and routines for classroom discourse and 
work, Selecting and designing formal assessments of student learning) also have important 
implications for PST training. Further research is required to determine the decomposed parts of each 
HLP and ways to sequence them to establish contextually relevant and responsive teacher preparation 
programs. 
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ASSESSMENT MATHEMATICS TASKS 
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Mathematics teachers are expected to adopt new approaches to assessment that better address 
reform goals in school mathematics curriculum. This study is investigating an approach consist-ing 
of Authentic Assessment Learning Activities [AALA], based on an “authentic intellectual quality 
framework,” to help preservice mathematics teachers to develop expertise in the selection, 
adaptation, and design of authentic assessment tasks. The approach was piloted with three 
preservice teachers specializing in mathematics education. Data sources included inter-views, 
journals, and tasks created by participants. Findings provided initial evidence to support the use of 
the AALA in teacher education as a potentially effective way of helping preservice teachers to not 
only develop useful knowledge of authentic assessment, but also mathematics knowledge for teaching 
associated with the design of authentic assessment tasks in mathematics.   

Keywords: Assessment and Evaluation, Teacher Education-Preservice 

Mathematics curriculum reforms aimed at mathematical literacy and 21st century competencies 
(Darling-Hammond & Adamson, 2010; Koh, 2014; Wyatt-Smith & Cumming, 2009), such as critical 
thinking, reasoning, problem solving, communication, and collaboration, require corresponding 
reforms in how students’ learning and performances are assessed in the mathematics classroom (e.g., 
National Council of Teachers of Mathematics [NCTM], 2000; Romberg, 1995). This means that 
teachers implementing such reforms must make changes to their assessment practices to include 
authentic assessments that enable richer demonstration and more holistic representation of what 
students know and can perform in mathematical and real-world contexts. However, research 
indicates that teachers are not well equipped to deal with reform-oriented assessment practices. For 
example, studies found that a large majority of pre-service teachers in Canada and the United States 
had low levels of assessment literacy (DeLuca & Klinger, 2010; Mertler, 2009; Volante & Fazio, 
2007). Thus, there is a need to support mathematics teachers’ development of their assessment 
literacy in designing and implementing classroom assessments that are well aligned with the 
objectives of reform-oriented mathematics curriculum. This study is investigating the use of the 
Authentic Assessment Learning Activities (AALA) to develop preservice mathematics teachers’ 
expertise in the selection, adaptation, and design of authentic assessment mathematics tasks. 
Authentic tasks replicate real-world problems that require students to demonstrate their mathematical 
understanding through the application of essential mathematical knowledge and skills in problem 
solving (Koh, 2014).  

Theoretical Framework 
The AALA used in this study aim at the development of teachers’ understanding of sound 

principles of classroom assessment and expertise in the selection, adaptation, and design of authentic 
assessment tasks in mathematics. The AALA include criteria for authentic intellectual quality (Koh, 
2011a; 2011b), design principles of authentic assessment and associated rubrics, the Structure of 
Observed Learning Outcome (SOLO) taxonomy (Biggs, & Collis, 1982), and curriculum alignment. 
The criteria of authentic intellectual quality, developed by Koh, consist of the following five criteria 
and their respective elements: (1) depth of knowledge (factual knowledge; procedural knowledge; 
advanced concepts), (2) knowledge criticism (presentation of knowledge as a given; comparing and 
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contrasting information; critiquing information), (3) knowledge manipulation (reproduction; 
organization, interpretation, analysis, evaluation, synthesis of information; application/problem 
solving; generation/ construction of new knowledge), (4) extended communication, and (5) making 
connections to the real world beyond the classroom. The mathematics indicators for each of the 
elements are detailed in Koh (2011b).  

The criteria of authentic intellectual quality were adapted from Newmann and Associates’ (1996) 
framework of authentic intellectual work, the revised Bloom’s taxonomy of knowledge (Anderson & 
Krathwohl, 2001), and the different dimensions of learning by Marzano (1992). Newmann et al.’s 
(1996) “authentic intellectual work” consists of three broad criteria: construction of knowledge, 
disciplined inquiry, and value beyond the school. Specific standards are embedded within each of the 
criteria, which “provide a benchmark for teachers to judge whether particular forms of instruction 
and assessment are likely to help students produce authentic work” (Scheurman & Newmann, 1998, 
p. 3). The revised Bloom’s taxonomy was used to further unpack and define the construction of 
knowledge and disciplined inquiry criteria. 

Method  
The AALA are being investigated in a larger funded project with preservice teachers (PSTs). 

They were successfully used with practicing elementary school teachers in Singapore (Koh, 2011a, 
2014) and are now being adapted for use with PSTs. This paper reports on the pilot study with three 
PSTs specializing in mathematics education; one at the elementary and two at the secondary school 
levels. The secondary PSTs were in the fourth term of their two-year Bachelor of Education program 
and had completed an assessment course, while the elementary PST was in the second term of the 
same program and had not completed the assessment course. All three participated in the AALA 
during four two-hour sessions led by the researchers at the university during the summer and for 
homework. They engaged in readings, discussions, and applications of the AALA. Based on the 
AALA, they individually analyzed actual assessment tasks used in a unit of work for a mathematics 
topic and Grade of their choice and then designed the assessment tasks for a different topic and 
Grade using the criteria of authentic intellectual quality.  

Data sources for the pilot consisted of group interviews with the three participants at the 
beginning and end of their engagement with the AALA; participants’ journals of their thinking and 
analysis of authentic assessment tasks; researchers’ notes and audio-recordings of selected 
participants’ discussions during the sessions with the AALA; and the assessment tasks analyzed and 
designed by the participants. The interviews explored the PSTs’ thinking regarding: their conceptions 
of the nature and purpose of authentic assessment in mathematics and of the expertise needed in 
authentic assessment, their learning experiences with the AALA, the authentic assessment task 
design, their use of the criteria for authentic intellectual quality, the impact of the AALA on their 
mathematics knowledge for teaching, the use of authentic assessment to promote students’ learning 
and thinking of mathematics, and their plans for using the authentic mathematics tasks they designed 
in their future teaching. The interviews were audio recorded. All audio-recordings were transcribed. 
Data analysis included a focus on identifying their conceptions of authentic assessment, what they 
valued and what was challenging in working with the AALA, and their level of understanding of 
designing authentic assessment tasks. The data were coded to identify themes in their thinking and 
experiences with the AALA. For example, coding of interviews to identify their conceptions of 
authentic assessment was both open-ended and based on the authentic assessment framework. 
Change/growth in conceptions of authentic assessment was determined by comparison of the pre-and 
post-AALA engagement coded data. The assessment tasks they developed were scored using the 
criteria for authentic intellectual quality with 4-point rating scales (ranging from 1 = no 
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requirement/no demonstration to 4 = high requirement/high level) to determine their level of 
understanding.  

Results  
Findings of this pilot study indicated that PSTs’ engagement in the AALA was effective in 

helping them to enhance their understanding of authentic assessment tasks in teaching mathematics. 
Before engaging in the AALA, there was little difference between the two participants who had 
completed the assessment course in their teacher education program and the one who had not 
regarding their conceptions of authentic assessment tasks. While the course enabled them to develop 
initial understanding of forms of assessment of and for learning, it did not allow them to 
conceptualize authentic assessment, in general, and authentic assessment tasks in mathematics, in 
particular, in ways that were meaningful to assess what students know and can perform in 
mathematical and real-world contexts. They indicated that the AALA were useful in providing them 
with a systematic way of making sense of selecting, unpacking, adapting, and designing authentic 
tasks for assessment and helped them to understand what it means to be authentic regarding tasks and 
process to assess learning in mathematics.  

The criteria of authentic intellectual quality, which the PSTs used to guide their analysis of the 
assessment tasks for the unit of work they chose (e.g., slope of a linear function, perimeters of 
polygons, rates of change), challenged their thinking in evaluating the level to which the tasks 
required deep understanding and promoted knowledge criticism, higher-order thinking, reasoning 
skills, and connections to the real world beyond the classroom. But this was central in helping them 
to understand the strengths and limitations of the tasks they selected from their practicum 
experiences and to make meaningful suggestions to modify them. The AALA also contributed to 
their development of mathematics knowledge for teaching as they engaged in identifying the 
instructional objectives and conceptualizing the authentic tasks. The criteria of authentic intellectual 
quality challenged their understanding of mathematics concepts involved in the assessment tasks and 
made them think about them in alternative ways as well as think about alternative ways of engaging 
students in learning mathematics. As one of the PSTs explained: “I think it’s really interesting that 
our perception of how well we understand a concept is certainly pushed and tested when you’re 
trying to develop a task.” Another noted: 

I found it challenging to narrow down the task and imagine what expectations I had for the final 
project. … As students begin their work on the task, I would like to have exemplars of work for 
students to gain a better understanding of the expectations. 

The final assessment tasks the participants created for units of work of their choice (e.g., 
algebraic expressions (grade 7) and linear relations and functions (grade 10)) indicated a developing 
practical level of understanding of authentic assessment tasks. Based on the SOLO taxonomy, the 
tasks covered the assessment of different instructional objectives ranging from a basic understanding 
of concepts to complex problem-solving. The Grade 10 tasks, for example, consisted of a project 
designed for students to apply their mathematical concepts and thinking to solve a real-world 
problem. These tasks included the following expectations: 

1. Students will pair up and flashcards with different figures will be distributed (i.e., labeled 
graphs, images of everyday objects (e.g., basket of fruit, ski hill, thermometer, etc.), table of 
values, bank statements, and equations. Students will discuss in their groups: What 
relationships exist within the photo(s)? How could you represent these relationships? 

2. Data Collection & Explanation. Students will devise a way to relate and graph their collected 
data. They should be able to interpret and explain the relationships among their data, graphs, 
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and situations in small collaborative groups. They also should be able to state a reasonable 
domain and range, and explain any restrictions they set.  

3. Data Interpretation & Manipulation. In small groups, students will analyze their graphs and 
collected data and identify if their relation is linear. They should be able to further explain 
how they know, orally and through a written piece, which they will keep for their final 
submission. … At this stage, students should be able to confirm if their relation is a function, 
through both peer and self-assessment. 

The main concern about the AALA was the need for more time and practice with analyzing and 
creating tasks to allow for deeper engagement with the AALA and group discussions.   

Conclusion 
The study suggests that the AALA have the potential to help PSTs to develop useful know-ledge 

of authentic assessment mathematics task design. They also have the potential to support PSTs’ 
development of mathematical content and pedagogical knowledge for teaching associated with the 
critique, redesign, and design of the tasks. Continued investigation of the AALA in the larger project 
will involve a larger number of PSTs and aim at deeper understanding of how these activities could 
support their learning of both authentic assessment mathematics tasks and mathematics knowledge 
for teaching. They will also be tracked into their teaching as beginning teachers to investigate 
whether or how they can implement their knowledge in their teaching.     
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This study investigated preservice teachers’ perspectives on and preparation for teaching 
mathematics equitably. Overall, participants indicated that student demographics should influence 
the way they teach, but this varied by teacher and student group. 

Keywords: Teacher Education-Preservice, Elementary School Education, Middle School Education, 
Equity and Diversity 

Purpose of the Study 
This study investigated preservice teachers’ perspectives on and preparation for teaching 

mathematics equitably. The research questions were: 1) What attitudes and beliefs do preservice 
teachers report in relation to teaching mathematics equitably to all students? 2) What preparation do 
preservice teachers report in relation to teaching mathematics equitably to all students? What 
preservice teacher preparation do they recommend? 3) What key instructional approaches do 
preservice teachers suggest for teaching mathematics equitably to all students?  

Perspectives 
The science, technology, engineering, and mathematics (STEM) disciplines play a key role in 

societal progress and economic prosperity and possess high status and career promise (Shapiro, 
Grossman, Carter, Martin, Deyton, & Hammer, 2015). However, some groups are underrepresented 
in STEM. For example, females tend to show less favorable dispositions toward STEM, which can 
influence their achievement and participation (Shapiro et al., 2015). Students from underrepresented 
racial/ethnic groups attain lower achievement test scores on standardized mathematics tests (Snyder 
& Dillow, 2015), and a sizeable performance gap exists between students who are English language 
learners (ELLs) and those whose first language is English (Institute of Education Sciences, 2016). 
Students from lower-income families show weaker self-efficacy, lower school performance, and 
higher school drop-out rates than students from higher-income families, and the achievement gap 
between students from lower- and higher-income families has widened in recent decades (e.g., 
OECD, 2013). 

Teachers need to understand the relationship of these types of student background variables to 
mathematics teaching and learning in order to support all students’ needs (Civil, 2014). Teacher 
education can play an important role in facilitating more favorable teacher dispositions and practices 
in relation to serving diverse students (Hwang & Evans, 2011).  

Methods 

Participants 
Participants were 203 upper-division undergraduates. Of these, 77.8% were ages 18-25, and 

22.2% were ages 25 and older. These prospective teachers were enrolled in elementary education 
(44.0%), dual elementary/special education or special education (40.5 %), and secondary 
mathematics education (15.5 %). 
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Instrumentation and Data Collection 
Participants completed an author-constructed survey titled Preservice Teachers’ Perspectives on 

and Preparation for Mathematics Instruction for Diverse Learners, which has nine closed-format 
items rated on a Likert scale with space to explain ratings and two open-ended questions. 

Data Analysis 
Quantitative data were analyzed as a whole and disaggregated by age and program of study. The 

Kruskal-Wallis or Mann-Whitney U test was used to test for significant differences between 
participant subgroups. Written comments were categorized into conceptual categories, or themes. 

Results 

Beliefs About Planning and Delivering Mathematics Instruction to Diverse Students 
Participants tended to agree that student demographics should influence how they teach 

mathematics. They most strongly agreed that students for whom English is a second language should 
influence their mathematics instruction and tended to agree that student socioeconomic status should 
also be considered. Participant responses were fairly equally divided in regard to the role of student 
race/ethnicity, and participants tended to disagree that gender should be a factor in planning and 
carrying out mathematics instruction. Participants tended to agree that it is challenging to design and 
implement fair mathematics instruction according to student race/ethnicity and language and least 
challenging according to gender. The older age group was more likely to agree that student 
socioeconomic status should be considered and is challenging in planning and carrying out 
mathematics instruction. Five dominant themes appeared across participants’ written comments, each 
of which follows with a sample comment: 

Students’ learning differences. “Students that come from different backgrounds have different 
ways of learning. Teachers should incorporate these differences into their lesson plans.” 

Varied teaching methods: “I think that capable teachers are flexible and able to use various 
methodologies to meet the needs of the array of students they encounter.” 

Real-world connections: “The way I intend to teach mathematics is to link with the real-world 
that will benefit all students regardless of demographics.” 

Students’ prior knowledge: “The ideas that students bring into the classroom should help you 
understand them and teach them better. Gender and race/ethnicity, in some ways, do influence a 
student’s background knowledge.” 

Resources and supplies: “This is very important in assigning projects or assignments. Teachers 
have to know what resources are going to be available for all the students.” 

Preparation for Teaching Mathematics Equitably 
Participants tended to agree that they are prepared to support the mathematics learning needs of 

all students, mainly in relation to gender and socioeconomic status, but they expressed somewhat 
weak preparation in relation to race/ethnicity and home language. They tended to agree that their 
strongest preparation for teaching mathematics equitably came from their college coursework. Dual 
elementary/special education majors were significantly more likely than elementary and secondary 
majors to report that they can support the mathematics learning needs of all students, especially non-
native English speakers. 

Written comments show the following themes: 
Mathematics as a “weakness.” Some participants indicated that they are not well prepared to 

teach mathematics to diverse students because they consider the subject area their “weakness.” 
Teaching diverse learners. Some participants reported having a good grasp of mathematics 

content but not knowing how to teach diverse students. In this regard, one said, “Teaching 
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mathematics is harder than [teaching] other subjects.” Some expressed unpreparedness, but others 
showed confidence that they could find the tools and resources they need. 

Teaching non-native English speakers. Participants deem themselves ill prepared to support non-
native English speakers in mathematics instruction, explaining, “I believe that non-native English 
speakers is the only factor that requires different and well prepared instruction.” 

College coursework, practicum, and personal experiences. Most students said their strongest 
preparation for teaching mathematics equitably came from college coursework, although some 
named field experiences and a still lesser number personal work experiences. 

Cultural awareness and learning styles. Most participants had limited experience interacting 
with members of other cultures. They suggested that they be guided in ways to examine the 
curriculum for cultural inclusiveness and exposed to ways to learn students’ background and prior 
experiences in order to adapt their instructional approaches. 

Experience in diverse classrooms. Several participants noted that the program did not provide 
opportunities to teach mathematics to diverse learners during field experiences. 

Hands-on assignments and projects. Participants asserted that they might be prepared to teach 
mathematics fairly to diverse students if they were taught instructional strategies to draw on real-life 
situations and use manipulatives and other hands-on materials. 

Resources and resourcefulness. Participants identified other people (e.g., special education 
teachers, aides, counselors, and other teachers) as the most important resource available to them. 
They also requested assistance locating instructional materials and resources for diverse students.  

Perspectives on Appropriate Instructional Skills and Needed Preparation 
Participants suggested six main approaches for teaching mathematics equitably to all students:  
Group work. Participants stated that when students work collaboratively they are able to tackle 

and persevere on more conceptually difficult problems. 
Mathematical connections. Participants commented that connections between mathematics and 

other subject areas, one’s personal interests, and so forth should be emphasized.  
Influential mathematicians and role models. A few participants emphasized the importance of 

introducing role models from underrepresented groups (e.g., females). 
Different teaching strategies. Participants reported that using a variety of modes of instruction 

can benefit diverse students. 
Language support. For example, “We must teach mathematics concepts and vocabulary.” 
Varied challenges for different groups. Participants voiced most concern about designing 

mathematics instruction for non-native English speakers and least about gender, such as: “Gender 
and socioeconomic status shouldn’t matter when you teach math, but it might be hard to teach kids 
that don’t speak English and that are from different cultures.” 

Discussion and Conclusions 
This study shows that preservice teachers tend to consider themselves prepared to teach 

mathematics to diverse students and find this goal important. However, they were least concerned 
about gender and most concerned about students whose first language is not English. The lack of 
concern about gender is problematic, given continued issues for females in STEM (Wiest, 2011). 
Participants’ concern about teaching ELLs is worrisome with respect to the need for competence and 
a sense of self-efficacy in relation to this dimension of teaching. However, it is encouraging that 
preservice teachers appear to be sensitized to its importance. 

The participants in this study consider teacher preparation coursework and field experiences to be 
important in their preparation to teach mathematics to diverse students. However, they want more 
field experience and more resources for taking on and continuing this preparation. Some participants 
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reported their own mathematics content weaknesses to be a concern, which is important for teacher 
education to address (Hourigan & O’Donoghue, 2015). 

Older teachers were significantly more likely to consider students’ socioeconomic status to be 
important to consider and to be a challenge in planning and implementing equitable instruction. 
Perhaps this is due to their extended real-world experience, which might lead to greater recognition 
of the role of this factor in people’s lives. Secondary preservice teachers were also more likely to say 
they should consider student SES in their instructional efforts. Perhaps SES differences are more 
obvious in older youth, but more attention to the importance of SES in education appears to be 
needed. Dual elementary/special education majors were significantly more likely than elementary 
and secondary majors to consider themselves prepared to support the mathematics learning needs of 
diverse students, especially non-native English speakers. Participation in a program that includes 
attention to a student population with specific education needs might raise their sense of self-efficacy 
for teaching diverse students in general. 

Findings such as those reported in this paper can help teacher educators determine how to 
enhance programs that prepare preservice teachers to teach mathematics effectively to diverse 
students. 
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PROSPECTIVE ELEMENTARY TEACHERS’ KNOWLEDGE OF MULTIPLICATIVE 
STRUCTURE THROUGH CLINICAL INTERVIEWS 
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Little is currently known about how students and teachers make sense of multiplicative structure in 
the context of elementary number theory. This study uses APOS theory to investigate six prospective 
elementary teachers’ developing understanding of multiplicative structure through clinical 
interviews prior to and following a three-week unit of instruction on number theory. Results reveal 
the ways in which participants developed more coordinated understandings of multiplicative 
structure, and suggest benefits for attending to prime factorization in content courses for prospective 
elementary teachers. 

Keywords: Teacher Education-Preservice, Number Concepts and Operations 

Background Information 
Multiplicative structure is defined by Zazkis and Campbell (1996a) as “conceptual attributes and 

relations pertaining to and implied by the decomposition of natural numbers as unique products of 
prime factors” (p. 541). Research has shown that a richer understanding of multiplicative structure 
can facilitate students’ transition from arithmetic to algebra, deepen their understanding of 
divisibility, and support their work with fractions, decimals, and rational numbers (Campbell, 2006; 
Brown, Thomas, & Tolias, 2002).  

In order for K-8 students to make sense of multiplicative structure, PTs must first develop a 
deeper understanding of its meaning and applications. However, PTs’ knowledge of multiplicative 
structure reveals an overreliance on computation-heavy procedures (Zazkis & Campbell, 1996a). For 
example, when asked to determine whether M = 33 x 52 x 7 is divisible by 7, many PTs ignored the 
structure of M, and instead multiplied the prime factors together and carried out long division. 

This paper describes the results of clinical interviews were administered as part of a larger study 
(Author, 2012) examining PTs’ understanding of multiplicative structure in the context of five 
number theory topics: factors, prime factorization, divisibility, greatest common factors (GCF), and 
least common multiples (LCM). Overall, 59 PTs enrolled in three sections of a mathematics content 
course at a private university in the northeastern U.S. completed five number theory lessons over a 
three-week period. Written assessments were administered to all participants prior to and 
immediately following the three-week instructional unit. 

Theoretical Framework 
Dubinsky’s (1991) Action-Process-Object-Schema (APOS) theory served as the foundation for 

the 2012 study described above. APOS theory is a constructivist theory of learning that stipulates that 
individuals construct their own understanding by interacting with their environment. Developing a 
deeper understanding of a mathematical concept involves constructing and organizing more abstract 
and connected mental representations. As the individual makes these constructions, he reaches 
increasingly sophisticated levels of understanding. APOS theory identifies these levels as actions, 
processes, objects, and schema. 

Actions are repeatable, algorithmic procedures. An individual who possesses an action-level 
understanding of a mathematical concept requires step-by-step instructions on how to perform the 
action. When an individual repeats an action enough times that he can construct an internal 
representation for that action, the individual can often execute the action mentally without actually 
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performing the individual steps. The action is said to have been interiorized into a process (Dubinsky 
& McDonald, 2001). An individual encapsulates a process into an object when he begins to see the 
process as a single entity consisting of a static structure; the underlying concept exists independent of 
its associated process. A schema, or structured mental network, is formed when processes and objects 
become connected. Through analysis of the data (as described below), it became necessary to 
subdivide the process code into two sub-codes: process without coordination and process with 
coordination.  The former reflects an inability to combine, explicitly or implicitly, two or more 
concepts to make sense of a problem situation; the latter reflects one’s ability to make such 
combinations.  

Individual Clinical Interviews  
This paper presents the results of six individual clinical interviews administered prior to and 

immediately following the three-week number theory unit. Six female participants were selected 
from the larger sample to participate in one hour-long individual clinical pre- and post-interviews. 
They were selected by random sampling, stratified by prior mathematical achievement levels based 
on their pre-test scores and recommendations from their math content course instructors. 

The purpose of each interview was to identify participants’ in-the-moment thinking around 
multiplicative structure. Using a think-aloud protocol (Patton, 2002), the interviewer asked 
participants to describe their reasoning out loud as they solved each problem. Both pre- and post-
interviews consisted of thirteen math questions assessing participants’ understanding of the five 
number theory topics. Questions were identical across pre- and post-interviews except that the 
numerical values were changed. 

In order to describe participants’ understanding of multiplicative structure, interview transcripts 
were coded using APOS theory’s levels of understanding (action=1; process without coordination=2; 
process with coordination=3; object=4; schema=5). Three phases of coding were undertaken. During 
phase one, pre-interview data were analyzed by participant and by question. Phase two repeated 
phase one for all post-interview transcripts. During phase three, participants’ pre-interview and post-
interview transcripts were compared in order to identify differences in their exhibited levels of 
understanding. 

Findings 
Analysis of the six interview participants revealed that all displayed improved understandings, to 

varying degrees, of topics related to multiplicative structure following number theory instruction. 
Due to space limitations, only portions of the results of each participant’s interviews will be 
discussed. 

Participant #1: Ellen 
Compared to her peers in the sample, Ellen was considered a high achieving mathematics student 

based on her course instructor’s recommendation and her performance on the pre-test (57% vs. 
sample mean of 30%). Her pre-test score was the highest score in the study’s sample. During her pre-
interview, Ellen showed a tendency to work with procedures (action and process levels) because she 
struggled to coordinate prime factors. For example, when asked to determine if N=23 x 32 x 52 x 173 x 
315 was divisible by 51, Ellen could not coordinate divisibility by 3 and 17 to recognize divisibility 
by 51.  

During her post-interview, however, Ellen revealed a greater ability to make connections across 
topics (schema level) and view concepts flexibly (object level): 

If the number can be broken down again into prime factors, I would do that first and then look to 
see if all of the prime factors needed for the number it’s asking for were listed in the number N, 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

967 

because if the prime factors of – all of the prime factors of the number they’re looking for are 
inside N, then it must be divisible by that number.    

Participant #2: Margaret 
Based on her course instructor’s recommendation and on her initial pre-test score (42%), 

Margaret was considered a high achieving mathematics student relative to her peers in the sample. 
During the pre-interview, she worked exclusively at the action and process without coordination 
levels.  

During the post-interview, her understanding fluctuated between action and object levels. While 
she displayed a deep understanding of the relationship between factors and prime factors on some 
problems, when a problem had no obvious solution strategy, Margaret reverted back to lower levels 
of understanding. For example, when asked to identify the factors of N = 3 x 4 x 5 and R = 13 x 17 x 
19 during the post-interview, Margaret could not identify any composite factors that were not already 
visible in the factorizations. 

Participant #3: Amanda 
For the purposes of this study, Amanda was considered an average achieving mathematics 

student based on her course instructor’s recommendation and pre-test score (26%). Prior to 
instruction, Amanda showed evidence of a limited and inconsistent understanding of multiplicative 
structure. She was able to coordinate prime factors at the process with coordination level, but in 
certain circumstances required executing action level computations in order to identify divisibility.  

Her post-interview work, however, revealed a consistent view of number theory as a connected 
body of concepts (schema level). Her explanations began to reflect a greater awareness of the close 
relationships between divisibility, prime factorization, GCF, and LCM concepts. Additionally, 
Amanda was now able to generalize the relationships between prime factors and divisibility: “I know 
that any of the numbers, if I can find their prime factorizations within N then N would be divisible by 
the numbers.” 

Participant #4: Zoe 
Zoe was considered an average achieving mathematics student based on her course instructor’s 

recommendation and her pre-test score (24%). Prior to instruction, Zoe exhibited a limited 
understanding of how prime factorization can be used to determine divisibility and a procedural 
understanding of GCM and LCM concepts. Her pre-interview work was most often coded at the 
process without coordination level for divisibility, prime factorization, and LCM concepts, and at the 
action level for GCF. For example, she was able to correctly identify that 5 is a factor and 7 is not a 
factor of N = 23 x 32 x 52 x 173 x 315, without doing any division computation, but she had difficulty 
identifying composite factors and non-factors.  

Following instruction, however, Zoe’s mental representations of certain procedures strengthened. 
Her understanding of divisibility and prime factorization improved primarily to the process with 
coordination level, as she was now generally able to coordinate distinct prime factors in order to 
identify divisibility. For example, Zoe was able to find almost all composite factors of N = 3 x 4 x 5 
and R = 13 x 17 x 19. 

Participant #5: Jane 
Based on her poor performance on the pre-test (22%) and her course instructor’s 

recommendation, Jane was considered a low-achieving mathematics student for the purposes of this 
study. Prior to instruction, Jane’s understanding was primarily at the action and process without 
coordination levels. Her internalized image for factor was that a factor is a number that is visible in 
the prime factorization of another number.  
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Jane’s understanding of multiplicative structure improved following the three-week unit.  Jane’s 
post-interview work was coded almost exclusively at the object level, characterized by complete 
coordination of distinct prime factors and the ability to articulate clear explanations of GCF and 
LCM concepts. Jane’s notion of factor changed from numbers that are visible in the prime 
factorization of a number to coordinated products of distinct prime factors.  

Participant #6: Christina 
Based on her course instructor’s recommendation and her performance on the pre-test (16%), 

Christina was considered a low-achieving mathematics student. Prior to instruction, Christina’s 
understanding of multiplicative structure was the most procedurally-oriented of all of the interview 
participants in the study. Her pre-interview work was coded primarily at the action and process 
without coordination levels for divisibility topics and exclusively at the action level for GCF and 
LCM topics. 

Following instruction, Christina’s displayed richer understandings of all of these concepts 
(process with coordination). Her mental representation of factor became more coordinated and 
generalizable, so she paid more attention to prime factorization. For example, Christina’s revised 
understanding of factors as combinations of distinct primes allowed her to solve difficult problems, 
like finding the factors of N = 3 x 4 x 5 and R = 13 x 17 x 19.  

Conclusion 
The analysis described in this paper provided descriptions of the ways in which six prospective 

teachers’ understanding of multiplicative structure in the context of various number theory topics 
evolved following instruction. The data reveal that all participants developed more coordinated 
images for multiplicative structure, though they did not always make even progress across topics. 
Some made more progress on problems dealing with divisibility but less on those dealing with 
greatest common factors. Some displayed rich understanding on one question, only to regress back to 
less efficient strategies on other questions. This study provides evidence that attending to 
multiplicative structure can support prospective teachers’ use of prime factorization and 
understanding of divisibility. 
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This study investigated the ways in which prospective teachers (PSTs) solved figural pattern tasks. 
Specifically, we focused on PSTs’ approaches to generalization, the nature of their solutions, and 
types of justifications. The findings revealed that PSTs employed three approaches to generalization: 
recursive, recursive-explicit, and explicit. PSTs’ explicit generalizations were mostly constructive in 
nature, as only one PST developed a deconstructive generalization. Additionally, PSTs’ justifications 
fell into two categories: example-based or figure-based. Together, these results suggested that the 
type of justification PSTs provided related to the type of generalization approach they employed.  

Keywords: Algebra and Algebraic Thinking, Teacher Knowledge 

Introduction 
Substantial research on mathematics thinking and learning has focused on the strategies that 

students employ as they attempt to generalize mathematical patterns. One vein of this research 
investigated students’ generalization strategies and the types of reasoning and thinking associated 
with those strategies (e.g., Amit & Neria, 2008). According to Lannin, Barker, and Townsend (2006), 
“generalizing numeric patterns is viewed as a potential vehicle for transitioning students from 
numeric to algebraic thinking” (p. 3). However, as school algebra instruction is often criticized for 
“rushing from words to single letter symbols” (Mason, 1996, p. 75), the importance of deriving 
explicit generalizations from patterns is often overemphasized. Such an overemphasis can influence 
students to generalize patterns by manipulating numbers and symbols without meaning, and thus, 
interferes with the development of their algebraic thinking. For example, Rivera and Becker (2008) 
found that students who generalize patterns numerically without considering contextual features 
(e.g., geometric figures) were most likely to attempt to fit an explicit formula onto the numbers they 
extracted from the figural pattern. This approach, however, excludes an important factor in the 
development of algebraic thinking and sense-making—connecting the visual images of the pattern 
and the symbolic generalization. 

In their study of prospective teachers’ (PSTs’) generalization of numeric patterns, Zazkis and 
Liljedahl (2002) found that PSTs typically associated the legitimacy of generalizations with algebraic 
symbolism. Given that this association might have implications on PSTs’ instruction (e.g., how they 
support their future students in developing algebraic thinking), we were interested in further 
investigating how PSTs generalize patterns. Additionally, we wondered whether PSTs’ association of 
algebraic symbolism with legitimate generalization in Zazkis and Liljedahl’s study was due in part to 
the fact that the PSTs were asked to generalize numeric patterns. Therefore, in our study we sought to 
investigate the types of strategies PSTs used to generalize figural patterns. Furthermore, because 
justifications are related to generalizations (Ellis, 2007), we were also interested in the types of 
generalizations PSTs derived and the ways in which they provided justification. Thus, in our 
research, we addressed the following questions: (1) What strategies do PSTs use to generalize linear 
and quadratic figural patterns?; (2) What types of generalizations do they provide?; and (3) What is 
the nature of the justifications they provide for their generalizations? 

Methods 
Eight PSTs (seven females and one male) were selected as participants from a Midwest 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

970 

university in the United States. Of the eight participants, seven were in their early 20s, while one 
female PST was 37 years old. All participants were in the third year of a traditional four-year teacher 
education program. The PSTs’ foci were evenly split between secondary and elementary 
mathematics education. Potential differences between these groups of PSTs, however, were not a 
focus of our study. 

The data include audio- and video-recordings of one-on-one clinical interviews with the PSTs 
and also their written work on four figural pattern tasks (see Table 1). These tasks were designed to 
afford opportunities for both generalization and justification. They were classified (unbeknownst to 
the participants) by the type of functions embedded in the pattern (i.e., linear or quadratic). The 
inclusion of both linear and quadratic tasks was intended to allow for variation in PSTs’ approaches. 
The PSTs were asked to provide a generalization for each pattern and were given a series of prompts 
depending on their progress. For example, if PSTs employed only a recursive approach, we posed 
what Stacey (1989) referred to as a “far generalization” task. That is, we asked them to extrapolate 
the 100th figure to investigate whether they were able to establish an explicit rule for the pattern. 

Table 1: Figural Pattern Tasks  
Linear 
figural 
patterns 

Task 1 

 

Task 2 

 

Quadratic 
figural 
patterns 

Task 3 

 

Task 4 

 
 
After transcribing the interviews and reviewing the written work, we engaged in an open coding 

process to identify PSTs’ strategies, generalizations, and justifications. These three aspects were 
coded independently (e.g., the approach to generalizing was separated from the type of generalization 
that resulted), and we generated initial codes individually before meeting as a team to finalize codes. 
This process yielded the framework in Table 2. 

Findings and Discussion 
Table 2 includes the number of instances in which each generalization approach, nature of 

generalization, and type of justification was observed. We found that most PSTs approached 
generalization by first identifying changes between figures (i.e., a recursive approach). 
Generalizations derived from this process were most often constructive in nature. This finding is not 
surprising, as Rivera and Becker (2008) showed that individuals tended to identify additive relations 
between pattern figures and thus most often developed constructive generalizations. Regarding the 
types of justifications PSTs provided, the results of our analysis showed that the frequencies of 
example- and figure-based justifications were roughly similar. 
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Table 2: Framework for Figural Pattern Generalization and Justification 

 
 
In addition to the results provided in Table 2, we also noticed patterns that spanned across 

categories. More specifically, there were differences in the ways PSTs employed recursive-explicit 
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approaches and, consequently, in the nature of their justifications. PSTs who used recursive-explicit 
approaches either extracted the numeric pattern from the figural pattern or focused on both extracted 
numbers and geometric figures. These “sub-strategies” of the recursive-explicit approach were 
related to particular types of justification. 

PSTs who extracted numeric patterns often abandoned the figures in their reasoning and 
attempted to fit an explicit formula onto the numeric pattern. Some failed to develop an explicit 
formula through trial-and-error and accepted their initial recursive generalization as a solution. Other 
PSTs, however, were successful in fitting an explicit formula to the numeric pattern through trial-
and-error. In either case, though, the participant was unable to justify how the explicit generalization 
related to the figural pattern. Therefore, PSTs who focused on between-figure changes often justified 
their solutions by providing examples to verify correctness.  

On the other hand, PSTs who focused on both the structure of figures and any numbers they 
extracted from the pattern consistently noticed and utilized the functional relationship between the 
figure number (i.e., the figure’s position in the pattern) and the figural structure in their 
generalizations. Furthermore, they were always successful in providing both explicit generalizations 
and figure-based justifications. These results suggest that PSTs who derived generalizations in such a 
manner were fluent in their transitions between figures and symbols and, therefore, were able to 
provide valid justifications for their generalizations. 

These results have implications for both PST education and future research. As generalization is 
a central component of algebra, PSTs should be prepared to support their future students in 
approaching generalization in ways that support the development of algebraic thinking. Provided that 
algebraic thinking includes the understanding of functional relationships, while generalizing, PSTs 
should be able identify such relationships within figural patterns. Furthermore, although deriving the 
symbolic representation of an explicit rule is warranted as a learning goal of generalization in 
algebra, it should not be overemphasized as it can distract individuals from recognizing important 
functional relationships (e.g., relationships between algebraic symbols and geometric figures) and 
developing more sound justifications for their generalizations. Additionally, given that PSTs’ prior 
experiences in generalization and justification likely influence the ways they approach such 
problems, future research might consider investigating the learning opportunities that might be 
beneficial for the expansion of PSTs’ current conceptions of generalization. 
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QUANTITATIVE REASONING AND INVERSE FUNCTION: A MISMATCH 

Teo Paoletti 
Montclair State University 
paolettit@montclair.edu 

I extend the body of research investigating students’ quantitative reasoning by examining the 
interplay between a student’s meanings developed through her school experiences and her 
quantitative reasoning in the context of inverse functions. I present one student’s activities in a 
teaching experiment designed to support her in reasoning about a relation and its inverse function as 
representing an invariant relationship. Although the student engaged in such reasoning, her school 
mathematics experiences constrained her in relating this reasoning to her inverse function meanings. 
I conclude with implications and areas for future research. 

Keywords: Cognition, Teacher Education-Preservice, Design Experiments 

Many researchers (Brown & Reynolds, 2007; Kimani & Masingila, 2006; Vidakovic, 1996) 
examining students’ inverse function meanings have maintained an emphasis on composition of 
functions as critical to students developing productive inverse function meanings. However, 
collectively researchers have found students hold compartmentalized inverse function meanings, 
typically related to executing specific actions in analytic or graphing situations (Brown & Reynolds, 
2007; Kimani & Masingila, 2006; Paoletti, Stevens, Hobson, LaForest, & Moore, 2015) and the 
extent to which students relate these actions to function composition is an open question. For 
instance, many students rely on a technique of “switching-and-solving” when determining the inverse 
function of a given function represented analytically (i.e., given y  = x + 1 they switch x and y then 
solve for y to obtain y = x – 1). Together, these researchers’ findings indicate that curricular 
approaches to inverse function have been ineffective in supporting students in developing productive 
inverse function meanings. This report, along with Paoletti (2015), which I elaborate on below, 
begins to address the apparent need to re-conceptualize the teaching and learning of inverse relations 
and functions. 

Theoretical Framing 
I examined the possibility of supporting students developing inverse function meanings via their 

quantitative reasoning (Thompson, 1994, 2011). I conjectured a student could construct a (non-
causal) relationship between quantities (e.g., quantities A and B). Once constructed, she could choose 
to consider one quantity as the input of a relation (e.g. A input, B output) while anticipating the other 
quantity would be the input of the inverse relation (e.g., B input, A output). With respect to graphing, 
a student maintaining such understandings can interpret a single graph as simultaneously 
representing a relation and its inverse relation. Such a student anticipates that the quantity on either 
axis can serve as the input to a relation; although this reasoning may seem trivial, Moore, Silverman, 
Paoletti, & LaForest (2014) illustrated that students are often restricted to reasoning about the input 
quantity exclusively represented on the horizontal axis.  

In Paoletti (2015), I presented an undergraduate student’s (Arya’s) activity as she reorganized her 
inverse function meanings compatible with this theoretical framing. At the outset of the study, Arya 
relied on switching-and-solving and understood a function and its inverse function represented 
different relationships. Arya experienced several prolonged perturbations during the teaching 
experiment; resolving these perturbations supported her in reorganizing many of her meanings. By 
the end of the study Arya understood that a relation and its inverse relation represented an invariant 
relationship and Arya made sense of switching-and-solving by changing the quantitative referent of 
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each variable when switching variables. Arya’s inverse function meanings highlight the viability of 
the ways of thinking I describe above. 

Methods and Task Design 
I conducted a semester-long teaching experiment (Steffe & Thompson, 2000) with two 

undergraduate students, Katlyn and Arya (pseudonyms), enrolled in a secondary mathematics teacher 
education program. I collected data from three interviews and 15 paired teaching episodes. I used the 
interviews and episodes to investigate Katlyn’s mathematical activity, to build models of her 
mathematics, and to explore the mathematical progress Katlyn made over the semester (Steffe & 
Thompson, 2000). Data analysis consisted of open (generative) and axial (convergent) approaches 
(Strauss & Corbin, 1998). Through an iterative process of generating, refining, and adapting 
hypotheses of Katlyn’s mathematics, I was able to characterize her thinking at a specific time and to 
explain transitions in Katlyn’s meanings. 

Results 
For brevity’s sake I do not detail Katlyn’s activities throughout much of the teaching experience 

as they are compatible with Arya’s activities reported elsewhere (Paoletti, 2015). Katlyn entered the 
teaching experiment with her predominate meaning for inverse function involving switching 
coordinate values graphically and switching-and-solving. She experienced several sustained 
perturbations that supported her in reorganizing her meaning for graphs (i.e., interpreting the vertical 
axis as representing a function’s input) and her in-the-moment meanings for inverse function (i.e., 
interpreting a function defining the relationship between volume and side length of a cube and its 
inverse function as representing the same relationship; she switched the quantitative referents of each 
variable to make sense of switching-and-solving). Based on my observation of these in-the-moment 
meanings, I conjectured Katlyn had possibly reorganized her meanings such that she understood a 
relation and its inverse represented an invariant relationship with the distinction being which quantity 
she considered the input. I tested this conjecture in a interview two months after the last episode 
explicitly addressing inverse relationships.  

I provided Katlyn with a video of a cylinder with constant radius and a varying height and asked 
her to determine the relationship between the cylinder’s height and surface area. Katlyn determined 
the analytic rule SA = 2πr2 + 2πrh by imagining the net of the cylinder composed of two circles with 
constant area and a rectangle with varying area (i.e. h varies and r is constant). She drew a linear 
graph representing the relationship between height and surface area. She stated, “As like the height is 
increasing, surface area is also increasing.” Conjecturing Katlyn might consider surface area as the 
input, I asked, “Is there another way to read [the graph]?” Katlyn responded, “As surface area 
increases, height increases.... whatever happens to one is like happening to the other one.” Although 
Katlyn chose to coordinate height first, she understood this was not the only option; from the 
researcher’s perspective Katlyn reasoned about a relation and its inverse relation as she anticipated 
considering either quantity varying first.   

I asked Katlyn to determine the analytic rule of the inverse function conjecturing she would 
maintain the relationship she had just described. However, Katlyn reverted to switching-and-solving, 
obtaining SA = (h - 2πr2)/(2πr). I asked Katlyn to “talk me through what you did there”.  

Katlyn: It’s funny that you say that ‘cause I’m tutoring two girls and we were doing inverses 
yesterday. And I don’t, and I still can’t explain why we do this. I was trying to think of a way 
to explain it to them, and I didn’t know the answer. Um [pause]. Because that’s what I’ve 
been told to do for six years… 

TP: Okay. So you said you were just tutoring someone on this? 
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Katlyn: Yeah, and… they were just like, ‘well how do I do it?’ And so I told them, like you have 
to make sure the… function is one-to-one so like for every… input there’s only one output 
and for every output there is only one input. All that nonsense that doesn’t, I don’t really 
know why we do that. But that’s what has to happen before you can switch your input and 
output and then solve. So, why do we do this? I don’t know. But I know this is what the 
answer is and I. Yeah, I don’t know.  

TP: Okay and so this is the answer [pointing to SA = (h - 2πr2)/(2πr)]?  
Katlyn: Yes. Yeah, yeah… I just don’t know what it means, like I don’t, why do I care about this 

[pointing to SA = (h - 2πr2)/(2πr)]?  
TP: So say a little bit more what do you mean you don’t know what this [pointing to SA = (h - 

2πr2)/(2πr)] means?  
Katlyn: I don’t know what it means. I know [SA = (h - 2πr2)/(2πr)] is the inverse, for surface area 

of a cylinder. That is all I know. Why is it the surface area? What does it, what does the 
inverse for surface area mean? I guess I’m thinking like. [pause] Okay, it reminds me of that 
time that we were doing like volume of a cube being like side-squared and then we switched 
the two and then I was like, okay so now, s means volume and V means side[length]. So now 
does here, [pause] surface area mean height and height mean surface area? Or did we just not 
finish the problem in class to conclude about what, I don’t, I don’t remember. I have no idea 
why we do this.  

TP: So, you’re starting to say here [pointing to SA = (h - 2πr2)/(2πr)]. If, if SA… represented 
height, and h represented surface area? 

Katlyn: Well, it wouldn’t make any sense. Because then it would just be the same. Like if you 
multiplied [SA = (h - 2πr2)/(2πr)] all back out you would get [SA = 2πr2 + 2πrh], I guess. And 
so like I’m attributing [SA = (h - 2πr2)/(2πr)] to be the same thing where this is now height 
[pointing to SA in SA = (h - 2πr2)/(2πr)] and this is now surface area [pointing to h in SA = (h 
- 2πr2)/(2πr)]. That doesn’t make any sense. We might as well have kept it that way 
[indicating SA = 2πr2 + 2πrh]. [pause] That’s probably not right then cause it has to mean, it 
has to mean something different. 

 From the researcher’s perspective, Katlyn described the relation and its inverse relation in the 
moments prior to the term “inverse” being raised. However, when asked to determine the analytic 
rule representing the inverse function, Katlyn reverted to the activity of switching-and-solving. She 
used this technique, which she learned as a student and was reinforced as a tutor, despite her being 
aware that she understood neither why she engaged in this activity (e.g., “So, why do we do this? I 
don’t know”) or how to interpret the results of this activity (e.g., “I just don’t know what it means… 
why do I care about this”). Katlyn recalled the volume-side length situation months earlier and 
considered switching the quantitative referent of each variable but eventually rejected this concluding 
a function and its inverse represent different relationships.  

Discussion and Concluding Remarks 
Katlyn’s activity highlights difficulties students can encounter when their quantitative reasoning 

does not align with their other, possibly non-quantitative, mathematical meanings. Compatible with 
Arya (Paoletti, 2015), Katlyn reorganized several of her meanings during the teaching experiment 
(e.g., conceiving that either axis could represent the input quantity). However, Katlyn did not 
consistently relate these reorganized meanings to her inverse function meanings. One possible 
explanation for this is that Katlyn was engaging in activity in-the-moment, both in the study and in 
her tutoring, to alleviate a perturbation without reflecting on how this activity was related to other 
situations or contexts (e.g., considering that decontextualized and contextualized situations have their 
own set of rules). Future research examining ways in which to support students in relating their 
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quantitative reasoning with their other, possibly non-quantitative, mathematical meanings for inverse 
relations as well as other mathematics concepts would benefit the field. 

Katlyn’s activity highlights how the commonly taught switching-and-solving technique can 
impede students success making sense of relationships between quantities, interpreting relations and 
functions in context, and developing connected inverse function meanings. The ways of thinking 
described in the theoretical framing, as exhibited by Arya (Paoletti, 2015), can provide a way for 
students to overcome the barriers created when students are taught techniques without understanding 
why they are engaging in or how to interpret the results of the techniques. Future researchers should 
continue to explore how a quantitative approach to inverse relations can support undergraduate 
students, as well as younger students who have not had instruction in function and inverse function, 
in developing productive relation, function, and inverse function meanings. More broadly, future 
researchers should continue to reconsider how and why we teach concepts in K-14 school 
mathematics, like inverse function, in which procedures are emphasized over reasoning about 
relationships between quantities (Thompson, 2008). 
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Responding to student reasoning in whole-class discussions and making those contributions central 
to the mathematical work of the class is especially challenging when students contribute ideas that 
are incomplete, imprecise, or not yet correct—what we call “errors.” We highlight our work 
supporting and assessing teacher candidates’ (TCs’) development of skill with the work of 
responding to student errors. We discuss our use of written performance tasks that call for TCs to 
play out discussions in response to a classroom scenario. We consider what these written responses 
reveal about TCs’ practice and present findings and examples that have emerged.  

Keywords: Teacher Education-Preservice, Instructional Activities and Practices 

Whole-class mathematics discussions support participation in authentic mathematics 
communities and the development of a broader set of mathematical proficiencies and practices 
(Kilpatrick, Swafford, & Findell, 2001). Effectively leading discussion entails responding to student 
reasoning and making student contributions central to the mathematical work of the class (Boerst, 
Sleep, Ball, & Bass, 2011). It is especially challenging to treat student contributions that are 
incomplete, imprecise, or not yet correct – what we will call “errors” – as instances of sense-making 
(Brodie, 2014). The work of responding to errors rests on noticing and interpreting student reasoning 
(Jacobs, Lamb, & Philipp, 2010) and involves the in-the-moment task of building understanding 
from errors, in part by positioning others to make sense of the reasoning (Bray, 2011). We are 
interested in supporting teacher candidates (TCs) in developing skill with leading discussion and the 
practice of responding to errors. Furthermore, we are interested in ways to assess these developing 
skills for our work as researchers and as teacher educators. 

Theoretical Framework 
We take the perspective that TCs can develop skilled practice through purposeful opportunities to 

approximate and reflect on practice (Grossman et al., 2009). While this serves as a foundation for our 
use of pedagogies of teacher education such as coached rehearsal (Lampert et al., 2013) and our use 
of video to better understand TC practice and development, as teacher educators and as researchers 
we strive to find other ways to approximate teaching practice and to monitor TCs’ practice. We have 
taken up the design and use of written performance tasks (e.g., Bray, 2011) as an additional way to 
put TCs in the position to make sense of and respond to student reasoning. Through these tasks, TCs 
demonstrate how they might play out instructional scenarios where they must respond to student 
errors in the context of whole-class discussions. We highlight our research efforts around the 
following question: What do TCs’ written responses to classroom scenarios reveal about their 
practice of responding to student contributions?  

Designing Performance Assessments 
We drew inspiration from the work of Zazkis (2017) and Crespo, Oslund, and Parks (2011) 
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around scripting classroom interactions. In our tasks TCs are presented with a realistic classroom 
scenario involving a whole-class math discussion and student contributions, including student errors. 
Respondents are asked to continue the discussion using multiple lines of transcript. TCs are also 
asked to provide a rationale for why they continued the discussion the way they did, to analyze 
student reasoning, and articulate how they would want the student’s thinking evolve. Performance 
tasks have the potential to provide more standardized measures of teacher practice across time and 
contexts. These tasks can also capture TCs’ instructional practice, pedagogical reasoning, 
dispositions about students and teaching, and content knowledge. 

We designed two performance tasks for our study. The tasks have parallel structures and differ 
along two dimensions: (1) mathematical content; and (2) classroom task situation. These differences 
were built in to diffuse the impact of TCs’ specific mathematical knowledge and knowledge of 
particular tasks and classroom activity structures. For one task, TCs were presented with a scenario 
centered on the use of a card sorting activity (Baldinger, Selling, & Virmani, 2016) designed to elicit 
and refine a definition of a polygon. The other task involved a scenario with a task asking students to 
interpret a position-time graph by writing a story. 

Prior to implementing these tasks with TCs, we engaged in two phases of piloting. First, we 
conducted three cognitive think-aloud interviews with experts in mathematics education or teacher 
education. This gave us insight into what drew the attention of a reader, what seemed extraneous or 
distracting, and what seemed unclear. After making revisions, we piloted the tasks with eight first-
year teachers or student teachers who had already taken mathematics methods coursework. This 
process helped us develop a sense of the types of responses we might elicit and led to another round 
of revisions, specifically around the prompts presented after each scenario. 

Methods 
We collected responses from 25 secondary mathematics TCs in methods courses at two large, 

public research institutions. Seventeen participants came from one institution at which they were 
engaged in a yearlong post-baccalaureate licensure program. The other eight participants from the 
second institution were enrolled in a shared methods course across multiple licensure programs. Each 
program’s mathematics methods coursework had as a central component a series of practice-focused 
teacher education pedagogies, such as coached rehearsal.  

The performance tasks were administered using Qualtrics in October 2016. TCs completed the 
tasks individually during the methods class. Response times to complete both tasks together ranged 
from 11:24 (minutes and seconds) to 42:37, with a median duration of 25:34.  

We focus our analysis on the transcripts TCs wrote to continue the discussion in the card sorting 
scenario. We used a priori and emergent codes to describe TCs’ error-handling practices evident in 
the transcripts. With a more established coding protocol, each transcript was coded individually by 
two authors. Inter-coder reliability was assessed and any disagreements were resolved through 
discussion, which allowed for further code refinement. We then engaged in a process of analytic 
memoing and theme building (Miles, Huberman, & Saldaña, 2014) to capture prevalent, distinct, or 
novel features of TCs’ practice of responding to student errors in whole-class discussions, as 
represented through their written responses.  

Preliminary Findings 
From these initial analyses, three themes have emerged that we discuss below, with examples and 

commentary. These themes also serve as part of our continued analyses. In the card sorting scenario 
presented to TCs, the classroom discussion began after students were working in small groups with 
the teacher asking for students to name cards that they knew for sure were polygons. One student, 
Rosalia, offers Shape Q (see Figure 1) and, after a back-and-forth with the teacher, shares that it is a 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

979 

polygon because “it is a square” and that “all the sides are straight lines.” After the teacher asked for 
another card, Jessie offers Shape J (see Figure 1), stating that it was like Shape Q, emphasizing that it 
is a square. 

 

 
Figure 1. Two cards presented in scenario as examples of polygons. 

Bringing Error to Resolution 
One feature of TCs’ responses was the way in which, within a relatively short dialogue, the error 

made by the student was resolved or corrected. This occurred in nine of 25 transcripts, and in many 
cases, the original student corrected their own error, as in the example below: 

Teacher: It does look like a square but what is different about Shape J and Shape Q?  
Student: There is a line from one corner of the square to the center.  
T: Correct, what do you think we can conclude by noticing the line from the corner?  
S: We can conclude that this is not a polygon, because they are not all connected. 

We found other variations of error resolution, including where another student or the teacher 
corrects the error. There were five additional transcripts that we considered to be boundary cases of 
this phenomenon, such as where the last turn of talk has the teacher posing a question that was 
potentially leading toward resolving or correcting the error in a subsequent student response. In 
contrast, only one TC used a “tabling” move – explicitly pausing the conversation on a particular 
idea—with a few other responses including the teacher move of asking for a third card. These 
findings illustrate that student errors appear to be something that many TCs think could or should be 
resolved quickly, and often in a one-on-one exchange between teacher and student.  

Focus on the Differences Between Cards 
As the correction of student errors is a common (though not necessarily productive) response, we 

went into our analysis of the transcripts with attention to the way errors were resolved (and whether 
or not they were resolved in the short transcript provided by TCs). From our initial phases of 
analysis, other codes emerged. One such feature was the way in which transcripts included a teacher 
move that drew attention to the difference between Shapes J and Q, which occurred in 23 of the 25 
transcripts. Furthermore, 17 of the transcripts had such a move as the first teacher move. The 
prevalence of such a move is notable, though we are not yet sure what this ultimately says about 
responding to errors. For example, is it a productive move, or is it a move that is explicitly 
detrimental? While, through further analysis, we have found that the move is often associated with 
funneling or leading questioning in the response, it is also mixed as to whether or not error resolution 
is part of the response. We also are continuing to consider what this teacher responding move is, as 
the move is potentially particular to the circumstances of the scenario—two students, each providing 
a different example and providing certain reasoning.  

Introducing Multiple Students  
A final notable finding from our analyses was the way in which some TCs added additional 

students to the discussion. Nine of the TCs introduced a new student, in some cases creating a new 
name. Three other TCs reintroduced the other student referenced in the scenario (Rosalia). Other TCs 
described discussions that included prompts posed to the whole class and, while some of these had 
unclear direction and purpose, others were more pointed, such as the prompting of students to “turn 
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and talk” with a peer. Overall, we are struck by the way in which some TCs responded to student 
errors in ways that fostered more discussion and oriented the hypothetical students to one another’s 
ideas. This stands in contrast to the constructed discussions that involved a back-and-forth, teacher-
to-student pattern that was present in many other responses.  

Discussion and Conclusion 
In this report, we have outlined our creation, use, and initial analyses of written performance 

tasks used to assess TC practice, specifically around the work of responding to student contributions 
in the context of whole-class mathematics discussions. As part of our full project, the data we 
highlight in this paper were collected as a pre-assessment. We will be administering these written 
performance tasks again as a post-assessment, which will allow for further consideration of these 
tasks and one opportunity to determine changes in TC practice. 

We see this work having conceptual, methodological, and pedagogical contributions to the field. 
Conceptually, this work contributes to the field of literature unpacking the practice of responding to 
students’ contributions. Methodologically, we contribute to the area of research focused on teacher 
practice through the development of additional tools. Pedagogically, we see the use of performance 
tasks as not only a data collection and evaluation tool, but also as a formative approximation of 
practice for TCs. 
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STUDYING PRESERVICE TEACHER BELIEFS ABOUT TEACHING MATHEMATICS 
FOR SOCIAL JUSTICE OVER TIME  

 Cindy Jong Thomas E. Hodges 
 University of Kentucky University of South Carolina 
 cindy.jong@uky.edu hodgeste@sc.edu  

This paper reports on the Teaching Mathematics for Social Justice-Beliefs scale (TMfSJ-B) within 
the Mathematics Experiences and Conceptions Surveys (MECS). Elementary preservice teacher data 
were collected across three institutions (n=146) over three time points (i.e. pre-methods, post-
methods, and post-student teaching) to examine whether entering beliefs about teaching mathematics 
for social justice changed over time. Baseline data indicated that homogeneity did not exist between 
the groups; thus, disaggregate data were used for analyses. One of the two institutions showed 
positive increase in TMfSJ-B across the three time points. The other two institutions had an increase 
in TMfSJ-B from the first to the second time point; however, both had a decline from the second to 
third time point. We explored what factors within the mathematics methods course and student 
teaching experiences influenced potential changes.  

Keywords: Equity and Diversity, Teacher Beliefs, Teacher Education-Preservice 

Theory and Objectives 
Teaching mathematics for social justice (TMfSJ) is informed by critical theory and critical 

pedagogy within both teacher education and mathematics education research (Cochran-Smith, 2010; 
Wager & Stinson, 2012). While TMfSJ is described in a variety of ways to include access and equity 
to a higher quality mathematics to using social issues to teach mathematics to disrupting school 
norms (Gates & Jorgenson, 2009; Gutstein, 2006), there is clearly a growing interest in the field of 
mathematics education to study issues of equity and social justice among preservice teachers. For the 
purposes of our study, the definition we use is based on the notion that TMfSJ provides opportunities 
for all students “to learn rigorous mathematics in culturally specific, meaningful ways that seek to 
improve the economic and social conditions of marginalized individuals and groups, and that work 
toward[s] reduc[ing] deficit-oriented beliefs about who is or is not ‘good’ at mathematics” (Leonard 
& Evans, 2012, p. 100).  

While there have been some efforts to integrate TMfSJ theory and pedagogy into teacher 
education programs (Koestler, 2012; Leonard & Evans, 2012), little is known about how such 
approaches have influence beliefs and whether beliefs oriented toward TMfSJ are sustained over 
time. Our study aims to address a gap in the literature by examining elementary preservice teacher 
(PST) beliefs about TMfSJ from pre- to post-mathematics methods coursework to post student 
teaching. The research questions explored in this study were: 

1. What, if any, changes occur in beliefs about teaching mathematics for social justice over the 
duration of the mathematics methods course and into student teaching?  

2. What factors within the mathematics methods course and student teaching experiences 
accounted for changes in beliefs, if any? 

This focus contributes to the knowledge base on mathematics teacher development by observing both 
a cognitive aspect of TMfSJ and experiences within a teacher education program. As Philipp (2007, 
p. 259) explains, beliefs are “psychologically held understandings, premises, or propositions about 
the world that are thought to be true. Beliefs are more cognitive, are felt less intensely, and are harder 
to change than attitudes.” 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

982 

Methods 
The Mathematics Experiences and Conceptions Surveys (MECS; Jong & Hodges, 2015) was 

administered at three time points: (a) at the beginning of mathematics methods coursework; (b) at the 
end of mathematics methods coursework; and (c) at the conclusion of the student teaching semester. 
Participants were undergraduate preservice elementary teachers at three institutions across the United 
States (n=146). Each version of the MECS included the same TMfSJ-B scale to capture baseline data 
and changes over time. The MECS also included different experience scales across various iterations 
(e.g. math methods course experience, field experience, student teaching) to account for factors that 
might influence beliefs.  

Context 
Three land grant, research extensive universities in the Southeastern United States participated in 

the study. A general description of the elementary education program progression and integration of 
TMfSJ concepts are delineated as follows: University A’s elementary teacher education program 
requires candidates to take a course in social justice and culturally relevant pedagogy upon admission 
into the professional program (junior year). Candidates take a mathematics methods course that is 
offered on site at an elementary school, taking part in demonstration lessons by a classroom teacher 
and working directly with elementary students by making careful observations of children’s thinking. 
The course integrates issues of TMfSJ during these site-based sessions. University B’s elementary 
teacher education program does not require a separate foundational course on diversity, because the 
goal is to integrate issues of equity throughout methods coursework. The one required mathematics 
methods course integrates readings and reflections on TMfSJ topics. It is also the case that PSTs are 
placed in a diverse classroom for at least one field placement. University C, an elementary education 
program with an explicit focus on STEM content preparation, includes two mathematics methods 
courses. During the first of the two methods courses, candidates take a co-requisite course in 
diversity and social justice. Candidates are intentionally placed in diverse school settings during 
internship. 

Data Analysis 
To examine changes in TMfSJ beliefs and answer our first research question, we used a Repeated 

Measures ANOVA (Huck, 2012). To address the second research question, we used multiple 
regression models to identify factors to explain the TMfSJ beliefs. Prior to conducting our analyses, 
raw data were converted to logit values using Winsteps (Linacre, 2016). In addition, the TMfSJ-B 
scales in MECS-2 and MECS-3 were anchored to the MECS-1 scale to be able to make direct 
comparisons. In Winsteps, the Teaching Mathematics for Social Justice- Beliefs scale had an item 
reliability of 0.99 and a person reliability ranging from 0.72-0.76 across the three versions of the 
MECS, indicating that the items had a wide difficulty range and variance but the ability variance of 
the participants were not as wide in range. 

Results 
Levine’s test of homogeneity indicated that there were statistically significant differences among 

the baseline TMfSJ beliefs across the institutions; thus, analyses were conducted using the 
disaggregate data. Mean values for each university across the three iterations of the MECS are 
presented in Table 1 and Figure 1. Results of the RM-ANOVA analysis indicated only one 
significant change across all eighteen pairwise comparisons: University B had a significant gain (p = 
.002) for TMfSJ-B from pre- to post-methods.  

Multiple regression models were created to examine which factors could help explain TMfSJ 
beliefs at each time point. At the pre-methods level, we examined whether the PK-12 mathematics 
experience was influential, but it was not a significant factor across any of the institutions. At the 
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post-methods level, we examined whether the mathematics methods course or field experiences 
explained the variance in TMfSJ-B, but they were not significant factors. At the post-student 
teaching level, mathematics methods course and student teaching experiences were entered into the 
model. The two factors were not significant predictors for Universities A or B. For University C, it 
was found that the following two factors accounted for 12.6% of the variance in TMfSJ-B post-
student teaching (R2 = 126, F (2, 51) = 3.675, p = .032): the mathematics methods experience and the 
student teaching scales. In addition, the student teaching pedagogy scale accounted for 12.6% of the 
variance in TMfSJ-B post-student teaching (R2 = 126, F (1, 52) = 7.49, p = .008).  

Table 1: Mean TMfSJ Scores by Institution  
Institution Pre-methods Post-methods Post-Student Teaching 

University A (n=38) 1.560 1.813 1.902 
University B (n=54) .877 1.252 1.092 
University C (n=54) .974 1.126 1.038 

 

 
Figure 1. Disaggregate logit means of TMfSJ beliefs over time. 

Discussion 
Entering TMfSJ-B were somewhat similar for University B and C, while significantly higher for 

University A. Both University B and C followed similar trajectories – growth in beliefs from pre to 
post mathematics methods, then a decline in beliefs measured at the end of the student teaching 
semester. On the other hand, University A saw gains at both the post methods and end of student 
teaching time points. We were somewhat surprised that a significant change was not found (p=.079) 
for University A from pre- methods to post-student teaching since positive gained were made at both 
time points. However, the sample sizes may have been too small at the institutional level. It is also 
possible that there is a ceiling effect to the beliefs measured at University A, since the baseline 
beliefs were high.  



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

984 

In exploring the growth trajectories at each university, it might well be that higher entering 
beliefs among candidates at University A were more sustainable across student teaching in relation to 
the more tenuous TMfSJ-B found at University B and C. That is, more strongly held beliefs were 
more entrenched and less susceptible to regression than the beliefs held by candidates at University B 
and C. As such, foregrounding issues of equity and social justice early in candidates’ programs, with 
the stated goal of developing more productive beliefs, may well lead to sustained teaching that 
promotes the educational advancement of historically marginalized people.  

While our experiences scales did little to explain the variance in TMfSJ-B, there are important 
contextual differences they may not have been captured in MECS instrumentation. University A 
candidates have a course with explicit focus on social justice and culturally relevant pedagogy prior 
to mathematics methods coursework. As such, candidates may be positioned to more thoughtfully 
consider issues of social justice in mathematics upon entrance to the methods semester. Further 
University A also includes site-based mathematics methods delivery, where candidates have 
opportunities to theorize from practice in a diverse school setting (cf. Hodges & Jong, 2015). Given 
the uneven nature of student teaching experiences, the data presented here suggest engaging in 
systematic and strategic efforts to increase candidates’ capacity to take on productive beliefs about 
social justice in mathematics early in teacher preparation programs may well lead to beliefs that 
support more equitable instruction in mathematics classrooms.  
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USING NARRATIVES TO ARTICULATE MATHEMATICAL PROBLEM SOLVING AND 
POSING IN A TECHNOLOGICAL ENVIRONMENT 

 Dana C. Cox Suzanne R. Harper 
 Miami University Miami University 
 dana.cox@MiamiOH.edu  harpersr@MiamiOH.edu 

In this study, we set out to create an environment for preservice secondary mathematics teachers 
where we could test the capability of technology to capture episodes of technology-enabled problem 
solving and answer the question, how do these captured episodes support the articulation of 
mathematical processes such as problem solving or problem posing? In a collaborative context, 
screencasting and Interactive Geometry Software were used to create a rich narrative captured in 
verbalized thinking as well as on-screen activity. The data provided an auditable trail of authentic 
practice that preservice teachers did not articulate on their own. 

Keywords: Teacher Education-Preservice, Problem Solving, Technology 

Background and Theoretical Framework 
Preservice Secondary Mathematics Teachers’ (PSMT) beliefs about technology use in the 

classroom seem to be drawn from previous vivid episodes or events in their lives (Pajares, 1992), 
events that likely occurred in the mathematics classroom during their years spent as K-12 students. In 
order to influence PSMTs’ beliefs about the role technology plays in the classroom, we should give 
them opportunities to experience vivid episodes of mathematical problem solving with technology, 
and find a way to make these episodes explicit (Cox & Harper, 2016). Equipping PSMTs with 
accurate records of problem solving practice is necessary for reflection; articulating thinking and 
reasoning after-the-fact is challenging. Lesh and Zawojewski (2007) call for research into how to 
document and assess understandings and abilities related to problem solving that relies on data 
consisting of auditable trails of the non-linear activity of problem solvers. We need a way to capture 
an authentic, accurate and articulated episode to facilitate further reflection on the affordances of 
technology for doing and learning mathematics. In this study, we set out to create an environment 
where we could test the capability of technology to capture episodes and how do these captured 
episodes support the articulation of mathematical processes such as problem solving or problem 
posing? 

We choose to use the term narrative as a storytelling term. The narratives that we construct from 
collected data/auditable trails of documentation (Lesh & Zawojewski, 2007) are mathematical stories 
about what PSMTs think, say, do, construct, and see while working on a mathematical task. We 
focused here on the creating and interpreting an auditable trail of problem solving behavior that is 
specific to a technology-rich context.  

Data Collection and Analysis 
We assigned 15 PSMTs the task to create a dynamic geometric sketch that embodied a 

"Kaleidoscope". At the time of this study, the PSMTs were in the seventh week of a course on 
mathematical problem solving with technology, and were reasonably fluent with Interactive 
Geometry Software (IGS). We instructed them to engage with the task for approximately 15 minutes 
in partnerships (and one triad) using a single computer equipped with IGS. The intent was to give 
PSMTs a task, tools and environment that pushed for and supported verbal communication, 
negotiation, and collaborative mathematical problem solving.  

During the construction phase and class presentations, four sources of data were collected. First, 
PSMTs submitted the completed IGS sketches of kaleidoscopes. Second, we collected construction 
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screencasts documenting and linking on-screen activity and verbal communication during the 
construction phase. We define screencast as a digital recording of computer screen output, also 
known as a video screen capture, often containing audio narration. Third, we video recorded 
presentations and discussions of IGS sketches amongst the whole group of 15 PSMTs. Fourth, 
individual PSMTs recorded reflection screencasts where they addressed the problem solving process 
as well as their intentions behind the completed kaleidoscope. 

From each captured episode, we created a rich narrative of problem solving and problem posing 
activity. In this paper, we focus our attention on the narrative of one partnership: Abby and Olivia. 
Abby and Olivia are second-year PSMTs who had previous experience working together. This 
narrative was selected over six others because it demonstrates the potential of technology to both 
facilitate and articulate mathematical processes, but also for the variety of moments that it provides 
for analysis. In this sense, this narrative is remarkable in its clarity.  

A detailed methodology behind creating the narrative using thick analysis can be found 
elsewhere (Harper & Cox, 2017) thus we will provide only a brief description here in the interest of 
space. To develop the narrative, we used the creation screencast as the foundation of the analysis 
while data from the IGS sketch, the recorded class discussion, and the reflection screencasts were 
used to interpret the creation screencast. Because the IGS sketch was data with which we could 
interact, it enabled us to form and test our own conjectures about how the sketch worked, giving us 
insight into the problems Olivia perceived in the behavior of the kaleidoscope model. This is 
particularly important to the following episode. The data collected during whole class discussion and 
reflection screencasts gave us descriptions from the PSMTs about the intentions and emotion behind 
their mathematical work. It was also useful as we compared the way problems were posed by the 
partnerships during the creation screencast with the way individual PSMTs articulated those 
problems after-the-fact.  

Results 
Our narrative of Abby and Olivia’s work includes four episodes where problem solving and 

problem posing can be articulated (Cox, Harper & Edwards, Under Review). For this brief report, we 
choose to focus on the potential of just the final episode, A Return to Symmetry. 

Once Abby and Olivia created a first draft of their kaleidoscope sketch, they analyzed their 
model with a critical eye. With animation features of the sketch engaged, both PSMTs were drawn to 
the motion of two sets of points: those placed directly on the radii of the circle (radius points), and 
those placed on the circumference (circumference points). This visual effect provoked Olivia to pose 
a question about the model (Figure 1) that articulates a new problem. Olivia’s question goes ignored 
and unanswered as the PSMTs focus on another idea. 

After watching the creation screencast we became curious about the problem Olivia was trying to 
articulate. This curiosity was captured in our researcher notes (Figure 1). Our subsequent discussion 
produced two questions: 1) what problem was Olivia “seeing” in the motion of the kaleidoscope that 
caused her to question whether or not the model was valid? Specifically, what points or regions 
prompted her to ask if “they are allowed to move between the segments;” and,  2) could we use their 
original IGS sketch to determine how the points were moving and test the mathematical validity of 
their kaleidoscope model? In essence, we wondered if we could both articulate and solve Olivia’s 
problem. 
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Construction Screencast Transcript 
(04:10) O: I’m also wondering if they are allowed to move 
between the segments. If they are allowed to move beyond 
just…let’s stop where it looks like. 
[O stops the animation at a strategic, intentional point and 
gestures to the yellow-circled circumference point as she asks a 
question. A screenshot of this moment is shown to the right] 
(04:23) O: I’m wondering if they are allowed to move beyond, go 
around the circle past the sector. It’s really a mirror so they have 
to stay within it. 

 

Researcher Notes 
The part where Olivia questions “moving beyond” is really interesting. It seems as if the PSMTs are 
watching the animated points and imagining that they move from one sector into another. In reality, 
it’s an optical illusion and the animated points, if labeled, would clearly just move within the sector 
...Wait? Do the points on the outside of the circle limit themselves to one sector, or do they move out?  

Figure 1. Associated data including transcript, illustration, and research notes.  

Since we had access to Abby and Olivia’s original IGS file, we were able to conduct a “thought 
experiment” to find out whether the circumference points were really “moving beyond” the 60-
degree arc. This helped us to better understand what Olivia was seeing and describing in the creation 
screencast. We also wanted to know how the motion of the model was limited in ways by the IGS 
that would either be removed (solving the problem) or that would prevent it from matching our 
physical expectations of a kaleidoscope. 

To support our investigation, Olivia made herself available for a brief interview after her 
participation in the study had concluded and during our data analysis phase. In this interview she 
provided additional insights into the construction of their kaleidoscope. She proudly mentioned that 
she had recreated a new kaleidoscope on her own, one where the "shapes do not go outside the pie." 
Considering this comment carefully, we are now confident that Olivia was concentrating on the 
polygons (and not the circumference points) that spanned multiple sectors of the circle when she 
asked “if they are allowed to move beyond, go around the circle past the sector.” We went back to 
Abby and Olivia’s original creation screencast and captured an image of the initial polygons 
spanning multiple sectors and since there were no constraints for the circumference points, these 
points could move "beyond" a 60-degree arc of the circle, yielding polygonal images in the dynamic 
model that are never seen in a real kaleidoscope.  

Discussion and Implications 
We have collected an auditable trail of problem solving with technology that records the process 

of problem solving and moments of problem posing. This record of practice is fluid and allows 
researchers and students to drop into action at any point and explore through thought experimentation 
“what might have happened if”. Specific to this case, it was only because of the auditable record of 
practice that we were able to see that Olivia had identified a problem in the creation screencast, but 
had not articulated it clearly to Abby (and perhaps to herself at the time). Interpretation required 
further articulation and was supported by the IGS data. 

Both PSMTs utilized the IGS sketch they created as a source of evidence and illustration in their 
reflection screencasts, however neither Abby nor Olivia mentioned the symmetry problem. Olivia’s 
interrogation of the polygons in the creation screencast was ignored in both of the reflections 
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produced by the PSMTs. More broadly, Abby ignored the prompt to discuss “insights you had along 
the way and the impact of those insights on your model” entirely. Olivia went so far as to deny that 
insight occurred, which stands in contradiction to the data presented here and elsewhere in the 
narrative. When urged to reconsider her question in the closing interview, Olivia was amazed to hear 
the insight she had achieved (problem she had posed) and was able to better articulate her concerns 
as well as a way to improve the original sketch (solve the problem).  

Thus, the reflection screencasts provided a limited view of the episode and failed to capture 
accurate and articulated mathematical practices, in spite of it being an authentic first-hand account. 
From an analytical standpoint, the PSMTs controlled in their reflections what they presented and in 
that way limited our view of and understanding of their process to those parts of the story of which 
they were aware. A comparison to the generated narrative exposed blind spots in their self-analysis. 
What power we give to our PSMTs when we give them access to an auditable trail with which to 
narrate a more accurate and articulated account of their insights.  

While there is a well-established professional conversation around the role of problem solving 
and problem posing in mathematics education, more needs to be done to define what experiences 
PSMTs need with respect to each and conduct research into making these experiences and the 
supporting mathematical practices more explicit (Cox & Harper, 2016). More can be done to create 
auditable trails (and from them narratives) to use to prompt deeper reflection about the role 
technology can play in problem solving. By creating a real-time record of practice, we remove the 
barrier of having to store within our short-term memory not only the outcomes of our mathematical 
struggles, but the messiness associated with that work. Mathematical thinking is freed from a 
chronological and linear path, and we can document the interconnectedness of it as well as the 
signposts of paths not taken.  

References 
Cox, D.C., & Harper, S.R. (2016). Documenting a developing vision of teaching mathematics with  technology. In 

M.L. Niess, S. Driskell & K. Hollebrands, (Eds.), Handbook of Research on Transforming Mathematics 
Teacher Education in the Digital Age (pp. 166-189). Hershey, PA: IGI Global. 

Cox, D.C., Harper, S.R., & Edwards, M.T. (Under Review). Screencasting as a tool to capture moments of authentic 
creativity. In V. Freiman & J. Tassell (Eds.), Creativity and Technology in Mathematics Education (Vol. 9 in 
Mathematics Education in the Digital Era Series). New York: Springer. 

Harper, S.R. & Cox, D.C. (2017). Screencasting to study creative insight and create records of authentic problem 
solving practice. In B-L. Killingbeck (Ed.), Proceedings of the Twenty-ninth Annual International Conference 
on Technology in Collegiate Mathematics.  

Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F.K. Lester (Ed.), Second handbook of 
research on mathematics teaching and learning (pp. 763-804). Charlotte, NC: Information Age Publishing. 

Pajares, M.F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of 
Educational Research, 62(3), 307-332. 

Wagner, J. (1993). Ignorance in educational research or, how can you not know that?. Educational Researcher, 
22(5), 15-23.  
 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

989 

A FRAMEWORK FOR INVESTIGATING NOVICE TEACHERS’ PCK 

 Allyson Hallman-Thrasher Derek Sturgill Jeff Connor 
 Ohio University Ohio University Ohio University 
 hallman@ohio.edu ds278604@ohio.edu connorj@ohio.edu 

Keywords: Teacher Education-Preservice, Teacher Knowledge 

Our university has developed a one-year master’s program with initial teaching licensure for 
STEM career-changers and individuals with STEM degrees. The assumption underlying such 
programs is that this population needs only coursework in pedagogy and a teaching practicum (Selke 
& Fero, 2005). Yet, a focus on only pedagogy without attending to content ignores research 
indicating the impact of pedagogical content knowledge (PCK) on teacher effectiveness (Ball, 
Thames, & Phelps, 2008; Goos, 2013). Boundaries between PCK and content knowledge are unclear 
and no single framework addresses PCK for both mathematics and science teachers. In studying how 
STEM content backgrounds influence PCK, we developed a framework to help articulate and 
investigate novice mathematics and science teachers’ knowledge.  

Participants were 5 mathematics and 8 science teacher candidates in our program. We 
interviewed them three times throughout their program and first year of teaching. We asked them to 
describe the impact of and connections between their STEM backgrounds and their teaching practice. 
Open coding of interview data and existing research on PCK informed our framework.  

Our framework focuses on overlapping areas of mathematical knowledge for teaching (Ball et al., 
2008) and models for science PCK (Lee & Luft, 2008; Magnusson, Krajcik, & Borko 1999): 
knowledge of discipline, purposes of teaching, curriculum, students’ understanding, and 
teaching/instructional strategies. Discipline knowledge includes content knowledge from all STEM 
fields. Knowledge of purposes of teaching addresses the reasons why certain content is taught. 
Knowledge of curriculum refers to understanding how topics develop and connect over the K–12 
curriculum. Knowledge of student understanding involves knowing typical student approaches to 
particular tasks and topics more generally. Knowledge of teaching/instructional strategies concerns 
knowing different ways to teach a particular content.   

Our framework has served as a useful guide for distinguishing and analyzing data. We found that 
participants’ discipline knowledge did not translate to knowledge of student understanding. 
Participants were challenged by making content accessible to students and “ways to explain what 
seems elementary to me” (Jennie, 2). However, discipline knowledge did support knowledge of 
teaching/instructional strategies by saving them time needed to relearn content and contributing to 
developing innovative classroom activities that incorporated real-world applications of STEM.  
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The purpose of this study was to investigate reasoning of 6 future middle grades mathematics 
teachers on a quantitative definition of multiplication when generating equations for proportional 
relationships. Past research has consistently reported that proportions involving whole-number 
multiples is easier to solve than proportions involving fraction multiples (e.g., Kaput & West, 1994; 
Karplus, Pulos, & Stage, 1983). However, no studies have examined how a definition for 
multiplication can support and constrain generating equations for proportional relationships.   

The theoretical framework of this study is based on a quantitative definition of multiplication 
articulated by Beckmann and Izsák (2015), as follows: In the equation M • N = P, M is the number of 
equal-size groups, N is the number of units in 1 or each group, and P is the number of units in M 
groups. This definition of multiplication leads to two solutions using the variable parts perspective, a 
largely overlooked perspective on proportional relationships (Beckmann & Izsák, 2015). This study 
was part of a larger, ongoing project on future middle grades (grades 4-8) mathematics teachers’ 
ecology of multiplicative reasoning. One project team member taught a cohort of future teachers for 
two semesters in 2014-2015. In the first semester, the future teachers received instruction on 
developing the quantitative definition of multiplication. In the second semester, they reasoned with 
the variable parts perspective on proportional relationships and developed algebraic equations by 
reasoning about relationships among quantities. Six future teachers were recruited based on their 
performance on a fractions survey that focused on multiplication and division with fractions. Data for 
the present study came from individual cognitive interviews conducted with each future teacher at 
the end of the second semester.  

The main finding we report is that the quantitative definition of multiplication facilitated future 
teachers’ generation and explanation of equations for proportional relationships. Future teachers who 
did not have this definition of multiplication experienced difficulties in developing appropriate 
equations. As a future direction, middle grades programs should focus on providing future teachers 
opportunities to develop capacities for reasoning with the definition of multiplication across problem 
situations.   
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Mathematics education researchers have begun to leverage practices from complex instruction to 
address inequities that occur during mathematics instruction (Boaler & Staples, 2008; Featherstone et 
al., 2011). Featherstone et al. (2011) define assigning competence as “the practice of drawing public 
attention to a given student’s intellectual contribution to a group’s problem-solving efforts” (p. 88). 
While research has provided illustrations of what assigning competence looks like in classrooms, less 
is known about how to teach the practice to pre-service teachers. This study examines an attempt to 
teach assigning competence as a practice to pre-service teachers and analyzes how pre-service 
teachers appeared to take up the practice. 

Data Sources and Methodological Approach 
 Data sources used in this study include lessons plans, notes, and student artifacts (e.g. 

assignments, assessments, and notes). Given the variety of data sources, we based our analyses on 
Miles and Huberman (2013) and used triangulation to identify patterns in our data.  

Findings  
Four themes emerged from our analysis: (1) identifying the practice; (2) connecting the practice 

to its core aims; (3) developing specific teaching strategies; and (4) conceiving teachers’ power and 
responsibility. First, pre-service teachers grappled with identifying and understanding the meaning of 
assigning competence, confounding it with praise and making individual students “feel good.” 
Second, we found evidence that pre-service teachers grappled with recognizing the importance and 
value of assigning competence in mathematics instruction. Third, pre-service teachers had concerns 
about implementing strategies for assigning competence. Finally, pre-service teachers had concerns 
about the power and responsibility they could deploy as teachers to disrupt classroom inequities. 

Discussion 
The work of assigning competence offers a way to bring together core strands of the work of 

teaching that are high-leverage for beginning teachers: eliciting and interpreting students’ strengths, 
knowing and seeing mathematics in teaching, perceiving status hierarchies and inequities among 
students, developing specific teaching moves to interrupt those inequities by positioning particular 
students as competent. However, preservice teachers in our study had difficulty learning to do all of 
the parts together. In this session, participants will learn about an instructional design for teaching 
assigning competence to pre-service teachers, details about the design and methodological approach 
of the study, and consider next steps in developing this important practice with pre-service teachers.  
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It is well documented in literature that teacher beliefs influence teaching practices (Stipek, 
Givvin, Salmon, & MacGyvers, 2001; Wilkins, 2008). However, little research has been done 
involving preservice elementary teachers’ mathematical epistemology. Understanding such beliefs 
will support improvement in teacher education programs. In this poster, we present our preliminary 
work to address: What are PSTs’ epistemic beliefs regarding mathematics? 

We developed a survey on PSTs’ epistemic beliefs by combining an open-ended question about 
learning mathematics together with closed form items measured on a five point Likert scale. The 
closed form items draw from Wheeler’s Epistemological Beliefs Survey for Mathematics (EBSM) 
and measures beliefs in seven dimensions of epistemology, including: source of knowledge, certainty 
of knowledge, structure of knowledge, speed of knowledge, personal innate ability, general innate 
ability, and real-world application (Wheeler, 2007).  Each dimension describes a continuum that 
ranges from non-availing beliefs (having no or negative influence on learning outcomes) to availing 
beliefs (associated with better learning outcomes). The survey was administered to all PSTs enrolled 
in a mathematics content sequence for teachers at a large, urban university in the Pacific Northwest. 
Previous research with the EBSM has not focused on preservice elementary teachers, thus our 
extension of the tool will provide a new perspective of preservice elementary teachers’ mathematical 
epistemology. 

Initial results for the PSTs who responded to our survey (n=53) suggest that certainty of 
knowledge and speed of knowledge are PSTs most availing dimensions. That is, PSTs perceive 
mathematical knowledge as evolving rather than absolute and that learning is gradual rather than 
quick. Conversely, source of knowledge and general ability were found to be the least availing 
dimensions, suggesting that PSTs view knowledge as external to the learner rather than constructed 
by the learner and perceive learners to have a general learning skill set that is fixed rather than 
developed. Additionally, PSTs were fairly homogenous in the belief that learning math depends most 
on having a good teacher. 

Further qualitative analyses of survey responses and follow-up interviews are forthcoming and 
will serve to identify themes in PSTs’ mathematical epistemologies. These findings will help inform 
preservice elementary teacher education as well as professional development for elementary teachers 
already in the field. 

References 
Stipek, D. J., Givvin, K. B., Salmon, J. M., & MacGyvers, V. L. (2001). Teachers’ beliefs and practices related to 

mathematics instruction. Teaching and Teacher Education, 17(2), 213–226. 
Wilkins, J. L. M. (2008). The relationship among elementary teachers’ content knowledge, attitudes, beliefs, and 

practices. Journal of Mathematics Teacher Education, 11(2), 139–164. 
Wheeler, D. L. W. (2007). The development and construct validation of the Epistemological Beliefs Survey for 

Mathematics. Retrieved from ProQuest Digital Dissertations. 
 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

993 

AT THE CROSSROADS: INTERSECTING MATHEMATICS EDUCATION WORK OF 
THE SCHOOL OF EDUCATION AND MATH DEPARTMENT 

 Travis K. Miller Jean S. Lee Clay Roan 
 University of Indianapolis University of Indianapolis University of Indianapolis 
 tmiller@uindy.edu jslee@uindy.edu roanc@uindy.edu 

 Rachael Aming-Attai Livia Hummel  
 University of Indianapolis University of Indianapolis   
 amingattair@uindy.edu hummell@uindy.edu  

Keywords: Teacher Education-Preservice 

With the goal of enriching experiences in mathematics education of elementary and secondary 
teachers, faculty from School of Education (SOE) and Mathematics Department at University of 
Indianapolis organized collaborative initiatives. Driving collaboration was the desire to strengthen 
our education programs by bridging gaps between pre-service teachers’ pedagogical knowledge, 
math content knowledge, and instructional practice. The research questions that drove our efforts 
were: (1) How do we structure meaningful collaboration? and (2) What specific areas do we focus on 
to create synergy between departments? 

The structuring of our collaboration was grounded in Wenger & Wenger’s (2015) community of 
practice. Such communities are “groups of people who share a concern or a passion for something 
they do and learn how to do it better as they interact regularly” (p. 1). We have created a professional 
learning community (PLC) of mathematics educators at the University. Our PLC consists of two 
math educators from the SOE along with two math educators and a mathematician from the 
Mathematics Department. The committee meets regularly to coordinate collaboration on various 
aspects of mathematics teacher preparation. Through this framework, we problem solve, request 
information, seek other’s experiences, coordinate our efforts, discuss developments, map our 
knowledge, and identify gaps. 

After structuring a PLC, areas of focus were identified. We chose to focus collaborative efforts 
on: (1) Recruitment and retention: Developing new initiatives to recruit and retain secondary 
mathematics education majors. (2) Assessment: Although coordinated by the SOE, math department 
faculty supervise secondary mathematics education student teachers and assist in assessing 
candidates’ mathematics content knowledge. Likewise, mathematics educators from the SOE assist 
in reviewing candidates’ content portfolios required by the math department. (3) Instruction: 
Mathematics educators collaborate on curriculum and instruction of existing courses in both 
departments. We further collaborate on programmatic changes for both the elementary and secondary 
education majors. This promotes greater synergy between different components of the existing 
curriculum and infuses new teaching methods and content foci while benefitting from the expertise 
of the faculty. (4) Outreach: Faculty from both departments engage in outreach activities in area 
schools. These include attendance at PLCs in area schools and possibilities of professional 
development and the mentoring of practicing teachers. 

The structure and focus of our math education PLC has the potential to open doors to explore the 
collaboration initiative’s impact on the University and our students. Our work has just begun. 
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The intersection of higher-education practices and elementary education is challenging to 
navigate. Mathematics teacher educators must consider the trajectory of a preservice elementary 
teacher throughout her teacher education program and beyond. One way to bring coherence to 
elementary teacher education programs is to consider and implement the recommendations of 
organizations with a goal of improving the mathematics instruction and learning for all students.   

The Common Core State Standards of Mathematics (National Governors Association Center for 
Best Practices and the Council of Chief State School Officers, 2010) released Standards for 
Mathematical Practice (SMPs), which span grades K-12 and focus on mathematical practices and 
processes. After the release of the SMPs, The Mathematical Education of Teachers II (MET II) 
(Conference Board of Mathematical Sciences [CBMS], 2012) responded with updated 
recommendations for elementary education programs. Included were 12 semester-hours studying 
mathematics from a teacher’s perspective with half in the area of number and operations and the 
remaining in measurement and data and geometry. There is also a recommendation for some 
attention to methods of instruction.  

A recent trend of addressing the SMPs in mathematics content for elementary teachers textbooks 
(e.g., Sowder, Sowder, & Nickerson, 2017) attempts to bridge the gap between K-12 schooling and 
higher education in terms of processes of mathematics. However, we need to know more about what 
is currently happening in the mathematical content courses to see if these recommendations are being 
incorporated and to think about where to move forward in these courses to support the mathematical 
practices of preservice elementary teachers. 

This study adds to the work of Masingila, Olanoff, and Kwaka (2012) to gain more information 
on the current state of mathematics for elementary education courses in the United States (e.g., who 
teaches them, how many credit hours are required) through a survey of instructors. Forty-four 
respondents, with an average of nearly 11 years experience instructing mathematics content for 
elementary teachers courses, described 82 such unique courses. Analysis will include the resources 
used (e.g., textbook, technology, manipulatives) in these courses as well as the inclusion of and 
attention paid to the MET II topic recommendations (CBMS, 2012) and SMPs. 

This study gives a broader picture of the current state of mathematics content for elementary 
teachers courses in the United States, taking into consideration multiple recommendations. 
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The practice of teaching is complex – involving the coordination of multiple activities and 
drawing on different types of knowledge related to the learning context (Ball & Forzani, 2009). 
However there is not time in methods courses to address every aspect of teaching that preservice 
teachers (PSTs) need to learn. In this study we explore the use of bellringers – brief mathematical 
tasks implemented as students arrive for class – as a means of addressing multiple instructional goals 
with preservice teachers. 

Seven PSTs enrolled in a middle school mathematics methods course at a large Mid-western 
university were involved in preparation and enactment of bellringers during the first five to seven 
minutes of class. To prepare for this we identified characteristics of effective bellringers and used 
these characteristics to develop a rubric that was used to guide the PSTs in designing high-quality 
bellringers and to support them to critique each other’s bellringer implementations. In preparing and 
implementing the bellringer, PSTs were expected to apply what they were learning in the course: 
topics such as task analysis, effective questioning, and the five practices for orchestrating productive 
mathematics discussions (Smith & Stein, 2011). Implementation was also expected to model 
instruction based on student thinking – a recurring theme throughout the course. This was followed 
by a whole-class debriefing session, where they received feedback from their peers and the 
instructor. The debriefing was used as an opportunity to review important mathematics and as a 
context to discuss important concepts from the methods course related to pedagogy. All bellringer 
enactments and debriefing sessions were video taped. After all the PSTs had implemented a 
bellringer, the PSTs wrote a reflection paper on bellringers.  

Analysis of the reflection papers and debriefing conversations showed that PSTs were able to 
apply what they were learning in the course and deepened their mathematical and pedagogical 
understandings. The debriefing sessions and writing of the bell ringer reflection further supported the 
preservice teachers in reflecting on and refining their instructional practice (NCTM, 2000). 

The results of this study indicate that the process of bellringer preparation, implementation, 
debriefing, and subsequent written reflection may be useful as an instructional tool in methods 
courses to address multiple goals. 
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The Challenge of Developing Preservice Teachers’ Relational Teaching of Mathematics 
One of the goals of mathematics teacher educators (MTEs) is to develop activities for 

mathematics methods courses that support preservice teachers’ (PT’s) practice for developing 
relational understanding of mathematics in students. Following Skemp (2006), we define relational 
understanding as knowing “what to do and why” in contrast to instrumental understanding which 
only focuses on rules and procedures without reasons (Skemp, 2006, p. 89). Because many PTs come 
to a mathematics methods course with an instrumental understanding of mathematics, it is common 
for MTEs to focus on developing PTs’ relational understanding of mathematics resulting in less 
focus on teaching PTs relational teaching methods. This study explores how PTs’ practices and views 
of mathematics learning and teaching evolve and transform from instrumental to relational after the 
implementation of a relational teaching practice presented in their mathematics methods course. 

Response to the Challenge 
This impirical study is grounded in the whole-group teaching experiment approach (Heinz, 

Kinzel, Simon, & Tzur, 2000) and focuses on the PTs’ development of teaching practices intended to 
develop students’ relational understanding of a mathematics concept. Prior analysis of a pilot study 
conducted by the authors produced a three-part framework for use by MTEs to plan and implement 
practices for developing PTs’ understanding of teaching for relational understanding. This poster 
presents data gathered and analyzed from this more in depth action research study. PTs’ self-
reflection journals and lesson plan artifacts from three methods courses are analyzed using multiple 
cycles of In-Vivo and Process coding for emerging categories and themes. Preliminary analyses 
show that PTs’ views of mathematics learning and teaching have begun to evolve from 
predominantly instrumental to include relational components and thus their teaching practices are 
evolving to reflect teaching for conceptual understanding. As experience with relational teaching 
methods deepens, understanding of how students learn mathematics matures. 

Implications 
This study holds promising positive implications for MTEs’ instructional practices. The approach 

used by these three MTEs presents a clear opportunity to shift the teaching of mathematics from 
fostering instrumental to relational understanding. Future longitudinal studies will be used to 
determine if this shift continues into the PTs’ full-time mathematics instruction. 
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In an analysis of the final course taken in high school across ethnic/racial groups, Battey (2013) 
shared disproportionate outcomes among the identified groups, which reveals the road traveled in 
mathematics education and foreshadows the road ahead…maybe. Gutiérrez (2007) offers another 
route, a vision for an equitable future, through a definition of equity as “(b)eing unable to predict 
students’ achievement and participation based solely upon characteristics such as race, class, 
ethnicity, gender, beliefs, and proficiency in the dominant language” (p.41). It is in this intersection 
of the current destination, implied by Battey, and a potential destination, as implied by Gutiérrez, that 
we position a social justice mathematics methods learning module for elementary pre-service 
teachers (PSTs). 

The module was iteratively designed over two years to engage PSTs with data from Battey’s 
article through a task that used relevant mathematical content (i.e. proportional reasoning and 
argumentation) and progressive learning structures (i.e. complex instruction (Cohen, 1994)). 

PSTs were asked to represent a future set of data given Gutiérrez’s definition of equity. Next, 
teachers were positioned as critical in determining mathematics outcomes for students through an 
exploration of literature and examination of PSTs’ experiences. Finally, PSTs were exposed to tools, 
resources, and ways of being that can be used to work toward a more equitable future. 

Given 80% of teachers in the U.S. are white (Goldring, et al, 2013), and schools are becoming 
increasingly diverse, mathematics teacher educators must understand how to develop PST awareness 
of the inherent power toward academic and economic opportunities that exist within the position of 
mathematics teacher. The module described above was enacted with PSTs at two large public 
universities, one within a rural setting in the south with predominantly white students and the other in 
an urban setting in the northeast with diverse students. One focus of the project is to understand how 
each context uniquely challenged and supported PSTs. This poster will advance the work in this 
project and present findings related to the following questions: 

1. What was learned from teaching a social justice mathematics module designed explicitly to 
raise awareness and agency around issues of equity in the mathematics methods courses? 

2. How is the nature of what is learned similar and/or different between two distinctive 
populations of PSTs who engaged with the module? 
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As pre-service teachers stand at the crossroads between their preparation and their career as 
practicing teachers, it is imperative that they are prepared to engage in “fundamental element[s] of 
teaching practice” (Lampert, 2001, p. 53) such as building a classroom culture. This research 
explores the question: How do pre-service math teachers conceptualize classroom culture? 

What Is Classroom Culture? 
Classroom culture consists of all activities and expectations that facilitate students’ interaction 

with subject matter content (e.g., Collins & Green, 1990; Lampert, 2001). Teachers’ pedagogical 
practices influence the classroom culture that they co-create with students. More specifically, 
Bowers, Cobb, and McClain (1999), building on prior work (e.g., Yackel & Cobb, 1996; Yackel, 
Cobb and Wood, 1991), delineated three aspects of mathematics-related classroom culture: social 
norms, the ways in which students are expected to interact with one another about math; socio-
mathematical norms, agreed-upon standards for judging mathematical contributions; and classroom 
mathematical practices, knowledge that is taken as shared within a classroom. 

Study Design 
Five undergraduate seniors at a large Midwestern university participated in the study. These 

participants were enrolled in their final math methods course before entering their student teaching 
field placements. Semi-structured interviews, audio-recorded and later transcribed, were the primary 
means of data collection. Data was coded using the three aspects of mathematics- related classroom 
culture as a framework, and two additional coding categories were created based on the data. Quotes 
from each participant’s interview responses were identified and coded into mutually exclusive 
categories. Then, patterns were identified out of this initial coding. 

Findings 
Social norms were much more a part of participants’ responses than socio-mathematical norms; 

classroom mathematical practices were not addressed at all. Additionally, the participants generally 
seemed to have a rather broad definition of classroom culture for math classes that went beyond the 
three aspects laid out by Bowers, Cobb, and McClain (1999). Participants included beliefs about 
mathematics that they wished to instill in their students as part of their descriptions of classroom 
culture, as well as specific actions or decisions on the part of the teacher that serve to facilitate 
classroom culture. 
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Preparing teacher candidates (TCs) for the complex and contingent practice of teaching requires 
TCs to learn to notice (see Sherin & van Es, 2005), analyze, respond, and (later) reflect on what is 
significant in teaching situations and connect these experiences to broader principles of teaching and 
learning. By analyzing and reflecting on their own practice, TCs have an opportunity to develop 
strategies for interpreting what is happening in the classroom (Sherin & van Es, 2005).  

This research examined 6 TCs’ responses across three video analysis experiences. These 
experiences are integrated into two secondary mathematics methods courses and consist of group 
discussions as well as individual analyses. With the second and third iteration there was also a formal 
write up for the analysis and reflection. Initially, TCs analyzed videos from a public dataset, and in 
later iterations TCs analyzed videos from their own clinical practice. Performing analysis of video 
using the LessonSketch platform affords TCs the opportunity to tag, discuss, and reflect on practice 
in a central location virtually and/or in person. The design of the video analysis experiences includes 
specific and purposeful structures for analysis and reflection to foster TCs’ abilities to improve their 
practice through noticing.  

Preliminary findings show increases in both the level of sophistication and preponderance of 
evidence employed by TCs to justify claims. For example, in the initial video analysis, TCs’ often 
provided a superficial description of what students and teachers were doing. In contrast, for the third 
iteration TCs reflected on what students were feeling and thinking, in addition to how and why TCs 
responded to students. In the third cycle, TCs often tied their analyses to broader teaching principles 
and practices such as questioning, revoicing, and wait time. Analysis of and reflection on videos of 
their own teaching provide TCs with a forum to self-report their use of teaching practices and 
provide justifications. This research confirms video analysis experiences as an intentional tool for 
developing TCs’ abilities to notice while also suggesting potential structures for facilitating this work 
with TCs. Additionally, this research demonstrates the usefulness of LessonSketch as a workspace 
for enhanced video analysis experiences. 
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The purpose of this research is unpacking PTs’ conceptual understanding of the measurement of 
area of rectangular and non-rectangular shapes. Area measurement is a significant topic in geometry 
(CCSSM, 2010; NCTM, 2000) and provides a link between the abstract world of numbers and the 
concrete world of objects (Hilbert, 1981). In addition, the concept of area can be a model for teaching 
multiplication of fractions and composite numbers (Hirstein et. al., 1978). Despite the importance of 
understanding area concept and its measurement and the difficulties pre-service teachers have 
understanding area concept and its measurement, a few studies has been conducted in this topic. 

To address this need, I have chosen to focus on problem solving strategy of PTs in different 
figures context for determining PTs’ understanding of area measurement of rectangular and non-
rectangular shapes. My research question will be “how do pre-service elementary mathematics 
teachers understand the measurement of area of rectangular and non-rectangular figures?”  

To explore this understanding, I used theories about understanding and Battista’s level of 
sophistication. My data will be collected using clinical interview methodology (Clements, 2000; 
Goldin, 2000), which was pioneered by Piaget (1975). I will choose four participants who are PTs 
enrolled in sections of a course entitled “Mathematics in The Elementary School” at a large public 
Midwestern university in the U.S. PTs will be interviewed in one-on-one sessions for initial and four 
explanatory interviews. 

Findings determined that PTs’ level of understanding area measurement change according to type 
of figures and numbers. PTs treated the partial units in different ways. In addition, PTs approaches to 
decimals are dominated by their whole number reasoning. Identifying PTs’ understanding provide 
opportunities to mathematics educators to design more useful and helpful courses for PTs.  
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Many mathematics teacher educators agree that teachers learning to implement small groups is 
important for student learning academically and socially (e.g., Featherstone, Crespo, Jilk, Oslund, 
Parks, & Wood, 2011). The field of mathematics teacher education, however, knows little of how 
teacher candidates (TCs) intervene, or make comments and ask questions, in small groups and why 
TCs intervene in small groups. The lack of understanding how TCs intervene might act as a barrier to 
helping teacher educators promote the TCs to succeed in implementing small groups in their 
classrooms. Given that practicing teachers use a range of comments and questions with small groups 
for different purposes (e.g., Dekker & Elshout-Mohr, 2004; Gillies & Boyle, 2006), examining the 
types of interventions teachers can make in small groups, and the purposes of those interventions can 
help teacher educators support TCs to better implement small groups. 

This project explores ways TCs intervene in small groups and for what purposes. The research 
question is, therefore, How do TCs intend to use comments and questions when intervening in small 
groups in mathematics teaching and why? 

This project took place in a mathematics methods course for elementary TCs in their student 
teaching internship year. Data sources include the responses of 26 TCs to an online survey. The 
participating TCs were asked to make open-ended responses to survey questions about their 
perceptions of teachers’ roles and their purposes in intervening in small groups. TCs were also asked 
on the survey to respond to four scenarios describing different small group situations. 

Data analysis followed a basic qualitative method. The focus of this analysis was on the range of 
comments and questions TCs made in response to the scenarios and their intervention purposes. The 
findings are: (1) TCs tend to make comments and questions that in function extend student’s 
mathematical thinking, elicit students’ work, encourage students to work together, and provide 
content-help; (2) TCs tend to use comments and questions to achieve multiple purposes such as 
mediating students’ thinking and making group-interaction go smooth; and (3) TCs tend to have the 
same comments and questions but with different purposes. 

As a whole, this project will provide more detailed understanding of ways TCs make comments 
and ask questions to small groups. The understanding will contribute to designing a strategy for 
teacher educators in an elementary mathematics methods course to support TCs with regard to 
intervention in small groups. 
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One ongoing challenge in mathematics teacher education is the difficulty of providing preservice 
teachers (PTs) with the knowledge, skills, and dispositions required for expert teaching during 
relatively short preparation programs. Researchers and teacher educators (e.g. Hiebert, Morris, Berk, 
& Jansen, 2007) have suggested that one fruitful way to navigate this challenge would be to educate 
PTs to learn from their own teaching over time. Researchers are working to define and operationalize 
the precise skills needed for teachers to systematically learn from teaching (e.g., Spitzer & Phelps-
Gregory, 2017). One identified such skill is the ability to analyze mathematical learning goals. 
Analyzing learning goals in terms of their conceptually important ideas, or “key concepts,” is 
necessary for teachers to plan instruction around those ideas, collect evidence which illuminates 
student understanding, and build lasting knowledge (Jansen, Bartell, & Berk, 2009).  Previous 
research indicates that prospective teachers have some skill in analyzing learning goals, but generally 
only use this skill in supportive contexts and when directly prompted (Morris, Hiebert, & Spitzer, 
2010). 

Theoretical consideration and emerging empirical evidence indicates that there is a link between 
teachers’ mathematics knowledge for teaching, or MKT (see Ball, Thames, & Phelps, 2008, for 
details on MKT) and their ability to analyze learning goals. However, much remains to be known 
about the exact ways in which these two skills support each other. To investigate these links, we 
asked PTs (n = 53) to decompose a learning goal into its key concepts, using two prompts based on 
previous research (Morris et al., 2010). We also administered a short assessment of PTs’ MKT 
around the same learning goal (concepts of comparing decimals).  Results indicate that there was an 
association between PTs’ scores on the MKT assessment and their ability to identify key concepts of 
the learning goal. When constructing an ideal student response, PTs with higher MKT scores 
identified a mean of 0.93 (SD = .95) key concepts of the learning goal, whereas PTs with lower MKT 
scores identified a mean of only 0.42 (SD = .65) key concepts (p < .05). Our poster will expand on 
this and other findings to illuminate the connection between PTs’ MKT and their ability to analyze 
learning goals. 

Implications of this research will inform teacher educators working to prepare teachers who can 
successfully examine their own instruction, enhancing their teaching at the crossroads of theory and 
practice. 
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Simic-Muller, Fernandes, and Felton-Koestler (2015) argued the importance of mathematics 
educators incorporating controversial mathematics tasks into their classrooms. Additionally, 
mathematics education research suggests that teachers, including prospective teachers, should learn 
about their students' community funds of knowledge (CFoK) and connect mathematics to that 
knowledge (Moll, Amanti, Neff, & Gonzalez, 1992). This poster presents the benefit of using food 
systems and food security as a context that is accessible to real-world mathematics applications and 
connects to students' CFoK, but can also move into topics that are more controversial. Food offers a 
progression moving from real-world contexts of food (e.g., how have recipes and portions changed 
across generations) to controversial topics of food security (e.g., how much more money does healthy 
food cost?). Food security is defined as "enough food [being] available" from a global to household 
perspective (Pinstrup-Andersen, 2009, p. 5) or knowing where your next meal is coming from. In 
regards to mathematical connections, food security is a rich context as it offers tasks for early 
elementary to high school grades.  

In this poster, I will offer specific mathematics tasks for a variety of grade levels that move from 
real-world contexts to the controversial. For example, in understanding how vast food markets are, 
second and third graders can calculate the average distance a tomato travels (approximately 2000 
miles) as it goes from field to table or geometry students can determine the density of grocery stores 
as a factor of household income to learn about food deserts--areas with very limited access to fresh 
food. The context of food security would offer prospective teachers an opportunity to discuss a 
common everyday concern (eating) while also thinking about how to mathematize the issue. 
Additionally, the context of food security offers a wide range of ways to connect to CFoK, concerns 
allowing for real-world situations, controversial issues, and issues of injustice. In summary, food 
security offers a context to move from real world to topics that are more controversial, pushing 
prospective teachers to help "mathematics serves as a mirror and a window into people's lives" 
(Simic-Muller, et al., 2015, pg. 75). 
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One of the most fundamental ideas in developing fractional thinking is the concept of the unit or 
whole. Even though there have been research studies conducted to examine PET’s knowledge of 
fractional concepts (e.g., Tobias, 2013), few have focused on teachers’ knowledge of the arbitrary 
nature of the unit. This study analyzes 54 prospective elementary teachers’ explicit knowledge of the 
arbitrary nature of the unit within fractional contexts involving drawn diagrams. The participants 
were enrolled in two sections of a content course for PETs.  

The research subjects completed two questionnaires. The first questionnaire consisted of an open-
ended task that asked them to identify and justify what fraction or fractions the shaded diagram 
depicted in figure 1 could represent. The second questionnaire consisted of six tasks that asked 
participants to identify and justify whether the same diagram could represent the following fractions: 

4
3

, 
3
5

, 3
10

, 11
2

, 
1
2

, and 1. After all students completed questionnaire 1, they were given 

questionnaire 2. By providing a diagram with a shaded portion and asking PETs the fraction or 
fractions that the shaded part of the figure could represent or whether the shaded diagram could 
represent certain fractions, there was a demand for an explicit awareness of the arbitrary nature of a 
unit. 

 

 
Figure 1. Diagram from first questionnaire.  

A content analysis for each student’ response was performed. A majority of the students (about 
60%) thought that the shaded portion of the diagram could represent (only) 3/4. While other students 
(about 15%) thought that the diagram could represent 3/5, all students justified their responses based 
on the idea that the unit or whole needs to be physically present, that is, the circle needs to be 
completed. It is interesting to report that none of the students was able to think of a situation for 
which the shaded diagram could represent 3/10. For the picture to represent 3/10, the students needed 
to physically see 3 parts out of 10. Furthermore, none of the students were able to reconceptualize the 
three shaded equal parts of the diagram as 1/2 because they did not have physically present the other 
2 parts. Other findings and implications of the study will be displayed in the poster during the 
presentation.  
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Even though some research has been conducted to examine teachers’ knowledge of mathematical 
concepts and procedures, few research studies have examined mathematics teacher educators’ 
knowledge of mathematical concepts and procedures and its impact on their instructional practices. 
To begin closing this gap, I examined Mr. Frank knowledge of division of fractions and how he used 
this knowledge when teaching a unit on division of fractions to a group of prospective elementary 
teachers. Prior to instruction, I asked Mr. Frank to complete several tasks to gain an understanding of 
his knowledge of division of fractions. The tasks included (a) creating both quotative and partitive 
word problems whose solutions can be represented by division expressions with and without 

reminders (e.g., 
93
10

÷
3
5

 and 14
2

 ÷
3
4

); (b) solving each word problems using diagrams; (c) 

explaining why each created problem is a division problem; (d) explaining why each problem can be 
solved using a multiplication expression (i.e., multiplying by the reciprocal of the divisor); and (e) 
developing and justifying other ways of representing and solving the problems. Considering that Mr. 
Frank has an undergraduate degree in mathematics and a Masters’ degree in mathematics education 
with over 15 years of teaching experience, it was not surprising that his written responses revealed 
that he had a profound understanding of division of fractions.  He was not only able to create a 
diversity of word problems and use diagrams to solve them, he was also able to create alternative 
explanations of why division of fractions can be performed by a multiplication operation. 

To examine the impact of Mr. Frank’s knowledge of division of fractions on his instructional 
practices, classroom observations were conducted when he taught the unit on fraction division. It is 
worth noticing that he developed tasks in which he asked students to solve both quotative and 
partitive division problem using diagrams and to justify the division of fractions algorithm and 
interpret the contextual meaning of the reciprocal of the divisor. However, it is also worth 
mentioning that he did not use other components of his knowledge to provide alternative 
justifications of why division of fractions can be performed by multiplying by the reciprocal of the 
divisor because “too many explanations can be overwhelming to students with a weak conceptual 
understanding of division of fractions.”  

Evidence of Mr. Frank’s knowledge of division of fractions and its impact on his teaching will be 
displayed during the poster presentation. However, as argued by Castro Superfine and Li (2014), 
further research is needed to understand the knowledge that mathematics educators need for helping 
preservice teachers develop their mathematical knowledge.  
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THE INTERSECTION OF BELIEFS AND MATHEMATICS ANXIETY IN ELEMENTARY 
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Theoretical Framework 
Mathematics anxiety describes the discomfort or fear that occurs when mathematical tasks are 

perceived as potential threats to self-esteem (Trujillo & Hadfield, 1999). Negative physiological 
effects (Luo, Wang, & Luo, 2009), may lead to the disruption of the ability to process information 
and thus, disrupt learning and performance (Gresham, 2007). Furthermore, mathematics anxiety may 
shape pre-service teachers’ (PSTs) beliefs about doing and teaching mathematics (Stoehr, 2017). 

Methods and Results 
PSTs were recruited from two larger studies in a large teacher education program (n = 4 narrative 

participants, n = 53 survey participants). An iterative analysis (Bogdan & Biklen, 2006) was used to 
demarcate the narratives that pertained specifically to mathematics anxiety and beliefs about teaching 
mathematics. Narrative themes included: 1) understanding the mathematics content, 2) knowing how 
to teach a mathematics lesson and 3) feeling responsible for student learning.  

An exploratory factor analysis of survey items resulted in four factors being retained based on 
Eigenvalues > 1.0 and visual analysis of the scree plot. Three factors thematically converged with the 
qualitative data are described above. Five items (α = .900) explained 32.1% of the variance and 
converged with the first theme. Four items (α = .886) explained 21.4% of the variance and converged 
with the second theme. Four items explained 7.7% of the variance (α = .689) and converged with the 
third theme. The remaining factor assessed mathematics test anxiety and explained 9.6% of the 
variance. 

Conclusions 
The converging findings in these two studies support that PSTs experience significant anxieties 

related to learning mathematics content and instructional strategies. PSTs experience additional 
anxiety when they feel responsible for student achievement. This places PSTs’ experience of 
mathematics anxiety at the crossroads of their own and their students’ learning, and suggests future 
research to explore whether these anxieties are a direct extension of one another.  
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Teachers’ understanding of multiplication of rational numbers including fractions and decimals is 
often a procedural understanding that lacks conceptual depth (An, Kulm, & Wu, 2004; Armstrong & 
Bezuk, 1995; Ball, Lubienski, & Mewborn, 2001; Izsák, 2008; Sowder et al., 1998). Furthermore, 
Izsák (2008) stated that teachers’ ability to understand three different levels of unit in rational 
numbers is a “necessary but not sufficient” (p. 139) condition for them to be able to respond and 
interpret students’ conceptions of multiplication of fractions. In response, we developed a series of 
number talks for use with pre-service teachers as a way to develop their understanding of three levels 
of unit within fractions with the anticipated outcome of teachers’ having a better understanding of 
fraction multiplication. 

Number talks, or short conversations around mathematical problems that students solve mentally, 
have been described as useful in K-12 mathematics classrooms because they offer opportunities for 
students to “reason about quantitative information; utilize number sense; discern whether procedures 
make sense; identify which procedures are applicable to specific situations; check for reasonableness 
of solutions and answers; and communicate mathematically to others” (Parrish & Dominick, 2016, 
pp. 14-15). As such, they can be considered a high-impact practice that has the potential to help 
students develop a deeper understanding of mathematical ideas. In this study, we utilized number 
talks in a mathematics content course on rational numbers for pre-service elementary teachers. The 
participants engaged in carefully designed number talks on the topic of rational numbers at the 
beginning of each of their class meetings. The number talks were designed to expose participants to 
three levels of unit within whole numbers and fractions prior to instruction on multiplication of 
fractions. During this poster session, we will present results from this mixed-methods study including 
the design of the study, participants’ scores on pre- and post-tests for multiplication of fractions, and 
participants’ responses and rationales for number talks. Implications for the teacher education 
community will be shared.  
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The math education has mainly focused on the problems that arise in teaching and learning 
mathematics. Thus, it is a priority to highlight the need for an approach between teachers and 
research in math education. The Seminar Rethink Mathematics (SRM) was born in 2004 looking for 
this link. The objective of this research is to describe the type of knowledge of the research in 
Mathematics Didactics that is offered to the teacher through the scientific production of the SRM. 

 The SRM is an online seminar that is organized into cycles that group sessions. Each session 
presents the opportunity to interact with the researcher around one of his published results, so each 
session revolves around a research product (article, report, thesis, book chapter or book). A live 
dialogue is carried out commonly between two teachers and the researcher, where the reference 
material is discussed with a view to applying it in one of the dimensions of professional teaching. 
(Suárez and Ruiz, 2013) 

The framework of this study is the Pedagogical Content Knowledge in an Educational Context, 
PCK-EC model (Pena-Morales, 2016), which characterizes the dimensions of teacher’s knowledge in 
five categories: teachers' attitudes, knowledge of technology, knowledge of learners' cognition, 
knowledge of the subject matter and knowledge of pedagogy. The database contains the abstracts 
obtained from the reference document of each session. Here is an example of the result obtained for 
Session 60: The session "Mathematical visualization, representations and use of technology" is 
located in the Knowledge of technology category, as it analyzes "the problem of using the graphical 
calculator for the construction of concepts in the mathematics classroom" from the "Constructing 
Mathematical Concepts" approach. The session looks for "the reflective use of technology in the 
math classroom" (Hitt, 2003). Based on the results, we can conclude that the approach between 
teachers and educational mathematics, in terms of scientific production, focuses on two categories 
that characterize the dimensions of teacher knowledge: almost half (43.6%) of the sessions so far 
carried out could be classified in the category Knowledge of pedagogy. The next highest frequency 
category (34.5%) is Knowledge of student cognition. There are approximately 60% of the sessions 
classified in one category, 24% in two categories and 16% in three categories. 
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The purpose of this study was to describe pre-service secondary teachers’ (PST) thinking as they 
attempted to solve high cognitive demand tasks (Stein & Smith, 2007) by applying the SOLO 
taxonomy. In addition, we examined the relationship between PST’s conceptual knowledge and their 
problem posing based on videos of their student teaching practice. The following research questions 
framed this study: (a) What levels of thinking are PSTs’ at in the SOLO taxonomy when confronted 
with problems with high cognitive demand? (b) How might PSTs’ level of thinking (in SOLO 
taxonomy) relate to their problem posing in their student teaching classrooms?  

Theoretical Framework 
Addressing the multiple components of the research questions posed in this study required a 

framework with the capacity to examine and crosscut students’, teachers’, and tasks’ “depth of 
knowledge.” The study employed: (1) Skemp’s theory of instrumental and relational understanding, (2) 
the SOLO taxonomy by Biggs and Collis (1982), and (3) the concept of problem posing as it relates to a 
teacher’s capacity to develop rich problems according to Crespo (2003). This latter section described 
specific teacher roles for problem-posing, the impact it has on students, strategies, and the need for 
problem posing in teacher education. 

Methodology 
To answer the research questions, we classified and investigated PSTs’ responses to rich 

mathematical tasks using the SOLO Taxonomy. In addition, we compared their taxonomy levels with the 
level of problem posing criteria developed by Crespo (2003). The use of video analysis and PSTs 
reflection statements were analyzed through pattern matching (Yin, 1989) where statements from pre-
service teachers were compared with assessments of three mathematics educators and external criteria.  

Results and Discussion 
Of the 15 students’ solutions, eight were classified as multi-structural on the SOLO Taxonomy, 

meaning that they were able to see many aspects of the problem, yet not comprehend how each piece 
of information was able to fit together. The remaining students were classified as pre-structural (n=4) 
or uni-structural (n=3) meaning that they were not able to either grasp the problem or not see the 
intricacies. The problems posed by PSTs in their videos were transcribed and showed that more than 
a significant majority emphasized procedural fluency over conceptual understanding. The findings of 
this study called us to examine the intersection of the qualitative relationship between PST’s ability 
to solve conceptual problems and their problem posing in the classroom. This intersection of problem 
solving theory and the study of PST’s problem posing is an important crossroad in teacher education. 
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Current reforms have called for a stronger emphasis on teaching and learning mathematics that 
elicits and uses evidence of students’ thinking builds on procedural fluency from conceptual 
understanding (National Council of Teachers of Mathematics, 2014). Despite the wealth of existing 
literature on pre-service secondary mathematics teachers’ abilities to notice, attend to, and respond to 
students’ mathematical reasoning, we still know little about how these skills related to identifying 
evidence of students’ learning are taught in methods courses. In this poster, we share how three 
mathematics educators at three different universities are collaborating to study challenges and 
progress with developing pre-service secondary mathematics teachers’ skills with enacting lessons 
from a worthwhile high school curriculum called Interactive Mathematics Program (IMP). More 
specifically, this study examines the challenges that the mathematics educators and pre-service 
secondary mathematics teachers (PSMTs) encountered during the preparation, enactment, and 
analysis of rehearsals. 

This study had 16 PSMTs from the second author’s methods course, and each PSMT taught a 
lesson from the same unit in the IMP curriculum (Fendel, Resek, Alper, & Fraser, 2011) called Small 
World, Isn’t It? To prepare PSMTs to learn from their teaching, they were engaged in the pre-
rehearsals that included solving tasks, studying enactment of the same tasks, and analyzing the 
relationship between the instruction and students’ learning opportunities. The rehearsals included 
planning and enacting a task from the IMP, and providing peers with feedback on videotaped lessons. 
Our data sources included PSMTs’ lesson plans with solutions to their tasks, their video recorded 
lessons, their peers’ in-class work, and their teaching reflection papers. To analyze what counts as 
PSMTs’ learning from teaching, we followed the techniques of grounded theory (Strauss & Corbin, 
1990) to identify themes to support our understanding about what we believe each PSMT was 
learning. The results of this study show that the PSMTs’ understanding of mathematical concepts 
within their assigned lessons affected the way they enacted the tasks. For example, if a PSMT solved 
the task procedurally and anticipated that their classmates will do the same, then they were less likely 
to have purposeful questions prepared to advance their peers’ mathematical reasoning and making 
sense of mathematical concepts during enactment. These results highlight the need in mathematics 
teacher education programs to better prepare and support PSMTs to teach mathematics both 
procedurally and conceptually in their future classrooms. 

References 
Fendel, D., Resek, D., Alper, L., & Fraser, S. (2011). Interactive mathematics program. Emeryville, CA: Key 

Curriculum Press. 
National Council of Teachers Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. 

Reston, VA: NCTM. 
Strauss, A., & Corbin, C. (1990). Basics of qualitative research: Grounded theory procedures and techniques. 

Newbury Park, CA: Sage Publications. 
 



Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1011 

PRESERVICE TEACHERS' VIEWS ON SOCIAL JUSTICE TOPICS IN THE 
CLASSROOM 

 Gregory A. Downing  Elyse L. Smith  Brittney L. Black 
 NC State University  NC State University  NC State University 
 gadownin@ncsu.edu elsmit13@ncsu.edu blblack2@ncsu.edu 

Keywords: Equity and Diversity, Instructional Activities and Practices, Teacher Education-
Preservice 

Preparing secondary teachers to teach in the 21st century during the Common Core-era of 
mathematics education requires a changing of perspective from how the preservice teachers (PSTs) 
learned mathematics themselves (Garmon, 2004). A difference in the PSTs’ cultural background and 
the demographics reflected in urban and inner-city schools could cause disequilibrium and a lack of 
understanding between the teacher and the students (Gutstein & Peterson, 2005; Sleeter, 2001). 
Although it can be complicated or hard for some teachers; teaching in this situation requires an 
alternative view on the preconceived ideas that teachers hold about their students and mathematics 
(Padron, Waxman, & Rivera, 2002). Teaching from a social justice perspective is a way to 
effectively cater to an urban population of students (and non-urban as well). 

This study addresses issues raised at a large, southern, public predominantly white institution 
where PSTs have no formal course in preparing them to teach diverse populations in a classroom. 
PSTs were asked to respond openly and candidly through multiple surveys to express their 
knowledge and understanding of what it means to teach social justice within a mathematics 
classroom. Through culturally relevant practices, two instructors led their classes of PSTs in an 
activity adapted from Gutstein and Peterson (2005) that utilized a social justice lens. The goal was to 
engage PSTs in an opportunity to experience learning social justice within a mathematics task and to 
broaden their view of teaching mathematics to include a social justice perspective. We recognize that 
this is just an introduction to social justice, but we are attempting to integrate this perspective of 
teaching in a mathematics classroom. The purpose of this research was to primarily use qualitative 
data to answer the following questions: (a) What are PSTs’ initial conceptions of teaching for social 
justice? (b) How do PSTs view the concept of social justice and its role in mathematics education? 
(c) After the intervention (activity), what are changes in the initial conceptions of PSTs on teaching 
for social justice in mathematics? 

Using the PSTs’ responses, the researchers compared initial conceptions of teaching for social 
justice to understandings after the activity. This poster will illuminate the responses of the 
participants in this study and show how students’ views shifted.  
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The mathematical experiences that prospective elementary teachers have during their teacher 
preparation are vitally important. Recommendations from The Mathematical Education of Teachers 
II (Conference Board of the Mathematical Sciences, 2012) call for (a) “mathematics courses that 
develop a solid understanding of the mathematics they will teach”, (b) “coursework that allows time 
to engage in reasoning, explaining, and making sense of the mathematics they will teach”, with “at 
least 12 semester-hours on fundamental ideas”, and (c) “teachers should develop the habits of mind 
of a mathematical thinker and problem-solver” (pp. 17-19). Additionally, instructors of mathematics 
content courses for prospective elementary teachers play an important role in helping prospective 
teachers acquire the knowledge they need for teaching.  

In 2010, we conducted a national survey of higher education institutions in the United States to 
answer the question, “Who teaches mathematics content courses for prospective elementary teachers, 
and what are these instructors’ academic and teaching backgrounds” (Masingila et al., 2012). In 
2016, we conducted a second national survey to examine the situation six years later. We made some 
changes to the survey from 2010 by (a) asking about number of credits instead of number of courses, 
(b) adding some mathematical content areas when asking what content is included in the courses, (c) 
asking if a textbook is used and, if so, which one, and (d) changing the questions about academic and 
teaching background of instructors and supervisors to be more concise. We surveyed 1,740 
institutions and a faculty member from each of 413 institutions (23.7%) participated in the survey.  

The survey results demonstrate that the majority of institutions are not meeting the 
recommendations of at least 12 semester-hours of mathematics content. Additionally, most 
instructors for these courses do not have elementary teaching experience and have likely not had 
opportunities to think deeply about the important ideas in elementary mathematics, and most 
institutions do not provide training and/or support for these instructors. If nothing changes with the 
preparation and professional development of these instructors, the cycle of unprepared prospective 
teachers whose college experience has little effect on their mathematical understanding (CBMS, 
2012) will continue. 

We will present all of the findings from this national survey, including (a) the number of credits 
of mathematics content courses that are offered and required, (b) the content included in these 
courses, (c) whether a textbook is used, and if so, which one, (d) the academic and teaching 
background of the course instructors, and (e) whether there is training and/or support for course 
instructors, and if so, what is the training and/or support. 
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The Common Core State Standards for Mathematical Practice (SMP) build upon efforts to 
engage students in reasoning and sense making and reduce reliance on memorization of procedures. 
The first mathematical practice (SMP1) underlies other SMPs with its focus on developing students’ 
thinking strategies and perseverance for problem solving.   

Prospective elementary teachers are grappling with learning to teach mathematics in ways that 
incorporate SMPs. A study by Gerberry & Keazer (2015) found that one third of prospective teachers 
surveyed recognized that SMP1 was about developing students’ thinking processes, while others 
interpreted the practice as students relying on a procedure or scaffolding techniques to solve a 
problem. SMP1 may be challenging for prospective teachers to understand because it highlights a 
shift away from traditional emphases of following procedures, and towards a focus on developing 
thought processes for solving complex, non-routine problems.  

In this study, prospective teachers (n=71) enrolled in four mathematics courses for elementary 
teachers at two institutions were surveyed about their understanding of SMP1. Specifically, we aimed 
to answer the research question: How do prospective elementary teachers conceptualize SMP1, in 
terms of the tasks they would use to foster SMP1 and how they would assess student engagement? 
The survey asked prospective teachers to think about their future classroom where they would be 
responsible for helping students engage in SMP1. One question was, “Describe a math activity or a 
math problem that you would pick for your students to give them an opportunity to demonstrate their 
ability to engage in SMP1. After you describe the math problem or activity, explain how it allows 
students to demonstrate that they have engaged in the practice.” Guided by grounded theory (Glaser 
& Strauss, 1967), survey responses were reviewed repeatedly, coded, and compared for the nature of 
the math tasks selected to foster SMP1 and the methods suggested for assessing student engagement.  

The most common themes found in prospective teachers’ responses were that SMP1 tasks should 
be context-based problems with multiple ways for students to solve them. In addition, almost half of 
the respondents indicated that students should generate the solution strategies. A minority of 
respondents, however, indicated that solution strategies should be provided by the teacher, which 
contradicts the intention of SMP1. Our findings build on the conference theme Synergy at the 
Crossroads of research and practice because prospective teachers’ conceptualizations of SMP1 have 
significance for informing the design of coursework activities to improve the preparation of 
prospective teachers.  
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Departing from the perspective of doing mathematics as an individual’s activity, research on 
doing mathematics within classroom microcultures have been an active research agenda. However, 
as a field, we know little about the microcultures of mathematics courses for prospective teachers 
(i.e., content courses). In this poster, I examine two crucial component of the classroom microculture 
– representations and talk. I take the view of representations as a product (National Council of 
Teachers of Mathematics, 2000). With this view, representations are encoded objects that result from 
thinking, maybe for purposes of communicating (Greeno & Hall, 1997; Pimm, 1987). More 
specifically, I ask how do representations evolve over time? Moreover, I also look at the parallel 
development of classroom talk with the representations. 

To investigate the different ways the talk and representations evolve, I take a cultural-cognition 
approach (Saxe, 2015). Saxe (2015) posited humans participate in joint problem solving by using 
collective practices i.e., representing and talking. Moreover, as certain goals of a community shift, 
the representational forms and functions also shift. For example, as addition problems evolve from 
adding sets of objects to include fractional amounts, representations and talk evolve. In this poster, I 
present the evolution of two representations used in a content course for prospective middle school 
teachers – strip diagrams and double number lines. 

Using classroom video data from a semester-long content course, I examine whole-class 
discussions of student strategies when solving problems involving multiplicative concepts e.g., 
division, ratio. From the video data, I distill the relevant features of the representations as indicated in 
student talk. I segment the semester by mathematical topic and examine the features of the 
representations and talk unique to each segment. The analysis is currently in nascent phases thus, the 
poster would include a complete set of results I am not ready to report in this proposal. The results 
section would show examplars indicative of the representations and talk within each segment, the 
differences between segments. By showing the exemplars, I intend to indicate how the talk and 
representations evolve over time. 
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EL RAZONAMIENTO DE PROFESORAS EN FORMACIÓN ACERCA DE LA 
VARIACIÓN EN SITUACIONES DE RIESGO 

PRESERVICE TEACHERS’ REASONING ABOUT VARIATION IN RISK SITUATIONS 

 José Antonio Orta Amaro Ernesto A. Sánchez Sánchez María Eugenia Ramírez-Esperón 
 ENMJN  DME-Cinvestav UAA
 jaortaa@gmail.com esanchez0155@gmail.com meramiremx@cinvestav.mx 

En esta investigación exploramos el razonamiento de profesoras en formación acerca de la 
dispersión de datos (variabilidad o variación) cuando es analizada en problemas donde se comparan 
conjuntos de datos que involucran situaciones de riesgo como lo son las apuestas en juegos y la 
duración de vida en tratamientos médicos. En esta comunicación se presentan las respuestas que 
dieron 97 futuras profesoras de nivel preescolar a dichos problemas. Los problemas fueron resueltos 
antes de que las estudiantes normalistas iniciaran un curso de procesamiento de información 
estadística y los resultados mostraron la dificultad que ellas tienen para interpretar la dispersión en 
este tipo de contextos. Por los resultados obtenidos consideramos importante reflexionar acerca de 
la instrucción de las estudiantes sobre los significados de medidas de centro y dispersión con la 
finalidad de contribuir en su formación. 

Keywords: Análisis de Datos y Estadística, Conocimiento del Profesor. 

Introducción 
La variación es la causa subyacente de la existencia de la estadística que está presente en todos 

lados y por lo tanto en conjuntos de datos (Watson, 2006). Además Moore (1990) enfatiza la 
importancia de medirla y modelarla, y encontramos que investigadores como Wild y Pfannkuch 
(1999) incluyen la percepción de la variación como parte de los tipos fundamentales del 
razonamiento estadístico. Asimismo, Garfield y Ben-Zvi (2008) observan que “la comprensión de las 
ideas de dispersión y variabilidad en los datos es una componente clave en la comprensión del 
concepto de distribución y es esencial para hacer inferencias estadísticas” (p. 203). Por su parte, 
Burrill y Biehler (2011) proponen una lista de siete ideas estadísticas fundamentales en las cuales la 
variación se ubica en el segundo lugar. Respecto del aspecto escolar, Franklin, Bargagliotti, Case, 
Kader, Sheaffer y Spangler (2015) mencionan que los profesores deben reconocer las características 
de la estadística y comunicarlas de manera clara y, particularmente, poner énfasis en la variabilidad y 
el papel del contexto, y en la descripción de la variabilidad considerar que los datos están 
constituidos de una estructura (la media o la mediana) alrededor de la cual varían. En relación con 
ello, Canada y Makar (2006) encontraron que al resolver problemas sobre distribuciones los 
profesores en formación presentan una percepción intuitiva de la variación, la cual describen con 
lenguaje informal y que la media es poco utilizada. Otros estudiosos como Mooney, Duni, 
VanMeenen y Langrall (2014) mencionan que al investigar acerca de la percepción de la 
variabilidad, en situaciones de azar, los profesores en formación reconocen que debe presentarse 
cierta cantidad de variabilidad, pero no tienen certeza sobre cuánta. De las investigaciones 
precedentes se desprende que es necesario proveer a los futuros profesores con experiencias tanto en 
el análisis de datos como en situaciones de azar donde se desarrollen conceptos como centro, 
variación, distribución, valores esperados y las relaciones entre ellos.	Para explorar la comprensión y 
razonamiento de los alumnos acerca de la percepción, descripción y medición de la variación en los 
datos se han utilizado diferentes contextos y problemas por ejemplo, variabilidad en el muestreo 
(Watson & Moritz, 2000), azar (Watson & Kelly, 2004), mediciones repetidas, variación en el 
crecimiento de plantas (Lehrer & Schauble, 2007; Petrosino, Lehrer & Schauble, 2003), y clima 
(Reading, 2004). De acuerdo con estos investigadores, las situaciones de riesgo proveen otro 
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escenario para indagar el razonamiento que tienen los estudiantes acerca de la variabilidad (Sánchez 
& Orta, 2013). Por ello, esta comunicación tiene como objetivo explorar la manera en que futuras 
profesoras del nivel preescolar interpretan la dispersión de datos en situaciones de riesgo, con la 
finalidad de que sepan conceptos estadísticos fundamentales con miras a su mejoramiento 
profesional. Por este motivo es importante incluir en su formación el conocimiento de conceptos 
estadísticos, que le permitan favorecer la recolección, representación e interpretación de información  
en el nivel preescolar (SEP, 2011). Además de considerar que estos serán enseñados posteriormente a 
sus alumnos en otros niveles educativos (Ball, Thames & Phelps, 2008). 

Marco de Referencia 
Esta exploración se ubica en el área de razonamiento estadístico cuya propuesta es comprender 

como razonan las personas con ideas estadísticas (Garfield & Ben-Zvi, 2008) y así proponer 
características para crear escenarios de aprendizaje, puesto que cuando los participantes de una 
investigación tratan de  justificar sus respuestas, muestran los elementos a los que le dan importancia, 
en particular los datos que eligen, las operaciones que realizan, sus creencias y sus conocimientos. 
Aunque en ocasiones las respuestas de las personas no son tan explícitas para revelar claramente su 
razonamiento, de cualquier manera muestran indicios para identificar algunos de sus rasgos. En este 
estudio identificamos algunas características del razonamiento de profesoras en formación ante 
situaciones de riesgo.  Una parte importante en una investigación en didáctica de las matemáticas son 
los problemas. Al resolverlos éstos deben promover en las personas la capacidad de pensar y razonar 
y así proveer al investigador de resultados relevantes que aporten información al área de estudio. Los 
problemas deben también llamar la atención de quienes los resuelven para que puedan 
comprometerse con su solución y aumentar las probabilidades de la comprensión del concepto que se 
quiere estudiar. En la estadística el razonamiento debe articular ideas como media o dispersión, 
expresadas con números, con situaciones reales basadas en datos, es decir, el razonamiento 
estadístico está íntimamente relacionado con el contexto, y los números en contexto implican 
información (Moore, 1990). Los problemas sobre toma de decisiones bajo incertidumbre son 
comunes en estadística, este tipo de problemas han sido utilizados para promover y analizar 
características importantes del razonamiento estadístico de las personas.  Además, las situaciones que 
requieren de la comparación de conjuntos de datos son utilizadas frecuentemente para involucrar a 
los alumnos en el razonamiento con datos (Garfield & Ben-Zvi, 2008). En esta exploración se 
presentan dos situaciones de toma de decisiones y comparación de conjuntos de datos en los cuales la 
dispersión es importante, y ésta puede ser asociada con la noción de riesgo, la cual está asociada con 
la incertidumbre presente en un suceso que implica una amenaza. Estas situaciones aparecen cuando 
hay resultados no deseados que, como consecuencia, provocan pérdidas o daños. Un problema 
paradigmático en un escenario de riesgo consiste en elegir entre dos juegos de apuestas de los cuales 
se muestran pérdidas y ganancias (Kahneman & Tversky, 2000). Considere el siguiente problema: 

Las ganancias observadas de  n repeticiones de un juego A (𝑥!) y m del juego B (𝑦!) son: 
Juego A: 𝑥!, 𝑥!… ; 𝑥! 
Juego B: 𝑦!, 𝑦!… ; 𝑦! 
¿En cuál de los dos juegos participarías? 

Una solución puede ser la siguiente: 1) comparar las medias aritméticas de ambos juegos (𝑥 y 𝑦); 
2) si 𝑥 ≠ 𝑦, elegir el juego cuya media es mayor; 3) si 𝑥 = 𝑦, se tienen dos opciones: 3a) elegir 
cualquier juego; 3b) analizar la dispersión de los datos en cada juego y elegir uno de acuerdo con las 
preferencias hacia el riesgo. Estas preferencias pueden ser definidas como generalizaciones de las 
actitudes hacia el riesgo:  
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En general, la preferencia por un resultado seguro y el rechazo de un juego cuyo resultado tiene 
un valor esperado igual o mayor a dicha ganancia es llamada aversión al riesgo. Y el rechazo de 
una ganancia segura y la aceptación de un juego cuyo resultado tiene un valor esperado menor o 
igual a esa ganancia es llamada propensión al riesgo (Kahneman & Tversky, 2000, p. 2).  

En un juego la dispersión de las ganancias (incluidas las pérdidas) puede ser considerada una 
medida de riesgo: entre mayor dispersión más riesgo. Una persona adversa al riesgo preferirá un 
conjunto de datos menos disperso en lugar de otro cuyos datos tengan mayor dispersión, mientras 
que una persona es propensa al riesgo cuando prefiere la opción cuyos datos son más dispersos.  

Método 
En este estudio participaron 97 profesoras en formación  de una escuela normal pública de la 

Ciudad de México que cursan la Licenciatura en Educación Preescolar (atención a niños de 3-6 
años). Para explorar las ideas de las futuras profesoras se utilizó un cuestionario con dos problemas 
sobre comparaciones de conjuntos de datos (ver Figura 1).  

 

 
Figura 1. Problemas resueltos por las profesoras. 

El cuestionario fue resuelto por las profesoras en formación previo a iniciar el curso de 
procesamiento de información estadística. Los problemas tenían un inciso donde se plantea una 
situación de toma de decisiones. En el problema 1 se dan las ganancias y pérdidas de dos juegos y se 
pide elegir el juego en el que más convendría jugar y en el problema 2, los tiempos de años vividos 
en forma gráfica de dos grupos de pacientes después de someterse respectivamente a uno de dos 
tratamientos, y se solicita decidir cuál es el mejor tratamiento. En el primer problema las medias 
aritméticas de los conjuntos de datos son iguales mientras que en el segundo son diferentes. En 
ambos casos es importante la interpretación de la dispersión asociada con el riesgo para justificar la 
elección. A continuación se comentan los resultados obtenidos en cada uno de los problemas 
resueltos por las profesoras, se inicia este apartado presentando las respuestas al problema 1 y 
después se muestran las correspondientes del problema 2. Para analizar las respuestas en primer lugar 
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se observó la decisión que tomaron, es decir, el conjunto de datos que eligieron y en segundo lugar, 
se categorizaron las respuestas con base en las estrategias de comparación que describieron en sus 
justificaciones siguiendo las sugerencias de Birks y Mills (2011). 

Resultados 

Problema 1 
La solución normativa del problema 1 consistiría en comparar las medias y posteriormente 

considerar la dispersión (que a través del rango sería suficiente). En el caso de que se perciba el 
riesgo en ambos juegos, la opción elegida dependerá de las actitudes del riesgo de quien resuelve el 
problema: Elegirían el juego 1 aquellos que son adversos al riesgo, mientras que optarían por el juego 
2 los propensos al riesgo. Las frecuencias con las que se eligió alguna de las opciones fueron las 
siguientes: 58 (de 97) futuras profesoras eligieron el juego 1, mientras que 31 de ellas seleccionaron  
el juego 2, y 5 participantes respondieron que elegirían cualquiera y las 3 restantes no respondieron. 
Ninguna de las argumentaciones para dichas elecciones siguió el esquema de razonamiento que se 
describió en el párrafo precedente; aunque algunas se aproximaron. Un procedimiento común en 
todas las estrategias consistió en sumar las ganancias de cada juego (los valores positivos) y agregar 
sus pérdidas (valores negativos pero sin considerar el signo), obteniéndose cuatro valores G1, G2, P1, 
P2. La forma en que combinaron estos valores produjo las siguientes comparaciones: 

Comparación de la diferencia entre ganancias y pérdidas. En 30 casos, la estrategia consistió 
en encontrar la ganancia global cada uno de los juegos. Esto mediante la comparación de las 
diferencias entre ganancias y pérdidas: G2  ̶  P2 = G1  ̶  P1 = 49. Este procedimiento prefigura el uso 
de la media. 16 alumnas participantes eligieron el juego 1, 8 normalistas el juego 2 y 6 futuras 
profesoras mencionaron que cualquiera. Por ejemplo, una estudiante argumenta: “al hacer las 
operaciones la diferencia de ambos juegos entre perder y ganar es de 49”. Aquí advertimos que no se 
tiene en cuenta la dispersión de los datos ni consideraciones de riesgo.  

Comparación de la suma de pérdidas o ganancias. 19 respuestas se basaron, ya sea en la 
comparación de la suma de las ganancias (eligieron el juego 2, porque G2 > G1) o en la comparación 
de la suma de las pérdidas  (eligieron el juego 1 porque P1 < P2, pues  ̶  P1 >  ̶  P2).  En algunas de 
estas respuestas se percibió el riesgo. 9 participantes eligieron el juego 1 y 10 participantes el 2. Por 
ejemplo una participante eligió el juego 1 y la justificación de su elección fue la siguiente: “Existe la 
posibilidad de poder obtener una ganancia ya que de acuerdo con los resultados de las muestras del 
juego 1 las ganancias fueron de 105 y pérdidas de 56, pero en el segundo juego las ganancias fueron 
de 427 y las pérdidas de 378. En conclusión en el primer juego se perderá menos que en el segundo 
aunque los premios sean mejores en el segundo”. Mediante esta argumentación consideramos que la 
justificación de la elección fue con base en la comparación de la suma de las pérdidas, observando 
que son menores en el juego 1, y descubrimos aversión al riesgo ya que en la justificación se comenta 
“se perderá menos”. 

Comparación de relaciones proporcionales entre ganancias y pérdidas. En 6 casos se 
compararon relaciones proporcionales entre pérdidas y ganancias, notando que es mayor la del juego 
1:  !!

!!
> !!

!!
, por tanto, optaron por este juego. Dado que las medias son iguales, la anterior 

desigualdad se reduce a P1 > P2, en el fondo esta estrategia consiste en elegir el juego 1 porque se 
pierde menos. Un ejemplo de este tipo de respuestas fue mencionada por una estudiante, quien 
mencionó: “porque por los datos se refleja que en este juego hay más probabilidades de salir ganador 
ya que el número de ganadores casi duplica el de perdedores y aunque fue menos cantidad lo ganado 
que en el juego 2, en el 1 es más seguro ganar aunque sea poco, y yo no elegiría el juego 2 porque 
aunque se ganan cantidades más grandes de igual forma se pierde mucho”. En este ejemplo se 
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observa, por un lado el uso de la razón entre las ganancias y las pérdidas y, por otro la aversión al 
riesgo ya que en parte del argumento se comenta que “es más seguro ganar aunque sea poco”. 

Comparación de las medias aritméticas. Sólo hubo 2 respuestas en las que el juego elegido fue 
el 1, donde mostraron el uso de la media aritmética para hacer la comparación entre los juegos, en 
una de ellas además de presentar la media aritmética (4.9) con la justificación siguiente: “Las 
cantidades son más bajas, están más cercas de la media”. En el ejemplo se advierte, además de la 
mención de la media, la noción de la dispersión al elegir el juego 1 con valores cercanos al centro del 
conjunto de datos. 

Problema 2 
La solución normativa del segundo problema puede reducirse al cálculo de las medias de los 

tiempos de vida de cada tratamiento, notando que los datos del tratamiento 1 tienen mayor media 
(6.7) que los del tratamiento 2 (6). Con lo anterior, también puede elegirse el tratamiento 2, 
considerando la dispersión mediante el rango e interpretándolo como riesgo. Se creería que el riesgo 
con el tratamiento 1 (rango = 8) es mayor que el riesgo con el tratamiento 2 (rango = 4) y que la 
disminución en el riesgo podría compensar la diferencia entre las medias. En este último caso la 
elección estaría motivada por una aversión al riesgo. En este problema 60/97 profesoras en formación 
eligieron el tratamiento 1 y 37/97 el tratamiento 2. En los argumentos que justifican las elecciones de 
las participantes se pueden identificar las siguientes estrategias de comparación: 

Comparación de centros. En 31 respuestas se compararon los valores modales observados en 
cada gráfica. En 19 de ellas se eligió el tratamiento 1, posiblemente comparando las modas de los 
conjuntos de datos (8 > 6), por ejemplo, una justificación fue: “hay más probabilidades de vivir más 
años (8 aprox.)”. En 12 casos eligieron el tratamiento 2 probablemente con base en la proporción de 
personas que vivieron seis años, por ejemplo: “aquí me garantizan 7 personas que van a vivir 6 años 
seguros, sin embargo en el "1" 6 personas viven 8 años, es seguro pero yo voy más por el número de 
personas que tomaron el tratamiento”. En esta estrategia aunque se tienen en cuenta los centros de los 
conjuntos de datos, se ignora la variación de los datos. 

Comparación de valores extremos. 19 participantes eligieron con base en uno de los valores 
extremos. Cuando el tratamiento elegido fue el 1, en 8 respuestas se argumentó que con ese 
tratamiento se podrían vivir hasta 10 años; 2 estudiantes justificaron dicha elección indicando que 
vivirían por lo menos 1 año. En 9 casos se eligió el tratamiento 2, justificando que se vivirían por lo 
menos 4 años. Un ejemplo de este tipo de respuestas donde se eligió el tratamiento 1 fue: “El tiempo 
vivido en años por persona es mayor; se puede llegar a vivir 9 o incluso 10 años, lo que en el otro 
tratamiento no”. En las respuestas donde el tratamiento elegido es el 1, es probable que la elección 
sea motivada por una  propensión al riesgo, ya que se menciona que se puede vivir hasta 10 años; 
mientras que las respuestas donde el tratamiento elegido fue el 2, es probable que sean motivadas por 
una aversión al riesgo, pues comentan que al menos pueden vivir 4 años.  

Comparación de cardinalidad. Doce estudiantes que eligieron el tratamiento 1 basaron su 
elección en la cardinalidad del conjunto de datos (27 > 21) y entre sus argumentos comentaban que 
más personas habían vivido con esa opción. Por ejemplo: “porque hay más probabilidad de que 
funcione ese tratamiento ya que fueron 27 las personas beneficiadas”  

Comparación con el rango. En 6 respuestas se hizo alusión al rango. En estas respuestas se 
ponderó el riesgo, aunque de manera confusa, por ejemplo: “prefiero probar el tratamiento donde hay 
una mayor probabilidad de obtener un resultado más próximo o al menos que si te asegure o muestre 
que vivirás mínimo dos años más o máximo 10 años”. En 4 respuestas el tratamiento elegido fue el 1, 
mientras que 2 eligieron el 2 con el argumento del hecho de asegurar un periodo de vida de 4 a 8 
años. 
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Comparación de centro y extremo. En 4 respuestas se eligió el tratamiento 1, en uno de estos 
casos se expresa que se podían vivir hasta 10 años y en promedio 8 (en realidad es la moda), y en 2 
restantes se eligió el tratamiento 2, probablemente, considerando que por lo menos vivirían 4 años y 
en promedio 6 con la justificación: “porque en el tratamiento 1 la mayoría de personas lograron vivir 
8 años y en el tratamiento 2 la mayoría sólo logró vivir 6 años y no hay ni una persona que haya 
vivido 10 años, al contrario del primer tratamiento que una persona ha logrado vivir 10 años. Por lo 
tanto si ya una persona logró los 10 años la persona que necesita el consejo puede también vivir 10 
años”. En la respuesta es claro que la estudiante observó centros (valor modal) y extremos para tomar 
una decisión, quizás también la preferencia por el riesgo sea la propensión, porque con ese 
tratamiento “1 persona ha logrado vivir 10 años”. 

Comparación del centro y la dispersión. En una respuesta se combinaron centro y dispersión 
para justificar la elección. El tratamiento elegido fue el 2 y la justificación: “El tratamiento fue más 
funcional ya que se tiene que las personas viven aproximadamente de 4 a 8 años, con mayor 
influencia a los seis años pues son años más concretos, donde se puede planear muy bien su vida” . 

En los resultados obtenidos 38 de las 97 participantes que seleccionaron el problema 1 y 28 de las 
97 que eligieron el problema 2 no mostraron una justificación clara al elegir entre los conjuntos de 
datos. Por ejemplo en el problema 1seleccionaron el juego 2 y mencionaron “porque en el juego 2 se 
tienen más probabilidades de ganar más cantidad de objetos que en el juego 1”, sin embargo no 
encontramos una estrategia evidente que represente lo mencionado, además del uso de la palabra 
objetos que no corresponde con el contexto planteado. En el problema 2, las participantes sólo 
explicaron su elección diciendo “con alguno de los tratamientos se vive más”, pero sin ofrecer 
argumentos que muestren cómo se usaron los datos. 

Conclusiones 
En el problema 1 casi 40% de las respuestas fueron confusas; sin embargo en algunas de éstas se 

advirtió que las futuras profesoras ponían atención a las diferencias entre los valores de cada 
conjunto de datos, lo cual es punto de partida en la percepción de la variación. Así, en el problema de 
los tratamientos médicos se presentan varias respuestas en las que se comparan elementos aislados de 
cada conjunto (los máximos, los mínimos o las modas), y aunque no siempre fueron combinados de 
manera adecuada, puede sugerirse una estrategia que incluya todos los datos o combinaciones de 
éstos. En el problema de apuestas probablemente las respuestas en las que se afirma que se gana más 
o se pierde menos, la atención de las participantes también se enfocó en elementos aislados (en  
particular en los valores extremos). 

La estrategia de sumar las ganancias y luego las pérdidas tiene la característica de que se 
consideran todos los datos. En el problema 2 varias futuras docentes usan relaciones proporcionales 
en las que combinan y hacen uso de más de un valor del conjunto de datos, ya sea operando con ellos 
o mencionándolos de manera explícita. La comparación de las ganancias totales prefigura la 
respuesta más sofisticada consistente en comparar las medias, lo que no es una estrategia espontánea 
ni fácil de elaborar por parte de los alumnos (Gal, Rothschild & Wagner, 1989), y la cual pudo 
observarse en las futuras docentes. En la enseñanza se insiste en la importancia de la 
proporcionalidad, y por ello considerarla como estrategia indispensable para resolver cualquier 
problema, y en nuestra investigación fue empleada en la comparación de las razones en el problema 
1. Consideramos que no es una estrategia del todo inadecuada, pues las llevó a elegir el juego en el 
que la pérdida es menor. Esta manera de resolver es más apropiada en el problema 2, en la que 
comparan proporciones de los valores modales. 

Son pocas las respuestas basadas en la consideración de los rangos (6%) o influenciadas por la 
percepción del riesgo (problema 2). Lo que mostraron las participantes en relación con los dos 
problemas es que son muy diferentes, pues ninguna de ellas adaptó en el problema 2 la estrategia 
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seguida en el problema 1; esto nos lleva a suponer que el contexto y el formato de presentación de los 
datos ejercen mayor efecto que la estructura (oculta) del problema. Asimismo, en el problema 1, en 
general, hubo revisión de los datos, mientras que en el problema 2, en 20 casos se eligió un 
tratamiento sin ofrecer ninguna justificación que incluyera un procesamiento de los datos debido, 
quizá, a la dificultad de extraer los datos numéricos de la gráfica (valores extremos de cada conjunto 
de datos y aparente ausencia de la lista de datos). En cambio, en este problema 2 las estudiantes 
ponderaron el riesgo en la forma de elegir el tratamiento 1: “se puede vivir 10 años” o tratamiento 2: 
“al menos se viven 4 años”.  

De los resultados mostrados se percibe que al igual que en investigaciones previas (Canada & 
Makar 2006; Mooney et. al, 2014) es necesario promover en las profesoras en formación, conceptos 
estadísticos como centro, variación, distribución, valores esperados. Las estrategias a seguir deben 
ser múltiples (discusiones, talleres, uso de la tecnología, resolución de problemas enmarcados en 
diferentes situaciones, formatos variados de presentación de los datos, entre otros) para que las 
futuras profesoras se apropien de estos conceptos. Además, las educadoras mexicanas en servicio 
deben abordar en el aula la agrupación de objetos según sus atributos, cualitativos o cuantitativos; la 
recopilación y representación apropiada de datos e información, así como su  interpretación (SEP, 
2011); los procesos anteriores requieren de la consideración de la variabilidad (Franklin, Kader, 
Mewborn, Moreno, Peck, Perry & Scheaffer, 2007) por lo que es necesario que desarrollen este 
concepto. Esta investigación aporta información sobre el conocimiento de las profesores en 
formación acerca de  la variabilidad, concepto estadístico importante (Spangler, 2014), y mostramos, 
de manera incipiente, que los problemas con los cuales hemos explorado el razonamiento de las 
profesoras en formación conducen a percibir la variación dándole un significado asociado al riesgo 
para presentar estrategias que las guiaron a usar la media y el rango de manera significativa y a 
motivarlas a planear  actividades que propicien dar sentido y significado a los procedimientos 
basados en el uso de la media y la dispersión. 

References 
Ball, D., Thames, M. & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of 

Teacher education, 59(5), 389-407.  
Birks, M. & Mills, J. (2011). Grounded Theory. Thousand Oaks, California: Sage. 
Burrill, G. & Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in training teachers. In 

C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics challenges for teaching 
and teacher education: A joint ICMI/IASE Study (pp. 57-69). New York: Springer. 

Canada, D. & Makar, K. (2006). Preservice teachers' informal descriptions of variation. In Program and 
Supplements of the 2006 AERA Annual Meeting: Research in the Public Interest. (pp. 281-281). San Francisco, 
California. 

Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines and 
Assessment for Instruction in Statistics Education (GAISE) Report: A Pre-K–12 Curriculum Framework. 
Alexandria, VA: American Statistical Association. 

Franklin, C., Bargagliotti, A., Case, C., Kader, G., Sheaffer, R. & Spangler, D. (2015). The Statistical Education of 
Teachers. American Statistical Association. 

Gal, I., Rothschild, K. & Wagner, D.A. (1989). Which group is better? The development of statistical reasoning in 
elementary school children. Paper presented at the meeting of the Society for Research in Child Development, 
Kansas City, MO. 

Garfield, J. & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Connecting research and teaching 
practice. New York: Springer. 

Kahneman, D. & Tversky, A. (2000). Choices, Values, and Frames. Cambridge: Russell Sage Foundation. 
Lehrer, R., & Schauble, L. (2007).Contrasting emerging conceptions of distribution in contexts of error and natural 

variation. In M. Lovett & P. Shah (Eds.), Thinking with data (pp.149-176). Mahwah, NJ: Lawrence Erlbaum 
Associates. 



Statistics and Probability 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1024 

Mooney, E., Duni, D., VanMeenen, E. & Langrall, E. (2014).  Preservice teachers’ awareness of variability. In K. 
Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in statistics education. Proceedings of the Ninth 
International Conference on Teaching Statistics (ICOTS9, July, 2014), Flagstaff, Arizona, USA.  Voorburg, 
The Netherlands: International Statistical Institute. 

Moore, D. (1990). Uncertainty. In L. A. Steen (Ed.), On the shoulders of giants: New approaches to numeracy (pp. 
95-137). Washington, DC: National Academy Press. 

Petrosino, A. J., Lehrer, R. & Schauble, L. (2003). Structuring error and experimental variation as distribution in the 
fourth grade. Mathematical Thinking and Learning, 5(2 & 3), 131-156. 

Reading C. (2004). "Student Description of Variation While Working with Weather Data". Statistics Education 
Research Journal, 3(2), 84-105. 

Sánchez, E., & Orta, A. (2013). Problemas de mediciones repetidas y de riesgo para desarrollar el razonamiento de 
estudiantes de secundaria en los temas de media y dispersión. Números, 83, 65-77. 

Secretaría de Educación Pública [SEP] (2011). Programa de estudios. Guía de la educadora. México: Secretaria de 
Educación Pública. 

Spangler D. (2014). Important ideas in statistics for children aged 4-8 years. In K. Makar, B. de Sousa, & R. Gould 
(Eds.), Sustainability in statistics education. Proceedings of the Ninth International Conference on Teaching 
Statistics (ICOTS9, July, 2014), Flagstaff, Arizona, USA.  Voorburg, The Netherlands: International Statistical 
Institute.  

Watson, J.M. & Moritz, J.B. (2000).Developing concepts of sampling. Journal for Research in Mathematics 
Education, 31, 44-70.  

Watson, J. M. & Kelly, B. A. (2004). Statistical variation in a chance setting: A two-year study. Educational Studies 
in Mathematics, 57, 121-144. 

Watson, J. M. (2006). Statistical literacy at school: Growth and goals. Mahwah, NJ: Lawrence Erlbaum. 
Wild, D. J. & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 

67(3), 223-265. 
 

 
The aim of this investigation is to explore the preservice teachers´ reasoning about variation 
(variability or spread) when they analyze data in situations that involve risk. In particular, in this 
communication the responses to two problems of a questionnaire administered to 96 preservice 
teachers are reported. The problems are of comparing groups of data in situations of risk: stakes in 
games and the life expected after medical treatments. The questionnaire was applied before the 
preservice teachers began a course of statistical information processing and the results showed the 
difficulty found by students to interpret variation in this type of contexts. For these results it is 
necessary to reflect on the instruction of future teachers about the meanings of measures of center 
dispersion and dispersion to contribute to an improvement in their academic training. 

Introduction 
Variation is the underlying cause of the existence of statistics and, given its omnipresence, it is 

also found in data sets (Watson, 2006). Moore (1990) highlights the importance of measuring and 
modelling variation while Wild and Pfannkuch (1999) include the perception of variation as part of 
the fundamental types of statistical reasoning. Additionally, Garfield and Ben-Zvi (2008) consider 
that “Understanding the ideas of spread or variability of data is a key component of understanding 
the concept of distribution, and is essential for making statistical inferences” (p. 203). For their part, 
Burrill and Biehler (2011) propose a list of seven fundamental statistical ideas in which variation is 
placed in the second position. Regarding the school perspective, Franklin, Bargagliotti, Case, Kader, 
Sheaffer and Spangler (2015) consider that teachers must identify the characteristics of statistics; 
they must communicate it clearly and, particularly, they should highlight variability and the role of 
the context. In the description of variability, they have to consider that data are constituted by a 
structure (mean or median) around which they vary. To that respect, Canada and Makar (2006) found 
that, when solving problems on distributions, preservice teachers have an intuitive perception of 
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variation. They describe it using informal language while the mean is rarely used. Other researchers, 
as Mooney, Duni, VanMeenen and Langrall (2014), state that when exploring on the perception of 
variability in chance situations, preservice teachers identify a certain amount of variability must be 
present, but have no certainty about how much. From the preceding researches, it is necessary to 
provide future teachers with experiences in both data analysis and chance situations in which they 
can develop concepts as: center, variation, distribution, expected values and the relations between 
them.  

To explore the students’ comprehension and reasoning regarding the perception, description and 
measurement of data variation, several contexts and problems have been used; among them are: 
sampling variability (Watson & Moritz, 2000), chance (Watson & Kelly, 2004), repeated measures, 
variation in growth of plants (Lehrer & Schauble, 2007; Petrosino, Lehrer & Schauble, 2003) and 
weather (Reading, 2004). According to these researchers, risk situations provide another scenario to 
explore the students’ reasoning on variability (Sánchez & Orta, 2013). Therefore, the aim of this 
work is to explore the way in which preservice preschool teachers interpret the spread of data in risk 
situations, so that they know fundamental statistical concepts towards their professional 
improvement. For this reason, it is of great importance to include the knowledge of statistical 
concepts in their education; such concepts will allow them to promote collection, representation and 
interpretation of information at preschool level (SEP, 2011). In addition, we must consider that these 
concepts will be taught to their students in other educational levels (Ball, Thames & Phelps, 2008). 

Reference Framework 
This exploration is located within the field of statistical reasoning whose approach is to 

understand how people reason using statistical ideas (Garfield & Ben-Zvi, 2008). We seek to propose 
characteristics to create learning scenarios since the participants of an investigation show the 
elements they consider important—particularly, the chosen data, operations done, beliefs and 
knowledge—when they try to justify their responses. Although the persons’ responses are often not 
so explicit as to clearly reveal their reasoning, they still show signs to identify some of their features. 
In this study, we identified some of the characteristics of the preservice teachers’ reasoning when 
they face risk situations. 

Problems are a key component in an investigation on mathematics didactics. When solving them, 
they must promote the ability of thinking and reasoning in people to provide the researcher with 
relevant results that contribute with information to the field of work. A problem should also attract 
those who solve it, so that they engage with the solution and increase the probabilities of 
understanding the studied concept. In statistics, reasoning must articulate ideas, as median or spread, 
expressing those using numbers; that is, with real situations based on data. Statistical reasoning is 
closely related to the contexts and numbers in context involve information (Moore, 1990). Problems 
regarding decision making under uncertainty are common in statistics. This type of problem has been 
used to promote and analyze relevant characteristics of people’s statistical reasoning. In addition, 
those situations that demand the comparison of data sets are frequently used to involve students in 
reasoning with data (Garfield & Ben-Zvi, 2008). In this work, we present two situations involving 
decision making and data set comparison in which spread is important since it might be associated to 
the notion of risk which, in turn, might be linked to the uncertainty in an event that involves a threat. 
These situations arise when there are unwanted results that cause, in consequence, losses or damages. 
A paradigmatic problem in a risk scenario consists of choosing between two gambling games that 
show losses and gains (Kahneman & Tversky, 2000). Consider the following problem: 

The gains observed in n repetitions of a game A (𝑥!) and m of game B (𝑦!) are: 
Game A: 𝑥!, 𝑥!… ; 𝑥! 
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Game B: 𝑦!, 𝑦!… ; 𝑦! 
In which of the two games would you take part?  

A solution to the problem might be: 1) comparing the arithmetic means of both games (𝑥 and 𝑦); 
2) if  𝑥 ≠ 𝑦, choose the game whose mean is greater; 3) but if  𝑥 = 𝑦, 3a) choose any game or 3b) 
analyze the spread of data in each game and choose according to the preferences towards risk. These 
preferences can be defined as generalization of the attitudes towards risk: 

In general, a preference for a sure outcome over a gamble that has higher or equal expectation is 
called risk aversion, and the rejection of a sure thing in favor of a gamble of lower or equal 
expectation is called risk seeking (Kahneman & Tversky, 2000, p. 2).  

In a gamble, the spread of gains (including losses) can be considered a measure of risk: greater 
spread, greater risk. A person averse to risk will choose a data set with lower spread instead of one 
whose data have a greater spread. In contrast, a risk-seeking person will choose a data set with a 
greater spread.  

Method 
The participants in the study were 97 preservice teachers from a public teacher training school in 

Mexico City who study a Bachelor of Preschool Education (care of children aged 3–6 years). A 
questionnaire including two problems regarding comparison of data sets (see Figure 1) was used to 
explore the preservice teachers’ ideas.  

 

 
Figure 1. Problems solved by the teachers. 
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The questionnaire was answered by the preservice teachers before they took the course on 
statistical information processing. The problems included a section in which a decision-making 
situation is posed. In problem 1, the gains and losses in two gambles are given and the person is 
asked to choose the most convenient gamble. In problem 2, the person is asked to graphically choose 
the times of years lived by two groups of patients after they underwent either of two treatments; the 
person is asked which the best treatment is. In the first problem, the arithmetic means of the data sets 
are equal while they are different in the second problem. In both cases, interpreting the spread 
associated to risk is important to justify the choice. 

Below we discuss the responses obtained for each of the problems solved by the teachers. The 
section starts with the responses to problem 1 and then, those obtained for problem 2. To analyze the 
responses, firstly we observed the decision the participants made, that is, the data set they chose. 
Secondly, we categorized the responses based on the strategies of comparison the teachers describe 
in their justification, as suggested by Birks and Mills (2011). 

 Results 

Problem 1 
The normative answer to problem 1 would consist in comparing the means and then, considering 

the spread (considering it through the range would be enough). In case risk is perceived in both 
gambles, the option chosen will depend on the risk attitudes of the person solving the problem: those 
averse to risk would choose gamble 1 while gamble 2 would be chosen by risk-seeking persons. The 
frequencies corresponding to the options were as follows: 58 (out of 97) preservice teachers chose 
gamble 1 while only 31 of them chose gamble 2. Only 5 participants responded they would choose 
any gamble and 3 teachers did not answer. No argumentation for the choices followed the reasoning 
scheme described in the previous paragraph, even though some arguments came close. A common 
procedure to all the strategies was adding the gains of each gamble (positive values) as well as the 
losses (negative values without considering the sign), thus obtaining four values G1, G2, P1, P2. The 
way in which these values were combined produced the following comparisons: 

Comparison of the difference between gains and losses. In 30 cases, the strategy consisted in 
finding the global gain in each of the gambles by comparing the differences between gains and 
losses: G2 ̶  P2 = G1  ̶  P1 = 49. This procedure prefigures the use of the mean. 16 participants chose 
gamble 1 while 8 preservice teachers chose gamble 2 and 6 answered they would choose any. For 
example, a student argues: “when doing the operations, the difference in the two gambles between 
gaining and losing is 49.” Here we observe they do not take into account the spread of data nor risk 
considerations.  

Comparison of the sum of gains or losses. 19 teachers based their response whether on the 
comparison of the sum of the gains (they chose gamble 2 because G2 > G1) or on that of the sum of 
losses (they chose gamble 1 since P1 < P2, given that   ̶ P1 >  ̶  P2). Risk was perceived in some of 
these responses: 9 of the participants chose gamble 1 while 10 chose the second one. One of the 
participants who chose gamble 1 justified her choice by saying: “There is the possibility of getting a 
gain since, according to the results of the samples of gamble 1, there were 105 gains and 56 losses, 
but in the second gamble there were 427 gains and 378 losses. In conclusion, in the first gamble there 
will be fewer losses than in the second one; although the prizes are better in the second one.” 
Through this argumentation we consider that the choice was based on the comparison of the sum of 
losses: her perception was that losses are lower in gamble 1. We found risk aversion since, in her 
justification, the participant says “there will be fewer losses”. 

Comparison of proportional relationships between gains and losses. In 6 cases, the 
participants compared proportional relationships between gains and losses, noticing that the one of 
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gamble 1 is greater: !!
!!
> !!

!!
. That is why they chose this gamble. Given that the means are equal, the 

previous inequality is reduced to P1 > P2. In reality, this strategy aims to choosing gamble 1 because 
there are fewer losses. As an example, one of the students justified her response by stating: “because 
from the data, there is a greater probability of winning in this gamble since the number of winners 
almost doubles the one of the losers and even if the gain was lower than in gamble 2, winning—even 
if it is a little—is more certain in 1 and I would not choose gamble 2 because although bigger 
amounts are won, losses are high too.” This is an example of both the use of reason between gains 
and losses and risk aversion, since the argument includes the statement “winning—even if it is a 
little—is more certain”.  

Comparison of arithmetic means. Only 2 responses showed the use of arithmetic mean to 
compare the gambles, and gamble 1 was chosen in both cases. One of the responses showed the 
arithmetic mean (4.9) and justified the response by saying “the numbers are lower and closer to the 
mean”. In the example we see that besides mentioning the mean, the participant has a notion of 
spread when she chooses gamble 1, which has values that are closer to the center of the data set.  

Problem 2 
The normative answer to the second problem can be reduced to the calculation of the means in 

the life expectancy for each treatment, considering that the data of treatment 1 have a greater mean 
(6.7) than those of treatment 2 (6).  Therefore, treatment 2 could also be chosen if one considers the 
spread using the range and interprets it as risk. Risk from undergoing treatment 1 (range = 8) might 
be thought to be greater than that from treatment 2 (range = 4) and that the decrease in the risk might 
compensate for the difference between the means. In this last case, the choice would be motivated by 
risk aversion. For this problem, 60/97 of the preservice teachers chose treatment 1 while 37/97 chose 
treatment 2. In the arguments that justify the participants’ choices, we identify the following 
comparison strategies: 

 Comparison of centers. In 31 responses, the modal values observed in each graph were 
compared. In 19 of the responses, the participants chose treatment 1, possibly comparing the modes 
of the data sets (8 > 6). For instance, one of the teachers justified her response by saying: “there is a 
greater chance of living longer (8 approx.)”. In 12 cases, the teachers chose the second treatment 
possibly based on the proportion of people who lived six years; for example: “7 persons guarantee 
that they will live 6 years for sure; however, 6 people live for 8 years in “1”. That is for sure but I 
choose based on the number of persons who were treated”. Even though the strategy considers the 
centers of the data sets, it ignores the data variation.  

Comparison of extreme values. In 19 cases, the participants made their choice based on the 
extreme values. When treatment 1 was chosen, 8 of the responses argued that the treatment would 
extend the patients’ lives for up to 10 years. Two students justified their choice pointing out they 
would live at least a year. In 9 cases, the students chose the second treatment and they justified their 
response by saying they would live for four years at least. An example of the type of response in 
which treatment 1 was chosen was: “The time in years a person lived is longer; a person can live 9 or 
10 years; something that does not happen with the other treatment”. In the responses where treatment 
1 was chosen, the choice might have been motivated by risk seeking since the response states a 
person can live up to 10 years. In contrast, those responses in which the second treatment was chosen 
were probably motivated by risk aversion, given that they refer patients live at least for four years. 

Comparison of cardinality.  Twelve participants who chose treatment 1 based their response on 
the cardinality of the data set (27 > 21) and, among their arguments, they considered that a higher 
number of people had lived with that choice. For example: “because there is a greater chance that this 
treatment works since 27 persons were benefited”. 
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Comparison with range. In six responses, the students referred to range. Although confusingly, 
they considered the risk; for example: “I prefer to take the treatment that has the higher probability of 
getting a close result, or at least that ensures you’ll live at least two years or a maximum of 10 years”. 
In four responses, the students chose the first treatment while they twice chose the second treatment, 
arguing that it would ensure a survival period from four to eight years.  

Comparison of center and extreme. The students chose the first treatment in four responses. 
One of these responses expresses a person could live up to 10 years and eight in average (in reality, 
the response refers to the mode). Treatment 2 was chosen in two responses, probably considering a 
patient would live four years at least and six years in average. This response was justified as follows: 
“because in treatment 1, most of the people manage to live eight years and with treatment 2, most 
only live six years and there is no one who lived 10 years, unlike the first treatment [with which] a 
person has managed to live for 10 years. So, if a person has already managed for 10 years, the person 
in need of advice might also live for 10 years”. From the response, it is evident that the student 
observed centers (modal value) and extremes to make a decision. Risk seeking is probably driving 
the response since the student stated that using the treatment “a person has managed to live for 10 
years”. 

Comparison of center and spread. In a response, the student combined center and spread to 
justify her choice. The student chose the second treatment and justified her response by stating: “The 
treatment was more functional since we have that the people live approximately from four to eight 
years and, more frequently, six years because they are more solid years, where life can be very well 
planned”.  

In the results obtained, 38 out of 97 participants who chose problem 1 and 28 out of 97 who 
chose problem 2, did not show a clear justification when choosing between the data sets. For 
example, in problem 1, they selected gamble 2 and considered: “because there is a greater possibility 
of winning a higher number of objects in gamble 2 than in gamble 1.” However, we found no evident 
strategy to represent what was stated. Additionally, the use of the word objects does not correspond 
to the context laid out. In problem 2, the participants only justified their response by saying “one 
lives longer with one of the treatments”, but provided no arguments to show how the data were used. 

Conclusions 
In problem 1, nearly 40% of the responses were confusing. However, in some of them we see 

that the preservice teachers paid attention to the differences between the values in each data set, 
which is a starting point for the perception of variation. Thus, in the problem of medical treatments, 
there are several responses which compare isolated element from each set (the maximums, the 
minimums or the modes) and, although they were not always combined in the correct way, a strategy 
including all the data or a combination of them might be suggested. In the gambling problem, the 
attention of the participants was probably focused on isolated elements—on extreme values, 
particularly—in those responses stating the gains are higher or the losses are lower.  

The strategy of adding the gains and then the losses considers all the data. In problem 2, several 
preservice teachers used proportional relationships in which they combined and used more than one 
value from the data set by operating with them or mentioning them explicitly.  

The comparison of the total gains prefigures the most sophisticated response consistent in  
comparing means, which is not a spontaneous nor easy strategy to create by the students (Gal, 
Rothschild & Wagner, 1989), but was observed among the preservice teachers. 

When teaching, the importance of proportionality is highlighted; therefore, it is considered a 
necessary strategy to solve any given problem; in our research, it was used in the comparison of 
reasons in problem 1. We consider it is not an entirely incorrect strategy because it led the students to 
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choose the gamble in which the loss is lower. This form of solving is more adequate in problem 2, in 
which the students compare the proportions of the modal values.  

There are few responses based on the consideration of the ranges (6%) or influenced by the 
perception of risk (problem 2). With respect to the problems, the participants showed that they are 
different from one another, given that no student adapted the strategy followed in problem 1 to 
problem 2. This leads us to suppose that the context and the format of the presentation of the data 
have a greater effect than the (hidden) structure of the problem.  

In general, the data were reviewed in problem 1 while 20 participants chose a treatment in 
problem 2 without providing a justification that included an adequate data processing. This situation 
was likely due to the difficulty of extracting the numerical data from the graph (extreme values from 
each data set and apparent absence of data list). In contrast, in problem 2 the students considered the 
risk when choosing treatment 1 “can manage to live for 10 years”, or treatment 2, with which patients 
live for four years at least.  

From the results shown, we observe that, as in previous research (Canada & Makar, 2006; 
Mooney et al., 2014), statistical concepts as center, variation, distribution and expected values in 
problems, must be promoted in preservice teachers. The strategies to be followed should be multiple 
(discussions, workshops, use of technology, solving problems with different contexts, and varied 
ways of presenting data, among others), so that preservice teachers appropriate these concepts. In 
addition, Mexican preschool teachers in service should deal with grouping objects, according to 
qualitative and quantitative characteristics, in the classroom. They should also address the collection 
and the adequate representation and interpretation of data and information (SEP, 2011). These 
processes demand considering variability (Franklin, Kader, Mewborn, Moreno, Peck, Perry & 
Scheaffer, 2007); therefore, teachers should develop this concept.  

This research contributes with information regarding preservice teachers’ knowledge on 
variability, a relevant statistics concept (Spangler, 2014). We incipiently show that the problems with 
which we have explored the preservice teachers’ reasoning lead to perceive variation. The problems 
gave variation a meaning associated to risk when the teachers presented strategies that led them to 
use the mean and the range in a significant way. The problems presented also lead to motivate 
teachers to plan activities that promote giving sense and meaning to the procedures based on the use 
of mean and spread.  
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In the present study we analyze how students reason about or make inferences given a particular 
hypothesis testing problem (without having studied formal methods of statistical inference) when 
using Fathom. They use Fathom to create an empirical sampling distribution through computer 
simulation. It is found that most student´s reasoning rely on data and assimilate natural sampling 
variation, which are two fundamental ideas of inference. This result represents a significant change 
in their natural reasoning. An important misconception is believed Fathom simulates samples of the 
real population instead of a hypothetical one. 

Keywords: High School Education, Technology, Informal Education. 

Introduction 
Literature shows many difficulties on the learning of statistical inference (Batanero, 2000) 

Castro-Sotos, Vanhoof, Van den Noorgate, & Onghena, 2007). One possible reason is that statistics 
courses generally focus on teaching procedures and routine concepts and do not offer the opportunity 
to discuss and understand the fundamental ideas. As a consequence, students reach their first 
inferential reasoning experience thinking that statistics is only about the computation of numerical 
values. This has motivated the interest in studying Informal Statistical Inference (IEI) and Informal 
inferential Reasoning (IIR). Researchers have recently been exploring the idea that if students begin 
to develop the informal ideas of inference early in a course, they may be better able to learn and 
reason about formal methods of statistical inference. In this context, the simulation (as opposed to the 
formal calculation) can be used to begin to teach the process logic and concepts that still need on the 
contrast of hypotheses (Batanero & Diaz, 2015). However, there are few studies on the RII aimed at 
students of high school (15-18 years). 

Students present a lack of perception of sampling variation (García-Rios & Sánchez, 2014) and a 
lack of consideration of the data (García-Rios & Sánchez, 2015). This study seeks to show how a 
sampling distribution simulation activity has the potential to overcome these difficulties. In addition, 
this proposal presents a simulation by computer that can support the development of inferential 
reasoning for promoting the understanding of hypothesis tests. Therefore, we are interested in the 
questions: How students reason on significance testing when they participate in activities using the 
simulation of Fathom? How would Fathom support the learning of students? 

Literature Review 
Recently, several studies have focused on the concept of Informal Inferential Reasoning (IIR), as 

confirmed by the publications of special issues; Statistics Research Journal (Pratt & Ainley, 2008), 
and Mathematical Thinking and Learning (Makar & Ben-Zvi, 2011). Literature shows two different 
approaches to study the RII: the first approach focuses on the nature of reasoning about inference 
given problems and statistical information, while the second approach focuses on the evaluation of 
the development of the RII as students undergo a course of instruction designed to develop the 
reasoning. In this paper we focus on the first approach. 

Garcia-Rios and Sánchez (2014) show that students have a lack of consideration of data and a 
low probability language; students often draw inferences based on personal beliefs instead of data 
and conclusions do not show any degree of uncertainty. In addition, when students based on data, 
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they have an inappropriate way to determine if a statistic sample is significant; if the statistic is 
different from the hypothesis tested then it rejects the hypothesis. A plausible cause of these 
difficulties is the lack of perception of sampling variation (Garcia-Rios and Sánchez, 2015). These 
authors also observed that Fisher’s test of significance comes more natural to students because they 
establish a null hypothesis (personal model of the population) to compare the sample and intuitively 
measure their significance (although inappropriate). It is concluded that in order to develop 
appropriate inferences before formalizing, it is crucial for students to have an informal method to 
determine a numerical criterion to know when rejecting or accepting the hypothesis and the 
simulation seems to be a resource that provides such method. 

Rossman (2008) provides a characterization of informal statistical inference and makes a 
distinction between informal and intuitive, although it does not define it, just exemplified it by 
establishing some essential features of situations and problems of statistical inference and shows how 
it can informal methods be used to solve them. Zeiffler, Garfield, delMas, and Reading (2008) 
proposed a definition of the IIR and exposed three types of activities that should be generated by the 
tasks to develop it; they also propose a conceptual framework to characterize the RII and develop 
tasks that allow you to examine the natural IIR of students, as well as the development of such 
reasoning. 

Conceptual Framework 
In this work, the conceptual framework is understood as a network of related concepts or 

categories that together provide a general understanding of the phenomenon of research (Miles & 
Huberman, 1994). 

Significance Tests 
There are two different points of view about hypothesis testing: a) significance tests introduced 

by Fisher and b) testing rules to decide between two hypotheses, which was the opinion of Neyman 
and Pearson (Batanero, 2000). The approximation of Fisher emphasizes the strength of the evidence 
provided by the data observed against a null hypothesis. The strength of evidence is captured in the 
p-value, which measures the likelihood of having obtained an extreme result (or more extreme) if the 
null hypothesis were true. Under this assumption, the sampling distribution is calculated and from 
this distribution p-value is estimated; if the retrieved value is very small (statistically significant) the 
hypothesis is rejected. 

Informal Inferential Reasoning 
Several papers published in the last few years refer to the concepts of ISI and IIR, however there 

still no consensus as to what exactly these two concepts mean. In an attempt to combine the different 
perspectives, Zieffler, et al. (2008) defined the IIR as the way in which students use their informal 
knowledge of statistics to create arguments based on observed samples that support inferences about 
a population unknown. To emphasize the importance of informal reasoning we remember the ideas 
set by Bruner in 1960 (see Heitele, 1975) who believes that it is preferable that student begin to study 
the subject gradually, although initially only understand it either limited or informal, rather than wait 
until it matures and can teach directly in more abstract or formal. Teaching is not different in a 
structural way in the various educational stages, but only of a linguistic form and their level of 
deepening. 

Method 
This study is part of a Hypothetical Learning Trajectory (HLT) to develop students reasoning at 

the high school level. In this proposal, we focus on the reasoning of the students on significance 
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testing with the use of technology while they completed a first task of a series of four, without having 
studied formal methods of statistical inference.   

Participants 
Thirty-six 11th grade (16-17 years of age) students, grouped in 18 pairs (referred to as R1 to 

R18) with a computer per couple, participated in the study. The participants had not studied statistics 
hence they lacked basic knowledge of statistics and never worked with Fathom. This means that the 
activities carried out have the objective of emerging student’s insights on basic knowledge about 
significance testing and the use of Fathom. 

Instruments 
Data collection was conducted through a questionnaire applied in computer, in a two-hour class 

session. The data set are the answers given by pairs of students in a report about the conclusion of a 
proportion testing hypothesis problem. This report was written on the computer. The problem says 
"Coca cola claims that majority (more than 50%) of the population drinking cola prefer Coca rather 
than Pepsi. To check, an experiment where one gave two glasses of soda (one with Coca and other 
with Pepsi) to 60 people selected randomly from the population was done and they should decide 
what liked most. The 60 participants 35 people preferred Coke. Is the Hypothesis ‘over the 50% of 
the population who drink cola in Mexico drink prefers that Pepsi Coca" correct?’ Make a report were 
you: a) explain what your conclusion is: b) details how you came to your conclusion step by step: c) 
say what so sure of your conclusion are". 

Process 
Fathom’s simulation and the problem were presented to students during the first hour to 

introduce and operate the software; generate random samples and sampling distributions. In the 
second hour, pair students were allowed to work freely to make a report of its findings (answers) on 
the computer; the teacher intervened only to answer small personal questions. When reports were 
finished students can leave class. Fathom simulates 500 samples (size 60) taken from a hypothetical 
population, where the parameter can be modified by a slider. Samples are represented in a bar graph 
and in a table (Figure 1). The simulation is used to generate an empirical sampling distribution and 
measure the likelihood of the observed data with the empirical method (frequency), i.e. the informal 
calculation of a p-value using frequencies (Rossman, 2008). The sampling distribution is shown in a 
table and a graph of points. 

Results 
Principles and techniques of Grounded Theory (Birks & Mills, 2011) were used to categorize 

students responses. This methodology claims that it is possible to develop emerging categories of 
data collected and analyzed systematically. The constant comparison of the data favors a full 
development of the categories and their properties (advanced coding) making it analytically powerful 
and therefore with the capacity to explain the phenomena under study. The categories of analysis that 
emerged from the data were: sample, majority in simulation, mode in simulation and proto-
significance test. Each category reflects the different types of inferential reasoning posted in the 
student’s reports. For analysis, responses were coded with the letter R and a number (table 1). 
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Figure 1. Fathom simulation screen. 

The p-value of the statistic (0.58) is 0,098, so the hypothesis P = 0.5 is not rejected at a 
significance level of 5%. The categories of analysis that emerged from the constant comparison of 
data and explain the IIR students are: Sample, majority in simulation, mode in simulation and Proto-
significance test. 

Table 1: Students Reasoning 
Category Pair Reasoning 

Sample (10%) 
R1, R3 If sample is bigger than 30 then hypothesis is 

incorrect 

Majority in 
simulation (69%) 

R2, R4, R5, 
R6, R7, R8, 
R9, R10, 
R11, R14, 
R16, R17 

If majority of samples are bigger than 30 then 
hypothesis is correct 

Mode in 
simulation (16%) 

R18, R13, 
R15 

If mode is bigger than 30 then hypothesis is correct 

Proto-significance 
test (5%) 

R12 Sample can occur within a population smaller than 
0.5 therefore hypothesis can’t be prove 
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Sample 
Responses within this category are solely based on sample data and do not consider the 

simulation results. This reasoning implies an absence of the idea of sampling variation. Therefore, if 
the proportion of the sample is greater (or smaller) 50%, students conclude that the hypothesis "more 
than 50% (less than 50%)" is correct. An example of this type of response is the pair R3 who 
explains in his report: "... from 51% of the population we can say that it is the majority and because 
the result of the experiment showed that 35 people 60 prefer Coca Cola which is equal to 59% of the 
total (59% x 60) = 35.4) we can conclude that they are not wrong in what they claim since they are 
right". In its report, R3 added figure 2. 

 

 
Figure 2. R3 Report. 

Majority in Simulation 
In this category the reasoning is to divide the sampling distribution in two regions; samples 

greater or equal to 30 (50%) represent the region that supports the hypothesis "most prefer Coca 
Cola" as correct (evidence against the null hypothesis), while less than 30 results represent the region 
which does not support the hypothesis. Thus, students come to their conclusion determining in which 
of these two regions are the most of samples. For example, R9 reason "... because if you select the 
rank of 37 we have 262 surveys... ". These couples add figure 3 and come to the conclusion that the 
hypothesis is correct. This reasoning suggests that students think that the results of the simulation 
with Fathom represent the actual population rather than a hypothetical, in addition, assimilate the 
sampling variation why they resort to determine in which region the most samples are. Some students 
use parameters greater than 0.5; R11 and R16 used P = 0.51, R4 use P = 0.54, and R10 and R14 use 
P = 0.6. 

Mode in Simulation 
The reasoning in this category focused on the mode of the simulated sampling distribution; If 

mode was greater than 30 (50%) then considered the hypothesis as correct (evidence against the null 
hypothesis). An example is R13 whom considered that the hypothesis is false, and reason "... our 
highest value in a survey was 29 people of 60 that liked more Coca-Cola, then from this we see that 
within that sample less than 50% like Coca-Cola". R13 added Figure 4. 
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Figure 3. R9 report. 

 

 
Figure 4. R13 report. 

Proto-Significance Test 
One interesting answer is the given by R12, whom conclude that it is not possible to test the 

hypothesis; "we must take a greater percentage of the population in general to the survey so we can 
conclude that more than 50% of the population actually likes or prefers Coca - Cola, because surveys 
within a range of 10 values greater and lesser around the expected value must be set" and continue 
"in the previous survey while the percentage is less than 50% (44%) a value of 26 is expected, I get 
results up to 16 (being the lowest) and 38 (being the highest) here we see a higher value that that the 
problem presents, where the majority of the population do not prefer Coca-Cola, so 35 does not 
ensure that the majority of the population like more Coca Cola". In other words, in a population less 
than 50% it is possible to obtain the sample; therefore the sample is not sufficient evidence to 
consider the hypothesis as correct. 

Discussion 
One of the principles of the constructivist approach applied to teaching is that for any new 

learning design the knowledge that the student already possesses should be used and articulated. 
Consequently, if it is to develop the students reasoning, is convenient to have the tools to know what 
knowledge and reasoning has and what are the false conceptions that limit them or blocked them. 
The answers to the research questions will give us knowledge to this end. 

How students reason on significance testing when they participate in activities using the 
simulation of Fathom? The first important result is that all the arguments of the students were based 
on data. This is, no student based his reasoning on personal beliefs, difficulty found in (Garcia-Rios 
& Sánchez, 2014). The second result to highlight is the assimilation of the idea of sampling variation 
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by the majority of pairs of students (90%). It is considered that reasoning based on simulated 
sampling distribution have assimilated the sampling variation in some degree, when considering 
regions (variation of results of samples) and decide to take a statistician; majority or mode. An 
example of sampling variation assimilation explicit is R14 who wrote "although 50% of the 
population who likes Coca-Cola has been chosen, there are surveys were Pepsi wins the results". 
However, this assimilation is not sufficient to choose the outcome of the sample that rejects the null 
hypothesis (critical value). For a 5% level of significance should be 36, while students consider 30 
(50%) or 31 (52%). This difficulty was also found in (Garcia-Rios & Sánchez, 2015). 

The difficulties observed in the study are: 1) Sample-based reasoning. (2) A lack of variation to 
estimate the region that supports the hypothesis. (3) Although students use the simulated sampling 
distribution they didn't understand their role; responses suggest that students think that fathom 
simulation represents the actual population rather than a hypothetical. 

How would Fathom support the learning of students? The use of absolute values and simulation 
of surveys made more visible and understandable abstractions such as the sampling distribution and 
its process. In the traditional teaching of the hypothesis testing a transformation of the statistics 
(typing or standardization) and the central limit theorem is used to calculate the p-value and 
determine the critic zone (of rejection) with help of the normal distribution. This is perhaps one of 
the darker aspects of all the techniques to students. The possibility of putting the notion of sampling 
distribution in the center of the discussion of a significance test is probably the main contribution of 
the use of educational software (in this case Fathom). In addition, the students described and 
explained the observed behavior instead of relying exclusively on theoretical arguments of 
probability, which often is counterintuitive for students (delMas, Garfield, & Chance 1999). These 
results show a path to follow for the development of the reasoning in the significance test. First, it 
must be understood that Fathom not simulates the actual population but a hypothetical; this can help 
to pass to the next level of reasoning. Secondly, based on the fact that many students assimilated 
sampling variation, discuss how to choose a sample result (critical value) to reject the hypothesis to 
verify, this will lead to the idea of p-value. 
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MANUFACTURING LICORICE: MODELING WITH DATA IN THIRD GRADE 
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This paper reports on a study of 3rd-grade students’ modeling with data, which involves 
comprehensive investigations that draw upon STEM-based concepts, contexts, and questions, and 
generate products supported by evidence and open to informal inferential thinking. Within a real-
world STEM-based context of licorice manufacturing, students experienced the “creation of 
variation” as they compared and represented the masses of “licorice sticks” they made by hand 
(using Play-Doh) and those using a Play-Doh extruder. By generating their own statistical measures, 
students could observe the features of data distributions including center, range, typical, and middle, 
at a much younger age than usual. They could draw inferences from the models they created, with 
awareness of how variation limits the certainty with which predictions can be made. The study 
supports a potential route for advancing early statistical learning.   

Keywords: Data Analysis and Statistics, Modeling 

Introduction  
This paper aligns with the first conference theme of potential routes for mathematics education 

for the future, specifically, pertaining to the statistical capabilities of young learners. Despite research 
revealing how young elementary students are more competent in dealing with statistical problems 
than is acknowledged (e.g., Lehrer & Schauble, 2012; Lehrer & English, in press), many curricula 
continue to delay core statistical experiences until the middle and early secondary school years (e.g., 
Common Core State Standards: Mathematics; http://www.corestandards.org/Math). Yet young 
children are exposed to a vast array of statistical information that can, at times, misinform, rather 
than inform their receptive minds. The ability to reason effectively with data, including entertaining 
uncertainty and risk, is integral to making meaningful, informed decisions across all spectrums of 
life. One cannot participate effectively in debates about community issues such as the environment, 
health care, and education, without this reasoning ability (English & Watson, 2015; Franklin, Kader, 
Mewborn, Moreno, Peck, Perry, & Scheaffer, 2007). Foundational statistical experiences need to 
begin early. By undertaking their own investigations, elementary school students can learn to make 
critical decisions with data, where variation and uncertainty are ever present.  

This paper reports on third-grade students’ modeling with data, which involves comprehensive 
investigations that draw upon STEM-based concepts, contexts, and questions, and generate products 
that are supported by evidence and are open to informal inferential thinking (Lehrer & English, in 
press). In the present study, students experienced the “creation of variation” as they compared the 
masses of “licorice sticks” they made by hand (using Play-Doh) with those made using a Play-Doh 
extruder kit (“factory-made”; adapted from Watson, Skalicky, Fitzallen, & Wright, 2009). Students 
chose their own forms of representation in displaying their models for the two forms of licorice 
production, and identified, compared, and explained the features of their data distributions.  

Modeling with Data 
There are various interpretations of modeling and modeling with data, as reported by English, 

Arleback, and Mousoulides (2016). As defined here, modeling with data includes: (a) an appreciation 
of how and why investigative questions are posed and refined within a STEM context; (b) 
competence in generating, selecting, and measuring attributes; (c) skills in organizing, structuring, 
and representing data; (d) an ability to interpret evidence-based models including features of data 
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distributions; and (e) making informal inferences while acknowledging variation in the data, and the 
uncertainty with which any conclusions can be drawn (cf. Makar, Bakker, & Ben-Zvi, 2011; Lehrer 
& English, in press). Figure 1 displays these core features of modeling with data. Consideration is 
given to a selection of these modeling components. 

 

 
Figure 1. Modeling with data. 

STEM Contexts 
A statistical question is the starting point for any investigation and immediately raises the issue 

of problem context and cross-curriculum links. Because data are numbers in context (Moore, 1990), 
there is no statistics without a problematic situation from another field. Understanding the 
contextualized nature of data is crucial in developing a facility with statistics. Yet, elementary school 
curricula tend to give superficial or limited attention to the role of context, especially with respect to 
whether inferences drawn from the inquiry process align with both the question and context (Lavigne 
& Lajoie, 2007). With the increased focus on STEM education, including STEM integration 
(English, 2016) numerous rich contexts arise for undertaking statistical investigations. In the present 
study, engineering formed the statistical context where students explored the manufacture of licorice 
and the roles of various engineers (industrial, manufacturing, chemical) in the production process. 
Such a context highlights the need for quality control in the manufacturing process to reduce product 
variation.  

Variation   
Variation is the underlying concept linking all aspects of a statistical investigation; without 

variation, there would be no need for statistics (Cobb & Moore, 1997; Franklin et al., 2005; Garfield 
& Ben-Zvi, 2008; Konold & Pollatsek 2002; Moore, 1990; Watson, 2006). In simple terms, variation 
is “the quality of an entity (a variable) to vary, including variation due to uncertainty” (Makar & 
Confrey, 2005, p.28). As Watson (2006) highlighted, the reason data are collected and analyzed is to 
manage variation and draw conclusions and inferences about phenomena that vary. Although there is 
considerable research on older students’/adults’ awareness of variation there is less so on how this 
understanding can be developed with young students. This is a major concern especially given that 
secondary school and university students frequently apply statistical techniques without appreciating 
or understanding why, when, or how these are applied sensibly to a range of contexts (Garfield & 
Ben-Zvi, 2008).    

Data Distribution 
Developing the concept of variation necessitates some understanding of distribution, where 

Statistical question in a STEM context 

Generating, selecting, and measuring attributes 

Organizing data Variation Structuring and representing data 

Interpreting model: data distribution 

Drawing inferences 
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patterns in the variability of the data are of interest and are displayed visually (Makar & Confrey, 
2005). Exploring learners’ concept of variation provides a window into their understanding of 
distribution. Research has shown that younger students can come to recognize statistics as ways of 
measuring characteristics of distribution, which guide inferences about the questions posed (Lehrer & 
English, in press; Makar, 2014). One way to support and advance this early development is to 
provide children with opportunities to generate statistical measures of center and spread, and to 
observe how these indicate a distribution’s characteristics (Bakker & Gravemeijer, 2004; Konold & 
Pollatsek, 2002; Lehrer & English, in press). Activities that involve repeated measures yield data 
distributions that display “signals” (measures of center) and “noise” (measures of variability), which 
can help students make sense of statistics as measures (Konold & Pollatesk, 2002). It has been 
argued that when students develop this understanding, they are viewing data through the lens of 
distribution, in contrast to just a set of data values (Bakker & Gravemeijer, 2004). In today’s 
increasingly data-driven world, young learners deserve access to these core statistical foundations. 
Future directions in mathematics education need to consider increasing this access in the elementary 
mathematics curriculum.  

Model Representation and Interpretation  
Models created through working with data are usually defined as systems of representation, 

where structuring and displaying data are fundamental; the structure is created, not inherent (Lehrer 
& Schauble, 2007). Young learners’ ability to create and work with a range of representations, 
including those that extend beyond traditionally accepted formats, is underestimated and needs to be 
given more recognition and nurturing. In particular, the explicit consideration of variation in relation 
to representations has not been a key feature of research in the elementary years. Yet, a major 
foundational component of young students’ statistical growth is being able to interpret the meaning, 
within a given context, of a distribution that displays variation, clusters, modes, and unexpected 
values; this might not involve conventional text-book types of graphs. Early experiences with a range 
of representations that effectively display variation in data sets are important but have remained 
largely neglected in many elementary curricula until recently. Greater insights are needed into how 
young learners deal with variation in representations that they, themselves, create from their 
investigations, including how they respond to questions on comparing variation in different data sets, 
and how they identify and justify the sources of variation that they encounter. With the increasing 
impact of technology, young students are exposed to more complex and more varied representations 
that require careful interpretation and critical analysis rather than mere visual inspection.   

Drawing Inferences 
Informal inference, a precursor to formal inference, has been highlighted as a foundational 

component that also has not received the required attention especially in the elementary grades. 
Informal inference is the process of using the evidence provided by data to answer questions beyond 
the data, acknowledging the uncertainty associated with the conclusion reached (Makar, 2016). 
Variation is the key to accepting a conclusion with some degree of uncertainty (Franklin et al., 2007). 
The confidence with which one can form a decision, however, depends on creating a balance 
between variation and expectation/prediction (Watson, 2006). In the senior secondary courses of 
study, this balance is expressed in tests of significance or confidence intervals but learning to 
appreciate variation and its relationship to expectation/prediction needs to begin in the elementary 
grades with appropriate hands-on experiences and student/teacher questioning. 

In addressing these foregoing components of modeling with data, this paper reports on three 
questions investigated: (1) How did students represent the models generated for each licorice-



Statistics and Probability 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1043 

making method? (2) How did the students interpret variation and overall data distribution? and (3) 
What was the nature of the informal inferences children drew from their models?  

Methodology 

Participants 
The activity was implemented in two schools, one a private girls’ school, and the other, a co-

educational Catholic school. The data in this paper are confined to one class in the former school 
(mean age of 8.8 years), which was situated in a middle socioeconomic area.   

Research Design 
The activity was the first that was implemented in a 4-year longitudinal design-based study 

(Cobb, Jackson, & Dunlap, 2016). This research design caters for complex classroom situations that 
contain many variables and real-world constraints, supports learning and informs future learning 
experiences, and facilitates contributions to both theory and practice. Data collection included video-
taping of three focus groups as they worked the activity, as well as all class discussions, which were 
subsequently transcribed for analysis. Focus groups comprised three students of mixed achievement 
levels selected in consultation with the class teacher.  

Activity and Implementation 
The activity was created in collaboration with the teacher and formed part of her regular 

mathematics program in the area of data and probability. The teacher implemented the activity across 
three school days. The researcher and research assistant were in attendance for the entire activity to 
observe the students’ learning. A detailed lesson description was prepared for the teacher, as was a 
workbook for students. Students recorded their responses to a number of questions as they worked 
the activity. Although the students completed the activity in groups, they were to record their own 
answers and explanations in their workbooks.  

The activity comprised several parts including: (a) Reviewing an earlier science activity where 
students made tubes of lip balm, and discussed variation in their products; (b) Learning about 
engineers and engineering involved in the manufacture of licorice and foods in general (students 
viewed a YouTube clip of the American Licorice Co.); (c) Experiencing the notion of variation 
through exploring packets of manufactured licorice; (d) Investigating questions regarding differences 
in making licorice sticks by hand (using Play-Doh) and with a Play-Doh extruder (“manufactured”). 
For each of the hand-made and “manufactured” methods, students identified, measured, compared, 
and recorded attributes including mass; within-group results were compared; (e) Collating group data 
on the masses, and representing the group data in a format of choice, for each method; (f) Sharing 
and interpreting resultant group models from each method with the whole class, including identifying 
the range and “typical” masses displayed in each group model; (g) Collating all group data and 
creating a class representation; interpreting the resultant whole-class model of the distribution of the 
licorice stick masses, for each method. 

Data Analysis 
For the present paper, data are drawn from the students’ workbooks, together with the recorded 

and transcribed group work and whole class discussions. In conjunction with an experienced research 
assistant, content analysis (Patton, 2002) was applied in initially identifying, coding, and categorizing 
the data recorded in the students’ workbooks. A further round of refined coding was undertaken to 
ensure meaningfulness and accuracy. Iterative refinement cycles for video-tape analyses of 
conceptual change (Lesh & Lehrer, 2000) were applied in reviewing the transcribed focus group and 
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whole class discussions to ascertain the students’ learning pertaining to variation, distributions, and 
inferential reasoning.  

Results 
This section considers how students represented their models, their interpretations of the variation 
and data distribution displayed, and the nature of the inferences they drew.   

Models Represented  
Students represented in various ways their models displaying the licorice-making results. 

Although forms of bar graphs were most popular, these differed in students’ approaches to 
organizing and structuring their data. For example, many students (78%, N=23) structured their data 
according to each group member’s results (e.g., Monica, Kate, Sarah), while some (13%) ordered the 
data differently, such as from the “biggest licorice” to “second biggest”, to “second smallest”, to 
“smallest licorice” as illustrated in Figure 2. One student displayed each member’s heaviest licorice 
stick only, while another used both tallies and a 3-way table.   

 

 
Figure 2. An example of one student’s representation for her group’s data   

Interpreting Variation and Data Distribution  
Students were readily able to identify the variation in masses for both the hand-made and factory-

made methods, with 83% (N=23) identifying the variation in the former and all students (N=24) for 
the latter.  

Likewise, the students had few difficulties in giving an initial reason for this variation in the 
hand-made sticks (87%, N=23) with explanations including reference to some sticks being “fatter” or 
“too thin” or “thicker”. They found it more difficult, however, when asked to provide more than one 
reason.  

Sixty-one percent (N=23) were able to offer two acceptable reasons for the hand-made variation, 
while less than half (48%) were able to give an appropriate third reason (e.g., they simply stated that 
the sticks “are all different weights”). Over half of the students (63%, N=24) were able to give three 
appropriate reasons for the factory-made method (58% offering a first reason, 71% a second, and 
58% a third).  
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In collating the group results to form a class plot for each licorice-making method and describing 
the data distributions, 62% of the students (N=24) offered at least one feature for the hand-made 
licorice. Of these students, 33% noted multiple characteristics, such as “…lots of spaces and humps 
and sections and a lot at the start.” Those who noted just one aspect gave reasons such as, “very, very 
lumpy”, or “zig-zag.” In contrast, all but one student was able to describe the distributional features 
of the class plot for the second method, with 79% (N=24) describing multiple features, suggesting 
that their understanding of distribution was developing as they experimented with the licorice-
making methods. An example of the class plot for each licorice-making form appears in Figure 3. 
 

Figure 3. Class plots for each method. 

In recording responses to questions about the variation in the masses and the typical mass of the 
licorice sticks for each class plot, the students again performed better in interpreting the plot for the 
factory-made licorice. For the hand-made, 58% of students (N=24) could describe the variation in the 
class plot (e.g., “There’s more on 10 and less on 7; there are a lot of people between 8 and 16”) and 
62% for the factory-made class plot. Although a little over half the students (58%, N=24) could 
describe the typical mass for the hand-made class plot, 83% (N=24) could do so for the factory-made 
class plot. The students could readily recognize the difference in the two plots, with 88% (N=24) 
noting at least one difference. Of these, three students identified multiple differences such as, 
“Tuesday’s (hand-made method) plot had a lot of variation. Thursday’s plot (factory-made) had not 
that much variation. Thursday’s plot was a lot taller than Tuesday’s plot.” The majority of students 
(71%, N=24) could explain that using the Play-Doh extruder was more accurate in producing sticks 
of a consistent mass (e.g., “Because it’s a machine like, the machine makes them all about the same 
size and when you’re doing them with your hands you can’t really tell if they’re going to be the same 
size or not”).  

Drawing Inferences   
On completion of the class models created for each licorice-making method, students were asked, 

“If you made one more piece of licorice, what do you think (predict) its mass might be?  How did 
you decide?”  As part of a follow-up class discussion, the students were also asked, “If another 
student came into our class and made some licorice, what do you think hers would be (mass of 
licorice stick)?” Students were readily able to respond to the first question above with 88% 
identifying an appropriate mass range for the hand-made and 96% for the equipment-made (N=24). 
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The majority of students could also offer appropriate reasons for each decision, referring to either 
their own data (42% for hand-made and 33% for factory-made) or the whole class data (29% for 
hand-made and 46% for factory-made). Their reasons included, “I think because most of mine were 
around ten and mine were both exactly 1cm wide and 8cm long;” “because it is about the average;” 
and “I decided because 13g is the typical mass of sticks in the class.”   

During class discussions, students frequently referred to chance and uncertainty when explaining 
what the mass of a licorice stick made by a new student might be. One student explained that, “It 
might be 13 because most people got … 13 so maybe that’s the typical number.” Another student 
responded, “I think maybe 12, because if she came in, there’s a chance, because the Fun Factory 
makes all of them um pretty similar and, and she could make it, but I decided on that [13g] because I 
think there’s a more likely chance that she would because it won’t always be bigger, she might get it 
a little smaller than some.” The teacher asked a further question, namely, “Would you expect, say, if 
we did it again next week and we used the same Play-Doh, and we used the same Fun Factory, would 
you expect the same plots?” Alesha commented, “I think they might be different because like we 
could do something, we may have like cut it a bit further or because it’s really hard to get everything 
exact, so it won’t always be exact.” Monica agreed, “…maybe or maybe not, I sort of agree … you 
actually don’t know because … when you made three of them like last week they weren’t all the 
same mass, they weren’t all 15 or they weren’t all 13…”    

Discussion    
This paper has illustrated how third-grade students can engage in modeling with data involving 

core statistical concepts and processes, when presented with a motivating context and a meaningful 
hands-on activity. Using a STEM-based context involving a licorice factory, students were able to 
explore the important roles of the various engineers responsible for manufacturing high-quality 
products. The importance of quality control in the real-world provided a valuable context for 
appreciating how the two forms of licorice making yielded different variations in the sticks produced. 
By generating and observing “variation in action”, the students could see how variation is an 
important factor throughout a statistical investigation. They developed an understanding of the 
reasons behind the greater variation in hand-made sticks and hence, the difference in data 
distributions of their hand-made and factory-made sticks. Students could identify foundational data 
distributional features including center, range, typical, and middle, which are usually not introduced 
until the later grades and then frequently in a computational manner. In line with other research, 
activities in which students create their own statistical measures of center and spread enable them to 
observe and understand the features of a data distribution (e.g., Bakker & Gravemeijer, 2004; Konold 
& Pollatesk, 2002). As Franklin et al. (2007) emphasized, “Statistical education should be viewed as 
a developmental process” (p. 13) and, as such, these foundational experiences need to commence in 
the elementary grades. 

From the individual and whole-class representations of the models generated, students could 
draw inferences including predicting the masses of further sticks that might be made. Some 
awareness of chance and uncertainty was present as the students realized that variation in both 
licorice-making methods meant that predictions could not be drawn with absolute certainty. Given 
students’ realization of the uncertainty in drawing conclusions due to variation, the activity can 
provide foundations for chance explorations. For example, investigations involving the chances of 
selecting particular candies from factory produced packets can yield unexpected results due to 
variation in contents. Returning to the conference theme, the present results provide further support 
for moving mathematics education along a path that capitalizes on elementary students’ early 
statistical talents. Given the research that has already revealed these talents, greater attention is 
needed to further advance the field.   
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PRESERVICE SECONDARY MATHEMATICS TEACHERS’ STATISTICAL 
KNOWLEDGE: A SNAPSHOT OF STRENGTHS AND WEAKNESSES  

 Jennifer N. Lovett Hollylynne S. Lee 
 Middle Tennessee State University NC State University 
 Jennifer.Lovett@mtsu.edu Hollylynne@ncsu.edu 

Amid the implementation of new curriculum standard regarding statistics and new recommendations 
for preservice secondary mathematics teachers [PSMTs] to teach statistics, there is a need to 
examine the current state of PSMTs’ common statistical knowledge. This study reports on the 
statistical knowledge 217 PSMTs from a purposeful sample of 18 universities across the United 
States. The results show that PSMTs may not have strong common statistical knowledge that is 
needed to teach statistics to high school students. PSMTs’ strengths include identifying appropriate 
measures of center, while weaknesses involve issues with variability, sampling distributions, p-
values, and confidence intervals.  

Keywords: Teacher Education-Preservice, Teacher Knowledge, Data Analysis and Statistics 

Many have argued the need to increase students’ understanding of statistics (Shaughnessy, 2007). 
Accordingly, there has been recent increased emphasis on statistics content in secondary curricula 
standards in the U.S., informed by recommendations from the National Council of Teachers of 
Mathematics (2000) and the Common Core Standards for Mathematics (National Governors 
Association Center for Best Practice & Council of Chief State School Officers, 2010). However, a 
recent study of 1,249 high school students in the U.S. suggests that students are not developing a 
conceptual understanding of statistics (Jacobbe, Foti, Case, & Whitaker, 2014). Since many teachers, 
including preservice secondary mathematics teachers (PSMTs), have likely had minimal experience 
with statistics in their own K-12 education, they also may not have had many opportunities to 
develop strong statistical understandings.  

The Conference Board of the Mathematical Sciences (2001, 2012) as well as the American 
Statistical Association (ASA, Franklin et al., 2015), present recommendations for developing 
statistical knowledge and pedagogy needed by preservice mathematics teachers to teach statistics. 
However, the lack of research focusing on the statistical knowledge of PSMTs was highlighted and 
called for in the 2011 International Congress of Mathematics Education Topical Study (Batanero, 
Burrill, & Reading, 2011). The majority of research on preservice teachers’ statistical knowledge has 
focused on elementary teachers (e.g. Browning, Gross, & Smith, 2014; Hu, 2015; Leavy & 
O’Loughlin, 2006)). The limited research conducted on PSMTs’ statistical knowledge has been 
small-scale studies, from a small number of institutions on specific statistical content (e.g., Doerr & 
Jacob, 2011; Lesser, Wagler, & Abormegah, 2014). While some smaller studies have suggested that 
PSMTs may struggle with statistics (e.g. Casey & Wasserman, 2015), there are no large-scale studies 
that describe the current state of new teachers’ statistical knowledge. This study examines the 
statistical knowledge of a large cross-institutional sample of PSMTs as they enter student teaching to 
answer the question: What are the strengths and weaknesses of PSMTs’ knowledge of the statistical 
content they will be expected to teach?  

Framework 
Groth (2013) developed a hypothetical framework for Statistical Knowledge for Teaching 

consisting of two domains of knowledge teachers need to develop: subject matter knowledge and 
pedagogical content knowledge. Developing subject matter knowledge and key developmental 
understandings of statistics is foundational to be able to develop pedagogical statistical knowledge. 
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Within subject matter knowledge there are three types: common content knowledge, specialized 
content knowledge and horizon knowledge. Common content knowledge refers to knowledge gained 
through statistics taught in school and is considered common because it refers to knowledge for daily 
literacy or in any profession that uses statistics. This study examines the common statistical 
knowledge of PSMTs since they will soon be expected to teach these common statistical ideas as part 
of curricula for high school students.    

The Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report: A Pre-K-
12 Curriculum Framework (GAISE, Franklin et al., 2007) describes statistical reasoning students 
should develop in K-12 and suggests this reasoning develops across three levels A, B, and C. 
Although there are not explicit definitions given for statistical reasoning in each level, the levels 
increase in statistical sophistication and become more abstract. The content in Level A represents 
topics for early or novice learners of statistics (elementary and middle school), Level B represents 
slightly more advanced statistical content (middle school or early high school), and Level C 
represents even more advanced content (high school or introductory college courses) (Franklin et al., 
2007). The GAISE report recommends that students learn statistical topics through engaging in a 
statistical investigative cycle consisting of: posing questions, collecting data, analyzing data, and 
interpreting results. Therefore, when examining PSMTs’ common statistical knowledge, it is useful 
to consider their understandings across these cycle phases and all three GAISE levels. 

Methodology  

Participating Institutions  
This study focuses on PSMTs prepared through university-based teacher preparation programs in 

the US. Since a random sample of all mathematics teacher preparation programs was unavailable, 
this study began with a purposeful narrowing on PSMTs who attend institutions in which some 
faculty have participated in the last 13 years in particular National Science Foundation (NSF)-funded 
or ASA-funded programs to increase the emphasis of statistics education at that institution. Faculty 
from 57 institutions participated in the NSF-funded program, Preparing to Teach Mathematics with 
Technology (PTMT, ptmt.fi.ncsu.edu), and/or the ASA-funded Math/Stat Teacher Education: 
Assessment, Methods, and Strategies (TEAMS, 
www.amstat.org/sections/educ/newsletter/v9n1/TEAMS.html) conference between 2002-2014. 
These institutions were chosen since faculty members received professional development focusing on 
explicit content and strategies for preparing PSMTs to teach statistics. Our assumption was that 
PSMTs from these institutions may have had opportunities to engage in statistics content and 
pedagogy activities in their coursework.  

The sample was obtained by contacting all 57 institutions through their undergraduate program 
coordinator for mathematics education to inquire if the program was interested in participating. 
Twenty-four programs expressed interest, and 18 participated. The coordinator identified the last 
mathematics teaching methods course PSMTs take before student teaching, which would constitute 
the data collection point in either fall 2014 or spring 2015. Of the 18 institutions, all but one were 
public institutions. The majority of institutions (61.1%) had an Carnegie Classification™ (Carnegie 
Foundation for the Advancement of Teaching, 2011) enrollment profile of high undergraduate. 
Approximately 84% of participants attended institutions with a basic classification of Research 
Universities/Very High, Research University/High or a Master’s college and university with a larger 
program. 

Participants 
Across 18 institutions, there were 221 PSMTs recruited by their mathematics teaching methods 

instructor to take the assessment of their statistical understanding, described in the next section, as an 
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assignment as part of the course. Those who took exceptionally less time (10 minutes) than 
recommended by authors of the assessment were eliminated (Jacobbe, personal communication). 
This resulted in a sample size of 217 PSMTs. The PSMTs were undergraduate juniors and seniors, or 
graduate students earning initial licensure; all were enrolled in their last mathematics education 
course prior to student teaching. The number of PSMTs participating from each institution ranged 
from 2 to 31, with a mean of 12. Fourteen institutions had 100% participation of PSMTs who were 
eligible to participate, with the remaining four institutions having between one and four students who 
did not complete the assignment. The majority of PSMTs were female (71%), and 88% were 
Caucasian. Almost all (93.4%) reported they had taken at least one statistics course at their institution 
or had completed Advanced Placement Statistics in high school.   

Data Collection and Analysis 
To examine PSMTs’ common statistical knowledge, the Levels of Conceptual Understanding of 

Statistics (LOCUS) assessment (Jacobbe, Case, Whitaker, & Foti, 2014) was administered online 
(locus.statisticseducation.org). The LOCUS instrument assesses understanding of statistics across the 
three GAISE levels of development and also assesses understanding within each phase of an 
investigative cycle: formulating questions, collecting data, analyzing data, and interpreting results. 
Participants took the 30 multiple choice Intermediate/Advanced Statistical Literacy version of the 
assessment, which was designed for students in grades 10 – 12. The test consists of two level A 
questions, 11 level B questions, and 17 level C questions. This version has been validated and 
reliable with students in grades 6-12 to assess statistical knowledge across levels B and C and the 
four phases of the investigative cycle (Jacobbe, personal communication); while this instrument is 
not intended as a high stakes assessment of knowledge, it does represent the statistics content PSMTs 
are expected to teach their students in the near future. Thus, teachers are expected to score fairly high 
on the assessment. While actual test items cannot be released due to test security, sample items for 
the four categories at different levels are available on the LOCUS website 
(locus.statisticseducation.org/professional-development). Each test-taker receives an overall score 
(percent correct), as well as sub-scores for Level B, Level C, Formulating Questions, Collecting 
Data, Analyzing Data, and Interpreting Results.  

To examine the statistical knowledge demonstrated by PSMTs, descriptive statistics were 
computed for the overall score and each subscore. Paired samples t-tests were used to test for 
significance of PSMTs’ statistical knowledge between GAISE Levels B and C and a repeated 
measures ANOVA used to test for significant differences in PSMTs’ statistical knowledge between 
the four phases of a statistical investigation. An item analysis was conducted to closely examine 
PSMTs’ strengths and weaknesses. 

Results 
Trends in scores on the LOCUS test can help in describing what PSMTs from these 18 

universities currently understand about the statistics content they will soon be responsible for 
teaching. The summary statistics for PSMTs’ scores are reported in table 1. With a mean overall 
score of 69%, and a standard deviation of 14.06, PSMTs do not seem to demonstrate a conceptual 
understanding of the statistical content they will teach high school students. PSMTs scored, on 
average, significantly higher on Level B questions than on Level C questions (t=5.772, p<0.001), 
demonstrating that their statistical knowledge is weaker as items increase in sophistication. The 
distribution of PSMTs’ scores is shown in figure 1. The boxplots show that for the overall scores and 
subscores, there are at least some PSMTs who scored between 90-100% correct, indicating that they 
likely have strong common statistical knowledge of topics they will soon be responsible to teach. 
However, there is a concern since only one-quarter of PSMTs scored overall above 77%, and a 
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quarter scored below 57% overall. The variation in scores seems somewhat similar for Level C 
scores. However, higher standard deviation in Level B scores is likely due to the increased quantity 
of low scoring individuals, indicated as outliers in figure 1.  

Table 1: PSMTs’ Percent Correct on LOCUS Instrument 

 
 

 
 

Figures 1 and 2. Distribution of PSMTs’ LOCUS scores 

Examining subscores by phases in the statistical investigative cycle, PSMTs scored higher on 
average on Formulating Questions and lower as the cycle progresses, scoring lowest on Interpreting 
Results items (Table 1). A repeated measures ANOVA determined that mean scores differed 
significantly between scores for the four phases [F(3,648)=64.73, p<0.001]. Post hoc tests using a 
Bonferroni correction revealed that PSMTs scored significantly lower as the cycle progressed 
(p<0.001). However, there was only a slight difference between mean scores for Analyze Data and 
Interpret Results (p=0.32). The distribution of scores across the four phases is shown in figure 2. The 
boxplots show that for all four phases, there are again some PSMTs who scored between 90-100%, 
indicating that those PSMTs likely have the common content knowledge that will be needed when 
teaching that phase of the investigative cycle. On Formulating Questions items, at least half of 
PSMTs scored 80% or higher, and a quarter of those scored 100%, indicating stronger understanding 
for these PSMTs about Formulating Questions. However, half of PSMTs scored below 71% on 
Collecting Data and Analyzing Data items, and half scored below 64% on Interpreting Results items. 
Even being conservative, this result is convincing that the majority of these PSMTs do not have the 
common statistical knowledge that can provide a foundation for teaching students key concepts 
related to Collecting Data, Analyzing Data, and Interpreting Results.  

 Number of 
items 

Mean SD 

Overall Score 30 68.61 14.06 
GAISE Levels  
Level B Score 
Level C Score 

 
11 
17 

 
70.85 
64.87 

 
17.69 
14.16 

Phases of Statistical Investigative 
Cycle 

Formulating Questions 
Collect Data 
Analyze Data 
Interpret Results 

 
5 
7 
7 

11 

 
80.37 
70.40 
63.34 
60.48 

 
21.51 
19.70 
22.22 
16.25 



Statistics and Probability 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1052 

Item Analysis 
Upon further analysis of individual items classified by the statistical investigative cycle, themes 

emerged concerning PSMTs’ strengths and weakness.  As previously mentioned, PSMTs scored the 
highest on average for Formulating Questions items, with no common misunderstanding identified. 
As an example of their strength in understanding this phase, PSMTs were able to read a description 
of a study and measurements taken to identify an appropriate statistical question of interest. 

Collecting Data. On average, PSMTs scored the next highest on Collecting Data items. PSMTs 
were able to identify ways to improve a study design given a study and measurements, identify which 
study design would be best based on a question of interest, and identify a data collection plan based 
on a study description. Thus, these PSMTs seem to have strong common content knowledge related 
to the design of a statistical study. 

Even though PSMTs were able to develop a data collection plan, they struggled more when asked 
to identify how to choose a sample to minimize bias. Only 64.5% were able to choose a correct 
sampling method; instead, 30% chose a convenience sample or a stratified sample that seemed 
complicated but was not random. Thus, they do not seem to have a strong understanding of the role 
of an appropriate sampling method within the design of a study. Another common misunderstanding 
of PSMTs was the conclusion that could be drawn from a specific study design. Figure 3 is a similar 
item to the one PSMTs were asked on the assessment. Over 58% of PSMTs chose an answer similar 
to answers (A) and (C) that allowed a researcher to generalize results to an entire population based on 
a sample of volunteers. These findings highlight PSMTs’ need for a deeper understanding related to 
ways in which study designs and data collection processes impact the conclusions that can be drawn.  

 

 
Figure 3. Sample Collect Data item from locus.statisticseducation.org. 

 
Analyzing Data. PSMTs’ average scores for Analyzing Data items were the second lowest 

among the phases, and had the highest variability. PSMTs demonstrated that they understand which 
measure of center is appropriate for a given context, how measures of center and variation change 
when data values are changed, and a justification of an association from a two-way table. However, 
PSMTs demonstrated more difficulty with Analyze Data items that involved understanding of 
variation in data. Only 43% of PSMTs could identify a histogram containing data that varied the least 
from its mean. Instead 30% of PSMTs chose a uniform distribution and about 20% thought 
variability from the mean was the same for all three distributions. PSMTs demonstrated another 
misunderstanding related to expected variation in sample means when repeatedly sampling from a 
population. When given the distribution of a population and population mean, 36% of PSMTs could 
not identify the distribution of sample means. Instead they chose distributions that resembled the 
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general shape of population distribution. These results point to PSMTs’ need for more common 
content knowledge in regards to variation, sample distributions, and distribution of sample statistics.   

Interpret Results. PSMTs scored the lowest on average on Interpret Results items. However, on 
five of the eleven Interpret Results items, 84% or more of PSMTs answered the items correctly. 
PSMTs were able to compare distributions in a context using the center and spread, demonstrate an 
understanding of the effect of sample size on a sample mean, and interpret survey results with a 
given margin of error. These are important concepts often taught in middle and high school curricula. 
On the other six Interpret Results items, the percentage of PSMTs responding correctly to these items 
ranged from 21% to 48%, and their misunderstandings were related to ideas of formal inference. 
PSMTs struggled most with statistical significance, identifying and interpreting a p-value, and 
explaining confidence intervals. About half (48%) of PSMTs were able to correctly interpret results 
given a large p-value and fail to reject the null hypothesis (Figure 4). However, 40% of PSMTs chose 
a conclusion that a large p-value meant they could reject the null hypothesis.  

 

 
Figure 4. Sample Interpret Results item from locus.statisticseducation.org. 

On another item regarding p-value, PSMTs were asked to reason if a p-value would be large or 
small for comparing means of two distributions given data on a dotplot. Only 35% of PSMTs were 
able to correctly identify that the p-value would be small due to the large gap between distributions. 
Almost 47% incorrectly answered that the p-value would be large due to a large gap between the 
distributions. These findings demonstrate that PSMTs on average do not have an understanding of 
what it means to be statistically significant and what a p-value represents, aspects of common content 
knowledge expected in statistics, and included in many high school curricula. 

The item PSMTs had the most difficulty with in Interpreting Results asked the test taker to 
explain the meaning of a 95% confidence interval for a mean. Approximately one-fifth chose the 
correct response that a 95% confidence interval represents that 95% of confidence intervals 
constructed from random samples would capture the true mean. Almost half of PSMTs chose the 
response that there was a 95% probability that the mean was in between the lower and upper limits of 
the confidence interval. These misunderstandings highlight the need for PSMTs to have more 
experiences with interpreting and understanding confidence intervals.  

Discussion and Conclusion 
Our study was situated within a purposeful sample of PSMTs enrolled in teacher education 

programs where a faculty member had participated in professional development projects that 
promoted increasing attention to statistics in secondary mathematics education courses. It is not 
known exactly how those teacher education programs currently include an emphasis on statistics, nor 
exactly what these PSMTs experienced at all 18 institutions. Nonetheless, there are several findings 
of this study that are significant to consider. Our results provide empirical evidence that PSMTs in 
this study generally do not exhibit a strong common content knowledge of many aspects of statistics 
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needed for teaching high school students, and in particular they struggle more with the later phases of 
a statistical investigation. Previous research has shown a similar trend with inservice teachers and 
students measured by LOCUS (Jacobbe, 2015; Jacobbe, Foti, et al., 2014). Thus, PSMTs need more 
experiences in collecting data, analyzing data and interpreting results to develop a deeper 
understanding of all aspects of the statistical investigative cycle and to develop common statistical 
knowledge needed for teaching.  

PSMTs exhibit some similar strengths and weaknesses with concepts that high school and 
introductory college students develop. An important strength that PSMTs demonstrated is that they 
are proficient at identifying an appropriate measure of center for a given context. PSMTs’ strength in 
understanding measures of center suggests they should be well equipped to assist their future 
students develop stronger conceptions. PSMTs’ weaknesses involve issues with variability, sampling 
distributions, p-values, and confidence intervals. Many researchers have identified that these topics 
are also often misunderstood by many students in undergraduate statistics courses (e.g., Aquilonius 
& Brenner, 2015; Castro Sotos, Vanhoof, Van de Noortgate, & Onghena, 2007; delMas, Garfield, 
Ooms, & Chance, 2007); thus, PSMTs’ common statistical knowledge may be no better than those of 
other college students not preparing for teaching.   

These findings, even though from a purposeful sample, suggest there is a critical need for 
mathematics teacher education programs to reevaluate the opportunities PSMTs’ have to increase 
their common statistical knowledge. Our results specifically indicate that effort should focus on 
developing PSMTs’ knowledge of variability, sampling distributions, and formal inference, 
particularly as they are applied in the analyzing data and interpreting results phases of an 
investigative cycle. While this study only reports on one aspect of PSMTs’ statistical knowledge for 
teaching, the larger study (Lovett & Lee, 2017) provides more details about PSMTs’ confidence to 
teach and the experiences they perceived had contributed to their confidence and understandings in 
statistics. Additional large-scale studies are needed on all aspects of PSMTs’ statistical knowledge 
for teaching and the impact that teacher education programs have on PSMTs’ preparedness to teach 
statistics.  
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PRE-SERVICE TEACHERS’ DEVELOPMENT OF STATISTICS AND PROBABILITY 
KNOWLEDGE IN A TECHNOLOGICAL COLLABORATIVE ENVIRONMENT  

 Muteb Alqahtani Robert Sigley 
 SUNY Cortland Texas State University 
 muteb.alqahtani@cortland.edu sigley@txstate.edu  

This study investigates the development of pre-service teachers’ (PSTs) probability and statistics 
knowledge in a technological collaborative environment. The teachers collaborated synchronously in 
an online environment to solve a probability task that involves investigating the fairness of different 
dice. Teachers used simulations to roll six dice and collect data about them with different sample 
sizes. The simulations allow users to roll each die up to 1,000 rolls and represent the outcomes in a 
frequency table, bar graph, and a pie chart. While investigating the fairness of the dice, teachers 
engaged important statistical and probabilistic concepts to reason about data. Results showed that 
interactions between experimental and theoretical probability helped teachers further their 
understanding of distribution, data dispersion, and the Law of Large Numbers. This informs 
supporting PSTs learning of probability and statistics.  

Keywords: Probability, Data Analysis and Statistics, Technology, Teacher Knowledge 

Introduction 
Today’s society relies heavily on technological innovations that make collecting, analyzing, and 

presenting quantitative data easily accessible. This stresses the importance of preparing students for 
such reality. As a consequence, mathematics educators are attending more to teaching and learning 
statistics and probability. The National Council of Teachers of Mathematics (NCTM) suggests that 
students, starting from elementary grades, should learn how to collect and present data and make 
decisions based on them (National Council of Teachers of Mathematics, 2000). Students need to 
develop a meaningful understanding of data variability and to develop an understanding for 
randomness of different events that can occur in nature, technology, or society. 

Different conceptions of probability make learning and teaching of probability a challenge for 
mathematics teachers. Interpretations of chance and randomness and their relationships with the 
subjective, theoretical, and experimental conceptions of probability contribute to the challenge of 
teaching and learning probability (Batanero, Henry, & Parzysz, 2005). Responding to this challenge, 
mathematics educators turn to technology and simulations to support teaching and learning of 
statistics and probability. There are different technologies and educational software such as graphing 
calculators, Spreadsheets, and TinkerPlots that can be used to help students develop important 
statistics and probability concepts. However, there is a need for studies that provide more insights 
into how tasks in technological environments can support teachers’ and students’ learning of 
statistics and probability (Biehler, Ben-Zvi, Bakker, & Makar, 2013; Garfield et al., 2008). As a 
response to this need, we investigate the development of PSTs knowledge of probability and statistics 
while working collaboratively in an online environment to solve probability problem. The PSTs used 
interactive simulations with multiple representations to determine the fairness of different dice. Our 
study responds to this question: Using simulations in a collaborative environment, how do PSTs 
engage theoretical and experimental probability to develop different statistical and probabilistic 
concepts?  

Related Studies and Theoretical Framework 
Surveys of the literature of teachers’ knowledge of statistics and probability show that in-service 

and pre-service teachers lack deep understanding of graphical representation of data and important 
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statistical concepts (Eichler & Zapata-Cardona, 2016). In addition, teachers lack theoretical and 
empirical probabilistic knowledge in general (Batanero, Chernoff, Engel, Lee, & Sánchez, 2016). 
Professional development programs usually focus on content knowledge. There is a need to help 
teachers develop flexible understanding of statics in contexts and build connections between 
theoretical and experimental probability (Batanero et al., 2016; Eichler & Zapata-Cardona, 2016).  

Knowledge of statistics and probability includes many important concepts. Statistics deals with 
aspects related to producing data, either through observation or experimentation, and analyses that 
aim to find patterns as well as test hypotheses (Cobb & Moore, 1997). On the other hand, probability 
involves ideas such as randomness, events and sample space, combinatorics, independence 
(conditional probability), Law of Large Numbers, sampling and sampling distribution, and 
simulation (Batanero et al., 2016). In general, probability deals with two aspects of phenomena, 
empirical and theoretical. Empirical probability focuses on data generated from experiments where 
theoretical probability focuses on expectations beyond empirical data (Batanero et al., 2016).  

To support students’ learning of statistics and probability, teachers need to acquire deep content 
and pedagogical knowledge of the subject. Understanding how teachers develop statistical and 
probabilistic concepts informs the design of tasks in which pre-service and in-service teachers can 
engage and build their knowledge of statistics and probability. 

Methodology and Data Collection 
In our study, 12 PSTs interacted synchronously in an online environment to solve a probability 

task. The online environment, Virtual Math Teams with GeoGebra (VMTwG) integrates GeoGebra 
with a white board and a chat panel for synchronous discussion. The probability task involves 
investigating fairness of six different dice. The task has three main components: online collaboration 
using simulations, watching middle school students’ discussing the same task, and analyzing artifacts 
of middle school students’ solutions of the same task. The data for this paper focus on the first two 
components of the task. Data consist of online interactions of PSTs to solve the probability task, 
which included their chat logs, GeoGebra activities, and their chat logs reflecting on the middle 
school students’ arguments for the same task. We were interested in studying how the PSTs, using 
simulations, moved back and forth between theoretical and experimental probability and engaged 
different ideas to judge the fairness of multiple dice.  

The PSTs were provided with simulations for six dice that were weighted differently. They could 
roll each dice between 1 and 1,000 times to determine whether the dice are fair. The task provided 
them with three different representations of the data; a frequency table, a pie chart, and a bar graph. 
As a group, the PSTs were to make judgments about the fairness of each die and provide evidence to 
support their arguments. The video they watched contained a group of eight seventh graders engaged 
in a debate about how many times one would have to roll the dice to determine if the dice were fair 
or not. For analysis, two researchers openly coded the actions of the teachers inside of the tool and 
their chat logs discussing the fairness of each die and middle school students’ arguments. Altogether, 
four groups of three PSTs were analyzed. 

Results 
While solving the probability task, PSTs engaged aspects of theoretical and experimental 

probability in their discussions. Even though the four groups of PSTs had different prior 
conceptualizations of theoretical and experimental probability, they used similar strategies to 
response to the task. Our analysis of PSTs actions and chat logs revealed that they relied mainly on 
three statistical and probabilistic concepts to investigate the fairness of dice. All groups focused on 
data distribution, data dispersion, and aspects of Law of Large Numbers (LLN). These concepts are 
related to each other in multiple ways. Because of these relations, PSTs discussions of these concepts 
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were intertwined at moments. The following sections present how PSTs engage each concept while 
solving the task.  

Distribution 
The bar graph of the discrete probability distribution of each die allowed PSTs to discuss the 

experimental and theoretical distribution of data. Some students started with only theoretical 
understanding of the probability for six-sided dice. They expressed difficulty conceptualizing the 
notion of investigating the fairness of a die. To them, dice, by definition, have six faces with equal 
chance of selection. At the beginning of working with the task, a member of the first group asked 
“what does ‘poor quality dice’ even mean?” This indicates that this student has a theoretical base for 
understanding the probability of dice. All groups noticed the normality of data distributions 
generated from rolling the first die. They described these distributions as “bell curve” and “pretty 
normal”. The normality of the distribution of the first die’s data drew students’ attention to the notion 
of distribution and allowed them to reflect on what a fair die’s distribution should look like. In 
addition to bell curve or normal distribution, PSTs described different data distributions with terms 
such as “even” and “inconsistent”. Three groups used “even” or “equal” to describe approximately 
uniform distributions. These distributions were of data generated from the only fair die in the task.  

Dispersion 
The second statistical notion to which students attended was dispersion of data. The PSTs 

attended to extreme values at first and moved to using range as a measure of dispersion. The second 
die has a low probability for number five. This allowed PSTs to talk about the lowest and highest 
values in their data. This attention to high and low values was used in investigating dice that 
followed the second die. After using extreme values to discuss the fairness of dice, PSTs used range 
to describe the die’s performance. They attended to the highest and lowest value and reported the 
difference between them. While attending the spread of data, the third group demonstrated 
interactions between experimental and theoretical probability clearly when discussing fairness of the 
fourth die. A student stated that “at 500, fair dice would be in the range of 83 for each… but 1 is way 
below that range. i do not think its [sic] fair”. Starting with an understanding of the theoretical 
probability of a fair die, the students divided 500 by six to estimate the outcomes of each face of the 
die. The spread of data is an important concept and relates closely to data distribution and, in our 
task, the Law of Large Numbers.  

Law of Large Numbers 
In our task, PSTs were able to change the number of rolls for each die to test its fairness from 1-

1000. The simulation used a pseudorandom process to generate data based on certain probability we 
specified for each face of the die. The groups of PSTs demonstrated different initial and final 
understanding of LLN. The first three groups started with limited understanding of LLN. That was 
evident through their choices of how many rolls to use. The first group did not attend to this issue 
where the second group discussed using a small number of rolls that is a multiple of six. This 
indicates limited understanding of LLN but could show an understanding of the theoretical chance 
for each side being one-sixth. One student of the second group commented about the outcomes of 
each side saying, “obviously it is not going to be perfectly even”, which shows that the student has an 
understanding of experimental probability but did not connect it to the LLN. Without any 
justification, the third group started with investigating three cases: 100, 500, and 1000 rolls. After 
testing these cases, a student questioned: “it should be the more you roll, the more equal the graph 
should look right?” Other members agreed with her. This group is starting to conceptualize the 
importance of LLN. The last group demonstrated understanding of the importance of LLN and 
decided to roll the dice 1000 times from the beginning.  
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Discussion 
This study reports on four groups of PSTs interactions in an online collaborative environment to 

solve a probability task. The task asked PSTs to investigate the fairness of six differently weighted 
dice through using an interactive simulation for each die. PSTs collaborated synchronously to discuss 
the fairness of each die. They had the freedom to roll each die between 1-1000 times. At the end of 
their problem-solving session, PSTs watched a video of middle school students reasoning about the 
importance of using a large number of rolls in the same task. PSTs’ discussions showed significant 
interactions between empirical and theoretical probability that supported their reasoning of data and 
investigation of dice fairness. To judge the fairness of dice, they engaged three main ideas: data 
distribution, dispersion of data, and the Law of Large Numbers. Three groups of the PSTs 
demonstrated stronger theoretical understanding of probability which align with findings in the 
literature (Batanero et al., 2016). These groups were able to demonstrate understanding of 
experimental probability by the end of working on the task.   

Except for the last group, the PSTs worked on our task without formal introduction to statistical 
or populistic concepts related to the tasks. This did not limit them from engaging important concepts 
that are critical for this task. Their discussions were informal and used non-standard vocabulary. 
Additionally, we did not ask PSTs to discuss certain ideas when investigating the fairness of the dice. 
It was interesting to see how all the groups develop similar strategies. This provides important 
implications for designing tasks that aim to help PSTs develop their knowledge of probability and 
statistics.  
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The binomial distribution is important for its connections to probability, sampling proportion, and 
inference. This research describes preservice secondary mathematics teachers’ understanding of the 
binomial distribution in the context of an investigative task. A three-tiered framework was developed 
and used to classify preservice teachers’ understanding, with implications for further research on the 
same or various statistical concepts. 

Keywords: Data Analysis and Statistics, Teacher Education-Preservice 

Introduction 
Statistics education research has made great strides in recognizing common misconceptions and 

working on best practices to promote students’ statistical thinking. To add to research on student 
thinking in statistics, this research study investigates teachers’ understanding of a particular concept, 
the binomial distribution. The binomial setting is important for its stand-alone use, but also for the 
opportunity it provides to connect ideas related to probability, sampling proportions, and inference 
(Kazak, 2010). Thus, the research question is: "How do preservice secondary mathematics teachers 
(PSTs) understand the binomial distribution?" The frameworks used to analyze PSTs’ understanding 
are the developmental levels described in the GAISE Report (Franklin et al., 2007) and the statistical 
habits of mind in the Framework for Supporting Students’ Approaches to Statistical Investigations 
(SASI, Lee & Tran, 2015). 

Literature Review 
The main focus of the task used in this study is to introduce students to the binomial distribution 

and to encourage conceptual thinking about the probabilities of certain outcomes in that setting. 
Students have shown evidence of struggling with probability (Batanero, Henry, & Parzysz, 2013), 
inference (Harradine, Batanero, & Rossman, 2011), and repeated sampling (Harradine et al., 2011); 
the concrete binomial setting examples can help bridge these gaps. Students will be able to see what 
constitutes a “weird” or unlikely result by comparing it to an intuitively calculated expected value. 
For example, students will see that they are unlikely to get six or more questions correct when 
randomly guessing on a ten-question quiz. The binomial setting in the task also allows PSTs to see 
how sample size affects experimental probability and its relationship with theoretical probability. 
Combining ideas of data and probability before approaching formal inference can be useful for 
students (Kazak, 2010). 

Students have intuitions about combinatorics that sometimes conflict with mathematics. For 
example, they may not attend to order when it is actually important for the question (Abrahamson, 
2009; Kazak, 2010). They generally believe that the probability of flipping three heads and then one 
tail is greater than the probability of flipping four heads in a row, even though these are equally 
probable when you consider order (Abrahamson, 2009). 

The simulation is helpful in allowing students to actually see different “quiz attempts” and the 
results happen in real-time. It also helps them see the probabilities at work. They would be very 
shocked to see all ten of the answers be correct, and much less shocked to see none of them correct. 
The fact that students first “take the quiz” by randomly guessing and then use the computer to 
simulate many more repetitions follows the recommendation of doing a tactile simulation before 
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using technology (Chance & Rossman, 2006). The TinkerPlots simulator specifically is used in this 
study because it is possible to actually see the questions being randomly answered, avoiding the 
“black-box” technology problem (Chance & Rossman, 2006, p. 5). Overall, students should have a 
concrete idea of the binomial setting after completing the task. Students will develop an informal 
sense of how to combine data and probability to predict certain results. The level of their 
understanding is the main focus of this research project. 

Framework 
The theoretical framework that forms the basis of this research is the SASI framework, which is 

an extension of the framework in the GAISE Report (Franklin et al., 2007). The GAISE framework 
combines the investigative cycle and the different levels of student understanding during each phase 
of the cycle. For example, for the first phase, Formulate Question, the framework describes student 
thinking at each level, with Level C being the most sophisticated statistical thinking. The levels are 
not associated with an age or grade level, but rather assess students’ current level of thinking. The 
SASI framework identifies specific statistical concepts, called statistical habits of mind, to which 
students should attend at different phases of the investigative cycle (Lee & Tran, 2015). The SASI 
framework was used to pinpoint concepts related to the binomial setting to which students should be 
attending. 

Methods 
Data were collected from 12 female PSTs who were enrolled in a 400-level course on teaching 

mathematics with technology offered at a large public university. They were given a task that asked 
them to go through the investigative cycle of a statistics problem in a binomial setting. They used the 
software program TinkerPlots to help them visualize the simulation. The original task (taken from: 
http://apstatsmonkey.com/StatsMonkey/Statsmonkey.html) was modified to encourage Level B and 
Level C thinking according to the GAISE framework (Franklin et al., 2007). Written responses to the 
task were used to assess their level of understanding according to the A, B, C levels of the GAISE 
framework (Franklin et al., 2007).  

Results 
The results come from the analyzed data collected in the form of the written responses given by 

the students on the last section of the task. The GAISE (Franklin et al., 2007) and SASI (Lee & Tran, 
2015) frameworks provide a pathway for analysis that involves categorizing PSTs’ responses 
according to Levels A, B, and C, with C being the deepest level of understanding. The GAISE 
framework focuses on understanding at the different stages of the investigative cycle, rather than on 
specific statistical topics. For this reason, the framework’s structure was used to develop similar 
levels of understanding specifically for the binomial distribution context. The “statistical habits of 
mind” (Lee & Tran, 2015) were used to identify concepts on which students should be focused for 
each level of understanding. 

PSTs’ responses that indicated a firm understanding of the binomial setting had some common 
characteristics, and attended to related statistical habits of mind. Those with correct responses 1) 
include a context where it is possible to know that every event has the same probability and that all 
events are independent, 2) attend to variability when predicting likely/unlikely values, and 3) pose 
statistics questions appropriate for a binomial setting. PSTs’ responses with all three characteristics 
were considered to have a Level C understanding (n=4). PSTs with two of the three were considered 
to have a Level B understanding (n=3). Responses that included none or only one of the three, but 
were still in the realm of the binomial setting (e.g. outcomes are success or fail, probability is 
involved, expected value is used) were indicative of a PST with a Level A understanding (n=5). 
Sample responses are shown in Table 1. 
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Table 1: Task Questions and Sample Responses from each Level of Understanding 
Questions from Task Level C Response Level B Response Level A Response 

1. What is another binomial 
setting you can think of that 
fits these characteristics? 
(i.e., the four conditions of 
the binomial setting) 

1. Flipping a coin a set 
number of times (ex: 30) 
success (head) failure (tails) 
fixed observations (30) 
observations are 
independent, P(correct)=.5 

1. Rolling a die 15 times to see 
if "1" appears. (1/6 chance each 
time & each is independent). 

1. Cards-standard 
deck 

2. In the setting you have 
chosen, pose an interesting 
question you can answer 
using experimental and 
theoretical probabilities 

2. John and his brother are 
betting that whoever’s end 
of a coin appears most, has 
to do the others dishes for 
the week. Who will have to 
do the dishes if John chooses 
heads and his brother 
chooses tails and they repeat 
the process 30 times? 

2. Does one number appear 
more often, or is there a higher 
probability for 1 # than for 
others. 

2. What is the 
probability of 
pulling a heart 
suited card in 10 
pulls from a deck. 

3. If you define the number 
of successes to be a random 
variable Y, what values of Y 
do you expect to be most 
likely? Why? 

3. y=15, the numbers closest 
to 15 because as you repeat 
the task many times, the 
totals should be close to the 
actual probability. 
(.5)(30)=15 

3. Y=# successes. 2 or 3 
because there's a 1/6 chance & 
15 rolls --> 2.5 
(1/6)^2=.0278 --> low but 
possible. 
lower y more likely to occur. 

3. between 2-3 
because the 
probability is 25% 
(shows work for 
52/4=13) 

4. What values of Y do you 
expect to be least likely? 
Why? 

4. The numbers further away 
from 15, on both ends (+ or - 
15) because you are straying 
away from numbers that are 
reasonable from the 
probability 

4. Numbers from 5-6 because 
the probability of rolling a 1 5-
6 is (1/6)^5=.000129 which is 
extremely low. The higher y is, 
the less likely it will happen. 

4. 5-10 would be 
least likely for the 
same reasons as 
other example 

 
It is not enough to judge that a PST is able to state that all observations in a binomial setting have 

the same probability of success. PSTs should also be able to produce or identify a context in which it 
is possible to know that is the case. In the Level C example given to item 1, this PST was able to 
produce an example on her own that satisfies the conditions. In contrast, the Level A example gives a 
situation with too little detail to infer that she has produced a satisfactory binomial setting. This is 
also true for the condition that all observations are independent. PSTs should be able to produce or 
identify a context in which that is true. 

PSTs with a deep understanding should also have an awareness of the likelihood of specific 
outcomes. This includes attending to variability when predicting likely or unlikely values. Although 
the binomial setting allows for theoretical probability calculations, PSTs should understand that data 
sampled from simulations or real-world contexts will not match theoretical probabilities. When PSTs 
were asked to predict values, many calculated the expected value. For example, the Level C example 
answer to item 3 provides the “actual probability” (when she has calculated expected value) and 
suggests that likely outcomes will lie around that value. She has attended to variability, but not 
combinatorics. The Level B example provides a rare appeal to theoretical probability, but leaves out 
the combinatoric component and independent probabilities of failures. The sample Level C answer to 
item 4 shows consideration for variability, using language like “the numbers closest to” and “the 
numbers further away.” In contrast, the Level B PST chooses two numbers deemed likely and two 
numbers unlikely. 

Finally, PSTs should be able to produce an investigative question that requires a statistical, not 
mathematical, answer, appropriate for a binomial setting. For example, the item 2 Level C Example 
provides an appropriate statistical question in her binomial setting that can be answered using 
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theoretical probability calculations, or simulations. In contrast, the Level A Example provides a basic 
probability question that does not depend on the binomial setting.  

Discussion 
Without overgeneralizing from this small sample, the results allow deeper insight into the types 

of understanding involving the binomial setting, especially in the context of an investigative task. In 
general, the binomial distribution has not been a focus of much research, even though it is a 
foundation for the concept of sampling proportions. The framework used for this study can be used to 
inform future research on the topic, and serve as a model for similar frameworks for a variety of 
statistical concepts. 

The PSTs’ responses to questions on the binomial setting after the investigative task show a 
majority of Level A and Level C understanding, with fewer in the middle. The tactile and electronic 
simulations, and the real-world context of the task, may have aided the strong responses. It was 
beyond the scope of this research to investigate PSTs’ exposure to binomial distribution prior to the 
lesson; follow-up research should consider this aspect. In general, PSTs did exhibit struggles with 
applying the four conditions of the binomial setting to novel situations, attending to variability when 
predicting outcomes, and producing statistical questions that went beyond basic probability. This 
echoes research on student misconceptions. 

References 
Abrahamson, D. (2009). Orchestrating semiotic leaps from tacit to cultural quantitative reasoning—The case of 

anticipating experimental outcomes of a quasi-binomial random generator. Cognition and Instruction, 27(3), 
175–224.  

Batanero, C., Henry, M., & Parzysz, B. (2013). The nature of chance and probability. In G. A. Jones (Ed.), 
Exploring probability in school: Challenges for teaching and learning. (pp. 16–42). Kluwer Academic 
Publishers.  

Chance, B., & Rossman, A. (2006). Using simulation to teach and learn statistics. In A. Rossman & B. Chance 
(Eds.), Proceedings of the 7th International Conference on Teaching Statistics. Voorburg, The Netherlands: 
www.ime.usp.br/~abe/ICOTS7/Proceedings/PDFs/InvitedPapers/7E1_CHAN.pdf 

Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Schaeffer, R. (2007). Guidelines for 
assessment and instruction in statistics education (GAISE) report: A PreK-12 curriculum framework. 
Alexandria, VA: American Statistical Association. 

Harradine, A., Batanero, C., & Rossman, A. (2011). Students' and teachers' knowledge of sampling and inference. In 
C. Batanero, G. Burrill, & C. Reading, Teaching Statistics in School Mathematics: Challenges for Teaching and 
Teacher Education (pp. 235-246). New York: Springer. 

Kazak, S. (2010). Modeling random binomial rabbit hops. In Lesh, R., Galbraith, P. L., Haines, C. R., & Hurford, 
A., Modeling Students’ Mathematical Modeling Competencies (pp. 561-570). Springer.   

Lee, H., & Tran, D. (2015) Framework for Supporting Students’ Approaches to Statistical Investigations (SASI). 
 



Statistics and Probability 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1064 

THE MIDDLE GRADES SETS INSTRUMENT: PSYCHOMETRIC COMPARISON OF 
MIDDLE AND HIGH SCHOOL PRE-SERVICE MATHEMATICS TEACHERS 

 Leigh M. Harrell-Williams Jennifer N. Lovett Rebecca L. Pierce 
 University of Memphis  Middle Tennessee State University Ball State University 
Leigh.Williams@memphis.edu Jennifer.Lovett@mtsu.edu rlpierce@bsu.edu 
 
 M. Alejandra Sorto Hollylynne S. Lee Lawrence M. Lesser  
 Texas State University NC State University The University of Texas at El Paso 
 sorto@txstate.edu Hollylynne@ncsu.edu lesser@utep.edu  

This study reports psychometric evidence for the use of the Middle Grades Self-Efficacy to Teach 
Statistics (SETS-MS) instrument for both middle and high school pre-service mathematics teachers. 
Results indicate the reliability from scores is similar for both groups, and there were no statistical 
differences in the subscale means between the groups. This evidence suggests the instrument is 
appropriate for use with either population of pre-service mathematics teachers. Suggested SETS-MS 
uses include measuring self-efficacy after the implementation of recommendations from the ASA’s 
SET report (Franklin et al., 2015). The impacts of these results are discussed within the paper. 

Keywords: Data Analysis and Statistics, Teacher Beliefs, Middle School Education, Teacher 
Education-Preservice 

While the National Council of Teachers of Mathematics has long advocated for the inclusion of 
statistics and probability in high school mathematics curricula (National Council of Teachers of 
Mathematics, 2000), the adoption of the Common Core State Standards for Mathematics (CCSSM; 
National Governors Association Center for Best Practice & Council of Chief State School Officers, 
2010) has increased the emphasis on statistics in these grade levels. Mathematics teacher education 
programs are faced with the challenge of preparing pre-service teachers (PSTs) to teach statistics. 
With the release of the American Statistical Association (ASA)’s Statistical Education of Teachers 
report (SET; Franklin et al., 2015), we are at a crossroads in mathematics teacher preparation in both 
research and practice. While the recommendations for appropriate content and supports for each 
certification/licensure level in the SET report are an initial start, researchers and mathematics 
educators still need to evaluate the practices in teacher education programs that increase teacher 
efficacy to teach statistics and develop teachers’ statistical habits of mind using psychometrically-
sound measures.  

The two grade-level-specific versions of the Self-Efficacy to Teach Statistics (SETS) measure 
teacher efficacy to teach middle and secondary students the skills to conduct specific statistical tasks, 
based on the Guidelines for Assessment and Instruction in Statistics Education (GAISE) Pre-K-12 
Report (Franklin et al., 2007) and the CCSSM. The Middle Grades version (SETS-MS; Harrell-
Williams, Sorto, Pierce, Lesser, & Murphy, 2014) aligns with the CCSSM standards for grades 6-8. 
The SETS-MS instrument was validated with PSTs seeking licensure that included some portion of 
grades 5-8. However, the grade levels covered by some states’ secondary licensure/certification 
include some middle grades in addition to high school, so the SET-MS instrument needs to be 
evaluated using high school PSTs as well. 

Thus, the purpose of this study was to compare psychometric performance of the SETS-MS 
instrument using two samples of PSTs, one that is seeking licensure/certification that includes at least 
one of grades 5-8 (referred to as “middle grades” in this paper) and one seeking high school 
licensure/certification that focuses on grades 9-12 (referred to as “high school”). Specifically, the 
study sought to answer the following research questions about the differences between middle grade 
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and high school PSTs: Do the scores and reliability of the scores from the two SETS-MS subscales 
differ? Does the distribution of item response category usage differ? Additionally, is there evidence 
of measurement invariance? 

Methods 

Participants 
The participants came from two separate studies using the SETS instruments. The first study 

included a convenience sample of 309 PSTs whose intended licensure/certification was referred to as 
the “Middle Grades” PSTs. Data were collected across four different large public institutions of 
higher education in four states (IN, TX, OK, KY) in the US. Approximately 78% of the participants 
were female and predominately self-identified as Caucasian (88%).  

The second study included 290 PSTs from 20 universities in the United States with secondary 
mathematics teacher education programs, referred to as the “High School” PSTs. While two 
universities were selected from convenience, the other 18 institutions spanning 14 states in the U.S. 
were selected because at least one faculty member participated during 2002-2014 in a program 
(funded by either ASA or NSF) to increase the emphasis of statistics education of teachers at that 
institution. Similar to the first study, the participants were predominately female (70.3%) and 
approximately 82% self-identified as Caucasian. While these percentages seem high, they follow 
national trends and are similar in demographics to pre-service teachers in other studies on teacher 
efficacy (Duffin, French, & Patrick, 2012; Knoblauch & Woolfolk Hoy, 2008). 

Instrument 
The SETS-MS has 26 items using a 6-point Likert scale, with 1 = not at all confident and 6 = 

completely confident. Harrell-Williams et al. (2014) provides information regarding instrument 
development and evidence for reporting two subscales for the SETS-MS instrument, identified as 
“Reading the Data - Level A” and “Reading Between the Data - Level B”.  

Analyses 
The analyses in this paper fall under two categories: those done at the subscale level and those 

done at the item level. Cronbach’s alpha was calculated as reliability estimates for scores from the 
two aforementioned subscales comprised of the 26 middle grades SETS items. MANOVA was used 
to determine if the means of the two correlated subscales scores differed for middle grades and high 
school PSTs.  

Three item-level analyses were completed. Item means, classical test theory measures of item 
difficulty, were obtained for each PST sample. Chi-squared tests of homogeneity of proportions 
compared the distribution of response categories percentages across the groups for each item. The 
Benjamini–Hochberg procedure (1995) controlled the false discovery rate for the 26 Chi-squared 
tests, using a false discovery rate of 0.05. Lastly, differential item functioning (DIF) was assessed 
across the pre-service teacher groups using the Wald test method in IRTPRO (Cai, du Toit, & 
Thissen, 2011), with item estimation occurring within each subscale. In general, DIF was assumed to 
exist if any of the Wald test p-values were smaller than 0.05. The Benjamini–Hochberg procedure 
was also employed in the DIF analysis to minimize the false discovery rate. 

Results 

Subscale Analyses 
The Cronbach’s alpha reliability estimates for the subscales exceeded 0.90 for both the middle 

grades and high school PSTs (see Table 1), indicating very little measurement error in the subscale 
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scores and almost no difference in the reliability across groups. According to the MANOVA results, 
the mean subscale scores for Level A and Level B were not significantly different across the two 
groups, F(2,596) = 0.037,  p = 0.964.  

 

Table 1: Subscale-Level Results 
  Middle Grades PSTs High School PSTs 

Subscale Number 
of Items 

Cronbach’s 
Alpha Mean SD Cronbach’s 

Alpha Mean SD 

Reading the Data 
(Level A) 11 .92 4.54 .91 .93 4.55 .81 

Reading Between the 
Data (Level B) 15 .94 4.11 .98 .93 4.10 .84 

Item-Level Analyses 
For the Level A items (items 1–11), the item means ranged from 4.26 to 4.86 for the high school 

PSTs and from 4.28 to 5.01 for the middle grades PSTs. For Level B, the item means ranged from 
3.45 to 4.72 for the high school PSTs and from 3.62 to 4.65 for the middle grade PSTs. The observed 
difference in item means indicates the two groups were likely responding differently to some items. 
The chi-squared tests of homogeneity of proportions in response category usage revealed that middle 
grade PSTs responded differently than high school PSTs on 13 of the 26 items. Five of these items 
were from Level A (items 4-7, 10), while eight were Level B items (items 12, 14-19, 22). The 
majority of these items addressed creating or using specific visual displays to summarize, describe or 
compare distributions (dotplot, histogram, boxplot). In most cases, the middle grades PSTs were 
using the higher response categories (5 or 6) with higher frequency than the high school PSTs, for 
whom 5 was the category with the highest frequency. All p-values for the Wald tests for evaluating 
differential item functioning across the two groups of PSTs were 0.82 or greater, indicating that the 
items did not perform differently across the groups when participant self-efficacy levels were taken 
into account.  

Discussion 
The current SETS-MS instrument seems appropriate for use in a mixed licensure/PST audience. 

The results showed no statistical differences in mean scores or reliability at the subscale level 
between middle and high school licensure/certification candidates. The differential item functioning 
analysis indicated when participants’ level of self-efficacy was taken into account, the items 
performed in the same manner. There were slight differences in response category usage at the item 
level with middle grades PSTs using 5s and 6s with more frequency, while high school PSTs used 5s. 
However, there was not enough difference across all PSTs to come through as a difference in means 
in the scores of either the “Reading the Data (Level A)” or the “Reading Between the Data (Level 
B)” subscales. This suggests that middle school PSTs feel more confident in teaching graphical 
representations than high school PSTs. Since reading and interpreting graphical representations are 
present in middle grades and high school CCSSM, to increase their confidence, high school PSTs 
need more opportunities in their coursework to engage with graphical representations.   

A limitation of this study is that both samples were not a random sample of PSTs at either 
licensure/certification level or across the entire US. However, a complete list of all institutions that 
prepare middle and high school PSTs was not available. Most studies in mathematics education have 
been conducted at a small number of institutions, while our data included 23 institutions from 16 
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different states, collectively. Furthermore, the demographics of our participants reasonably mirror 
national demographics in race and gender for PSTs.  

Conclusion 
As suggested changes to preparation of middle and high school mathematics teachers, as 

described in the ASA’s SET report (Franklin et al., 2015) are implemented nationally, the hope is that 
PSTs will be more prepared and confident to teach statistics. The evidence provided in this study 
indicates that the SETS-MS instrument is a psychometrically-sound instrument for mathematics 
educators to use in measuring changes in their PSTs, as teacher preparation programs implement 
recommendations in the SET report. For example, when using the SETS-HS instrument to evaluate 
high school PSTs statistics teaching efficacy, Lovett (2016) found that taking Advanced Placement 
Statistics in high school had a positive influence on their statistics teaching efficacy. As a future 
direction of research, similar studies can be carried out psychometrically comparing PSTs to 
inservice teachers’ scores on the SETS-HS.  
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In our modern information age societies that are drenched in data, statistical literacy is a crucial 
literacy for citizens to be able to actively engage in their society and government. Statistical literacy 
is intended to be developed through the instruction of statistics concepts in school mathematics 
classrooms. However many mathematics teachers have little to no prior experience with statistics, 
which means many teacher need to draw upon resources to help teach statistics concepts one of 
which is their textbooks. The objective of this study is to investigate what contextualized situations 
are available for students for the use of statistics by two major high school mathematics textbook 
series.  

Keywords: Data Analysis and Statistics, Curriculum Analysis, High School Education  

Problem Statement  
Statistics and data based arguments are common in people’s everyday lives today and are used in 

a number of powerful ways including to guide government policy, business decisions, influence 
public opinion, and to influence consumers in making purchases. Societies today are drenched in data 
(Steen, 2001) and this trend is only increasing in our current information age. Statistical literacy has 
become a crucial literacy for citizens today (Franklin et al., 2007). 

In the context of schooling in the United States, the development of statistical literacy is 
supposed to come from the teaching of statistics concepts in middle and high school mathematics 
classes (Franklin et al., 2007; National Governors Association Center for Best Practices [NGA 
Center] & Council of Chief State School Officers [CCSSO], 2010). Unfortunately, most mathematics 
teachers have had little to no prior experience with statistics (Shaughnessy, 2007). So how then do 
teachers with little experience in statistics teach statistics concepts to their students? One very likely 
resource for teachers to rely on is their textbooks. Scholars have reported on the influence of 
textbooks on shaping classroom instruction and students learning (Fan, Zhu, & Miao, 2013). In line 
with the conference theme of crossroads, the broad objective of this study is to consider what kind of 
contextualized situations high school mathematics textbooks give students access to explore with 
statistics and to consider a possible change in route of the types of contextualized situations used in 
mathematics textbooks for the use of statistics. 

Background 
In statistics, “data are not just numbers they are numbers with a context” (Cobb & Moore, 1997, 

p. 801). This makes the consideration of context central to statistical enquiry (Wild & Pfannkuch, 
1999). This is also a departure from the mathematics commonly taught in school where numbers are 
frequently presented and used in their abstract form without any connection to context (Gattuso & 
Ottaviani, 2011). In statistics the analysis of data cannot be considered without thinking about the 
context of the data (Cobb & Moore, 1997; Franklin et al., 2007; Wild & Pfannkuch, 1999). Context 
determines how and what data to collect, as well as how to analyze the data and interpret the results. 
This results in a constant interplay between considering a statistical problem and the context of the 
problem (Wild & Pfannkuch, 1999). For an instructor to teach statistics concepts well they must 
know more than just the relevant theory, but they must also have a vast supply of relevant contexts 
with which to see and apply the theory too. In mathematics on the other hand a knowledge of theory 
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is generally enough to create problems and examples on the spot (Cobb & Moore, 1997). Due to such 
disciplinary differences the consideration of context in school mathematics classrooms is important.  

In spite of the influence of textbooks on the enacted curriculum of the classroom there is 
surprisingly little work specifically focusing on investigating the statistics content of school 
mathematics texts in the context of the U.S. Much of the previous research has been focused on 
analyzing the proportion of middle and elementary school texts that focus on statistics content and 
their alignment to the GAISE Framework (Bargagliotti, 2012; Jones et al., 2015; Pickle, 2012). Only 
one study focused on the statistics content of high school mathematics texts, which was a dissertation 
looking at the learning trajectories related to bivariate data in a single text (Tran, 2013). Based on this 
review of the literature there seems to be a significant lack of research on the statistics content of 
high school mathematics textbooks  

Methodology  

Research Question 
The specific research question to be considered in this study is: how are the contextualized 

situations appropriate for the use of statistics formed by the statements of two major high school 
mathematics textbook series? 

Selected Texts 
In a survey of a nationally representative sample of U. S. mathematics teachers, Banilower et al. 

(2013) found the top two companies making up the market share of high school mathematics texts 
are Houghton Mifflin Harcourt with 35% (SE=1.6), Pearson with 30% (SE=2.0). The data for this 
survey was collected during the initial transition to the CCSSM (NGA Center & CCSSO, 2010). 
Therefore, I chose to extrapolate the survey results and select Houghton Mifflin Harcourt and 
Pearson’s most recent and CCSSM aligned textbook series to study predicting that they would still 
make up a majority of the market share. For Pearson I analyzed their Algebra 1, Geometry, Algebra 2 
Common Core curriculum (Randall et al., 2015) and for Houghton Mifflin Harcourt I analyzed their 
Algebra 1, Geometry, and Algebra 2 curriculum (Kanold, Burger, Dixon, Larson, & Lienwand, 
2015). All lessons with statistics standards as the explicit focus were included as well as lessons on 
modeling that included modeling data sets with variation. Counting rules and the development of 
theorems on the mathematics of probability were excluded, consistent with the GAISE framework 
(Franklin et al., 2007) recommendations.  

Archeology 
For this study I drew upon Foucault’s (1972) methodology of archaeology, which is focused on 

the study of discourse to interrogate the “regimes of truth” or knowledge, constituted by the rules or 
regularities of statements in discourse. From this perspective a discourse consists of a regulated set of 
rules that are generally taken for granted, and also constrain and “specify what is possible to speak, 
do, and even think, at a particular time” (Walshaw, 2007, p. 19). Statements in discourse operate in 
different ways one of which is, “materiality (which is not only the substance or support of the 
articulation, but a status, rules of transcription, possibilities of use and re-use)” (Foucault, 1972, p. 
115). For this study the operation of materiality was considered in terms of the contextual situations 
in which the use and re-use of statistics is formed as appropriate or normal. From this perspective 
regularities in the contextualized situations (e. g. rolling dice, test scores, profit, personal 
characteristics, science, etc.) presented in high school mathematics textbooks influence and regulate 
in what contextualized situations that teachers and students use statistics in the future.      

The focus in this analysis was on the regularities in the types of contexts that were presented in 
the text and in what form data based information was provided for each (if at all). The forms in 
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which the data were presented that were considered included the types of variables described in the 
contextualize situations (quantitative or categorical), what sample size was described (if any), 
whether raw data, summary statistics, or representations were provided with the contextualized 
situation, and finally whether or not real data was provided with the contextualized situation. I 
operationalized real data as data that was provided with a citation of its source. The analysis of the 
texts was done through an iterative process of multiple readings of the data.  

Findings 
In analyzing the two textbook series a number of strong regularities came out in the types of 

contextualized situations that were presented for investigating with statistics, which I used to create 
contextual categories (see Table 1). There was little variation from Algebra I to Algebra II texts 
within both series and there was also a significant amount of overlap in the categories between the 
two series. 

Table 1: Contextual Categories 
Pearson Contextual Categories HMH Contextual Categories 

Entertainment/Sports/Exercise 
School/Testing 
Science/Weather 
Personal Characteristics 
Voting/Personal Preferences 
Transportation/Travel 
Business/Economy/Sales  
Manufacturing/Product Quality 
Food/Farming/Agriculture 
Rolling Dice/Random Draw 
Making Decisions/Fair Decisions (Only Algebra II) 

Entertainment/Sports/Exercise 
School/Testing 
Science/Weather 
Personal Characteristics 
Voting/Personal Preferences 
Census/Population data 
Transportation 
Business/Sales 
Manufacturing/Product Quality 
Food 
Pets/Animals 
Work/Salary/Savings 
Random Draw/Flip coins/Roll dice (Only Algebra II) 
Health/Medical (Only Algebra II) 
Fair Divisions/Outcomes (Only Algebra II) 

 

In considering the forms in which the data based information for each task was presented, 
contexts were presented in a wide variety of forms. Some statements included no data-based 
information, while others only provided descriptive statistics such as the measures of center or spread 
for a situation. Some statements presented data in representations, which included histograms, bar 
graphs, line graphs, scatterplots, box and whisker plots, data tables, frequency tables, and two-way 
tables. Some statements presented ordered or raw data. A mixture of any number of these forms was 
also observed. No statements from the Houghton Mifflin Harcourt text contained real data, while 
Pearson did present some statements with real data. In the statements only one or two variables were 
presented with any regularity, if any were at all. For those statements that did present data, the mean 
sample size was 11(7.4) ranging from 3 to 50 in the Pearson textbooks and the mean sample size was 
12 (10.5) ranging from 3 to 100.     

Discussion 
It is promising that so many categories of contextualized situations were present in the textbooks 

as it has been pointed out in the past that statistics is often taught abstractly and focused on 
decontextualized calculations in mathematics classes (Gattuso & Ottaviani, 2011). However, the 
promise ends there as the contexts in which the texts construct as appropriate for the use of statistics 
generally go no further than those typical of small talk, such as the weather, sports, or personal 
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preference, or related to work or business. The types of contextual situations presented in the texts 
are predominantly neutral with almost no controversial issues like those that citizen’s face in their 
daily lives being presented. Some of the most prevalent issue societies are facing today including 
immigration, race, gender identity, women’s rights, climate change, water access and quality, gun 
rights, gentrification, urbanization, wealth distribution, poverty, and government spending are not at 
all present. Essentially these texts are not constructing statistics as useful for one to make sense of the 
world around them. This means there is serious need for curriculum to be created that fosters students 
to make sense of the world around them through statistics. 
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A major component of the statistical thinking involves understanding and describing 
variability in data. Moore (1997) points out the importance of both variability and the measuring 
and modeling of variability in statistics learning. However, Reading and Shaughnessy (2004) 
claims that there was a lack of attention to the measurement of variability, which results in a gap 
in students’ concepts of variability. Moreover, the Guidelines for Assessment and Instruction in 
Statistics Education (GAISE) (2007) has suggested that the use of technology will help students 
develop a better sense and understanding of variability through more engaged data analysis tasks 
in upper elementary and middle school grades. However, little research has been done regarding 
how K-8 pre-service teachers (PSTs) have developed an understanding for variability for 
themselves in preparation of teaching the topic to children. What experiences are being 
developed that prepare K-8 PSTs to understand variability while exploring data with 
technological tools such as dynamic statistical software?  

This study analyzed tasks used in a statistics course designed for elementary/middle school 
PSTs that focused on developing PSTs’ understanding of measures of variability. A case study 
methodology was used with data collected from the statistics content course in Western 
Michigan University, where dynamic statistical software, TinkerPlots, was used almost daily in 
class. PSTs’ class works and classroom observation notes were analyzed and coded based on 
Garfield and Ben-Zvi’s (2005) framework of seven components that comprise a deep 
understanding of variability. Based upon the preliminary findings from tasks and class sessions 
examining variability in data, specifically that of making sense of the mean absolute and 
standard deviation measures, we see that PSTs are beginning to develop a more meaningful 
understanding of the measures of variability with the help of dynamical statistical software such 
as TinkerPlots. TinkerPlots provided several means for students dynamically engaging with the 
data while thinking about spread. Such work is needed in order to help our pre-service teachers 
be current in their understanding of the use of technology tools in the teaching and learning of 
statistics.  
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A major challenge for students is to apply what they have learned in mathematics classrooms in 
other contexts, and it is a task for their teachers to prepare them to do so. In this poster we describe 
the ways in which students applied their knowledge of the concept of slope and how that knowledge 
evolved within a science lesson on density. The lesson was part of an integrated science, technology, 
engineering, and mathematics (STEM) unit where students studied the physical properties of 
minerals as they worked toward designing a process for sorting minerals using those physical 
properties. In the lesson studied, students compared the densities of two minerals by examining the 
scatterplots of mass vs. volume for several samples of two different types of minerals. The unit and 
lesson were specifically designed to support students in developing meaningful understanding of 
both science concepts such as density and mathematics concepts such as proportional relationships 
and slope (Moore et al., 2014). 

The participants in this study were four groups (13 total) of eighth grade and two groups (six 
total) of sixth grade students at schools in two different mid-western states. Students were 
interviewed about their understanding of linear relationships in data and the specifics of slope both 
before and after the observed lesson. These task-based interviews presented students with a 
scatterplot of data and a graph showing linear relationships in context and asked them to interpret and 
answer questions about each. Additionally, audio and video recordings were captured during their 
group work sessions, and the lessons were observed by the researchers. 

Students began the unit with a variety of understandings about slope and linear relationships in 
data. Some students began with very little knowledge, while other students were able to demonstrate 
fairly sophisticated understanding of the concepts. After the lesson on density and slope, most 
students demonstrated a better understanding of the concepts or were able to articulate what they had 
already demonstrated more clearly. Additionally, several of the students were able to point directly to 
things that they had done during the lesson which helped them to better understand the interview 
tasks. However, not all students were able to apply what they had learned or demonstrated in one 
context in the other contexts. This was true both for students who were able to demonstrate 
knowledge during the interviews but not during the lesson and visa versa. This observation is 
consistent with research arguing for the situated nature of learning (e.g. Lesh, 2010; Cobb, 1999). 
Implications for teaching and curriculum design are addressed. 
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This project builds on by research done by Thanheiser et al. (2011), which investigated 
elementary preservice teachers’ (PSTs) statistical thinking. In one of the tasks given to PSTs, they 
were asked to provide prices of seven potato chip bags with a specified average. The PSTs tended to 
provide data close to the average; however, the authors noted that the potato chip prices context may 
have influenced responses to be close to the expected value, as prices are often the same across 
stores. The authors asked “would PSTs construct data sets with a wider variability if the context was 
not restrictive?” (Thanheiser et al., 2011, p. 545) We hope to not only answer that question, but also 
provide further insight into how PSTs perceive variability of different contexts. In practice, educators 
should choose a data context in a purposeful way, and this research aims to improve on this practice 
by improving the education of PSTs in relation to statistics and the data context. Wild and 
Pfannkuch’s (1999) framework on statistican inquiry highlights both the omnipresence of variability 
in statistics while also noting that statistical reasoning requires shuffling between the statistical and 
contextual realms of thought. 

Our research question is “How does data context affect how preservice teachers think about 
variability?” To answer this question, we designed a mixed-methods study including a survey and 
interviews with a subset of the survey respondents. We adapted the task from the previous study into 
three tasks, all which prompted students to come up with seven data points from a population that has 
an average of 23, but each of the tasks was placed in one of three data contexts: hourly wages, 
college t-shirt prices, and no context. The survey also included questions to probe PSTs for their 
reasoning. Our sample was 66 students enrolled in math courses for PSTs at a Pacific Northwest 
university, and we randomly assigned each PST to one of the three versions of the survey.  

Survey responses indicated that the wage data context elicited students to provide data with more 
variability than the t-shirt context. One student in the hourly wage context group writing “I thought 
about just writing numbers 20-27 in the boxes… this would be easy, but I didn't think this was a 
realistic salary range. So I changed it to counting by 2's to widen the range ever so slightly.” 
However, our initial review of interview responses indicate that there are several wrinkles in this 
conclusion, and we will present further results from the interviews to better explain the between 
group differences noticed in the surveys. 
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Attitudes toward statistics are considered important outcomes of introductory statistics courses 
because they have been linked with student achievement and because they inform people’s lasting 
impressions of the discipline (Gal, Ginsburg, & Schau, 1997; Ramirez, Schau, & Emmioğlu, 2012). 
These attitudes have been studied since the 1950s, and dozens of instruments have been created 
during this time (Nolan, Beran, & Hecker, 2012; Ramirez et al., 2012). Over this 60-year period, 
there has been substantial evolution in the discipline’s understanding and conception of attitudes. 
These surveys are generally described and reported on in isolation, but few studies have made 
comparisons across instruments. One notable exception is Nolan, Beran, and Hecker’s (2012) meta-
analysis that examined the reliability and validity of 15 instruments designed to measure the attitudes 
of post-secondary statistics students. However, this meta-analysis focused on the surveys and their 
subscales without examining the original items used in the surveys. Statistics education is at a 
crossroads with an increase in research with populations other than undergraduate students, i.e. 
teachers and pre-service teachers. To chart a route forward, this study examines the original items 
used on survey instruments from the past 37 years to 1) provide a more robust understanding of 
attitudes about statistics as enacted in the literature and to 2) clarify how constructs that have used 
common labels (e.g. “values,” attitudes,” and affect”) have been operationalized by different surveys.  

The data for this study were the individual items included on the operational or final versions of 
surveys of statistics attitudes (broadly conceptualized). The final or operational versions of 17 
surveys were found by searching the literature, requesting original dissertations, and contacting 
authors. The data analysis will proceed in two phases. First, the items will be analyzed using an 
inductive process as described by Hatch (2002); the result of this iterative phase will be a set of codes 
representing constructs (and subconstructs) measured by the items from the surveys. Then, each of 
the survey items will be categorized using these proposed codes by the research team. Inter-rater 
reliability will be assessed, and the team will meet to discuss and resolve disagreements. The 
development and description of constructs will address the first goal of this study, and the 
categorization of items using the codes will address the second. 

With an increasing focus on statistics education research with new populations, a rich description 
of attitude constructs and subconstructs that have been valued and assessed in the literature will 
inform future instrument-development projects. Describing how different surveys assess nominally-
similar constructs will also benefit researchers seeking to use or interpret surveys with groups other 
than undergraduates, such as K-12 students and in-service teachers. 
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In this study, we demonstrate how a teacher draws on validating storylines as support for the 
malignant positioning of students within classroom interactions, which reflects broader storylines 
about honors versus non-honors students, mathematical proficiency, and differential access to 
powerful mathematics.  

Keywords: Classroom Discourse, High School Education, Research Methods 

Objectives and Purpose of the Study 
In this paper, we develop an integrated theoretical approach to examine mathematical discourse 

in a high school classroom. Drawing on theories of positioning and the social forces that shape 
interactions, we discuss the storylines, or patterns of interaction based on commonly shared narrative 
conventions (Davies & Harré, 1990), at play within the moment-to-moment interactions between a 
secondary mathematics teacher and her students. The goal of this work is two-fold: (1) to 
demonstrate how validating storylines serve as support for enacted subject positions; and (2) to 
illustrate how malignant positioning can limit students’ engagement in mathematical discourse. 

Theoretical Framework 
In this study, we draw on positioning theory to uncover the ways in which teachers and students 

make sense of one another’s actions within the classroom, something we argue is an integral part of 
mathematical meaning-making. As Davies and Harré (1990) describe, positioning is “the discursive 
process whereby selves are located in conversations as observably and subjectively coherent 
participants in jointly produced story lines” (p. 48). Taken together, storylines and positions are used 
to interpret actions within discourse. The way in which an action gets interpreted by others depends 
on the storylines (and related subject positions) that others believe to be in play. One of the key 
theoretical assumptions of our study is the belief that discourse shapes the positions that are available 
to participants, even as these positions shape the discourse.  

In order to more accurately describe the discursive work that teachers and students do in the 
mathematics classroom, we distinguish between several different types, or what van Langenhove and 
Harré (1999) called “modes,” of positioning, including intentional and malignant positioning. For 
example, on the first day of school, a teacher may clearly outline her expectations for the year in 
order to intentionally position students as having a right to succeed but a duty to work hard. Such 
intentional positioning can be considered part of the discursive work people do every day in order to 
create identities, relationships, and practices, and even to privilege one way of knowing over another 
(Gee, 2014).  

The term “malignant positioning” has been used to describe the way in which Alzheimer's 
patients can be stripped of their social persona and rights in order to be characterized as having less 
ability and status (Kitwood, 1997; Sabat, 2003). As Harré and Moghaddam (2003) explain: 

To say that someone cannot quickly bring to mind certain words is to predicate a certain 
psychological attribute to that person. However, to slide from that attribution to positioning 
someone as no longer having the right to make life decisions for him or herself is an act of 
positioning. (p. 8)  
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We define malignant positioning as acts of positioning that limit the rights and duties of 
individuals or groups. In the mathematics classroom, for instance, to say that a student cannot 
quickly bring to mind the solution to a problem is to predicate a certain attribute to that student 
regarding their mathematical competence. However, shifting from that attribution to positioning the 
student as no longer having the right to engage in powerful mathematics, or mathematics with 
“clout” (Bruner, 1986), is an act of malignant positioning. Sometimes, the attribution in question is 
institutionalized (e.g., tracking students into non-honors and honors courses). As our findings show, 
when teachers draw upon “validating storylines” (Sabat, 2003) to justify acts of malignant 
positioning, students become entrenched in positions with limited rights to powerful mathematics and 
minimal duties (expectations) as students of mathematics. 

Methods of Inquiry 
This study was conducted in Ms. Mason’s Algebra II classroom, which was located within a 

large suburban high school that enrolled approximately 1888 students at the time of this study. 
According to information provided by the school district, 22.89% of the school’s students qualified 
for free and reduced lunch and the teacher to student ratio was approximately 26:1. Ms. Mason, who 
has 7 years of teaching experience, was chosen due to her willingness to provide access to her 
classroom over an extended period of time, which was crucial to gain insight into how teachers and 
students position themselves and one another within mathematical discourse.  

Data Collection and Analysis 
Our goal in analyzing classroom discourse was to examine teacher and student interactions from 

multiple and complementary perspectives. Sources of data included video recordings of 11 classroom 
sessions (approximately 90 minutes each), interviews with the teacher and focus students, and 
mathematical artifacts created by the teacher and students. Data analysis proceeded in three 
overlapping phases: (1) initial, collaborative coding of all classroom videos; (2) micro-analysis of 
focal interactions; and (3) triangulation across data sources. The first phase of data analysis involved 
viewing and coding classroom video from all 11 class sessions. Using qualitative coding procedures 
informed by grounded theory (Strauss & Corbin, 1990), we employed open coding to identify 
concepts and themes for further analysis and axial coding to organize and integrate categories. 

The initial coding process (Phase 1) allowed us to identify focal interactions for more detailed 
micro-analysis (Phase 2). Using a scale (Herbel-Eisenmann et al., 2015) as the unit of analysis, we 
focused on particular utterances and exchanges at the levels of 10^0-10^2, words and interactions 
among people (Lemke, 2000). In order to examine the ways that participants drew on storylines to 
validate positioning acts in moment-to-moment interactions, we foreground these communication 
acts while backgrounding attention to storylines. The third phase of analysis involved triangulating 
our analysis across data sources. In addition to checking and confirming findings and interpretations 
across class sessions, we analyzed and coded video interviews and artifactual evidence. By looking 
across multiple scales, including lessons (10^3), lesson sequences (10^4), and units (10^6) (Lemke, 
2000), we were able to examine the relationships between positions and storylines (Herbel-
Eisenmann et al., 2015). 

Results 
To illustrate instances of malignant positioning and the effects of this positioning on students’ 

engagement in mathematical discourse, we focus on sample interactions between Ms. Mason and her 
students at the 10^2 level, words and interactions among people (Lemke, 2000). In the following 
exchange, Ms. Mason stands at the board, introducing a lesson on how to analyze the behavior of a 
rational function near a vertical asymptote.  
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Ms. Mason: If this was an honors class, what I would have you do is pick x points between -4 and 
4 and plug them into the equation. Then, I'd have you pick x points below negative 4 and 
above negative 4 and plug them into the equation= 

Student: (shift forward, hands coming up in questioning gesture to shoulders): So, why wouldn’t 
we do= 

Ms. Mason: =So now what we're going to do, we're going to look at the calculator. [Pause]. 
We've got enough to get us started, because I need at least these things labeled on the graph.  

The preceding example illustrates how positions and storylines are mutually constituted within 
the everyday workings of the classroom. In Line 1, as Ms. Mason explains her process for graphing 
the local behavior of rational functions using the “honors vs. non-honors” storyline, she concurrently 
introduces an associated set of subject positions that are now made available to others within the 
conversation. As she positions the students in the room as “non-honors,” not capable of achieving the 
same level of rigor that she would demand of more capable “honors” students, she narrows what is 
logically possible (students algebraically determining local behavior of function near vertical 
asymptotes) into what is socially possible (the calculator doing the work of determining local 
behavior) (Harré & Moghaddam, 2003). When a student attempts to challenge this position in Line 2, 
asking “Why wouldn’t we do,” Ms. Mason cuts her off and instead proposes an alternative: “So now 
what we're going to do, we're going to look at the calculator.” The discussion continues: 

Ms. Mason: I'm not going to accept this. I’m not going to accept this. You're going to have to be 
more specific. Some of you, on the cumulative test, when you had a parabola, you did this 
(shakes student’s paper). Nothing labeled. I will not accept that. You have to give me 
something. I will not accept random swooshes (puts paper down on desk). This isn't Nike. I 
need specifics. 

Student: Why are they= 
Ms. Mason: =Get your calculators out. All right. You need to write this in your notes, because 

this is extremely important when you work with rational functions. 
Student: Why are they not there?  
Ms. Mason: They're not actually lines, they're boundaries. Kind of like a fence. Keeps you from 

crossing. 
Student: What did you say this was for? 
Ms. Mason: So, this is rational functions. So, here's what you need to star. This is really crucial—

put all of numerator in parentheses and put all of denominator in parentheses. If you don't do 
that, you are not going to get the right graph. All right? 

In the preceding exchange, Ms. Mason draws on a validating storyline (honors vs. non-honors) in 
an act of malignant positioning that limits the rights and duties of these “non-honors” students. 
Instead of investigating mathematical understandings through the use of multiple representations 
(i.e., numerical or algebraic) as honors students might, non-honors students rely heavily on 
calculators and follow explicit instructions to get the “right” graph. In this case, the larger 
educational storyline about differential access to powerful mathematics validates the positions at play 
in the moment-to-moment interactions between Ms. Mason and her students.  

Discussion 
In a recent commentary, the NCTM Research Committee (2016) suggested that education 

researchers have a right and duty to “intervene to shift these storylines and positionings and to have 
greater impact on policy, practice, and public perception” (p. 103). We agree that researchers can 
play a key role in transforming conversations about the teaching and learning of mathematics. 
However, we also believe that it is equally important to examine the ways in which storylines unfold 
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in the moment-to-moment interactions between teachers and students in classrooms. In these spaces, 
more than mathematics is being created—students create positions and are positioned by others as 
certain kinds of people: a good student, a bad student, a class clown, an honors student, or a non-
honors student. As Morgan (2012) argues, “the challenge is to connect such classroom-level analyses 
to a developed understanding of the broader context” (p. 192). In this study, we demonstrate how 
malignant positioning emerges within the mathematics classroom and reflects broader storylines 
about honors versus non-honors students, mathematical proficiency, and differential access to 
powerful mathematics. Moreover, we highlight the teacher’s role in the ongoing negotiation of such 
positionings, providing insight for those seeking to remove barriers to mathematical engagement 
within their own classrooms.  
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CHANGES IN STUDENT PERSPECTIVES: WHAT IT MEANS TO BE “GOOD AT MATH” 
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This paper describes how a cohort of sixth-grade mathematics students shifted their collective 
understanding of being “good at math” from passive recipiency to active agency. 
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For many students, school in general, and mathematics classes in particular, are places to learn 
that they are not smart. In some cases, student interests and abilities are discouraged as counter to the 
classroom model of good student. Cobb, Gresalfi and Hodge’s “normative identity” accounts for the 
“general and specifically mathematical obligations that delineate the role of an effective mathematics 
student in that classroom” (2009, p. 58). Thus, normative identity can be thought of as the set of 
markers by which a person could identify accomplished learners—if you asked individual students 
what it means to be good at math, what is the consensus? Traditionally, the normative identity of 
“good at math” has been limited to being fast and accurate (Horn, 2007). Classrooms that are 
student- and inquiry-centered often value not only accuracy, but also: bravery in taking risks; 
embracing uncertainty; collaboration; communication; using misconceptions as springboards for 
discussion; the use of multiple representations; and being helpful (Boaler, 2015; Ruef, 2016). There 
is ample evidence telling us that teachers’ beliefs about “good at math” matter (e.g. Gresalfi & Cobb, 
2011). But students also need and benefit from a more open vision of mathematical success (Cohen 
& Lotan, 2014). When there are more ways to be successful, more students succeed. This paper 
describes the shifts in normative identity for 62 middle school students, finding that perceptions of 
what it meant to be “good at math” shifted from the restrictive normative identity of smart, fast, and 
correct, to the more inclusive identity of brave, mistake-making, and able to share one’s thinking.  

The school in this study embraces public sensemaking—the communal act of sharing individual 
student thinking in a public manner, with the goal of better understanding and refining a 
mathematical argument. Research has shown that public sensemaking has the potential to powerfully 
impact student learning (Cohen & Lotan, 1997; Stein & Smith, 2011). Risk-taking is related to 
“growth mindset”—the belief that one gets better at mathematics through effort—as opposed to 
remaining stuck a “fixed” innate level of ability (Dweck, 2006; Ruef, 2016). 

Related to growth mindset, Boaler links “closed” vs. “open” mathematics to student opportunities 
to see themselves in the mathematics they do, and mathematics as relevant to their lives (Boaler, 
1998). Closed mathematics refers to tightly procedure-bound and rule-based mathematics, which 
supports a culture of quick and accurate calculation. Open mathematics refers to opportunities to 
explore, create, collaborate, and invent new methods to make sense of mathematics. Sun (2015) 
found that teachers’ implicit messages of what it means to do mathematics are more impactful than 
explicit messages about having a growth mindset. In other words, practicing what one preaches 
matters—it does not work to tell students to have a growth mindset when the teaching and learning 
environment is infused with closed mathematics. 

Methods 
This report is a subsection of a larger study, which followed a cohort of 62 sixth-grade 

mathematics students across most of the 2015-2016 academic year. The students were divided into 
three classes, and all shared the same mathematics teacher, Ms. Mayen. The students identified as: 
76% Latinx, 15% African American, 8% Asian, and 1% Filipinx. They attended City School, a San 
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Francisco Bay Area middle school that serves a diverse student body drawn from a large urban 
setting. According to the school’s website, more than 91 percent of students qualified for free lunch. 
Ms. Mayen identifies as Latina, trained at a prestigious teacher preparation program, and was in her 
second year of teaching at the time of the study. All names in this study are pseudonyms. 

Data included pre- and post-surveys constructed from 26-item Likert-scale and three short 
answer items (Table 1); field notes; analytic memos; classroom video; interviews with students and 
Ms. Mayen; and three sets of exit tickets. The post-survey was administered on March 18, 2016, to 
accommodate the schedules of both the participants and the researcher. Analysis of interviews, video, 
exit tickets, and field notes included coding for a-priori and emergent codes. The analysis was 
iterative, with emergent themes tested for counter examples, and refined through comparison to 
additional data (Charmaz, 1995). Coding was validated by comparison with trained raters, resulting 
in an average inter-rater reliability ratio of 87 percent.  

Analysis and Findings 

“Good at Math” in August  
On the first day of school, students reported that someone who is good at math is compliant; 

smart; helpful; gets good grades; gets answers quickly; and is focused or pays attention in class 
(Table 1). This normative identity paints a portrait of “passive recipiency” with markers of success 
that map to a traditional classroom, including paying careful attention and following rules, and 
getting answers quickly and accurately (Boaler, 1998; Ruef, 2013; Horn, 2007). Asked to describe 
someone who is “good at math,” Jazmin wrote “They follow directions; do their homework. 
Teacher’s favorite student.” Mia shared “They finish their work faster than other people do.” These 
responses were coded as “compliant” and “speed/fast.” Several students valued peers who help 
others with their mathematical work. This maps to reports from September student interviews 
wherein several students referenced the role of helpers in the classroom, from supporting presenters 
at the board to collaborating on seatwork. Krystal shared that “A person who is good at math is really 
smart. They are good at math and help others at math like teachers. They do hard problems.” Notice 
that she sees the role of a smart and helpful student as being similar to that of a teacher. This was a 
common theme among responses—“smart” is a resource to be shared by helping others. While 
helping is positive, this early version was laced with the notion that smart and helpful people show 
how to complete procedures, which reinforced the idea that “smart” meant “knowing the rules.”  

“Good at Math” in March 
This “good at math” portrait included being focused; making mistakes; having a growth mindset; 

being compliant; explaining well; being smart; presenting one’s thinking, and being helpful (Table 1). 
There is evidence of a shift toward a normative identity of “active agent.” The shift makes sense 
when compared to the norms and culture the classes had co-established with Ms. Mayen (Ruef, 2016). 
Of particular note is the importance of making mistakes and explaining well. The reason for the 
growth in valuing mistakes may be attributed to Ms. Mayen consistently valuing them as important 
for learning and understanding mathematics, which showed up in the student responses on exit 
tickets and survey responses. Barney wrote “How you know someone is good at Math is if they help 
and they make a lot of mistakes.” Ms. Mayen and her students worked hard to establish a culture 
centered on efforts to share and understand one another’s thinking (Ruef, 2016). It follows that the 
students valued presenting one’s thinking publicly, helping, and explaining well.  

Not one student referenced grades on the post-survey, and while students answered the pre-
survey with rigidity in following the “rules” of filling in dots, students modified the Likert-scale 
portion of the post-survey. Some added doodles, one sketched a block letter  (classroom 
shorthand for growth mindset), and some circled rather than shading in dots. This may be an 
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indication that students felt greater agency to exercise creativity in answering the surveys. Montse 
invented a new word, “mistakealable,” to describe math—for her, math is a place where making 
mistakes is an important part of the learning process. The biggest shifts apparent in the Likert-scale 
items illuminate changes in the students’ collective vision of doing mathematics (Table 2). Based on 
results from the paired t-tests of the pre- and post-surveys, students came to value open mathematics, 
creativity, and the power of consensus to determine the validity of an answer. They disagreed most 
strongly that “in math, the most important thing is to get the correct answer.”  

Discussion 
It is clear that Ms. Mayen’s students shifted their beliefs about what it means to be “good at 

math,” but how and why? These students came to see being brave in presenting at the board as a 
necessary precursor to sharing their thinking. Relatedly, sharing their thinking supported deep 
understanding of each other’s perspectives. Perhaps most importantly, making mistakes was central 
to the work of being a good at math. This short report focuses on the shifts that occurred rather than 
the mechanisms that drove those changes. I have reported elsewhere on the careful work done in 
concert between Ms. Mayen and her students to establish the norms and culture of the classroom, 
which were essential to developing safe ground for the risk-taking that public sensemaking demands 
(Ruef, 2016). Ms. Mayen inherited, sought out, and augmented a mathematics curriculum that was 
made up primarily of open mathematics tasks. Further, she negotiated and reinforced norms that 
supported public sensemaking. It is therefore not surprising that collectively, her students took up the 
view that math class was about open mathematics and growth mindset, and that they would be 
successful if they were active agents (Ruef, 2016; Sun, 2015). 

In closing, I share two collective stories drawn from these normative identity composite sketches. 
In the beginning of the year, Ms. Mayen’s students seemed to believe this narrative: Mistakes are bad. 
If I make a mistake, I am bad at math. By March that story had change to this: Mistakes are good. If I 
make a mistake, I am good at math. Ms. Mayen’s students re-engineered their understanding of what 
it means to be smart, and in so doing, opened more doors for themselves and others to identify as 
successful mathematics students. 

Table 1: Percentage of Respondents who Identified Traits of Being “Good at Math”  
A person who is “good at math…” 8/25/15 

Survey 
2/22/16 
Exit Ticket 

3/18/16 
Survey 

Is compliant in traditional ways (takes notes, studies hard, behaves well, is 
quiet). 

38% 9% 16% 

Is smart. 28 4 12 
Is helpful. 20 4 9 
Gets good grades. 10 8 0 
Gets answers fast. 7 4 2 
Explains well. 0 21 12 
Has a growth mindset. 2 9 16 
Makes mistakes. 0 19 21 
Presents their thinking. 2 9 11 
Is focused or pays attention. 20 6 25 

pre-survey (8/25/15, n = 60); exit ticket (2/22/16, n = 53); post-survey (3/18/16, n = 57) 
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Table 2: Statistically Significant Shifts from pre- to post Survey. (n = 55) Italics Indicate Items 
that Grew in Strength from pre- to post Survey. 

Question1 pre post post – pre t-value p-value 
Positive Identification with Mathematics      

I like math. 4.44 4.89 .45 -2.51 .015* 
Public Sensemaking      

The best way to learn math is it talk about it with other 
people. 

4.89 4.36 -.53 2.61 .012* 

Open Mathematics      
In math, you can be creative. 4.49 5.07 .58 -2.95 .005* 
In math, you can invent your own ways of  
doing things. 

4.44 5.07 .64 -3.60 .001** 

Math affects people in the world outside of math class. 3.51 4.26 .75 -3.30 .002* 
Fixed Mindset      

You can’t solve math problems if you don’t know the  
right formulas. 

4.15 3.43 -.71 3.12 .003* 

Some people just aren’t good at math. 2.93 2.50 -.43 2.11 .040* 
Closed Mathematics      

Mathematics involves mostly facts and procedures that 
have to be learned. 

4.66 4.03 -.64 3.30 .002* 

In math class, it is important to get answers quickly. 2.67 2.13 -.55 3.21 .002* 
It is important to avoid mistakes in math class. 3.31 2.45 -.86 2.67 .010* 
In math class, the most important thing is getting a  
correct answer. 

2.82 1.85 -.97 4.56 .000** 

The best way to learn math is to pay attention  
to the teacher. (Passive Recipient) 

5.02 4.41 -.61 3.25 .002* 

In math class, only the teacher should decide  
if an answer is correct. (Authority) 

3.31 2.44 -.87 3.36 .001** 

1 6-point scale: 1 = Strongly Disagree; 2 = Disagree; 3 = Slightly Disagree; 4 = Slightly Agree; 5 = Agree; and 6 = Strongly Agree. * p < .05 ** p < .001 
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COLLEGE STUDENTS’ GENDER AND RACIAL STEREOTYPES OF 
MATHEMATICIANS 

 Katrina Piatek-Jimenez Miranda Nouhan Michaela Williams 
 Central Michigan University Central Michigan University Central Michigan University 
 k.p.j@cmich.edu nouha1mg@cmich.edu willi3mn@cmich.edu 

Many individuals are negatively affected by stereotypes of mathematics and mathematicians, which 
further prevent their interest in pursuing mathematical careers. This paper assesses college students’ 
stereotypes of mathematicians with regards to race and gender. In this study, we asked 179 college 
students to “Draw a Mathematician.” We also conducted four focus group interviews with a total of 
12 participants, in which we asked them to view photos of individuals and determine which they 
believed to be a mathematician. Through our analysis of the data, we have found that many college 
students do have certain stereotypes of mathematicians. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Equity and Diversity; Gender; Post-Secondary 
Education 

Stereotypes about mathematics and mathematicians affect how individuals view those who enjoy 
mathematics and those who enter mathematical careers. As a result, these stereotypes can also 
influence certain students’ mathematics performance, perseverance, and career choice in the field. It 
is likely that negative stereotypes more greatly affect women and certain minorities, who are already 
underrepresented in the field of mathematics. Therefore, it is important to know what stereotypes of 
mathematicians currently exist and how they are viewed by society. 

Scholars began studying stereotypes of scientists as early as the 1950’s (Mead & Metraux, 1957) 
and have continued to do so in more recent years (Thomas et al., 2006). Around the turn of the 
century, scholars also began studying students’ stereotypes of mathematicians. For example, Rock 
and Shaw (2000) collected drawings of “mathematicians at work” from kindergarten through fourth-
grade students and found that while the majority of kindergarteners and first grade students drew 
female figures, the second through fourth grade students drew almost an equal number of male and 
female mathematicians. In a similar study with middle school students in five different countries, 
Picker and Berry (2000) also had students “draw a mathematician at work” (p. 70). Picker and Berry 
found many common themes amongst the drawings. In particular, they noted that many students 
drew white, male mathematicians. These mathematicians were often wearing glasses, had facial hair, 
were either balding or had unruly hair, and were dressed in unfashionable clothing.  

While some work has been done on children’s stereotypes of mathematicians, we know much 
less about college students’ stereotypes of mathematicians. Given that it is during the college years 
when many individuals are making choices directly relevant to their future careers, we find it critical 
to know more about college students’ stereotypes of mathematicians, especially those stereotypes 
related to gender and race. 

Methods 
This research study was conducted in two phases. During the first phase of the study, 179 college 

students completed a survey in which they were asked to “draw a mathematician.” Colored pencils 
were provided to the students for use in their drawings. Of the 179 participants, 66 (37%) identified 
as male, 112 (63%) identified as female, and 1 identified as neither. The majority of the participants 
identified as Caucasian (79%). More than half (58%) of the participants were college freshmen, with 
another 28% as sophomores. A large variety of majors were represented, with majors from every 
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college at the university, and the participants had completed anywhere from zero to six mathematics 
classes at the collegiate level. 

During phase two, we conducted four focus group interviews with a total of 12 volunteers who 
had participated in the first part of the study. For the focus group interviews, we presented the 
participants with 16 photos of individuals and asked the participants to determine which individuals 
they believed were mathematicians and which were not, and to explain their reasoning.  The 
participants were initially asked to do this independently. After each participant recorded their 
decisions about each of the photos, we led a group discussion about what they had determined. The 
focus group interviews were audio and video recorded and later transcribed. 

Results from the Survey 
Of the 179 participants who completed the survey, 87 (49%) drew a male mathematician, 37 

(21%) drew a female mathematician, 6 (3%) made sure that both genders were represented, 43 (24%) 
drew a figure that had an indeterminable gender (such as a stick figure with no hair or clothes), and 6 
(3%) drew something other than a person or left the page blank. What we found even more 
interesting, however, are the results when we analyze our data by the gender of the participant. 
Therefore, Table 1 contains the data for the male participants and Table 2 contains the data for the 
female participants. For the one individual who identified as neither male nor female, the drawing of 
the mathematician was a male. 

As can be seen by Tables 1 and 2, both genders drew male mathematicians more often than any 
other category, however, male students were substantially more likely to draw a male mathematician 
than female students were. Furthermore, only 3% of male students drew a female mathematician, 
while 31.5% of female students drew a female mathematician. Similarly, only one male student 
ensured that both genders were represented while 5 female students made sure that both genders were 
represented in their drawings. 

Table 1: Male Participant Drawings Table 2: Female Participant Drawings 
Male Participant Drawings Female Participant Drawings 

Gender of drawings N % Gender of drawings N % 
Male 37 56.1 Male 49 43.8 
Female 2 3.0 Female 35 31.5 
Both genders represented 1 1.5 Both genders represented 5 4.5 
Indeterminable gender 24 36.4 Indeterminable gender 19 20.0 
No person drawn/blank 2 3.0 No person drawn/blank 4 3.6 

 
We also investigated the implied race of the mathematicians in the drawings, which we compared 

to the stated race of the participants. To determine implied race of the drawings, we used the colored 
pencil shading of the face to ensure consistency. For shading options, we developed four categories, 
which included: no shading, brown, yellow/orange, and other. Of the 173 surveys that had drawings 
of people, 155 (90%) did not shade their mathematician, 7 (4%) shaded their mathematician brown, 
10 (6%) shaded their mathematician yellow/orange, and 1 drawing we coded as “other” because the 
participant had drawn multiple stick figures with each figure being a different color (red, orange, 
green, purple, etc).   

We further analyzed these results by race of the participants. Table 3 presents the results for 
Caucasian participants and Table 4 presents the results for the participants who identified as a racial 
minority or as multi-racial. In our interpretation, no shading could be classified as Caucasian and 
brown shading could be classified as African American or multi-racial. It is hard to determine what 
yellow/orange shading is meant to represent, but given that mostly Caucasian participants chose to 
shade their mathematician as yellow/orange, it is possible that this, too, was intended to represent a 
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Caucasian mathematician. If that were the case, then 97% (134 of 138) of Caucasian participants who 
drew a person, drew a Caucasian mathematician. 

Table 3: Caucasian Participants Drawings Table 4: Minority Participants Drawings 
Caucasian Participant Drawings Minority Participant Drawings 

Shading of Face N % Shading of Face N % 
No Shading 125 90.6 No Shading 30 85.7 
Brown 3 2.2 Brown 4 11.4 
Yellow/Orange 9 6.5 Yellow/Orange 1 2.9 
Other 1 0.7 Other 0 0.0 
 

Results from the Focus Groups 
During phase two of the study, we held focus groups with two to four participants at a time, 

asking them to look at actual photographs of individuals and determine whether or not they think 
each individual was a mathematician. We had a total of 12 participants in our focus groups, three 
men and nine women. 

We selected 16 images to use for the focus group interviews. We purposely chose images that 
encompassed many different stereotypes of mathematicians. Of these 16 images, eight were male and 
eight were female. Four images were of racial minorities. We had an image of an Asian male, an 
Asian female, an Indian male, and an African American female.   

Each image was selected to be a mathematician by at least one participant during the focus group 
interviews. No image was selected by more than nine participants. In our analysis, we classify 
whether or not an image was considered to be a mathematician by the participants if more than 50% 
of the participants (at least seven out of 12) chose it to be a mathematician.  Based on this criterion, 
eight of the 16 images were selected to be mathematicians. Of the eight selected as mathematicians, 
four were men and four were women. Therefore, male images and female images were equally 
selected to be mathematicians by our participants.  When considering race, the images of the Asian 
male, Asian female, and African American female were all selected to be a mathematician. The 
image of the Indian male was not.   

During the interview discussions, participants rarely brought up the topic of gender on their own 
and when we specifically asked about gender, most participants stated that gender did not play a role 
in their decisions. However, a few participants did admit to using different criteria for men as they 
did for women. While it was not completely clear from their comments how they used the criteria 
differently, it is clear that they recognized that they were using different criteria for different genders.   

Although discussion on gender had to be solicited by the interviewers, many participants brought 
up the topic of race on their own. For example, some participants wrote comments such as “racial 
stereotyping” or “he looks Indian and smart” as their reason for selecting certain images to be of 
mathematicians. This occurred for the images of both the Asian male and Asian female, and the 
Indian male. No comments about race were written for the image of the African American female, 
though she was selected to be a mathematician by eight of the 12 participants. One thing we found 
interesting was that the Indian male was only selected to be a mathematician by three of the 12 
participants. One reason for this might be because we specifically chose a photo of an Indian male 
who was playing the drums, to put into conflict the racial stereotype of individuals from India being 
good at mathematics with the stereotype that mathematicians do not have hobbies or interests outside 
of mathematics (Piatek-Jimenez, 2008). While many participants said they considered that he might 
be a mathematician, they also stated that because he was playing the drums in the photo was why 
they determined he must be a musician instead.   
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While gender and race seemed to play some role in these participants’ decisions about the photos, 
there were three other criteria that appeared more compelling to them. First, in order to be considered 
a mathematician, the individual needed to be “dressed professionally” but not be “too dressed up.” If 
the individual was wearing a t-shirt or polo shirt, it was assumed that they were not a mathematician. 
Yet, if they were wearing a formal dress or a sports coat, that also led our participants to assume that 
they were not a mathematician. Secondly, the setting of the images influenced our participants’ 
decisions.  For example, the woman who was camping and the man playing the drums were rarely 
selected to be a mathematician, with the backdrop of the image often being provided as the reason. 
Finally, one of the most cited reasons that participants gave for their decision was whether or not the 
individual in the image reminded them of someone they know. If the image reminded them of a past 
mathematics teacher, then they assumed the image was of a mathematician. If the image reminded 
them of someone else they knew, a past history teacher for example, then they determined the image 
was not of a mathematician.   

Discussion 
During phase one of our study, when we asked college students to “draw a mathematician” we 

found that they mostly drew images of white males. This was true amongst our female participants as 
well.  However, during the focus group interviews, exactly half of the male images were selected to 
be mathematicians and exactly half of the female images were selected to be mathematicians. In 
other words, gender appeared to play a much smaller role when the college students considered 
actual photos of real people. These results suggest that while a male may be the first image that 
comes to many people’s minds when they hear the word “mathematician,” they recognize that both 
men and women become mathematicians and use additional criteria when making assumptions. 

While differentiated races were almost nonexistent amongst our participants’ drawings of 
mathematicians, race played a more prevalent role during the focus group interviews. Our 
participants were not shy about admitting their stereotypes that Asians and Indians are smart, and 
therefore more likely to become mathematicians. We found, however, that the stereotype that 
mathematicians do not have hobbies outside of mathematics appears to be stronger than the racial 
ones, at least for many of our participants. Our participants appeared to feel more strongly that a 
mathematician would not play the drums than they did about someone from India having to be a 
mathematician. 
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FROM TRAJECTORIES, DEFICIT, AND DIFFERENCES TO NEURODIVERSITY: THE 
CASE OF JIM 

 Jessica H. Hunt Juanita Silva Rachel Lambert 
 jhunt5@ncsu.edu jnt.slv@utexas.edu lambertr@chapman.edu 
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Cognitive differences intrinsic to children with learning disabilities (LDs) have historically led to 
deficit assumptions concerning the mathematical experiences these children “need” or can access. 
We argue that the problem can be located not within children but instead as a mismatch between 
instruction and children’s unique abilities. To illustrate this possibility, we present the case of “Jim,” 
a fifth-grader with perceptual-motor LDs. Our ongoing analysis of Jim’s fractional reasoning in 
seven equal sharing based tutoring sessions suggests that Jim leveraged his knowledge of number 
facts and alternative representations to advance his reasoning.  

Keywords: Cognition, Elementary School Education, Equity and Diversity 

Over their school-age years, many children tend to experience difficulties with fractions. For 
children with learning disabilities (LD), the difficulties can become persistent and grow into unique 
learning challenges. As a result, researchers continue to focus on ways these children develop 
understandings of fractions as quantities (Hunt, Westenskow, Silva, & Welch-Ptak, 2016) to provide 
evidence of and access to the potentially rich mathematics in which these children can engage.  

Unfortunately, these illustrations stand in sharp contrast to the current literature base and policy 
recommendations for mathematics instruction for children with LDs. Previous research clearly 
illustrates instruction for these children have been dominated by basic concepts (Kurz, Elliott, 
Wehby, & Smithson, 2010). A recent review (Lambert & Tan, 2016) of articles researching the 
mathematics learning of Kindergarten through 12th grade students found significant differences 
between the mathematical teaching practices used with children with and without disabilities. 
Mathematical teaching and learning were informed largely by constructivist and sociocultural 
perspectives with children without disabilities. For children with disabilities, mathematical teaching 
and learning were informed primarily by medical and behavioral perspectives. The distinction is 
concerning as it suggests two categories of mathematics learners who “need” different kinds of 
mathematics.  

Our work both builds on and critiques work on learning progressions (or learning trajectories). 
Original discussions of trajectories (Martin, 1995) stressed their hypothetical nature and did not 
separate actualized trajectories from the teachers and children involved in specific instances of 
learning. Currently, the term suggests an expected course of development or simplified learning path 
in a concept area, such as early fractions. When considering children with LDs, who may use 
different or more informal ways of reasoning than educators might expect, we are concerned that 
educators might use progressions to direct children to move across the levels or stages of a 
progression without paying attention to the reasoning that children employ and work to support 
children to explore, revise, and advance that reasoning. 

From Explicit and/or Leveled Instruction to Neurodiversity 
Attempts to remediate, or “fix,” children through procedural training or steering thinking through 

predetermined pathways or conceptual steps seems problematic if educators wish to provide access to 
and support reasoning that children with LDs do possess and build from it (Hunt et al., 2016). In fact, 
we contend that these kinds of approaches to remediation may work in part to disable these children 
more so than their learning differences. Disability Studies (DS) recognizes that although individuals 
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have natural biological variations, it is the social effects of difference that disable rather than the 
impairments themselves (Siebers, 2008). From the DS perspective, the behavioral/directive tradition 
apparent in much of the instruction these children experience portray learning differences as deficits 
within individuals that results in viewing difference as something to be fixed as opposed to a natural 
strength that can be leveraged in instruction. Neurodiversity (Robertson & Ne’eman, 2008) positions 
cognitive differences as not only natural biological differences, but as potential strengths. For 
example, individuals with LD demonstrate cognitive strengths in three-dimensional reasoning and 
creative problem solving (Eide & Eide, 2012). Using this lens, we sought to understand the fractional 
reasoning of one fifth grade children with perceptual-motor LDs as he worked in fractional tasks 
meant to support two ways of reasoning fundamental to early fraction knowledge: partitioning and 
iterating (Steffe & Olive, 2010). We utilized equal sharing (i.e., equally sharing an object or objects 
among a number of people, where the result is a fractional quantity) because it invites multiple means 
of reasoning and representation. The research question was, “What ways of partitioning and iterating 
does a fifth-grade child with LDs display in equal sharing tasks?”   

Method 

“Jim” 
“Jim” (age = 12 years) attended elementary school in the Northwestern United States. He was 

identified by his school system as having a learning disability in mathematics. Jim’s performance on 
the mandated standardized state measure of math performance was at a failing level in 3rd, 4th, and 5th 
grade, which suggests sustained low achievement in mathematics. His reading scores were at average 
levels. Jim had received over two years of additional support in fraction concepts and operations that 
included shading pre-partitioned models and procedures for operations. Finally, Jim evidenced 
significant difficulties with visual motor integration (i.e., coordination of visual perception and motor 
skills at 2nd percentile). 

Teaching Experiment 
Data collection was collected in seven sessions of a teaching experiment (Steffe & Thompson, 

2000). Sessions took place during school hours and were in addition to the child’s regular math class 
time. The first and second author attended all tutoring sessions and collaborated throughout the 
ongoing analysis of teaching episodes. The first author was the researcher-teacher. The second author 
acted as a witness (e.g., took extensive field notes, observed the interactions to provide an outsider’s 
perspective during on-going analysis). All authors are engaged in retrospective analysis of the data 
(described below). Researchers collected three sources of data: transcribed video recordings, written 
work, and field notes.  

Tasks, teaching moves, and representations. We prepared problem tasks, representations, and 
possible teaching moves based on previous evidence of how children with LD might reason in equal 
sharing tasks (e.g., 3 people share 4 items, Author). Tasks were planned to be dynamic (i.e., 
adaptable to the child’s current conceptions) and presented to Jim in realistic contexts that we 
changed according to his preference. In each task, the number of sharers ranged from two to ten and 
the number of objects shared ranged from three to 13. The problem-solving tasks were designed so 
that Jim could use a variety of strategies and representations (e.g., drawings, Cuisinaire rods) to 
reason about the mathematics. Teaching moves were broadly defined as responsive to the child’s 
thinking (e.g., extending, supporting). 

Data Analysis 
Ongoing analysis of critical events (Powell, Francisco, & Maher, 2003) in the child’s thinking 

and learning were noted and discussed before and after each session. The focus was on generating 
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(and documenting) initial hypotheses as to what conceptions could underlie the child’s apparent 
problem solving strategies during these critical events. These hypotheses led to planning the 
following teaching episode. We are currently using retrospective analysis to delineate Jim’s informal 
conceptions of fractional quantities, how his reasoning shifts during each tutoring session, and what 
his conceptions were during the final session. We are also currently working to identify possible 
indicators of Jim’s conceptual growth using the constant comparison approach (Leech & 
Onwuegbuzie, 2007). Reported results are tentative. 

Preliminary Results 

Initial Reasoning: Session One 
Jim had just solved several tasks involving whole number partitive division. Excerpt a begins 

with an extension of the partitive division situations. 

Excerpt a: Share 7 granola bars between 3 friends  
J: [gives two whole items to each person] And of course there would be one left over.  [draws a 

long bar; carefully marks a small dot at the top middle of the bar and draws a line straight 
down; then uses the same mechanism to mark each of the two parts into two more parts]. Ok, 
so they each get a slice of the one that’s left. And there’s another piece left [begins to 
partition the fourth part into four parts using the same mechanism].   

T: Oh. So [labels each part], so if this is my part, and this is yours, and this is Nita’s, you say you 
have this piece left.  And we cut it up again.  Any way to do it, so we don’t have to keep 
cutting? 

J: [attempts to partition two additional times by spinning the paper and draw a line from one of 
the corners] I really don’t know of any other way to do it. 

T: Ok. Any way to know what to call that parts you made? 
J: [pauses for 5 seconds] I’m not sure. 

In the first session, Jim evidences what we call a midpoint partitioning strategy. His partitioning 
seems to be supported by a careful identification of the midpoint of the length and a unilateral 
partition. The strategy does not yet seem to be linked with the number of sharers in the situation, a 
consideration of the magnitude of the parts created, or an iterative consideration of the parts to the 
whole. In other problems in the session, Jim continues to use the midpoint strategy regardless of the 
number of sharers. It is unclear whether Jim was conflating partitions with parts (i.e., three lines as 
opposed three parts), yet Jim’s alternate strategies provide counter evidence of this possibility.  It is 
interesting to us that, throughout the session, Jim seems to view the midpoint as the only valid 
partition at this point.  In later sessions, Jim continued to evidence this strategy in his work in equal 
sharing tasks, regardless of the number of items or the number of sharers. 

Session Four 
In session four, Jim began to connect his number knowledge to his midpoint partitioning strategy 

to bring about an early iterative reasoning. Excerpt b shows Jim’s reasoning in a task involving five 
sandwiches and four sharers. 

Excerpt b: Share 5 sandwiches between 4 people  
J: [draws 5 boxes on the paper; makes a lengthwise and widthwise partition to create four parts in 

each box. Numbers and names each part].  
T: Tell me about your drawing. 
J: Well, I made lots of tiny pieces. 
T: Oh. How many? 
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J: [pauses for 5 seconds and looks at his drawing] Well, there are five boxes and four tiny pieces 
in each. Four times five is 20 and 4 + 4 + 4 + 4 + 4 is 20 [points to each box as he counts]. 

T: Ok [points to drawing]. How much of a sandwich would I get, do you think? 
J: [Looks at drawing] Well, you get five tiny pieces out of all of the 20 pieces of sandwiches. 
T: Oh ok. How about for one sandwich? 
J: Hmm. Well, [mutters ‘four times one is four’] four of the tiny pieces is a whole sandwich 

because four times one is 4, and one part and one part and one part and one part is a sandwich 
[points to one part; taps table four times]. And then one more. So a whole sandwich and a 
piece. 

Jim shows three subtle shifts in his reasoning. First, his way of partitioning seems to have 
changed to a repeated halving, perhaps due to his self-prompted change of representation from a bar 
to a square representation. Second, he partitions each square into the number of sharers (as opposed 
only the last item). Partitioning each item also seems to support the final shift which involves a 
nascent iterative consideration of the parts to the whole. This reasoning seems further supported by 
Jim’s leveraging of his whole number fact recall to support his reasoning of each person’s share as 
first a share of a subset of the total number of ‘tiny pieces’ he creates and then as a rudimentary 
coordination or iteration of the part to the whole. We are further examining how Jim’s use of 
multiple modalities (i.e., changing representations, verbal number facts, gesturing) support his 
partitioning and iterative reasoning in later sessions, especially in tasks where partitioning proves 
difficult (e.g., requests to share between 3 or 5 shares). 

Discussion 
Jim’s significant initial misunderstandings about fractions would typically be addressed by 

behavioral interventions in special education focused on memorizing procedures. In this study, we 
explore how close analysis of previous understandings based on research in fraction learning can be 
the framework of an intervention, particularly when the student is understood not as deficient, but as 
always already having knowledge of the mathematical topic. These two excerpts highlight one of the 
multiple shifts we document in Jim’s understanding of fractions. We argue further that these shifts in 
understanding were supported by 1) problem solving in contexts, 2) access to multiple modalities, 
and 3) instruction that builds from careful attention to previous understandings. 
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Mathematics education must include students with disabilities in research, not simply adding these 
learners to already developed studies, but by engaging with new perspectives that such students 
bring. Part of a larger study, this paper documents two dilemmas that the authors were faced with 
when investigating the mathematical engagement of two fifth graders with autism in a standards-
based mathematics classroom. Using neurodiversity, we analyze how the unique engagement of these 
two students challenges preconceived notions of students with autism in mathematics, as well as how 
we conduct mathematical research. 

Keywords: Equity and Diversity; Affect, Emotions, Beliefs and Attitudes; Research Methods  

Introduction 
Mathematics educational research rarely includes students with disabilities (Lambert & Tan, 

2017). In this paper, we focus on two students with autism learning mathematics, and we draw on a 
political and theoretical movement initiated by people with autism called neurodiversity. Instead of 
understanding autism as a deficit, neurodiversity understands the cognitive differences of autism as a 
natural and beneficial aspect of biological diversity (Robertson & Ne’eman, 2008). From this 
perspective, we assert that increasing the participation of students with autism in mathematics will 
not only help the students, but will help mathematics. Furthermore, we argue that including students 
with disabilities such as autism in mathematics education research will help educational research in 
mathematics by expanding both concepts and methods. This paper presents a theoretical argument 
for including students with autism in mathematics educational research by analyzing how including 
two students with autism has expanded both theoretical and methodological practices in mathematics 
research.  

Conceptual Framework 
This brief research report is based on emerging data from a larger project arguing for a shift from 

designing intervention around content to intervention in participation (Lambert & Sugita, 2016). 
Building proficiency in mathematics for all learners means sustained and deep participation in 
practices such as problem solving, reasoning, and critique, otherwise known as the Standards for 
Mathematical Practice in the Common Core State Standards for Mathematics (CCSS-M, 2010). Yet, 
very little is known about how students with disabilities, particularly with autism, engage in the 
Standards for Mathematical Practice, as the topic is significantly underrepresented in special 
education research (Maccini, Miller, & Toronto, 2013).  

Taking a situated view of learning, we use the terms participation and engagement 
interchangeably and define participation as the actions of individuals in particular activity systems, 
which are one or more individuals interacting with each other and with particular sets of material and 
ideological resources (Greeno & Gresalfi, 2008). Activity systems are understood through 
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documentation of the norms of participation that construct the taken-for-granted activities and 
assumptions of the cultural space. Additional information on the activity system are obtained from 
interviews with students and teachers.  

The majority of research on autism is not focused on academics (Gevarter et al., 2016). Oswald et 
al., (2015) argue that the lack of research in mathematics that includes learners with Autism 
Spectrum Disorder (ASD) stems from assumptions that individuals with ASD are higher performing 
in mathematics than their non-disabled peers. Some research has supported this connection between 
autism and mathematical talent (Baron-Cohen, Wheelwright, Burtenshaw, & Hobson, 2007). Yet 
Wei and colleagues (2013) found that while a larger percentage of individuals with ASD in college 
major in STEM fields (34%) than non-ASD students, individuals with ASD are far less likely to 
attend college, when compared to other disability categories. From a neurodiversity standpoint, we 
recognize that individuals with autism have unique ways of processing the world that may provide 
particular strengths in mathematics. However, we also assert that explanations for persistent low 
achievement for individuals with autism in mathematics (Wei et al. 2013) must explore the 
relationship between the student and the mathematics classroom.  

Methods 
We have situated this paper in a larger study of a fifth-grade classroom that includes four 

students who receive special education services. The larger study investigates shifts in student 
participation in the mathematical practices, particularly MP1 (problem solving) and MP3 (discourse) 
over the course of one academic year. In this short paper, we explore emerging data, focusing on the 
initial mathematical understandings and participation of two students with autism. Using 
neurodiversity as a theoretical tool, we explore several issues:  

1. What does it mean to include neurodiverse individuals in mathematics educational research? 
What challenges are presented? What can be gained from such work? 

2. How do current conceptions of participation privilege neurotypical learners? How can we 
broaden these notions? 

Findings 
In this section, we will present two dilemmas that we faced in our initial work on this project, 

particularly around the two students with autism. We will introduce our two participants, then present 
the dilemmas, and explore what the findings might mean for broadening mathematics education to 
include all learners. Andrea and John are the two students of focus in this study. Andrea is a 5th grade 
girl with an Individual Educational Plan for autism. She identifies as white and Asian. John is a 5th 
grade boy with an Individual Educational Plan for autism. He identifies as Latino.  

Dilemma 1: Interviews 
This research included student interviews. In our initial plan, we assumed these would be 

individual. However, after consulting with the teacher, we were concerned that both Andrea and John 
would have significant difficulties with this participation structure. In the lead author’s first visits to 
the classroom, Andrea was both very excited about the research, and also clearly uncomfortable with 
the new adult and the idea of being filmed. John had a history of being very reserved at school, 
taking months to speak to previous classroom teachers. After discussing this with the teacher, we 
decided to interview all students in pairs, created by the teacher. We felt that this would make these 
students more comfortable in the interview. In addition, we planned to allot extra time with each of 
these interviews. We did not video-record Andrea’s interview, and we began that interview by 
providing a comic book related to her interests. The comic book seemed to help Andrea relax and 
answer the interviewer’s questions.  
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We were sensitive to the reality that our interviews might feel like evaluative assessments to 
students, which might trigger negative emotions because of past experiences being taken into rooms 
with unfamiliar adults and being asked questions. Children with disabilities in schools are routinely 
assessed by unfamiliar adults, and these events are often confusing, leaving them with memories of 
failure and stress (Connor, 2005). Even as we planned to ask questions that we felt were not stressful, 
we recognized that the situation might mimic other evaluative experiences. We changed our research 
plan to adapt to this need. The lead author also used play as a relationship building device, engaging 
in talk around the comic book with Andrea in order to help her transition into the interview and feel 
comfortable. We wonder how much these shifts in methods would assist other students.  

While these two individuals with autism prompted our switch to paired interviews, we wonder if 
this new structure made other students more comfortable as well. Or, alternatively, did paired 
interviews introduce additional layers of stress for students, as we found in one interview in which a 
student seemed to ask for permission to speak, not from the interviewer, but from the other student. 
We believe that when we worked to make the interview more inclusive of the two students with 
autism, we looked far more carefully at the emotional and social implications of interviews, assessing 
the dialogical discursive implications of the triad (Riessman, 2007). Including the students with 
autism made us question the interview structures that we had taken for granted. 

Dilemma 2: What counts as participation? 
In our first day of video recording, Andrea and John were seated right next to each other, right in 

the front of the classroom next to the teacher’s whiteboard. The teacher first led the class in a 
numeracy routine called a number string, and then asked students to solve a Cognitively Guided 
Instruction (CGI) story problem on equal sharing (Empson & Levi, 2011).  

Their participation in this mathematics lesson was quite dissimilar. During the number string, 
Andrea raised her hand for each problem, and more than once shouted out an answer. When called 
on, she shared her strategy, explaining how she broke apart a multiplication problem into parts (using 
the distributive property). Each of her answers were correct. For the CGI equal sharing problem, her 
first exposure to that problem type, Andrea drew out the sharers and the brownies that were to be 
shared, partitioned the final brownie into fourths, and accurately identified all fractional parts. Her 
strategy was non-anticipatory, with coordination at the end resulting in a accurate answer. She solved 
this very quickly, within 3-4 minutes, and then began clearing out her desk, and then transitioned to 
reading a comic book. She did not speak in any small group situation, nor did she share a strategy for 
the CGI problem. Andrea demonstrated understanding of the targeted mathematical concepts of the 
lesson, and was able to engage in whole group strategy sharing, although she did not participate in 
small group discussion.  

John did not verbally participate in the number string. However, throughout the number string, 
his attention seemed rapt towards his teacher and the board on which she represented student 
strategies. Like Andrea, this was his first exposure to an equal sharing problem. Also like Andrea, 
John used a non-anticipatory strategy with coordination at the end.  While Andrea solved the CGI 
problem quickly, John worked slowly, carefully drawing out each portion as he portioned, twice 
representing all the shared pieces and the sharers. His partitioning was accurate but he did not 
accurately name the quantity in fractional terms. When solving the CGI math problem, he did not 
speak to any other students, nor did he during opportunities to speak to a partner during a share. 
During the share that followed the CGI story problem, he did raise his hand very slightly in response 
to a question about which strategy he used. At all times, however, his attention seemed wholly 
focused on his teacher and her representations on the white board. Similarly, when he solved his CGI 
problem, he focused completely on his work, drawing and redrawing his solution for the entire work 
time. He worked longer on his paper than any other student in the room.  
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Conclusion 
What do we learn from these differences in participation? Andrea provided more evidence for her 

mathematical understanding during this lesson. She moved from intense attention on the 
mathematics, to cleaning out her desk, always moving. John, on the other hand, was quiet and still, 
but appeared to be attending wholly on the mathematics. However, because he did not speak, we felt 
unsure of his level of engagement and/or understanding at times. In both cases, we felt that our tools 
for measuring mathematical understanding during the lesson (documenting discourse and collecting 
student work) were inadequate to the task of understanding their mathematical understandings. 
Should we devalue the quiet engagement of John? Or the intermittent attention of Andrea? Their 
differences in engagement remind us that there is not one way of learning mathematics, and no one 
way of being autistic, and that as we include students with autism in mathematics education, as we 
must, that we recognize and respect unique ways of engaging in mathematical practices.  
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In this mixed methods study, we examined how middle level students’ self-efficacy towards STEM 
changed after participating in a week long summer day STEM Camp. Findings revealed differences 
in students’ STEM self-efficacy exist among students who received a scholarship to attend STEM 
camp compared to those who did not. Continuous opportunities for authentic STEM opportunities to 
support more equitable education for students from low socioeconomic backgrounds are 
recommended. 

Keywords: Equity and Diversity; Affect, Emotion, Beliefs, and Attitudes 

Introduction  
As the demand for science, technology, engineering, and mathematics (STEM) professionals 

continues to rise, calls from policy makers for improved diversity in mathematics and science 
education aim to broaden participation in STEM fields (NSF, 2010). Some studies cite the “STEM 
Pipeline”, or limited access to rich academic coursework in K-12 education, as the cause of the 
shortage and lack of diversity (e.g., Fox & Hackerman, 2003). However, with PK-12 students in 
school less than 20% of their time awake (Afterschool Alliance, 2011), access to academic 
coursework is not enough to shift toward equitable representation in STEM fields. We must rely on 
partnerships beyond the formal school setting to motivate underrepresented groups and build their 
STEM self-efficacy. 

In this study, we investigated the impact of an out-of-school environment, See Blue STEM 
Camp, on student’s STEM self-efficacy. More specifically the research question underlying this 
study is How does participation in the See Blue STEM Camp influence students from diverse 
socioeconomic backgrounds STEM self-efficacy of STEM? 

Conceptual Framework 
Self-efficacy is defined as one’s judgment about their ability to plan and execute a course of 

action to successfully complete a specific goal (Bandura, 1986). Because self -efficacy is a 
significant predictor of task motivation and performance beyond ability (Bandura & Locke, 2003), 
high self-efficacy is a key predictor of performance and persistence in STEM. Self-efficacy is 
developed through four primary sources: mastery experience, vicarious experience, social persuasion, 
and physiological reaction (Bandura, 1997; Pajares, 2005). In STEM, students must have access to 1) 
high-level STEM experiences in order to achieve mastery, 2) STEM role models similar to the 
students, 3) feedback and encouragement from influential people, and 4) a chance to build 
confidence through discussion in all environments (see Figure 1). 

Traditionally underrepresented groups in STEM have less access to STEM learning experiences 
(Peters-Burton et al., 2014) and lower levels of self-efficacy (Hernandez et al., 2013), which 
perpetuates the cycle of blocked access to STEM fields (Carter, 2006). Out-of-school environments, 
such as the See Blue STEM Camp, have been shown to increase STEM interest and post-secondary 
matriculation (e.g. Mohr-Schroeder, Jackson, Schroeder, Miller, Walcott, Little, Speler & Schooler, 
2014; MacPhee et al., 2013). However, there is limited knowledge regarding the development of 
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STEM self-efficacy in students of low socioeconomic backgrounds in K-8 education (e.g., Lubienski, 
2007). This study aims to contribute to the literature by investigating the self-efficacy of this 
population of students.  

 
 
 
 
 
 
 
 

 

 

Figure 1. Sources of STEM self-efficacy. 

Method  
In this sequential, mixed methods design (Creswell & Plano-Clark, 2007), we examined middle 

level students’ STEM self-efficacy before and after participating in See BlueSTEM Camp. 
Participants. Participants (N=346) were rising fifth- through eighth-grade students from the 

southeastern region of the United States who attended a week-long STEM summer camp in either 
2015 or 2016. Students participated in STEM content sessions, where they engaged in authentic, 
hands-on experiences in STEM that fostered the practices of engineers, mathematicians, and 
scientists. The camp targeted underrepresented groups in STEM (e.g., females, students of color, and 
students of low socioeconomic backgrounds). Scholarships were offered to students based on 
financial need. For this study, there were 72 (~21%) scholarship recipients.  

Data. Students were administered the STEM-Career Interest Survey (Kier et al., 2014) at the 
beginning and end of STEM camp. The 44-item survey was based on a 4-point Likert scale. Semi-
structured interviews, lasting around 3-5 minutes, were conducted with a sample of participants to 
discuss their concepts and connections to STEM before, during, and after camp. A total of 155 
students (45%) were interviewed with 23 (6.6%) of the interviewed students receiving scholarships. 
Interviews were digitally recorded and transcribed. 

Data Analysis. Exploratory factor analysis (EFA) was conducted on 346 matched pairs using 
weighted least squares with adjusted means and variance (WLSMV) estimator in Mplus v.7.11 
(Muthén & Muthén, 2013) to show unidimensionality was tenable, as supported by a ratio of the first 
eigenvalue to the second eigenvalue larger than three (Embretson & Reise, 2000). Then, omega 
reliability coefficient (McDonald, 1999) was calculated using bootstrapping method to obtain 
confidence intervals for the pre- and post-survey data using the WLSMV estimator to determine 
whether a raw score total could be used (i.e., the larger the omega, the greater the reliability in using 
raw score totals for analysis). Finally, the Wilcoxon Signed Rank Test was used to test whether 
change in students’ responses from pre- to post-survey was statistically significant for the scholarship 
and non-scholarship students. To analyze the qualitative data, we used an inductive content approach 
to identify patterns and themes (Grbich, 2007). The themes were discussed until consensus amongst 
the categories was obtained. 

Results and Discussion 
In this study, we examined whether there was a difference in scholarship and non-scholarship 

students’ STEM self-efficacy. The EFA results from the overall population on the survey revealed a 
single underlying construct related to interest in and awareness of STEM and STEM careers. Using 
the WLSMV estimator, the resulting omega values for the model results of the pre- and post-survey 
data were .961 and .969, respectively, with corresponding 95% Confidence Intervals [.961, .971] and 
[.972, .978] obtained from bootstrapping; thus indicating strong internal reliability and 
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reasonableness to use raw score totals to pursue further analysis. The Wilcoxon Signed Ranks Test 
(see Table 1) suggest there is a statistically significant positive difference in students’ interest in and 
awareness of STEM and STEM careers from pre to post for scholarship students, z = -2.62, p = .009, 
and non-scholarship students, z = -7.10, p< .001. When differences were tested for each group at the 
item level, scholarship students showed statistically significant change on some items related to self-
efficacy (e.g., item 13 in Table 1). However, the non-scholarship students had more questions that 
were statistically significant across the survey, which could be attributed to needs scholarship 
students have that are not met by the camp or are not adequately measured by the instrument. In 
addition, the smaller sample size of the scholarship students could also affect the results. 

Table 1: Descriptives and Wilcoxon Signed Rank Test Results for Self-Efficacy Items and Raw 
Score Total 

 
To glean more insight into the scholarship students not specified by the quantitative data, we 

analyzed qualitative data from the student interviews. Three themes emerged from the data specific 
to the scholarship population: the thrill of achievement; positive interactions with peers, camp staff, 
and presenters; and increased confidence in STEM knowledge. Of the 23 scholarship students 
interviewed, 100% expressed joy over accomplishments they had achieved throughout camp. 
Building and programming robots and interacting with STEM professionals in their work 
environment were most frequently cited. Scholarship students communicated surprise at their own 
abilities to achieve such tasks while the non-scholarship population did not articulate the same sense 
of awe. Many scholarship students remarked they never had the opportunity to engage in the type of 
activities they experienced during STEM camp. Therefore, it was challenging for them to relate their 
successes at STEM camp back to their school environment (e.g., mathematics). Approximately 83% 
of the students shared how interacting with STEM professionals, camp counselors/teachers, and 
peers who look like them (sex, race, age, and location) made them feel like they belonged and were a 
part of the “team.” Only three students commented on how their STEM knowledge connected to their 
families and friends outside of STEM camp. This may indicate that there is a need to provide more 
STEM experiences to students in order to increase their STEM self-efficacy beyond camp. Finally, 
50% of the scholarship students reported a new sense of confidence for participating in classes 
related to STEM (e.g. mathematics), which strongly supports the statistically significant shifts in 
their self-efficacy. 
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Results from this study indicate there were inconsistent increases in self-efficacy in STEM 
among students on scholarships compared to the ones who were not. The qualitative data indicate 
this could be due to missing connections between the STEM camp environment and the students’ 
home and school environments. Access to See Blue STEM Camp benefited students from low 
socioeconomic backgrounds. Mastery experiences, vicarious experiences, social persuasions, and 
physiological reactions (Bandura, 1997; Pajares, 2005) were all shared, but only within the context of 
camp. This indicates access is a springboard toward equity in STEM, but it is not enough. 
Traditionally underrepresented groups need ongoing, year-round access to rich STEM experiences to 
increase their STEM self-efficacy and encourage them to enter into STEM fields. A singular episode, 
such as a camp, can make a difference, but more is needed. 
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The purpose of this research is to gather empirical evidence for the attribution theory (Weiner, 1979) 
about students’ learned helpless when doing mathematics. Korean and Finnish students’ responses 
in PISA 2012 were analyzed with the ordinal regression analysis. For all observed cases, Korean 
students showed higher probabilities to feel learned helpless than Finnish students. Similar patterns 
between the two countries were found when students attributed their failure to either ability or task 
difficulty. For the other attributions, different relationships were found. The findings were generally 
corresponding to what the attribution theory claimed. However, the differences between Korea and 
Finland showed necessity of cultural factors in addition to the attribution theory to explain students’ 
learned helpless.   

Keywords: Learning Theory, Data Analysis and Statistics, Probability  

Motivation has been a subject of research in mathematics education for several decades.  As a 
difference between potential and performance, motivation could be one of reasons for 
underachievement.  To resolve students’ underachievement due to lack of motivation, researchers 
have scrutinized students’ adaptive and maladaptive behaviors related to appropriate achievement.  
This research focuses on one of the maladaptive behaviors, learned helpless like challenge 
avoidance, give up, and lack of enjoyment when doing mathematics (McNabb, 2003).  

Previous studies also have tried to describe conditions in which adaptive or maladaptive 
behaviors occurs. Particularly for learned helpless, social cognitive theories (e.g., Rotter, 1966) and 
the attribution theory (Weiner, 1979) discussed locus of control to answer who are likely to feel 
learned helpless.  Rotter (1966) defined locus of control as “the tendency of people to perceive that 
outcomes in a particular arena were either within or outside of their control” (McNabb, 2003, p. 418).  
Diener and Dweck (1978) claimed that they are likely to feel learned helpless if students thought that 
the outcome is out of their control. Furthermore, Weiner (1979) argued the four attributions grounded 
locus of control and stability (see Figure 1). According to this theory, students believing their failure 
is because of their low abilities are likely to avoid challenges and low persistence.  

  Locus of Control 
  Internal External 

Stability Stable Ability (X1) Task Difficulty (X2) 

Unstable Effort (X3) Luck (X4) 
Figure 1. Four attributions that explain academic outcomes (McNabb, 2003, p. 419). 

The purpose of this research is to gather empirical evidence for relationships between the four 
attribution and learned helpless. The PISA 2012 data was analyzed to compare Korea and Finland. 
These two countries selected because both showed top-achieving countries, but they are different in 
motivational issues (e.g., Mullis, Martin, Foy, & Arora, 2012). The questions guiding this research 
are; (1) what is a probability to feel learned helpless by each attribution via PISA 2012? And (2) 
what are differences in tendency to feel learned helpless between Korea and Finland?  



Student Learning and Related Factors 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1104 

1104 

Method 

Data Description 
Korean and Finnish data were collected from the PISA 2012 database. The total number of 

students in the PISA 2012 database is 8,829 for Finland and 5,033 for Korea. However, a large 
portion of students did not answer students’ questionnaire. Data of students who had completed 
student questionnaire were gathered and analyzed instead of dealing with missing data. Thus, the 
final sample sizes were 2,789 for Finland and 1,681 for Korea.    

Variable Selection 
Specific five variables/questions with the four-level Likert scale were selected corresponding to 

the attribution theory. Table 1 shows details about those questions in the PISA questionnaire. 

Table 1: Five Questions for Learned Helpless and Locus of Control 
PISA 

Variable  Variable Code Question Coding 

ST42Q08 Learned 
Helpless (Y) I feel helpless when doing mathematics problem. 

1 Strongly agree 
2 Agree 
3 Disagree 
4 Strongly disagree 

ST43Q01 Effort (X3) If I put in enough effort I can succeed in mathematics. 
ST44Q01 Ability (X1) I’m not very good at solving mathematics problems. 

ST44Q04 Task 
Difficulty (X2) Sometimes the course material is too hard. 

ST44Q06 Luck (X4) Sometimes I am just unlucky. 
 

Data Analysis 
The ordinal regression analysis was employed using SPSS. This regression was appropriate 

because all questions related to locus of control and learned helpless had four-level Likert scale, 
which produced ordinal variables. The specific five variables in Table 1 are all ordinal, but it should 
be noted that real distances between adjacent categories is unknown. I focused on describing the 
relationships between locus of control and learned helpless rather than conducting hypothesis tests 
for statistically significant differences between the regression models for Korea and Finland. This is 
because differences between the two countries may be evident, but not described. 

Table 2: McFadden’s R2 for Each Ordinal Regression Model 
 Ability Effort Task Difficulty Luck 

Korea 0.086 0.046 0.045 0.011 
Finland 0.089 0.060 0.049 0.006 

 
I reported pseudo R-squared to evaluate the ordinal regression models because model evaluation 

is essential in regression analysis. There were no clear recommendations about how to use pseudo R-
squared and how to interpret them, this pseudo R-squared can help to evaluate the ordinal regression 
models in this research at some degrees. Particularly, McFadden’s R2, which has been preferred to 
other pseudo R2s (Menard, 2000), was informed in Table 2. It need to be cautious to make a strong 
conclusion with a single index about goodness of fit although other indices were not available.  All 
models were accepted because there is no evidence that McFadden's pseudo R2 were zero.  It is 
known that that index can be as low as zero and the value above 0.2 actually indicated excellent fit of 
models. 
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Results 
The analysis results showed that Korean students were likely to feel learned helpless in the 

following cases: students strongly agreed that their failure was due to their abilities; students disagree 
that they are able to success in mathematics with enough efforts; students strongly agree that course 
materials were difficulty; and students’ failure in mathematics was because of misfortune.  In those 
cases, the probability to agree or strongly agree with learned helpless was greater than 0.6. Korean 
students showed very high possibility of learned helpless when students only strongly agreed that 
their failure was due to their ability (0.837), task difficulty (0.771), or even misfortune (0.628).  
However, if students had any degrees of disagreement that they can success in mathematics with 
their sufficient efforts, they reported learned helpless (0.673 for “disagree” while 0.766 for “strongly 
disagree”). In addition, students’ answers about their ability made the widest range of probabilities of 
learned helpless (from 0.114 to 0.837) while those about luck had the narrowest range (from 0.345 to 
0.628). 

Finnish students showed different patterns in the relationships between learned helpless and locus 
of control from Korean students. Finnish students were very likely to feel learned helpless in the two 
following cases: students strongly agree that they are not good at mathematics; and students 
moderately disagree that they can success in mathematics with enough efforts. Only these two cases 
of Finnish students showed higher probabilities than 0.6. The most interesting finding about Finnish 
students is the relationships between efforts and learned helpless. Students had the highest 
probability (0.611) in the relationships between learned helpless and efforts. However, if students 
strongly agree with that statement, the probability decreased to 0.359. Furthermore, Finnish students’ 
answers about luck was independent from learned helpless.   

 

 
Figure 2. Probabilities to agree or strongly agree to feel learned helpless in Korea and Finland. 

Figure 2 showed probabilities that Korean or Finnish students agree or strongly agree to feel 
learned helpless in learning mathematics. Whatever Korean students answer about their locus of 
control, they had greater chances for learned helpless than peers in Finland. Most cases for the 
Finnish students showed probabilities less than 0.5 to feel learned helpless while Korean students are 
very likely to do with strong beliefs about attributions to failure.   

Similar patterns between two countries were found in the relationships of ability or task difficulty 
to learned helpless. As students’ responses for learned helpless shifted from agreement to 
disagreement, the probabilities considerably decreased. Figure 2 shows that it is reasonable to assume 
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a monotone relationship between students’ learned helpless and strength of agreement that 
ability/task difficulty attributes to failure in both countries. The gaps of probabilities from strongly 
agreement to strongly disagreement were greater in Korea.   

However, Korean and Finnish students showed different patterns in relationships of effort or luck 
to learned helpless. Particularly, Finnish students’ beliefs about luck could be unconnected to their 
feeling of learned helpless. All responses about luck had similar probability for learned helpless from 
0.203 to 0.340. However, if Korean students strongly agreed that they failed because they were 
unlucky, they were likely to feel learned helpless with the chance of 0.628. Moreover, Korean 
students showed monotone increasing probabilities of learned helpless from strong agreement to 
strong disagreement that they can success with enough efforts. As seen in Figure 2, Finnish students 
had a considerably different pattern, in which the highest probability was for moderate disagreement.   

Discussion and Conclusion 
The findings, particularly about the Finnish students, are matched to the claim of Diener and 

Dweck (1978). Student who attributed their failure to ability were most likely to feel learned helpless 
in both countries. For the other attributions, Korean students reported high probabilities for learned 
helpless, which were different from Finnish students. The attribution to luck is independent from 
feeling learned helpless for the Finnish students while the Korean students who agreed that they 
failed because of misfortune are likely to feel learned helpless.   

However, Korean students had higher probabilities to feel learned helpless in all analyzed cases.  
The dissimilarities between Korea and Finland indicated that learned helpless cannot be explained 
only by the attribution theory. Particularly, the relationships between attribution to efforts and 
learned helpless differed most. This probably indicated that social and cultural factors can mediate 
the relationships between the attributions and learned helpless.  The findings suggested further 
research to scrutinize social factors in addition to psychological ones.  In addition, more comparisons 
among countries can contribute to better understanding about the attribution theory and learned 
helpless in learning mathematics.   
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The purpose of this study was to investigate the effects of a set of variables that may explain the 
relationship between mathematics performance and equity. The Programme for International Student 
Assessment (PISA) 2015 data for the United States sample was analyzed using the hierarchical 
linear modeling (HLM) to determine student and school level correlates of mathematics 
performance. Based on the results, disparities in performance by students’ background 
characteristics (e.g. socioeconomic status, gender) together with mediator factors (e.g. learning time, 
school location, class size etc.) and their implications for policy are discussed.  

Keywords: Equity and Diversity, Data Analysis and Statistics, Policy Matters 

Regarding mathematics education as a civil rights issue, Schoenfeld (2002) argued that 
mathematical literacy should be a goal for all students (p. 13). In accordance with Schoenfeld’s 
argument, to examine countries’ mathematics performances and their levels of educational equity 
outcomes, researchers have focused on analyzing large-scale international assessments such as PISA 
and the Trends in International Mathematics and Science Study (TIMSS). In this study, we 
investigated the relationship between the U.S. students’ mathematics performance and equity-related 
factors in education by conducting the HLM analysis to the PISA 2015. 

Theoretical Framework 
According to the PISA equity framework, equity is defined as “providing all students, regardless 

of gender, family background or socioeconomic status, with high-quality opportunities to benefit 
from education” (The Organisation for Economic Co-operation and Development [OECD], 2016, p. 
202). As extensively discussed in this framework, students’ socioeconomic status and immigration 
background are two important factors regarding their school performances, and each country’s 
education system should be more inclusive and fair to ensure high student performance. Hence, 
equity-related factors are to be associated with student achievement mainly because improving 
learning opportunities would increase student performance overall. In this study, we framed our 
investigation according to the PISA equity framework, and addressed the following research 
questions: (1) To what extent are background characteristics (i.e., socioeconomic status, immigrant 
background, gender) and mediating factors (i.e., access to educational resources, opportunity to learn, 
stratification policies) associated with the mathematics performance of students in the U.S. in PISA 
2015? and (2) To what extent are school-level characteristics associated with the effects of 
background characteristics? Thus, this study aimed to provide evidence-based insights for policy-
makers and researchers regarding the equity factors that are associated with students’ mathematics 
performance in the U.S. 
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Methods 
The data for this study consisted of 15-year-old students’ responses to the PISA 2015 

Background Questionnaire and the Mathematics Test, and the PISA 2015 School Questionnaire.  
After removing missing data, the final dataset in this study consisted of 4293 students from 159 

U.S. schools. Because the PISA 2015 data were nested (i.e., students are nested within schools), 
HLM was used as a statistical technique so that the results could provide important empirical 
evidence on the decomposition of variance of performance by student- and school-level variables 
(Raudenbush et al., 2011). We followed two-level HLM by incorporating plausible values and 
sampling weights into the analysis so that each sampled student and school were represented 
accurately (Rutkowski et al., 2010). After building the unconditional model and the random-
coefficients model in the HLM analysis, the full-contextual model that contains significant student- 
and school-level variables was developed.  

Results 
The results of the final model with statistically significant student- and school-level variables on 

student mathematics performance are shown in Table 1. In addition, it is important to note that this 
final model explains 65% of the variance between schools and 20% of the variance within schools. 

Table 1: Final Estimation of Fixed Effects 
Fixed Effect Coefficient S.E. t-ratio 

For INTRCPT1, β0    
INTRCPT2, γ00 495.38*** 5.56 89.03 
School Location (0=rural, 1=Small town, 2=Town, 3=City, 

4=Large city), γ01 
-4.33* 2.18 -1.98 

School Average ESCS, γ03 38.15*** 6.48 5.89 
School Type (0=Public, 1=Private), γ04 -37.84*** 9.21 -4.11 

For Gender (0=Male, 1= Female), γ10 -23.43*** 2.86 -8.02 
Shortage of Educational Staff, γ11 -4.98** 1.92 -2.60 

For Repeat (0=Did not repeat, 1=Repeated a grade), γ20 -36.76*** 5.65 -6.51 
For Learning Time (minutes per week), γ30 0.05*** 0.01 5.236 

School Average ESCS, γ31 -0.05* 0.02 -2.54 
For Achievement Motivation, γ40 9.94*** 1.90 5.22 
For COOPERAT, γ50 10.03*** 1.87 5.36 

Percentage of immigrant students, γ51 0.22*** 0.06 3.78 
For CPSVALUE, γ66 -15.82 1.53 -10.31 
For Perception of Teacher Unfairness, γ70 -5.21*** 0.78 -6.71 

School Location, γ71 1.24*** 0.29 4.16 
For ESCS, γ80 22.48*** 3.23 6.96 

School Location, γ81 -3.67** 1.42 -2.59 
Average Class Size, γ82 0.47* 0.27 1.722 
School Average ESCS, γ83 13.18** 2.72 4.85 

*p<0.05   **p<0.01   ***p<0.001 
 
Student-level variables. This section provides the extent to which background characteristics 

were associated with the mathematics performance of U.S. students according to PISA 2015. The 
gender gap within schools was found to be large (boys performed better), even after controlling for 
other variables (γ10 = -23.43, p<.001). Economic, social, and cultural status (ESCS), learning time, 
achievement motivation, and student’s enjoyment of collaboration are positively associated with 
mathematics performance (γ80 =22.9, γ30=.05, γ40 =9.94, and γ50=10.03, respectively, p<.001 for 
each). Moreover, mathematics performance was found to be lower on average for students whose 
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teachers were reported as unfair by the students compared to the performance of those whose 
teachers were perceived as more fair (γ70=-5.20, p<.001). 

School-level variables. Considering the associations between school-level variables and 
mathematics performance, the school average ESCS, namely the school socioeconomic composition 
effect, was highly significant in predicting mathematics performance (γ03=38.15, p<.001). Moreover, 
the model predicted that students in public schools scored higher than students in private schools 
after demographic and socioeconomic factors were controlled (γ04=-37.84, p<.001). Students in urban 
schools performed less favorably than students in rural schools (γ01=-5.21, p<.051). 

Cross-level interactions. In terms of the significant cross-level interactions between background 
characteristics and school-level variables, the interaction of gender with a shortage of education staff 
(γ11=-4.98, p=.010) showed that the negative effect of being a female student on mathematics 
performance was particularly higher for the students in schools whose capacity to provide instruction 
was hindered to a great extent by a shortage of education staff. The significant cross-level interaction 
between learning time and school socioeconomic composition effect indicated that the positive effect 
of the total learning time on performance was stronger for students who attend schools with a less 
advantaged social profile than those attending advantaged schools (γ31=-.05, p=.014). Furthermore, 
the significant cross-level interaction of enjoyment of cooperation with percentage of immigrant 
students in schools demonstrated that the positive effect of enjoyment of cooperation on mathematics 
performance was stronger for students who attended schools with a higher percentage of immigrants 
(γ51=.22, p<.001). In addition, there was a significant interaction between teacher unfairness and 
school location (γ71=1.24, p<.001). The results suggested that the negative effects of high teacher 
unfairness on performance were stronger for students attending rural schools than those in urban 
schools. 

Moreover, there was a significant interaction between ESCS and school location, class size, and 
the school socioeconomic composition effect. For school location, the positive effects of high ESCS 
were stronger for students in rural schools than for students in urban schools (γ81=-3.67, p=.013). For 
the average class size in schools, the positive effects of high ESCS were stronger for students 
attending schools with a higher average class size (γ82=.47, p=.091). For school socio-economic 
intake, the positive effects of high ESCS were stronger for students who attend schools with a more 
advantaged social profile than those attending less advantaged schools (γ83=13.18, p<.001). 

Conclusions and Implications 
Results from this study indicated that the differences in mathematics performance observed 

across socioeconomic groups were significant. However, the U.S. has been successfully reducing the 
adverse effect of socioeconomic status on performance between 2006 and 2015 (OECD, 2016). The 
initiatives promoting equal opportunity (e.g., the No Child Left Behind Act and Common Core State 
Standards for Mathematics) might have played a major role on this reduction (Kitchen & Berk, 
2016). On the other hand, the U.S. performance on mathematics was comparatively weak among the 
OECD countries. Thus, according to the PISA policy framework, policy-makers might consider more 
universal policies to raise standards for all students to improve performance along with equity 
(OECD, 2013). In addition, we found that school location and average class size influence the 
equitable distribution of achievement by socioeconomic status among students in a school. This 
result suggests that, beyond the universal policies, policy-makers and administrators should decrease 
the average class size in schools and focus on interventions specifically designed for rural schools. 

OECD (2016) identifies resilient students as the ones coming from a disadvantaged socio-
economic background, but scoring among the top quarter in a country/economy. Based on PISA 
2006 and 2009 data, one factor for becoming a resilient student in science appears to be increased 
amount of time that the student spends in science class (OECD, 2011). Our study pointed out the 
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same result for mathematics by providing evidence that the positive effect of learning time on 
mathematics performance is stronger for students in schools with lower ESCS than those attending 
schools with higher ESCS. The result implies a way to help students to overcome the adverse effects 
of their social background and, thus perform better in mathematics. A way of having disadvantaged 
students spend enough time in class is making mathematics courses compulsory. For example, in the 
U.S. in 2006, compulsory attendance made disadvantaged students score 40 points more in science, 
which is the equivalent of a full year of schooling (OECD, 2011). The result suggests that providing 
more opportunities for disadvantaged students to learn in class may be an integral way of fostering 
resilience. 

Moreover, our analysis showed that girls tend to underachieve in mathematics in the U.S. Results 
from PISA 2015, however, showed that there is no significant difference between boys and girls in 
China, Singapore and Massachusetts in mathematics (OECD, 2015). This result shows that gender 
gap does not depend on student’s innate differences in ability. In this study, the significant cross-
level interaction of gender with schools’ resources might reveal a potential way of narrowing the 
gender gap. That is, administrators should consider increasing the number of educational staff 
because the schools that were in need of teacher and assisting staff found to have a larger gender gap 
in favor of boys. In addition, another PISA data showed that girls tend to perform better in 
mathematics when they try to solve mathematics problems independently (OECD, 2015). Thus, 
teaching strategies that demand more of students might provide better learning opportunities for girls. 

Future studies should continue focusing on the relationships between student and school 
correlates of mathematics performance by considering the random effects as well as the fixed effects 
because the magnitude of those relationship might vary from one school to another. Moreover, 
similar HLM analysis could be conducted using other international assessments such as TIMSS data 
to validate the findings. 
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SUBJECT LEVEL ZOOM: A NEW LENS FOR STUDYING STUDENTS’ PERCEPTIONS 
OF THE USEFULNESS OF MATHEMATICS 

Tracy E. Dobie 
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This paper involves a methodological exploration into approaches used to assess students’ 
perceptions of the usefulness of mathematics. I argue that it is crucial to attend to the level at which 
we ask students to report perceptions of usefulness. I present the construct of subject level zoom and 
a case study of one student to consider issues that might arise in measuring usefulness at the level of 
an academic subject versus a task or topic within that subject. Finally, I highlight important 
implications for both research and classroom practice moving forward. 

Keywords: Affect, Emotions, Beliefs, and Attitudes; Research Methods 

Introduction 
In recent years, increasing emphasis has been placed on the usefulness of mathematics (National 

Governors Association Center for Best Practices, 2010). Existing research has illustrated that finding 
ways to enhance perceptions of usefulness (also referred to as perceived utility) is a worthwhile 
pursuit, as one’s perceptions of usefulness are positively associated with academic achievement 
(Durik et al., 2005; Hulleman et al., 2008), course enrollment (Durik et al., 2005; Updegraff, Eccles, 
Barber, & O’brien, 1996), and interest in a subject (Hulleman et al., 2008). However, upon 
examining the ways in which perceptions of usefulness are measured in these studies, an unaddressed 
yet potentially important distinction arises. While perceived utility is conceptualized in the literature 
as a reason for doing a particular task, students are often asked about their perceptions of usefulness 
of an entire topic or subject area. While we might be interested in knowing students’ perceptions at 
each of these levels of focus, I argue that it is crucial to explicitly attend to this distinction for two 
reasons: First, students’ perceptions of usefulness might vary depending on whether they are 
considering the utility of a task, topic, or subject. Second, academic-related outcomes might differ 
depending on the level at which students perceive usefulness. In this paper, I consider this possibility, 
first briefly describing the existing literature and then presenting a new construct and a case study to 
consider potential implications of using measures with different levels of focus. 

Sketching the Landscape 
The expectancy-value model highlights the ways in which one’s values and beliefs influence 

one’s achievement-related choices and performance (Eccles & Wigfield, 2002). In this model, the 
degree to which one values a task directly influences achievement-related outcomes. Utility value, 
broadly defined as the degree to which a task is “useful and relevant for other aspects of [one’s] life” 
(Harackiewicz, Rozek, Hulleman, & Hyde, 2012, p. 1), is one component of task value. However, 
many studies that measure utility value question students’ perceptions of usefulness of entire 
academic subjects, rather than tasks (Anderman et al., 2001; Battle & Wigfield, 2003; Fennema & 
Sherman, 1976; George, 2006; Parsons, 1980; Xiang, Chen, & Bruene, 2005). For example, 
Anderman et al. (2001) asked students to respond to statements such as, “In general, how useful is 
what you learn in math?” In contrast, other studies zoom in on the usefulness of particular techniques 
or topics and ask participants to respond to statements such as, “This technique could be useful to me 
in daily life” (Canning & Harackiewicz, 2015).  



Student Learning and Related Factors 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1112 

1112 

Subject Level Zoom 
To consider potential issues resulting from this varying level of focus, I present the construct of 

subject level zoom. Subject level zoom refers to the grain size at which we examine a phenomenon 
related to an academic subject. In regards to the topic of usefulness, while researchers have 
previously questioned individuals about their perceptions of utility at multiple levels, the level of 
zoom has not been acknowledged as a factor that might influence individuals’ reported utility value. I 
propose, however, that students’ ideas about the usefulness of particular tasks or topics in 
mathematics might differ from their perceived usefulness of the subject of mathematics. 
Furthermore, perceiving utility at these different levels might differentially influence achievement-
related outcomes. Below I present a case study that speaks to this issue. 

A Case Study: Katie 
Katie is a 13-year-old female who identifies as Hispanic. She is a member of a seventh-grade 

honors mathematics class at a school in a working-class suburb of a large Midwestern city. On a 
survey about usefulness, Katie reported that she thinks math is the most useful subject because “it 
mostly has everything in it and you learn a lot in math too.” In her responses to a modified version of 
the Fennema-Sherman Usefulness of Mathematics scale (Doepken, Lawsky, & Padwa, 2004; 
Fennema & Sherman, 1976), Katie’s mean rating was 3.83/5 across the 12 items, which corresponds 
to viewing mathematics as useful. Given these responses, one might conclude that Katie’s perceived 
utility of mathematics is relatively high, which is likely to positively impact her mathematics 
achievement. However, applying the lens of subject level zoom highlights that Katie answered these 
questions about utility at the level of the subject. Will Katie’s reported perceived utility differ if she 
considers the utility of particular topics within the subject of math?  

During an interview, Katie was asked about six mathematics topics that her class explored during 
the year. Her responses regarding whether she expected to use the topics outside of class and if so, 
where, can be viewed in Table 1. 

Table 1: Katie's Views on the Usefulness of Specific Mathematics Topics 
Mathematics Topic Use of Topic in Life (Katie’s perspective) 

Commission and Mark-up “Commission and markup can be but I don't think it is—for 
like cashier work.  'Cause they're, like-they're, like, using a 
much, like, money they have to give or something.  I don't 
know, yeah.” 

Adding and multiplying fractions “Um, I don't think you use this for any jobs, I’m not sure.” 
Writing equations “Um, no? I’m not sure.” 

Finding equivalent ratios “Well, maybe those are like, for math teachers. But yeah, 
that's all.” 

Making graphs “Uh... um, like, maybe making a graph for uh... for let me 
see, like-like for science? Like something-something that works 
for science.  Like a job that is for science.” 

Calculating perimeter and area “For construction, 'cause you need to see how much 
perimeter has and what area you're gonna use.” 

 
Zooming in to consider Katie’s perceptions of usefulness of particular mathematics topics paints 

a more complex picture than seen earlier. For two topics – writing equations and adding and 
multiplying fractions – Katie could not think of any particular uses in life. While Katie did report that 
the other four topics “can be” or are “maybe” useful for particular jobs, she did not actually imagine 
herself pursuing any of those lines of work. For example, after Katie reported that she could imagine 
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making graphs in “a job that is for science,” she was asked whether she was imagining that for 
herself or for others, and she clarified that she meant “just other people.” She was asked the same 
question after she reported that calculating perimeter and area would be useful “for construction,” 
and she again said that she imagined that for “other people.” Furthermore, at the end of Katie’s 
interview, she was asked whether she knew what she wanted to do for work when she got older, and 
she replied that she has “two choices” – either a lawyer or a veterinarian – and will “probably not” 
need mathematics for either. It is worth briefly mentioning that while Katie focused specifically on 
usefulness for jobs, the interviewer did not ask her to do so. Katie could have referenced ways in 
which she might use these topics for a variety of different purposes, yet for five of the six topics she 
spoke solely about uses – or lack thereof – for jobs. The potential significance of this will be 
considered in the next section. 

Discussion and Conclusion 
In this paper, I highlight a potential crossroads in research on usefulness regarding the way in 

which we measure students’ perceptions of utility. While a range of items has previously been 
employed to measure perceived utility of tasks, techniques, and subjects, I argue that we must begin 
to explicitly distinguish between these types of measures and their potential outcomes in our 
research. This work has important implications for mathematics education moving forward, as 
perceived utility is often used as a lever for enhancing student achievement and interest. 

Drawing on the construct of subject level zoom and the case study of Katie, I propose two 
reasons for attending to the level at which we measure perceived utility. First, it might be the case 
that adolescents use different criteria to assess the usefulness of an academic subject than to assess 
the usefulness of specific tasks or topics within that subject. For example, Katie reported that math is 
useful for many things; however, when she was asked about how she might use particular 
mathematics topics, she only considered the topics in terms of their applicability for specific jobs and 
was unable to report any jobs in which she herself expected to use the topics. Katie’s responses raise 
the question of whether she always considers jobs when assessing usefulness, or if she only applies 
that criteria when considering the usefulness of particular topics. If asked to assess the usefulness of a 
particular mathematics task, would Katie consider its utility for future jobs, or might she consider 
other features, such as the task context or the form in which the task is presented? Reflecting back on 
Eccles and Wigfield's (2002) expectancy-value model, this potential difference in criteria considered 
raises another question: Will Katie’s perceived utility of the subject of mathematics positively 
influence her academic-related choices and outcomes, as the model suggests, if she is unable to view 
individual topics as useful?  

As this question highlights, the second reason for attending to subject level zoom is that 
academic-related choices and outcomes might be differentially affected depending on the level at 
which students perceive usefulness. For example, it might be the case that many adolescents will 
report that mathematics is useful since they frequently hear such messages from valued adults, 
including parents and teachers. However, this belief might not improve students’ interest in 
mathematics or course enrollment because they do not see various aspects of classroom mathematics 
– including particular topics or tasks – as useful. In contrast, it might be the case that perceiving 
usefulness in particular tasks or topics is less likely to influence students to pursue a career in 
mathematics than perceiving usefulness in the subject of mathematics overall. Instead, perceiving 
usefulness in those tasks and topics might positively influence students’ engagement in the 
mathematics classroom and interest in the subject. In other words, different perceptions of usefulness 
might have very different outcomes for students’ performance, engagement, and achievement-related 
choices. Current research by the author is building on this work to examine the relationship between 
students’ perceptions of usefulness of different types of tasks and their engagement on those tasks.  
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Moving forward, we must attend to the choices we make in measuring usefulness since they 
drive the interventions we create. This work will have direct implications for practice, as teachers 
regularly strive to help students see mathematics as useful. Conducting research that sheds light on 
the effects of different levels of perceived utility will allow teachers to more effectively influence 
students’ perceptions of usefulness in order to improve mathematics achievement, interest, and 
classroom engagement. 
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At the intersection between high school and college, is the mathematical knowledge students have 
learned enough to ensure their future mathematics success? This study looks at the expectations gap 
or the disconnect between what students know leaving high school and the actual knowledge and 
skills they need to be successful in college from the perspectives of high school teachers, college 
instructors, and remedial college mathematics students. Survey data from the high school and 
college instructors revealed agreement on seven of the top ten most important skills for student 
success. Remedial students’ survey and interview data indicated they view their remedial placement 
as beneficial, yet identified the procedural emphasis of their high school teaching as contrary to how 
they best learn mathematics. 

Keywords: Post-Secondary Education, High School Education, Teacher Beliefs  

Objectives and Purpose of the Study 
Throughout the United States, high school students who take a college preparatory curriculum 

are often surprised when they are placed into a remedial mathematics course in college, as they 
assume their high school courses have adequately prepared them to enroll in college level courses. 
The term “expectations gap” has been used to describe the disconnect between what students know 
leaving high school and the actual knowledge and skills they need to be successful in college 
(Achieve, 2010, p.7). This expectations gap is most noticeable the large percentage of students who 
require remediation upon entering college. In mathematics, 26 by % of the students who took the 
college preparatory mathematics courses of Algebra I, Geometry and Algebra II, needed to take 
remedial mathematics coursework in college (ACT, 2007). In fact, 17% of students who had taken 
one additional, advanced math course in high school required remediation (ACT, 2007). Of concern 
is that high schools are not giving students the adequate preparation needed for college even if they 
are taking college preparatory courses (Hoyt & Sorensen, 2001). Two specific research questions 
frame this work. 

1. What are the expectations of high school teachers regarding mathematical college readiness 
and how do they correlate to the expectations of college readiness held by college 
instructors? 

2. How do students placed in remedial mathematics courses view this placement and their prior 
mathematics teaching and learning? 

In exploring these questions this study attempts to identify and clarify the expectations held by 
students, high schools, and colleges in regards to mathematical college readiness, thereby providing 
knowledge necessary to better preparing students for this transition. 

Perspectives 
The first research question asked in this study examines any discrepancies in expectations held 

by high school and college mathematics teachers concerning the skills necessary for college success 
in mathematics. Many college faculty members nationwide think that students are not adequately 
prepared for the intellectual demands and expectations of post-secondary education (Conley, 2008; 
Corbishley & Truxaw, 2010). The ACT (2009) found in their National Curriculum Survey that 91% 
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of high school teachers feel their students are prepared for college-level work in their content area, 
but only 26% of the college instructors said their students arrived prepared. A survey of college 
professors found that 65% rated graduates’ basic mathematics skills as “fair” or “poor” (Achieve, 
2004). Any discrepancies in perception will be evidenced by what mathematics is ultimately taught 
and emphasized. 

Although a strong conceptual foundation in mathematics is needed at the college level, one 
observation of entering college students is their lack of conceptual understanding in mathematics 
(Richland, Stigler, & Holyoak, 2012). “College-ready students possess more than a formulaic 
understanding of mathematics. They have the ability to apply conceptual understandings in order to 
extract a problem from a context, solve the problem, and interpret the solution back into the context” 
(Conley, 2008, p.8).  It appears that many students have gained only a procedural understanding of 
mathematics at the high school level, and have been able to get by with this limited knowledge up to 
this point (Kajander & Lovric, 2005; Richland, Stigler, & Holyoak, 2012).  

Methods 
Research questions are answered using an explanatory sequential mixed methods design 

(Creswell, 2015). The research design includes both survey data (quantitative) and semi-structured 
interview data (qualitative). This mixed methods design integrates both data types and draws 
interpretations using the strengths of both sets to understand the research problem.  

Question One 
The first part of this study involved evaluating high school teachers’ and college instructors’ 

expectations for college readiness. Survey instruments asked participants to rate the importance of 57 
factors for mathematical college readiness. A Likert scale ranging from 1 - not important, to 5 - 
extremely important, was used to rate each factor. An option to add any additional factors that were 
not mentioned in the survey was included, as well as the ability to list the five factors or skills they 
found to be the most important for college readiness.   

The population for the first research question involved college instructors who teach remedial or 
beginning college-level mathematics courses at a large Midwestern university and high school 
mathematics teachers from the top 25 feeder high schools to this university who teach a college 
preparatory mathematics course. Approximately 415 high school teachers and 15 college instructors 
were contacted with 57 high school teachers (14% response rate) and 9 college instructors (60% 
response rate) responding to the survey. 

Question Two 
The second part of this study gathered and evaluated the views of students who have been placed 

into and taken a remedial mathematics class. An on-line survey was emailed to 2,638 remedial 
students, with 109 responding and 84, or 3%, completing the survey. Survey questions focused on 
how student’s viewed their high school and college mathematics experiences as well as how students 
perceive they learn mathematics. Questions based on conceptual and procedural learning/teaching 
styles were used to determine how students felt these aspects affected their mathematical 
understanding. 

Semi-structured interviews with a subset of the surveyed students added additional insight and 
clarity to the survey findings. Data gathered from the interviews was analyzed for common themes 
using a general inductive approach. Interview data from 13 students was used to validate, explain, 
and enrich the quantitative survey results in more depth.   
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Results 

Instructor Expectations 
Findings from the high school teacher/college instructor surveys revealed that both groups rated 

“develop thinking skills” as the most important factor for students to learn in high school to be 
considered ready for college level mathematics. In fact, seven of the top ten highest rated factors 
were the same for both groups. Table 1 outlines these seven factors identified by each group and the 
average Likert scale score it received. Both groups also agreed on three of the five lowest rated 
factors: (a) “student journals”, (b) “breadth over depth” and (c) “only teach/learn the procedures and 
process”. Further analysis of the survey data revealed that the largest difference in mean importance 
occurred with “advanced math content knowledge” (1.339) followed by “reading ability” (1.000), 
“specialized curricula (AP, IB, etc)” (0.965), “cooperative learning” (0.959), and “memorize basic 
concepts” (0.947). In all cases the high school teachers ranked these topics as more important than 
college instructors and placed them on average approximately one entire importance level higher. 

Table 1: Most Important Factors for Mathematics Success in College 
Factors/Skills Mean of High School 

Teachers 
Mean of College 

Instructors 
Develop thinking skills 4.74 4.67 
Strong foundation of basic math skills 4.70 4.44 
Understanding the concepts 4.56 4.11 
Improve study skills and habits 4.47 4.44 
Alternate representations (graphing, algebraic) 4.44 4.22 
Time management skills 4.44 4.22 
Providing regular feedback 4.42 4.33 

 
High school teachers and college instructors were also asked to list in order of importance the 

five factors they feel are most important for college readiness in mathematics. “Understanding 
concepts”, “perseverance”, “problem solving”, “critical thinking” and “number sense” were common 
themes in the high school teachers’ list. Unfortunately with such a small college instructor sample, 
identifying any themes in the college instructors’ list was not possible, although some themes 
identified by the high school teachers were also found in the college instructors’ lists. 

Student Perceptions 
Student survey findings indicate that only 35% of the students felt their high school math 

background adequately prepared them for college level mathematics.  Seventy-two percent of 
students say they were taught mathematics in high school using mostly computational problems.  
This is in opposition to 77% of the same students who said they need to understand the ideas and 
concepts in order to do well in mathematics. Over 78% of the students felt that their college math 
instructor explained the concepts first, with 81% stating that connections were made between 
different mathematical ideas and concepts in their college mathematics course. 

In the interviews statements such as “I remember a lot of high school was just memorize” and 
“concepts were the biggest thing that I lacked until I got up here” were often mentioned. A common 
theme throughout the interviews was one of sense-making and understanding. One example came 
from a student who said when talking about high school, “I didn’t understand why I’m doing it.  I 
just knew how to get the answer. I didn’t know why I was getting answers.” A second student 
mentioned that in high school he felt like he “kind of learned bits and fragments” of math, but that 
his first semester in his remedial college math course “I was able to kind of connect the ideas and the 
big picture math concepts.” Another interviewee, Alvin, also mentioned everything coming together 
for him in his remedial math course. 
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I learned a lot in that course. And it was like I had seen all the parts that were shown to me but I 
was shown how they actually worked.  So it’s like I had this machine I’d been working with my 
entire life that I had no clue how it worked and then someone finally showed me where all the parts 
go. Which was, pretty nice! 

Conclusions 
Overall both high school teachers and college instructors held very similar views on what 

constituted mathematical college readiness. This was nice to see, as more disjoint views between 
these groups has been noted in the past. Of interest is that “advanced math content knowledge” had 
the greatest variability of any college readiness factor in this study. 

Remedial students view their high school mathematics courses as being more procedural or 
computational, while they interpret their college mathematics courses as more conceptual in nature.  
Although they were not pleased they had to take a remedial mathematics course, 78% of the remedial 
students think they were accurately placed into their remedial course, and almost 81% thought taking 
their remedial course was beneficial. Additional analysis revealed time away from 
school/mathematics and memorization of steps instead of understanding of concepts were barriers to 
success, as well as contributing factors for students’ remedial placement.  
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STEM is “standards-based, meta-discipline… where discipline specific content is not divided, 
but addressed and treated as one dynamic, fluid study” (Merrill, 2009, p. 49). STEM literacy is the 
synergy of applying the knowledge and skills of STEM to “increase students’ understanding of how 
things work and improve their use of technologies” to solve the greatest challenges of our era 
(Bybee, 2010). The purpose of this study is to examine the development of STEM literacy in rising 
middle grades students in an informal learning environment. 

The See Blue STEM Camp is a week-long summer day camp for students (N=216) in incoming 
grades 5-8. The camp focused on authentic hands-on sessions where students were given 
opportunities to engage in a variety of STEM fields through the use of the eight Standards of 
Mathematical Practice (CCSSO, 2010) and the eight science and engineering practices (NRC, 2011). 
The language of these practices reveal an extensive overlap to support students solving complex 
problems and participating in authentic learning experiences, thereby increasing their STEM literacy. 
Data included pre- and post-surveys as well as interviews conducted throughout STEM camp. Data 
were qualitatively analyzed using the constant comparative approach (Glaser, 1965). Coding was 
used to generalize patterns (Strauss & Corbin, 1990). 

Prior to participating in camp, most students gave a definition of STEM that focused on just one 
of the subjects that comprise STEM (e.g. an equation or science equipment), or by writing the words 
that make up the acronym. In interviews, students often defined STEM by listing the four individual 
subjects and struggled to give a broader conception of how STEM applied to their lives. After 
participating in See Blue STEM Camp, a majority of students defined STEM by copying the images 
from the camp logo or writing the words “Science, Technology, Engineering, and Math” with 
connections between the four siloed subjects. Over 50% of students included smiley faces, “fun,” and 
other positive words or phrases. Nearly 15% students described STEM as a concept beyond its 
individual components and emphasized problem solving. This indicates students’ conceptions of 
STEM started to evolve through attending camp. Their STEM literacy grew and progressed as they 
experienced the potential of the STEM field. These findings give insight into how we can move 
forward in developing STEM literacy for students. In order for students to develop their STEM 
literacy, they need to explore and experience STEM over time. We must provide continued, extended 
opportunities and adequate time to build the STEM literacy of the next generation. 
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FIXING A CROOKED HEART: EXPRESSING AND EXPLORING MATHEMATICAL 
IDEAS IN AN INFORMAL LEARNING ENVIRONMENT 
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Playing and doing mathematics are often conceived of as mutually exclusive activities. One is 
dominated by positive affect and free choice, while the other is often perceived as highly abstract and 
predetermined. We wonder how children’s play can provide an entrée into mathematical thinking? In 
play, children ask “what if…?” as they imagine new possibilities, and they often persist at solving 
problems. These activities resemble mathematical practices like make sense of problems and 
persevere in solving them or look for and make use of structure, potentially bridging children’s 
spontaneous activity with desired activities in ambitious math teaching. We specifically ask: (1) How 
are mathematical ideas and practices expressed informally in children’s play? (2) How is the body 
involved in children’s sense-making during play? 

Conceptual Framework 
The math children use in a playful math learning context draws differently on meaning-making 

resources than either school math or mathematicians’ math, requiring differing amounts of the 
following for meaning-making: situational meaning, personal meaning, disciplinary meaning. 

Data Collection and Analysis 
This study was set at a mathematical playground at the Minnesota State Fair called Math On-A-

Stick. Our primary data collection strategy involved head-mounted Go-Pros on 345 children to 
collect video data on table-top activity. We engaged in data reduction using grounded theory (Corbin 
& Strauss, 1990) to identify episodes of persistent problem-solving. For this study, we present an 
analysis on one eight year-old female (“Elly”), selected for her unusually persistent problem-solving 
in play. Using interaction analysis (Jordan & Henderson, 1995) we examined Elly’s talk, gesture, 
object use, with particular attention to how she used her body. 

Findings 
Elly defined an aesthetic goal of “making a heart” with colored plastic eggs in a 6x5 crate. 
Mathematical Ideas and Practices in Play: (1) Everyday notions of “crookedness” and 

“middle” indicated attention to and an increasingly refined understanding of structure of both the 
symmetry of her heart and the parity of the grid of egg crate. (2)The playful nature of her activity 
allowed her to persist in her problem-solving as well as maintain ownership of the problem-solving 
process even with her mother’s attempted interventions. 

Role of Body in Sense-Making during Play: The use of bilateral coordinated movements aided 
her in realizing the problem of “middle,” that she needed to rotate the crate so she could have a 
“middle,” and continued be used to fix her “crooked” heart and achieve symmetry.  

Implications 
Elly’s play involved approximations of mathematical practices like make sense of problems and 

persevere in solving them and look for and make use of structure. Children’s personally relevant 
goals in mathematical environments can support the authentic use of math practices. 
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Student perception of mathematical abilities plays an important factor in in a student’s decision to 
continue in their selection of rigorous course work and to study in the STEM fields (Tyson, Lee, Borman, & 
Hanson, 2007). Females are less likely than males to pursue a career in the STEM fields (National Science 
Foundation, 2014). There may be a relationship between the perceived mathematics classroom learning 
environment of high school students and their self-concept (Tosto, Asbury, Mazzocco, Petrill, & Kovas, 
2016). Students need to feel competence, relatedness, and autonomy in the classroom to persist in challenging 
situations and to have higher achievement and interest levels (Gottfried, Marcoulides, Gottfried, & Oliver, 
2013). This study examined the relationship between students’perceived competence and feeling of relatedness 
and autonomy as mediated by gender and autonomy of problem solving. 

Methodology 
TIMSS 2015 8th grade mathematics background questionnaire files were analyzed to answer the 

research questions. Scaled variables for relatedness and perceived competence were derived from questions 
18 and 19 of the student questionnaire and had Cronbach alpha scores of 0.87 and 0.89. Alinear regression 
analysis was performed with the dependent variable of competence and independent variables of   
relatedness and gender. An ANOVAanalysis was performed with the dependent variable of competence and 
independent variables of autonomy to problem solve and gender. 

Findings 
Students’perception of relatedness in the classroom accounts for nearly 18% of the variability in their 

perceived competence. Being a female negatively affects perceived competence but not relatedness. 
Increased frequency of autonomy in problem solving increased competence perception, more so for males. 
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GIRL TALK: USING GAME DESIGN AND ROBOTICS TO THINK, REASON AND 
COMMUNICATE MATHEMATICALLY 
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Female student sets the robot to run the program. The robot partially navigates the course but 
doesn’t knock the block down. At the “turn” in the course, the robot plays a short sound. F: And the 
crowd is cheering. 

Keywords: Informal Education, Classroom Discourse, Gender, Equity and Diversity 

In spite of well substantiated claims that culturally relevant pedagogies (CRP) help students 
develop voice and identity in diverse learning contexts, CRP remains a less-explored means for 
engaging a diversity of students in game design and robotics programs (Ladson-Billings, 1995; 
Leonard et al., 2016; Shah et al., 2013). Part of a larger study of middle school extra-curricular 
programs, the present analysis investigates girls’ “math talk”, cultural relevance, spatial visualization, 
computational thinking and problem solving during game design instruction. Building on the work of 
Sullivan & Heffernan (2016), our research supports the notion of learning progressions in technology 
education. Adding to their model, our data show that students’ proportional reasoning is a critical 
step between sequencing and causal inference on the way to learning how to think about robotic 
systems, codes and their interplay. When students engaged in conversations or were asked to explain 
their programming choices, they often related numeric values within the code to specific measureable 
behaviors and outcomes, leading to increased understanding of causal relationships. While all 
students (individuals and within groups) developed similar communication habits around coding, 
girls tended to talk more frequently and openly about the connections between their rather haphazard 
codes, their observed results and connections to other phenomena, real or imagined. This observation 
is validated by our finding that girls had higher posttest scores (M=4.56; Std. Dev. 0.47) than boys 
(M=4.19 Std. Dev. 0.65) on the 21st century skills survey when pretest scores were used as a 
covariate. While the scores were not significantly different, the data show a trend that girls are more 
likely to verbalize their thinking than boys. Facilitated by a video journaling dimension of the 
program required by the teacher, the research team was able to document pathways to learning for 
students, chronicle changes in their reasoning and organize the development of computational 
thinking by analyzing qualitative data (journal videos, observation/field notes and focus group 
interviews). A rubric was developed that describes indicators of computational thinking as emergent 
(level 1), moderate (level 2) or substantive (level 3). An additional evaluation tool was developed to 
conceptualize how students engage the Next Generation Science Standards (NGSS) science and 
engineering practices most directly related to authentic communication of scientific ideas.  
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A confidence judgment expresses how sure students are about the accuracy of their own answer 
to a test item. It plays a critical role in students’ ability to successfully self-regulate their own 
learning (Dinsmore & Parkson, 2013). It also provides instructors with information to guide their 
instructional decisions regarding remediation (Stankov et al., 2012). 

Knowledge of fraction concepts (e.g., decimals, percentages, ratios, rates, and proportions) and 
fraction arithmetic are essential skills for students’ future success (Siegler & Lortie-Forgues, 2015) in 
probability (Garfield & Ben-Zvi, 2007) and other topics. However, half of middle and high school 
students and even many college students (Siegler & Lortie-Forgues, 2015) lack fraction sense and 
struggle with fraction applications to mathematics or real world settings. Erroneous fraction ideas 
have been found to exist in both conceptual understanding and procedural fluency (Panaoura et al., 
2009). The present study investigates college statistics students’ confidence judgments on fractions 
prior to their introduction to the study of probability. We look to identify fraction notions associated 
with high and low confidence.  

Participants in this study were 57 college students from the statistics (GER) classes in a public 4-
year college. Using a Rasch rating scale model, we analyzed their confidence ratings on a 5-point 
scale for all items on a 30-item instrument. The person and item reliability of the confidence 
construct were 0.93 and 0.90 (Ding & Moore-Russo, forthcoming). The study uses the item difficulty 
estimates from Rasch analysis to identify which fraction concepts are “easier” and “more difficult” 
for the participants to agree they are “completely confident.” We found participants have increased 
confidence in their responses to the items about part-whole fraction, its applications, and fraction 
arithmetic computations. These items had a relatively lower item difficulty level. The study finds that 
38% of items are at the above-average difficulty level, for which participants display low confidence. 
The fraction concepts underlying these items include fractions involving variables (e.g., TIMSS 2011 
item M032662) and fraction division operation sense, etc. The findings reflect participants’ 
procedural knowledge is more solid than their conceptual understanding of fractions and fraction 
arithmetic. The findings have implications for teaching and learning in developmental mathematics, 
college mathematics, and statistics. 
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Mathematics education is at a crossroads in terms of how we address issues of equity, moving 
from demographic-based measures of access and achievement to the pursuit of new understandings 
of how mathematics learning itself can be a racializing or minoritizing event (Gutierrez, 2013). We 
know that the terrain of mathematics learning can be particularly difficult for students from 
historically marginalized groups, at least in part because of the problematic discourses that circulate 
about these students with regard to success, failure, and questions of belonging in mathematics. At 
the same time, we have a deeply under-theorized understanding of how young people make sense of 
themselves in this space (Martin, 2009). 

One way that people make sense of their lives and articulate a vision of the self is through stories. 
This study examines student narratives through the stories told in mathographies – written 
autobiographical narratives about a person’s experiences learning mathematics. The data for this 
study consisted of 54 mathographies written by students in two differently tracked high school math 
classes in a large, diverse, public high school in Brooklyn, NY. The mathographies were examined 
using discourse analysis with a focus on positioning (Davies & Harre, 1990) in order trace the ways 
in which students positioned themselves and others by drawing on, or contesting, existing discourses 
of mathematics achievement, participation, and belonging in school as well as the broader social 
world. The research questions guiding the study were: (1) What is the typology of mathematics 
identities that emerge in a diverse urban high school? And (2) How do students draw on a range of 
available discourses - including of mathematics, schooling, race, immigration, and family - to 
position themselves as certain types of mathematics students? 

Findings show that students draw extensively on discourses of schooling as they position 
themselves as students worthy of their teacher’s investment. Students take up student positions that 
posit worthiness along axes of ability, effort, and resilience. They contest deficit narratives about 
themselves and their families; and they simultaneously reproduce dominant discourses of schooling 
by drawing heavily on institutional evidence of achievement, such as exam scores and homework 
compliance, and through stories of parental investment. These findings suggest that the mathematics 
education community must look closely at how it is implicated in the widespread reproduction of an 
American schooling context in which exam-based achievement scores, and the ability to out-perform 
others in order to get ahead economically, overshadow opportunities for participation and 
engagement on other grounds. 
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This poster presentation expands on prior research about bilingual students and English Learners 
(ELs), which has focused on how they best learn mathematics (Domínguez, 2011; Khisty & Chval, 
2002; Moschkovich, 1999; Secada, 1991; Setati, 2005; Setati & Adler, 2000; Turner, Domínguez, 
Maldonado, & Epsom, 2010; Zahner, 2012). The purpose of this study was to explore how high 
school immigrants’, who are also ELs, prior educational experiences influence their preferences for 
learning mathematics, specifically Algebra 1, in a new educational setting. Each of the three 
participants involved in this case study were interviewed and asked questions about their educational 
experiences in their home countries, how they best learn math, and how they prefer to be taught 
math. In analyzing this data, participants brought up ideas on working with others during math 
classes and whether they preferred to work independently or in a group. This poster shows this 
portion of the data analysis of the greater study.  

Each of the participants’ home countries is different, as is their experiences with formal 
schooling. While none of the participants has had interrupted schooling, they have been educated in 
the U.S. for varying amounts of time and have been in different types of schools in their home 
countries. The participants have shared different experiences with working with peers in both their 
home countries as well as in their U.S. high school. Each of the participants prefers to work 
individually. With varying prior experiences with working with peers in mathematics, participants 
have differing views about why they do not want to work with or the potential for working with peers 
to solve problems in the mathematics classroom. The analysis of these response shows some 
relationship between prior educational experiences and preferences for working with others in the 
classroom, however the sample size is quite small so generalizations cannot be made.  
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Proposal 
Students with autism spectrum disorder typically achieve below their peers without disabilities 

due to the common characteristics of autism (Fleury et al., 2014). In addition, these students often 
experience high levels of anxiety (Bellini, 2004; Kim, Szatmari, Bryson, Streiner & Wilson, 2000), 
which can make access to and success with mathematics especially challenging. Specifically, 
mathematics that requires higher level thinking and mathematical reasoning is difficult for students 
with autism due to deficits in executive functioning (Barnhill, Myles, Hagiwara, & Simpson, 2000; 
Mayes & Calhoun, 2003). To provide access to abstract, secondary mathematics for students with 
autism, teachers need to utilize support strategies that eliminate barriers by reducing anxiety and 
addressing difficulties with executive functioning.  

The researchers conducted an exploratory case study (Creswell, 2013) to describe teaching 
strategies to support executive functioning to reduce anxiety and increase the algebraic reasoning 
skills of a secondary school student with high functioning autism. We transcribed five teaching 
sessions, coded the data, organized the data into emerging themes, and utilized an independent rater 
to monitor interpretive validity during data analysis. The teacher utilized calming routines during 
strategically timed breaks within longer sessions of engaging in challenging mathematical reasoning. 
For example, when the student became anxious, she preferred to calm down by solving procedurally 
repetitive mathematics problems (at a skill level that she had already developed) and practicing deep 
breathing exercises. Then, when relaxed, the student would vigorously engage in challenging 
mathematics (e.g., Pythagorean Theorem and graphing inequalities) including problem solving, 
justification, and participation in discussions connecting her work across mathematical and other 
contexts. Findings from this study suggest that teachers of students with high functioning autism may 
be able to set high expectations for these students to access challenging mathematical content as long 
as part of their instructional approach includes strategies for reducing anxiety and addressing 
difficulties with executive functioning.  
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The crossroads of mathematics and biology are more important than ever as advanced 
quantitative techniques have become standard in biology (NRC, 2003). Additionally, 30% of 
Calculus I students intend on careers in the biological and life sciences (Bressoud, 2015). 
Furthermore, researchers have called for studies that investigate how students from the many 
disciplines that require calculus think about and use calculus concepts (Rasmussen, Marrongelle, & 
Borba, 2014). Existing research concerning the definite integral and accumulation is based primarily 
in physics and engineering contexts (e.g. Jones 2015) and little is known about how students from the 
biological and life sciences reason about such tasks. This topic is particularly important given the 
prevalence of modeling via differential equations in the biological and life science. Therefore, I 
sought out to answer the research question: How can we characterize the ways individuals in the 
biological and life sciences solve calculus tasks involving accumulation?  

Methods 
This qualitative study included task-based interviews with twelve undergraduate students 

majoring in the biological and life sciences. During the hour-long interviews, students were asked to 
solve five calculus tasks involving accumulation. Interview data was transcribed and open-coded in 
accordance with principles from constructivist grounded theory (Charmaz, 2000).  

Results and Discussion 
Results indicate that students developed local theories of how to solve the interview tasks. 

Students made conjectures concerning a solution strategy and then assessed the reasonableness of 
said strategies via their understanding of the problem context. In one task, students used the problem 
context (climate change) to judge whether their assumptions and mathematical approach were 
accurate. Familiarity with the problem context, as well as the representation of the rate of change 
function, affected how the students reasoned about accumulation. One significant implication of 
these results is the importance of using a wide variety of contextual settings in university calculus 
courses to better serve the undergraduate calculus community.  
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Keywords: Elementary School Education 

Background and Research Question 
This study investigated the usefulness of a particular drawing intervention, Quick Draw, to better 

understand how sixth-grade students of varying abilities approach and interact with spatial 
visualization tasks, using a quasi-experimental, mixed-methods design. The concept of spatial 
intelligence has changed over time from being thought of as an innate ability to skills that can be 
developed (NRC, 2006; Sarama & Clements, 2009; Sorby, 1999). Studies of spatial ability and skills 
have grown from simply identifying mechanical ability to being a predictor of success in such 
academic fields as science, technology, engineering, and mathematics (Hegarty & Waller, 2005; 
Sorby, 1999). The power of spatial intelligence and its many subcomponents are an underappreciated 
and underutilized cognitive ability within many classrooms (NCTM, 2000; NRC, 2006; Sorby, 
1999).   

Method and Results 
The research subjects were in a sixth-grade teacher’s mathematics classes, and through pre-

testing, four case study participants (two high and two low spatial ability students) were identified.  
A multiple holistic case study approach provided information concerning the differences amongst 
subgroups (high or low spatial ability) regarding their approach and interaction with spatial 
visualization tasks.  The testing instrument for both pre- and post- testing consisted of a combination 
of five modified spatial visualization tests.  Students participated in six weeks of Quick Draw 
interventions as five-minute warm-up activities to track their progress and to determine how their 
spatial abilities improved.  Students briefly viewed a Quick Draw figure and were asked to draw 
what they saw, and follow-up discussions ensued. In a review of all of the data sources (quantitative 
and qualitative) three distinct differences were identified between the groups.  One was how groups 
viewed the intervention activities’ impact on other academic areas; two, the use of correct geometric 
terminology. However, the most distinctive difference was how groups appeared to view the figures. 
Students with high spatial visualization skills appeared to view images holistically, whereas students 
with low spatial visualization skills appeared to view images as components. 
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INFORMAL STEM LEARNING: IMPACTING BLACK FEMALES SELF-EFFICACY AND 
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In most K-12 schools, Black girls face limited access to STEM course offerings and rigorous 
STEM learning experiences (Perry, et al. 2012). Black girls are often placed in mathematics 
classrooms dominated by non-engaging and non-rigorous curriculum devoid of meaning and any real 
connections to their lived experiences (Hill, 2010). With the growing interest in STEM at both the 
national and international level, as well as the persistence in racial disparities in educational 
achievement, it is crucial that educators provide learning experiences that support the positive 
development of Black girls as STEM learners. Previous research suggests that there is a relationship 
between informal STEM learning, self-efficacy and interest in STEM careers. For example, 
according to the Afterschool Alliance (2011), informal STEM learning experiences contribute to 
improved attitudes toward STEM fields and careers, increased STEM knowledge and skills, and 
higher likelihood of graduation and pursuing a STEM career. Kerr and Robinson Kurpius (2004) 
found that girls of color who participated in informal STEM activities increased their exploration of 
STEM careers, achievement and self-efficacy.  

Building on this work, this study explores the impact of a four-week informal STEM program 
that utilizes a socially transformative curriculum model which values and draws connections between 
Black girls lived experiences and STEM content. To better understand the relationship between 
informal STEM learning and Black girls’ self-efficacy and interests in STEM careers, we are 
conducting quantitative analyses of pre-post survey data from 55 Black girls (ages 9-17) who 
participated in the summer STEM program over two years.   

Initial findings suggest that having access to socially transformative STEM curriculum in an 
informal setting increased participants’ self-efficacy, interest in STEM careers and that learning in an 
informal setting with socially transformative STEM curriculum can help counter some of the 
detrimental effects Black female students may experience in more traditional settings.  
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Recent studies have attempted to identify student characteristics that predict success in calculus 
(Hieb, Lyle, Ralston, & Chariker, 2015; Worthley, 2013). Prominent has been the use of Motivated 
Strategies for Learning Questionnaire (MLSQ) to measure motivation and learning strategies. Hieb et 
al. found ACT scores, algebra skills test scores, intrinsic goal orientation, time and study 
environment management, and test anxiety to be good predictors of student success in a first-year 
engineering calculus course. Worthley’s model of calculus success incorporated variables such as 
math placement test scores, test anxiety and self-efficacy. While these studies indicate motivational 
and self-regulatory factors may impact success, they do not examine the interactions between 
success/failure and motivational/ self-regulatory factors without the added element of mathematics 
ability of incoming students. Our research aimed to examine the relationship among these constructs. 

In autumn 2016, 545 Calculus I students at a large midwestern university were given the 
Calculus Concept Readiness (CCR) assessment (Carlson, Madison, & West, 2015) and the MLSQ. In 
addition, final grades as a percentage were collected.   

In analyzing MSLQ results, each student’s subscale average score was calculated. First, 
correlations with bootstrap 95% confidence intervals were ran between MSLQ subscales and final 
course grades.  Then, controlling for CCR scores, partial correlations with bootstrap 95% confidence 
interval were calculated between each MSLQ subscore and final numerical grade. Using Bonferroni 
Correction, a significant p-value of .002, eight of the MSLQ subscales significantly correlated with 
final course grade: intrinsic goal orientation, task value, control beliefs, self-efficacy, test anxiety, 
elaboration, metacognitive self-regulation, and effort regulation. After controlling for CCR scores, 
only five of the subscales significantly correlated to final grade: instrinsic goal orientation, task 
value, self-efficacy, test anxiety, and effort regulation. 

Results indicate that without controlling for incoming ability, additional motivational and self-
regulatory characteristics correlated with final grade, implying these student characteristics may need 
to be addressed to assure success.  
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PRETENDING WOGS ARE LOGS: EXPLORING CONTEXTUAL EFFECTS OF EQUAL 
SHARING WORD PROBLEMS IN FOURTH-GRADERS 
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Grounding mathematics word problems in realistic contexts (e.g., situations that involve 
everyday items, such as pizzas) can elicit informal, yet meaningful, strategies that enhance problem 
solving. These effects are observed when compared to problems that contain so-called idealized 
representations – i.e., arbitrary elements, such as alphanumeric notation, that do not trigger real-
world knowledge as readily (Belenky & Schalk, 2014). What is less understood is the effect of 
different types of real-life problem contexts. Cutting a pizza into equal slices involves concepts and 
actions learned informally outside of school. In contrast, partitioning 12 m of rope entails 
measurement concepts (e.g., standard units) that are learned formally in school. When students’ 
everyday knowledge is not activated, their strategies tend to suffer (Weyns et al., 2016).  

Method and Results 
In the present study, we examined students’ performance on equal sharing problems as a function 

of context type. Fourth-grade students (N = 36) in 4 public schools in Canada solved 8 equal sharing 
problems with fractional remainders. Four problems were couched in everyday contexts that readily 
cue routine actions (e.g., slicing pizza), and two in measurement contexts (e.g., partitioning 12 m of 
rope) that cue formal school knowledge. Two problems contained items with no real-world referents 
(“wogs”) and thereby constituted idealized problem contexts. We assessed the students’ performance 
by scoring the appropriateness of the strategies they used. 

Contrary to predictions, we found no difference between performance on the word problems with 
everyday contexts and those with idealized contexts. Video recordings and the students’ drawings 
revealed that they ascribed everyday meaning to the idealized items (“I am going to pretend that a 
wog is a log.”). Students’ performance on the problems with the measurement context was 
significantly lower than performance on both the everyday problems (p =.008) and the idealized 
problems (p = .017). Descriptive analyses revealed that the measurement context appeared to impede 
the generation of meaningful strategies. Struggling to conceive of length as a quantity that could be 
partitioned, students relied on computation learned in school and guessing. 

Conclusions 
Our findings show that not all realistic contexts are equal. Some may contain elements that block 

the activation of informal knowledge that would support problem solving (Weyns et al., 2016). 
Children can be extremely resourceful in constructing meaning where it otherwise does not appear, 
but more research is needed on the conditions that elicit productive meaning making. 
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UNDERSTANDING SCHOOL LEADERS’ DISCOURSE IN REGARD TO MATHEMATICS 
ACHIEVEMENT 

Jhonel Morvan 
Brock University 

jhonel.morvan@brocku.ca 

The notion of discourse in school mathematics has been of considerable interest to researchers. 
Scholars largely associate mathematical discourse to classroom practices (Moschkovich, 2007) and 
tend to overlook the political dimensions of discourse that are largely the prerogatives of school 
leaders. There is a significant body of literature pointing to the fact that school leaders are critical in 
supporting effective schools (Fullan, 2011). Further, school leadership is widely considered to impact 
student achievement and success (Leithwood, Patten, & Jantzi, 2010). Despite that evidence, not 
much attention seems to be given to school leaders’ discourse on math achievement even though it is 
well known that school leadership discourse impacts school culture (Webster, 2012).  

This poster presents findings from a pilot project involving 10 school administrators and systems 
leaders representing 2 different jurisdictions: 5 from the Northern Haiti and 5 from the French-
language schools in Ontario. The participants from Haiti were from private schools (religious and 
secular) and the ones from Ontario were from both the catholic and public systems. The research 
examines school leaders’ discourse in the context of math achievement for all students. What are 
some of the commonalities of school leaders’ discourse when it comes to math achievement? What 
do these leaders perceive to be success factors, roadblocks and challenges to students’ math 
achievement? To what extent their discourse is a reflection of implicit inequities in school math? Do 
they allude to deficit assumptions in their understanding of math achievement for all students? 

Using primarily semi-structured interviews, this research used a qualitative framework to explore 
some of these questions. Early analysis of the transcripts yielded to several themes including the 
importance of teachers’ impact, the students’ and teachers’ attitudes effect, the fixed mindsets 
regarding math achievement and the challenge to make math meaningful to students. These four 
themes are examined in light of literature arguing that “effective school leadership is needed to 
support the transformation of teaching practice and school culture” (Vale, Davies, Weaven, Hooley, 
Davidson, and Loton, 2010, p. 47). 

This research offers insights on school leaders’ discourse related students’ math achievement and 
addresses a gap in the literature (Herbel-Eisenmann, Choppin, Wagner, and Pimm, 2011, p. 5). This 
project initiates a framework for further studies on how school leaders’ discourse interplay with math 
achievement. As scholars examine equity issues in school math and as policymakers discuss ways to 
increase math achievement for all students, it is critical to also consider how school leaders can be 
supported in developing discourses compatible to more equity in school math.   
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An estimated 6%-14% of students in the United States have persistent difficulties in mathematics 
and may be identified as having a learning disability (LD). These students often have difficulty 
connecting approximate number systems with symbolic number systems (Mazzocco, Feigenson, & 
Halberda, 2011), as well as challenges holding and storing information in short and long term 
memory. These specific difficulties, evidenced by challenges with foundational skills (i.e., counting 
on and subitizing), may relate to problem solving abilities.  

We use Piaget’s (2001) construct of reflective abstraction to explain how students cognitively 
reorganize information through reflection on their activity and its effects as they learn mathematics. 
First, students notice that the expected results of actions do not align with actuality, and try to resolve 
this perturbation by reorganizing their actions. Second, students compare mental activity records and 
their effects across similar situations (Simon, Tzur, Heinz, & Kinzel, 2004). Through repeated 
exposure, students internalize the concepts and processes used to select and execute appropriate 
strategies to solve problems. However, it is common for students with learning disabilities to struggle 
with identifying whether a solution to a given problem is reasonable and with keeping track of and 
reflecting on specific problem solving processes (Cuenca-Carlino, Freeman-Green, Stephenson, & 
Hauth, 2016).  

Writing to Learn (the use of writing activities to aid learning in other content areas) can help 
students develop metacognitive strategies (Bangert-Drowns, Hurley, & Wilkinson, 2004). Reflective 
abstraction can be aided through metacognitive strategies (Simon et al., 2004). Therefore, WTLM 
may help students with LD engage in reflective abstraction. Psychological theories support the use of 
writing to develop connections between representations and the ability to communicate thought 
processes; both tenants are central to Piaget’s theories on metacognition (Fox & Risconcente, 2008). 
In this poster session, we propose WTLM as an instructional strategy to promote reflective 
abstraction for students with LD, review the evidence for the use of WTLM to promote reflective 
abstraction, and provide suggestions for classroom applications as well as future research. 
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EXAMINING THE INTERACTIVE POSITIONS AND STORYLINES OF AN EMERGENT 
BILINGUAL LEARNER 
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The U.S. storyline of emergent bilinguals has historically failed to highlight the mathematical and 
linguistic assets of this group; instead, it has primarily focused on providing support. To disrupt this 
narrative, a case study of one elementary teacher, Ms. Bristow, is presented. Ms. Bristow’s 
discursive practices and pedagogy illustrate how she fostered the storyline of mathematical 
competence for an emergent bilingual Latina by positioning her in ways that called attention to her 
mathematical thinking. Ms. Bristow’s creation of mathematical goals and participatory expectations 
provided the foundation for classroom interactions that enabled the student’s storyline to come to 
fruition and be appropriated by peers.  

Keywords: Equity and Diversity, Classroom Discourse 

Although emergent bilinguals (EBs) are a diverse group of students with a wide array of 
mathematical and linguistic competencies, they are not positioned in the U.S. narrative as such (de 
Araujo, Smith, & Sakow, 2016). Frequently, EBs are positioned in ways that do not focus on their 
mathematical competencies, but on their linguistic deficiencies. Such narratives have repercussions 
in the classroom and can determine ways teachers interact with EBs (Wood, 2013; Yamakawa, 
Forman, & Ansell, 2009; Yoon, 2008).  

Discourse is critical to mathematical learning (National Council of Teachers of Mathematics, 
2014) and classroom discourse can facilitate or restrict this learning (e.g., Esmonde & Langer-Osuna, 
2013; Turner, Dominguez, Maldonado, & Empson, 2013). Discourse that is used to control or silence 
EBs ultimately diminishes opportunities to learn mathematics and acquire English while maintaining 
the status quo (Battey & Leyva, 2016; Yoon, 2008). Therefore, teachers must be attentive to the ways 
their discursive practices and mathematical and participatory expectations influence EBs 
mathematical learning in the classroom.  

Positioning theory offers one way to examine how teachers’ discursive practices can facilitate 
mathematical learning for EBs and offer counter-narratives of who is mathematically competent. 
Through discursive practices, teachers position students in ways that contribute to their storylines as 
mathematics students. When teachers position students in ways that value their mathematical 
competencies and diverse cultural assets and experiences, a storyline of mathematical competence 
can be fostered. All too often, however, Latin@ EBs are shut out of such storylines (Brenner, 1998; 
Gutiérrez, 2008). To understand how teachers can establish storylines of mathematical competence 
for Latin@ EBs, a single case study was conducted of a teacher who had learned about positioning. 

Positioning and Mathematical Learning 
In mathematics education, positioning theory has been used to analyze social interactions at the 

individual (e.g., Yamakawa et al., 2009), class (e.g., Esmonde & Langer-Osuna, 2013; Turner et al., 
2013), and national (Herbel-Eisenmann et al., 2016) levels. Although this research has demonstrated 
the importance of positioning to mathematical learning, mathematical identity, access to 
mathematics, and the field of mathematics education, it has not yet identified how classroom teachers 
establish storylines of mathematical competence for EBs.  

In this study positioning theory (van Langenhove & Harré, 1999) was employed as a conceptual 
and methodological framework to examine discursive practices between a teacher and a Latina EB. 
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Positioning theory is composed of three central components: communication acts (Herbel-
Eisenmann, Wagner, Johnson, Suh, & Figueras, 2015), storylines, and positions. Communication acts 
are the ways people verbally or non-verbally communicate (e.g., gestures) (Herbel-Eisenmann et al., 
2015). Storylines are the “broad, culturally shared narrative that acts as the backdrop” (Herbel-
Eisenmann et al., 2016, p. 104) to social interactions. Oftentimes these refer to the categories that 
people give others in specific situations, such as teacher/student or man/woman, that define the 
expectations and conventions of interactions in the situation (Herbel-Eisenmann et al., 2015). Within 
each social interaction there are multiple storylines at play all drawn from and on participants 
cultural, historical, and political backgrounds and experiences that occur on different scales (e.g., 
utterance, episode, state, national, etc.) and define the expectations and conventions for interactions 
in the situation (Herbel-Eisenmann et al., 2015). For example, in the U.S. the storyline of 
mathematical success is often characterized by speed and accuracy, as opposed to deep conceptual 
thinking. Manifested in the classroom, this storyline is established by the teacher and fostered 
through communication acts in socially recognized ways (e.g., rewarding quick, correct answers).  

The socially recognized ways people employ storylines are referred to as positions. Within 
storylines, people are metaphorically positioned or have a position, which refers to one’s “moral and 
personal attributes as a speaker” (Harré & van Langenhove, 1991, p. 395). This position is relational, 
directly tied to the power one has compared to others, and is dynamic—each communication act 
results in a re-positioning of oneself and others. Moreover, one can position him/herself (reflexive 
position) or can be positioned by others (interactive position) (van Langenhove & Harré, 1999).   

A teacher’s position in the classroom situates them as the catalyst and leader for the 
establishment and maintenance of norms that determine EBs positions and storylines in mathematics 
(Yackel & Cobb, 1996). Furthermore, since peers reinforce positions and storylines designated by the 
teacher, he/she must position students in ways that call attention to and highlight EBs unique cultural 
backgrounds and knowledge bases in order to have opportunities to participate and learn (Turner et 
al., 2013; Wood, 2013; Yoon, 2008). Thus, within any classroom, teachers’ positioning plays a key 
role by determining who has the right and duty to participate and learn. As a result, this study sought 
to answer the question: In what ways does an elementary teacher use communication acts to 
interactively position and foster storylines of EBs in the mathematics classroom? 

Methodology 
To answer the research question of this study, data are drawn from a large, longitudinal 

professional development intervention study that spanned three years and included four female, 
monolingual third grade elementary teachers. The intervention focused on EBs development of 
mathematics and language, enhancement of mathematics curriculum materials, and productive 
classroom interactions (see Chval, Pinnow, & Thomas, 2014 for more information). Over the course 
of the year, the researcher met with each teacher 9-12 times to discuss the themes in the context of 
lesson planning or debriefing. In addition, the researcher pushed each teacher to create mathematical 
goals for each EB in their classroom.  

The present study used a single case study design (Stake, 1995) to examine one teacher, Ms. 
Bristow. Ms. Bristow taught in a Midwestern city with an approximate population of 115,000 in a 
school that was predominately white (>70%) with less than 10% of the student population Latin@ 
and over half of students receiving free and reduced lunch. At the start of the intervention Ms. 
Bristow had two years of elementary teaching experience with no prior education in pedagogy for 
EBs or experience teaching EBs. Thus, the first year of the study coincided with her first opportunity 
to teach EBs. Thereafter, in each year of the study, Ms. Bristow had 1-4 EB Latin@s.  
Data Selection and Analysis  

To understand the ways Ms. Bristow constructed storylines for her EBs through interactive 
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positions a subset of the data was analyzed—the first full month of the third year of the study. This 
subset was selected for two reasons. First, the establishment of storylines to facilitate EBs 
mathematical learning are heavily influenced by the teacher. Consequently, the teacher lays the 
foundation for future classroom interactions in the first month of the school year. Second, Ms. 
Bristow began learning about positioning and its importance in the classroom at the start of the 
intervention. Hence, after two years she had developed a greater knowledge base and mastery of 
positioning practices.  

In the third year of the study, Ms. Bristow had one EB Latina, Alexia, who had relocated from a 
southwestern state two and a half weeks before the start of the school year. Ms. Bristow described 
Alexia as a quiet, shy, and reserved student who was often seen on task. Mathematically, Ms. 
Bristow explained Alexia had background knowledge that differed from her peers and, as a result, 
would bring up unfamiliar topics to peers in class. 

Data analysis was conducted on a subset of data collected in September—the first month of the 
study (in the third year). Videos and transcripts of whole-class mathematics instructional interactions 
between Ms. Bristow and Alexia were analyzed. Classroom observations occurred five times, on 
September 6, 7, 15, 22, and 27. All classroom videos were reviewed and each instructional 
interaction between Ms. Bristow and Alexia was transcribed. Each transcription included verbal and 
non-verbal communication acts. In addition, transcripts of audio recorded one-on-one professional 
development intervention sessions were analyzed. These 40-50 minute sessions occurred on 
September 8 and 27. 

 The transcripts of Ms. Bristow’s communication acts were open coded (Strauss & Corbin, 1990) 
at the utterance and turn taking levels to identify the interactive positions of Alexia (see Figure 1). 
These positions were analyzed sequentially to identify and construct the storylines Ms. Bristow 
fostered for Alexia as a mathematics student in the month of September.  

 

 
Figure 1. Example of a coded communication act in a classroom transcript. 

Findings 
Ms. Bristow established and fostered Alexia’s storyline as a mathematics student in multiple 

ways. First, she constructed pedagogical goals and participatory expectations for Alexia focused on 
her mathematical thinking and learning. Second, she employed communication acts to interactively 
position Alexia in whole class interactions where her mathematical thinking could be demonstrated. 
These interactive positions resulted in peers’ appropriation of Alexia’s storyline of mathematical 
competency.  

Mathematical Goals and Participatory Expectations  
In the intervention, the researcher consistently asked Ms. Bristow to create short and long term 

goals for her EBs at the start of the school year, but did not identify or specify the types of goals that 
these should be (e.g., what mathematical content, language competencies, and/or social 
competencies). This act of explicit goal setting for specific children facilitated Ms. Bristow’s use of 
communication acts to position EBs in the mathematics classroom.  

In September, Ms. Bristow described the goals she created for Alexia in her first meeting with 
the researcher on September 8. 

Researcher: So what would be your goals for Alexia for this year?   
Ms. Bristow:  I think I want her to be a kid that is able to have strong mathematical thinking 

without just having to rely on just a set of rules. You know? I want her to be able to approach 
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problems and be able to think of lots of different ways to solve a problem.  And I 
don’t...sometimes I worry with her that she will get trapped in an algorithm for everything 
because of the drilling that I think she is getting.  

Ms. Bristow could have identified many different types of goals, however, as evidenced in her 
response the storylines and positions she wanted to facilitate for Alexia in her classroom were 
focused on her mathematical thinking. Specifically, a desire to increase Alexia’s flexibility in 
mathematical thinking (“think of lots of different ways to solve a problem”), increase her 
mathematical reasoning abilities, and reduce her reliance on algorithms. These goals strictly attended 
to Alexia’s mathematical thinking and learning and did not include or refer to her status as a 
language learner or newcomer in the school and community. In this way, Ms. Bristow began to 
construct a storyline of mathematical competence through her pedagogical goals, which were reified 
through classroom interactions.  

Ms. Bristow was aware of the importance of participation for EBs’ mathematical learning based 
on her involvement in the intervention. Consequently, Ms. Bristow intentionally positioned and 
solicited participation from Alexia in ways that would facilitate her mathematical learning. This was 
also described in the September 8 meeting with the researcher. 

As far as her [Alexia] participating, I try to get her to participate in some capacity in every 
lesson. I try to give her the opportunity to choose a partner that she is comfortable with. Because 
she is a little bit more reserved. And, I use her name in the problems. I used one of the problems 
that she had written in that word problem that the kids did with each other... I am trying to make 
her feel like a part of the class community and utilize her work and her name in as many different 
things as I can. I am trying to make her feel included. 

Ms. Bristow clearly described the actions she took at the start of the school year to enhance Alexia’s 
participation and mathematical learning. This included the incorporation of her name in mathematics 
problems, the option to select a partner, and the use of mathematics problems Alexia had written. 
What is most notable about Ms. Bristow’s participatory expectations was her goal to seek out 
Alexia’s participation in every mathematics class. Such actions worked to create a classroom 
community where Alexia—a newcomer and the only EB—could be successful in.  

In addition to the above quotes, the analysis of video data demonstrated Alexia’s participation 
took multiple forms. Ms. Bristow invited Alexia to the board to share her mathematical ideas, called 
on her in whole class discussions to explain her thinking, and displayed her work on the board to 
discuss in front of the class. To illuminate these practices, classroom examples are presented.  

Sharing Ideas at the Board 
Ms. Bristow commonly invited students to the board during discussions to share their 

mathematical thinking. In contrast to other teachers (e.g., Brenner, 1998; Yoon, 2008), Ms. Bristow 
frequently extended this invitation to Alexia and did not allow her to be a bystander. These actions 
were seen in the first day of classroom observations for the study, September 6. On this day, Alexia 
was invited to the board at the start of the lesson to share her mathematical ideas about a problem the 
class discussed. This communication act (i.e., Ms. Bristow’s invitation to the board) interactively 
positioned Alexia in three ways: as a student who possessed mathematical ideas; as a student who 
would be an active participant in the global classroom conversation of mathematics; and as a student 
who was in the role of a teacher—a physical and metaphorical position of power. Together, these 
positions worked to establish the storyline of mathematical competence for Alexia publicly and 
counter deficit views of Latin@ students in mathematics (Gutiérrez, 2008).  
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What Are You Thinking?  
At the start of the school year, Ms. Bristow established the expectation that all students—Alexia 

included—would share their ideas frequently and publicly. On the same day that Alexia was invited 
to the board to share her mathematical ideas (September 6), Ms. Bristow asked Alexia to share her 
mathematical thinking at the close of a lesson. In this lesson, students had played a game with a peer 
where they drew four cards each, made the greatest number they could, and then compared their 
numbers to determine a winner. The whole class discussion was framed around an example from a 
pair of students. To start the discussion, Ms. Bristow stated, 

Okay so…I have got two cards that I wanted to talk about today. Okay. Let’s see…okay so 
Lamar and Adam. I thought that this was an interesting one. Adam got 9,760 and Lamar got 
9,761 Why is that an interesting one? Why might that be an interesting one? Alexia what do you 
think? 

At the start of this discussion, Ms. Bristow immediately asked Alexia what she thought about the 
selected numbers. This is an interesting question to pose Alexia as it asked her to not only consider 
how to compare the two values, but also the pedagogical decisions of Ms. Bristow (i.e., Why this 
example? What is important about this pair of numbers? What can we learn from them?). In this way, 
Ms. Bristow’s communication act interactively positioned Alexia in two ways: as a student who can 
compare numbers in the thousands and as a student who can consider the pedagogical importance of 
this specific example. These two positions actively contributed to and reified Alexia’s storyline of 
mathematical competence.  

The next day, Ms. Bristow continued to invite Alexia into the classroom conversation of 
mathematics by soliciting her mathematical thinking. On September 7, Ms. Bristow began the lesson 
by modeling a game students would play with a peer where each player draws six numeral cards and 
makes two two-digit numbers “that, when added, give you a total that is close to 100.” In the 
demonstration, Ms. Bristow first drew the cards, 1, 1, 5, 8, 3, 4 and wrote “_ _+_ _=__” on the board. 
Then, she invited the class to identify the best numbers to use, stating “Is there a number you could 
make or a combination you could make with just using those four of the six cards? Alexia, what are 
you thinking?” Like the day before, Alexia was the first student to be called on after Ms. Bristow 
initiated this whole class discussion. Ms. Bristow’s question is interesting because it does not ask 
Alexia what are two numbers she could use, but what she was thinking. This communication act 
positioned Alexia as a student with mathematical thoughts who could strategically compose values to 
win the game. Moreover, it was the second time in this class that Ms. Bristow had asked Alexia what 
she was thinking. Furthermore, the questions posed to Alexia to describe what she was thinking were 
not low level or required a simple response, but challenged her to think critically and exercise a 
second language. Such instructional decisions may be directly tied to Ms. Bristow’s pedagogical goal 
of developing strong mathematical thinking and reasoning skills for Alexia. 

Sharing A Problem-Solving Strategy 
 Ms. Bristow often used student work (displayed on the board) at the end of a lesson to 
provide an opportunity to reflect on or share peers mathematical thinking. On September 15, Alexia 
was one of three students asked to discuss their problem-solving strategy (see Figure 2) of the peer 
written problem, “Sarah looks in her desk. She found 23 crayons, 14 pencils, and forty-nine crayons. 
How many crayons did she find in all?”  
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Figure 2. Alexia’s problem-solving strategy. 

 
Ms. Bristow: …Alexia’s is next. I saw some folks did this. Here you go Alexia.  
Alexia: ((comes to board)) I crossed out this. I crossed out this ((refers to “14 pencils”)) because 

if you say how many crayons are, did she find in all it doesn’t say the pencils, so I crossed 
that out and I wrote this for this problem. ((points to algorithm)) First I wrote down the 
problem, then I put a plus sign here ((points to plus sign on right)) because I wanted to see 9 
plus 3 is what. And it was, it was 12, so I put a 1 up there ((points to carried 10)) and I put a 
2 there ((points to sum of ones column)). Then I added these up 1 plus 4 plus 2 is 7 and I got 
72.  

Ms. Bristow: Questions and or compliments for Alexia. Keri 
Alexia: Keri 
Keri: I like how you thought about the, the answer.  
Alexia: Mary 
Mary: I like how you re-grouped.  
Ms. Bristow: So that 1 where you say, that you put that 1 on top, what does that 1 representing? 

Is that one thing? Or what is that 1? 
Alexia: It represents the 10 and so this is the tens place ((points to tens column)) I put it in the 

tens place.  
Ms. Bristow: Yeah, so she actually took that 12 and put 2 of those loose ones on the side and then 

that one group of ten and added it to the 40 and 20 to make 70 and then we have the 2 loose 
ones to add to it. Alexia, I really appreciate you sharing. Thank you so much. ((class claps)) 

This interaction represents another way Ms. Bristow solicited Alexia’s participation. In this instance, 
Alexia was provided an opportunity for extensive mathematical talk. As a result, she was provided a 
chance to explain how she considered the information presented in the problem, determined what 
was erroneous, and then calculated her answer through an algorithm.  

This opportunity to share her thinking was unique in the way it leveraged and elevated Alexia’s 
status in the classroom and contributed to the storyline of mathematical competence. First, Alexia 
was one of only three students asked to share their thinking in this class. In this way, Ms. Bristow 
signaled Alexia was a competent mathematical student and her thinking was worthy of attention and 
discussion by her peers. Second, Ms. Bristow prefaced Alexia’s discussion with the statement, “I saw 
some folks did this.” As such, Ms. Bristow aligned Alexia’s mathematical thinking with her peers 
and simultaneously enabled her to represent the group of students who used this problem-solving 
approach.  

Regarding Alexia’s mathematical thinking, Ms. Bristow also used this interaction to probe and 
clarify her ideas further in front of the class with her inquiry of the carried ten. This allowed Alexia 
to elaborate on her problem-solving strategy through mathematical discourse and illuminate how she 
understood the mathematical representation of the algorithm. An instructional decision that may be 
directly tied to Ms. Bristow’s mathematical goal of increasing Alexia’s flexibility in mathematical 
thinking and a reduction in the reliance of algorithms. Following Alexia’s response, Ms. Bristow re-
voiced her contribution, which acted to amplify her thinking to ensure all students had heard it and, 
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reinforced her position as a student with valuable mathematical ideas. 
This interaction also illuminates how Alexia’s peers perceived her mathematical thinking and 

began to appropriate the storyline of mathematical competence. This is most evident in the targeted 
compliments Keri and Mary provided on Alexia’s mathematical thinking. Unlike the two peers who 
also presented their mathematical thinking, Alexia was the only student who received compliments. 
This act of public recognition—a practice Ms. Bristow cultivated—is an example of how her 
interactive positioning of Alexia was taken up by peers, which fostered her mathematical success.  

Discussion and Conclusion 
Ms. Bristow offers a case of a monolingual elementary teacher who used of her position of power 

to construct a storyline of a mathematical competence for Alexia, a Latina EB, through 
communication acts and interactive positions. An examination of the data revealed Ms. Bristow 
initially established mathematical goals and participatory expectations focused on Alexia’s 
mathematical thinking—not on her status as a newcomer Latina EB—that grounded future classroom 
interactions. Moreover, Ms. Bristow did not isolate Alexia in the classroom, allow her to be a 
spectator, or ask closed or simplified questions, but regularly invited her to share her mathematical 
thinking publicly, which provided opportunities for Alexia to use mathematical discourse—a critical 
aspect of mathematical learning. These communication acts worked to establish and foster Alexia’s 
position in a storyline of mathematical competence and counter the narrative—and teachers’ 
beliefs—that Latin@ EBs need mathematical support (Chval & Pinnow, 2010; de Araujo et al., 2016; 
Polat & Mahalingappa, 2013).  

Given the growth of EBs nationwide, it is imperative teachers understand the connection between 
their communication acts, positions, and mathematics success and how their role in the classroom 
can be leveraged to create and manage storylines of mathematical competence for students that 
counter deficit views. Case studies—such as Ms. Bristow—can be used to illuminate how specific 
language practices and pedagogy can be employed by teachers to establish storylines of mathematical 
competence early in the year that position EBs for mathematical success.  
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INTRODUCING MATHEMATICS TO INFORMATION PROBLEM-SOLVING TASKS: 
SURFACE OR SUBSTANCE?  

Ander Erickson 
Western Oregon University 

ericksona@wou.edu 
This study employs a cross-case analysis in order to explore the demands and opportunities that 
arise when information problem-solving tasks are introduced into college mathematics classes. 
Professors at three universities collaborated with me to develop statistics-related activities that 
required students to engage in research outside the classroom. This paper will focus on one aspect of 
the study: a comparison of how the teachers balanced mathematical content with information-
problem solving in the tasks that they created. These tasks incorporated mathematics in a variety of 
ways, ranging from tasks in which the mathematical component was crucial to others where 
mathematics served solely as a marker of credibility. This research has the potential to provide tools 
for understanding how to productively incorporate information-literacy instruction into the 
mathematics classroom without losing sight of mathematical goals. 

 
Keywords: Instructional Activities and Practices, Post-Secondary Education, Technology 

Introduction 
Mathematics students increasingly occupy an environment in which they enjoy immediate access 

to varied sources of information outside of the classroom. They can look up vocabulary terms on 
Wikipedia, find context for a statistics problem by accessing governmental statistics directly, and 
track down discussions of test problems on various Q&A web-sites. While mathematics instruction 
has historically been focused on sequestered problem-solving (Bransford & Schwartz, 1999), or the 
ability to solve problems without any outside aid, an increasing number of mathematics teachers have 
been actively encouraging students to engage with information-based problems (Walraven, Brand-
Gruwel, & Boshuizen, 2008) or those problems that require “students to identify information needs, 
locate corresponding information sources, extract and organize relevant information from each 
source, and synthesize information from a variety of sources” (Walraven et al., 2008, p.623). I have 
previously argued (Erickson, 2015) that the use of information-based problems is not just preferable, 
but that it is also necessary if mathematics instruction is to help prepare students for the quantitative 
arguments that they may expect to encounter in their everyday lives (Paulos, 1988; NCED, 2001). 

This paper presents a cross-case analysis (Stake, 2013) of three different undergraduate 
mathematics teacher who work with their students on statistics-focused tasks that require the students 
to seek out, evaluate, and make use of information that they find online. The use of information-
based problems have been studied in the context of science education (Hoffman, Wu, Krajcik, & 
Soloway, 2003; Wiley, Goldman, Graesser, Sanchez, Ash, & Hemmerich, 2009) and history 
education (Britt & Aglinskas, 2002) before. These studies reported on experiments that took place 
apart from classroom instruction and so those who crafted the problems did not need to answer as to 
whether the problems provided evidence of learning, were congruent with the goals set out in the 
course syllabus, or incorporated the disciplinary topics to be covered in the class. Accordingly, the 
present study is unique for two reason: a) it takes place in the context of mathematics instruction, and 
(b) it was incorporated into ongoing mathematics courses. The analysis of the design and 
implementation of these information problem-solving math tasks provides a window into the balance 
teachers must strike between mathematical content and information literacy practices. In particular, 
the analysis addresses the following research questions:  
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1. How does mathematical content function as a component of an information-based problem 
introduced into a mathematics class which is meant to prepare students for the mathematics 
that they will encounter in their everyday lives?  

2. What opportunities are students given to employ their mathematical knowledge through their 
work on these information-based problems? 

Theoretical Framework  
Three different conceptions of literacy have emerged which each highlight the importance of 

introducing information-based problems to mathematics instruction. (1) A move to attend to how 
reading and writing is conducted in the disciplines and to use this as a way of thinking about how to 
teach those disciplines means that mathematics teachers must think more carefully about how those 
who work in STEM fields locate and evaluate mathematical resources (Schleppegrell, 2007; Moje, 
2007; Shanahan & Shanahan, 2012). (2) Quantitative literacy, sometimes described as a 
mathematical proficiency that can serve any individual in their everyday life, has been embraced as 
an educational goal, particularly at the undergraduate level (Cullinane & Treisman, 2010; Watson, 
2013;MORE CITATION) and seen realization in courses offered by many colleges for non-STEM 
majors who need to fulfill a mathematics requirement as part of their liberal arts education. (3) 
Researchers in the information sciences have been arguing for the importance of instruction in order 
to facilitate college and high school students’ ability to effectively research topics online (Rader, 
2002).  

While the importance of information-based problems for disciplinary literacy is easy to justify as 
long as one accepts that information-seeking is an important part of practice in the disciplines, it 
requires a little more unpacking to explain why this type of instruction might have a place in 
mathematics instruction. One way to begin such an explanation is to imagine an applied mathematics 
problem -- say students are given an editorial in which the author argues that federal guidelines on 
fuel efficiency will end up costing the country more money than it will save (Diefenderfer, 2009). 
Students are asked to read the editorial and then provided with several guiding questions that 
encourage the students to analyze the numerical argument contained in the article while noting some 
of the additional information that might be required prior to coming to a final verdict on the validity 
of the editorial’s argument. While this activity is a legitimate applied mathematics problem, the real-
world context (see Figure 1) suggests other directions that such a problem could be taken.  

If a reader were to actually want to determine whether the editorial’s claim was true or not, they 
would want to locate the relevant epistemic community (Haas, 1992), or that community that 
possesses the expertise to tentatively rule on the truth of the claim. In other words, they would need 
to engage in the practice of rational dependence by finding experts on whom the students have good 
reason to rely. The problem as originally stated does not afford the students an opportunity to engage 
in this practice. They are not asked to seek out and evaluate those sources of information that might 
either corroborate or challenge the argument found in the editorial. An information-based problem 
(Walraven et al., 2008), on the other hand, requires that the student seek out and evaluate sources 
outside the classroom. In order to come to a better understanding of an information-based problem, 
the student must “identify information needs, locate corresponding information sources, extract and 
organize relevant information from each source, and synthesize information” (Walraven et al., 2008, 
p.2) in a process called information- problem solving. My inquiry can be framed, then, as a question 
about how mathematics teachers and their students cope with the introduction of information-based 
problems, and whether and how these problems afford opportunities for the practice of mathematical 
problem-solving skills.  
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Figure 1. Relationship between editorial, claim, and epistemic community. 

Methodology 
I began this work by contacting instructors of terminal mathematics courses for non- STEM 

majors because my reading of the literature and interviews with mathematics educators suggested 
that this would be the most accessible site for this type of work. There were thirteen educators at ten 
different institutions who responded to this call and, while they all expressed interest in the idea 
when I explained it to them, I ended up with 4 collaborating instructors as the others were not able to 
work with me due to either institutional or timing constraints. I met with each of these four 
collaborating teachers and explained the rationale behind information-based problems and we 
worked together to design a couple of activities in which this type of problem would be introduced to 
their students. The analysis is focused on the three sites (see Table 1) where the instructors had the 
greatest role in designing and implementing the problems. 

At Phi University students were assigned to argue one side in a classroom debate. To prepare, 
they were required to research their topic and provide some statistical evidence supporting their side 
of the issue. At Rho University we developed a two-part activity where students were asked to look 
for articles in which a conjecture about causation was being studied (e.g., vaccines and autism). They 
were asked to locate the quantitative evidenced used to claim that the two variables were or were not 
correlated, and then engaged in a small-group discussion with their peers about the topic. Their 
groups tried to come to a consensus on the issue at stake and then shared their verdict with the rest of 
the class. The students at Delta University also worked in small groups, but here they were asked to 
create a presentation in which they would analyze the way that statistics were used in a research 
article for the rest of the class. The focus of this analysis would be on the sampling methodology, but 
they were free to talk about other facets of the article if they so chose.   
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Table 1: Research Sites 
University Name* Course 

Name* 
Students Topics Structure 

Phi University 
(Research) 

Topics in 
Mathematics 

22 entering 
Freshman, Liberal 
Arts Majors 

Gun Control, 
Marijuana 
Legalization, 
Single-Sex 
Education, Death 
Penalty 

Debate 
Format 

Rho University 
(Regional) 

Quantitative 
Reasoning 

14 Juniors and 
Seniors, many are 
prospective Nursing 
students 

Autism and 
Vaccination, The 
Mozart Effect, Gun 
Control, Health 
Care Reform 

Small-group 
Discussions 

Delta University 
(Doctoral) 

Mathematics 
in Today’s 
World 

24 Juniors and 
Seniors, many are 
prospective Nursing 
and Education 
students 

Autism and 
Vaccination, Gun 
Control, Murder 
Rate, Vehicular 
Accidents, 
Employee 
Prospects 

Small-group 
Presentation 

*These are pseudonyms    
 
This study takes the form of a multi-case analysis (Stake, 2013) derived from the activities 

described above. The quintain, or the phenomenon of interest for this cross-case analysis, is the 
introduction of information-based problems to an undergraduate mathematics course. The data for 
this study includes pre- and post-interviews with the instructors at each of the three sites, 
supplementary interviews with teaching assistants and students, field notes taken while observing 
instruction prior to the introduction of the information-based problems, video and audio-recordings 
of the in-class component of the activities, and copies of the work that the students submitted. These 
data sources informed the writing of individual case reports which were, in turn, used to develop the 
cross-case analysis. Following Stake (2013), I developed themes based on my research questions that 
I then used as an analytical lens for the development of case reports for each of the three sites. After 
writing up the case reports, I cross-referenced case-specific observations (see Table 2 for relevant 
examples) with the themes of the larger study. This allowed me to warrant theme-based assertions 
and used those to inform the final cross-case assertions about the introduction of information-based 
problems to undergraduate mathematics classrooms. The cross-case assertions related to the students 
opportunities to interact with mathematical content in the information-based problems will be 
presented below. 

The teachers with whom I collaborated were taking on a unique challenge when they decided to 
introduce information-based problems to their mathematics classroom. While they agreed that their 
students would benefit from an opportunity to engage in information problem solving, they had to 
continue to teach their students mathematics through these problems. I intentionally provided very 
little guidance on this front and the teachers at each of the three locations approached the challenge in 
distinct ways. In order to describe the role that mathematical work played in these problems I 
describe the implemented problems as academic tasks, a term that encompasses both the perspective 
of the students as they try to meet the requirements of their assignment and the teachers as they 
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manage the work of their students. I refer to academic tasks using the technical sense employed by 
Doyle and Carter (1984) where tasks are broadly understood as the “situational structures that 
organize and direct thought and action” (Doyle & Carter, 1984, p.130) in the classroom and more 
specifically as components of the curriculum that direct students to use operations on resources in 
order to achieve a product which is validated by a system of accountability. The different role of 
mathematics in each of the cases is clarified by articulating where it sits within the overarching 
academic task with respect to the component operations, resources, and product.  

Table 2: Examples of Case-Specific Observations from Rho University 
Case-Specific Observation A: In the first session, students were searching for articles and then 

looking for a correlation coefficient within the articles, but they rarely found a correlation 
coefficient.  

Case-Specific Observation B: Students preferred to work with information resources that 
contained mathematics that they could understand.  

Case Specific Observation C: In the first session, the teacher prioritized the identification of a 
particular piece of mathematical content, the correlation coefficient, to the exclusion of any 
discussion of the credibility of sources.  

Results 
The mathematical aspect of the debates at Phi University was fairly circumscribed; it almost 

existed as a freestanding task of its own within the larger task of the debate. Tim (a pseudonym for 
their professor) had decided that his students would provide a statistical chart or diagram as part of 
their argument and that this would tie the problem into the unit on statistics that the class was in the 
process of covering. In particular, the students would have to create their own graphic rather than 
downloading it from elsewhere,  

I made the decision at some point that I didn’t want them to just download graphics off the 
internet because I was worried that if they did that, they would download a bunch of fancy 
graphics that they didn’t really quite comprehend and then it would be too much information for 
anybody in the audience to comprehend too. And so I figured the way around that is that I would 
have them do it, they read the section on how to present data, that’s section two of that chapter, 
how to present data, ideas on how to present data, and so let’s make them do it. I think that was a 
good decision. (Tim, 8/14/13, Lines 73 - 79)  

I refer to the creation of graphics as an almost freestanding task because it still was predicated on 
some information-seeking in order to locate the sources containing the statistics that would inform 
the graphics. One way to put this is that the operations that were part of the debate task (for example, 
using a search engine, scanning search results) provided the resources that would be used for the 
mathematical task. I refer to the mathematical work as an academic task of its own because it 
theoretically could exist independently of its role in the debate as long as equivalent resources were 
made available. Conversely, a debate could have taken place without students having to make use of 
statistical diagrams. Nonetheless, by introducing this mathematical task, Tim was able to 
simultaneously avoid the introduction of graphics that could be too mathematically demanding for 
his students and to create a relatively well-defined mathematical task within the larger information 
problem-solving task which he would subsequently be in a better position to appraise as 
mathematical work. 

At Rho University, Anne (a pseudonym for their professor) also created a mathematical task that 
was part of a larger information problem-solving task, but in this case the mathematical work was 
necessary, at least as Anne conceived it, for the credibility assessment that constituted the larger task. 
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As with the students at Phi University, the students at Rho were to submit a product that included the 
mathematical work (i.e., the identification and interpretation of a correlation coefficient or 
confidence interval) alongside more ambiguous information problem-solving work (i.e., an 
assessment of the credibility of the different sources). It was also the case that the search for those 
mathematical markers could only occur after the students searched the internet in order to collect 
sources. Thus, we again have a situation where the information-seeking operations on the internet 
was used to provide resources for the students’ mathematical work. There was one small but 
significant difference in the case of the second problem; those students were required to only collect 
sources that contained confidence intervals and so the mathematical operation of identifying a 
confidence interval became part of the information-seeking work. The subsequent classroom 
discussion constituted another part of the task, or perhaps a second task, which was much more 
ambiguous in terms of both its product and its operations. By breaking the information-based 
problems into two distinct activities, Anne was able to collect and evaluate concrete evidence of 
mathematical work with the written assignment and make that same mathematical work available as 
a resource for the students’ discussions of credibility.  

The first problem at Delta University as developed by Ivan (a pseudonym for their professor) was 
structurally similar to the mathematical sub-task at Phi University in that the students had to first find 
a source which they would then use as a resource for their mathematical work. The product at Delta 
University was the students’ analysis of the sampling strategy used by poll or research article that 
they found. The second problem at Delta University was similar as well, but the use of sources was 
complicated by the fact that the students could not just pick a source and then analyze its contents. 
Instead, the students were held accountable for finding the data needed for their calculations which 
meant that their mathematical knowledge needed to mediate their information-seeking work in a way 
not seen in any of the other cases. By structuring the problems in this way, Ivan made the students’ 
mathematical work the core of the product that they shared with the class. This was reflected in the 
type of feedback that Ivan provided for his students, he focused much more on the students’ 
mathematical work than either of the other cases. 

Looking across the cases (see Table 3 for cross-case observations) it was notable these students 
only questioned the source of the statistics when explicitly instructed to do so as part of the activity. 
When the statistics served as evidence for a point-of-view, as in the case of Phi University, students 
were only concerned with effectively communicating the information that they found to their peers in 
order to support their argument. Further, when the statistics were being used as evidence, students 
used the presence of statistical information as a token of credibility for the information source as a 
whole, and not as an element of the information source deserving critique in and of itself. Ironically, 
the activities at Phi and Rho University, in which actual mathematical work was very limited, were 
felt to be very successful by the Tim and Anne, while Ivan expressed some frustration with his 
activity. This appeared to be at least partly due to the opportunity the presentations afforded for Ivan 
to observe gaps in his students’ knowledge of basic statistical concepts, an opportunity that did not 
exist at either of the other two locations. In a subsequent interview with Ivan, he expressed some 
satisfaction that he was able to realize that students did not fully understand some of the more basic 
statistical concepts that he had been trying to teach them and said that he would incorporate a similar 
activity into future iterations of the course in order to discover whether students could apply what 
they were learning to real-world scenarios.  
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Table 3: Cross-Case Observations About the Role of Mathematics in the Information-Based 
Problems 

Cross-case Observation 1: Students only adopted a critical stance towards the statistics that 
they found when explicitly demanded by the problem. 

Cross-case Observation 2: Students successfully drew on elements of a statistical knowledge 
base throughout the three cases, but those information-based problems in which mathematical work 
was prioritized presented a greater opportunity for revealing gaps in student knowledge. 

Cross-case Observation 3: The students’ mathematical knowledge sometimes conflicted with 
their ability to assess the credibility of a source. On the one hand, if the students are not asked to 
engage with the mathematics in question, then it may only serve as a superficial marker of credibility 
rather than providing insight into the mathematical argument. On the other hand, if a source 
contained mathematics that the students did not understand, then they might not use that source. 

Discussion & Conclusion 
These three cases afforded me the opportunity to see some of the ways that a practicing 

mathematics teacher can dispense their obligation to teach the discipline to their students while 
assigning non-traditional information-based problems. In all three of the cases, the students had to 
engage in some initial information-seeking in order to collect sources that would serve as a resource 
for their mathematical work. In the first case, this work was its own mathematical task, contributing 
to the larger information problem-solving task but not strictly necessary for its completion. In the 
second case, the mathematical work was a distinct task but it also served as a resource for the 
following discussion. In the third case, the result of the mathematical work was actually the product 
of the information problem-solving task and the students’ information-seeking and evaluation played 
a supporting role.  

This analysis of the dilemmas faced by mathematics instructors who wish to create opportunities 
for their students to build their information literacy skills is not intended to dissuade teachers from 
using information-based problems that bring students into contact with real-life quantitative claims 
nor to discourage the introduction of information problem-solving to mathematical tasks. Rather, it 
suggests that pedagogical choices must be made thoughtfully and deliberately if they are to meet 
their intended goals.  
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At the crossroads of our prior research on prospective teachers’ feedback to mathematics-learners 
and our mathematics teacher educator feedback practices, we study written feedback as part of 
relational practice. Using self-study methodology and an analysis of our narratives and 
conversations about written feedback, we identified factors that frame and motivate our written 
feedback. We argue that, assuming the central goal of teacher education is the development of 
relational practice, written feedback should support prospective mathematics teachers’ skills and 
knowledge relevant to tasks involved in teaching mathematics and extend prospective teachers’ views 
of mathematics teaching and learning by drawing on their experiences, insecurities, problems, and 
views of mathematics teaching and learning.  

Keywords: Instructional Activities and Practices, Teacher Education-Preservice 

Grossman et al., (2009) asserted that development of a relational practice is a central goal of 
teacher education and illustrated that mathematics teacher educators (MTEs) engage in activities in 
support of this goal. Buhagiar (2013) suggested that MTEs’ practices serve as models for future 
mathematics teachers (teacher-learners). Thus, MTEs’ activities should model relational practice, 
described by Fletcher (1998) as including “empathy, mutuality, reciprocity, and a sensitivity to 
emotional contexts” (p. 174). This paper focuses on MTEs’ written feedback as one activity that 
models elements of relational practice. Feedback is a significant part of an assessment system and 
impacts learning and performance (Hattie & Timperley, 2007; Shute, 2008). Therefore, MTEs’ 
written feedback and factors that frame and influence that feedback warrant study to improve 
understanding of written feedback as a model of relational practice.  

Findings from a prior analysis of feedback that teacher-learners provided to mathematics-learners 
(i.e., K-12 mathematics students) through letter exchanges (e.g., Crespo, 2002) included a description 
of the ways mathematics teacher-learners used praise and attended to the learners’ mathematics in 
their responses (Kastberg, Lischka & Hillman, 2016a). These findings raised questions about our 
MTE feedback practices. We wondered if our written feedback would stand up to the scrutiny 
leveled at teacher-learners. Did our feedback attend to ways teacher-learners saw learners’ 
mathematics and build on their personal understandings of mathematics teaching and learning or did 
we direct teacher-learners to what we saw in mathematics-learners’ work? 

Considering this question brought us to a crossroads as we became conscious of a “living 
contradiction” (Whitehead, 1989) between our feedback practices and our expectations for teacher-
learners’ written feedback. In an effort to improve our feedback practice and identify ways in which 
such a practice modeled relational practice, we asked What factors frame and motivate our written 
feedback as a model of relational practice? 

Literature Review and Theoretical Framework 
Existing meta-analyses of quantitative studies of feedback (e.g., Hattie & Timperley, 2007; 

Shute, 2008) identified factors that mediate its effects, such as complexity of tasks and characteristics 
of praise on performance. Recent research (e.g., Evans, 2013) draws from a broader array of 
theoretical perspectives (e.g., socio-cultural, socio-critical, constructivist) not well represented in 
prior feedback discourse. From a synthesis of studies in higher education, Evans hypothesized a 
“feedback landscape” that “illustrates a two-way process in which feedback is moderated” (p. 97) by 
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a collection of relational and information variables that include learners’ “beliefs about learning and 
expectation of the learning environment” and teachers’ “knowledge of the student” (p. 98). Evans’ 
view of feedback applied to mathematics teacher education involves understanding written feedback 
as an element of relational practice.  

There is much research on feedback in general with little attention to written feedback provided 
by MTEs to teacher-learners. Studies of feedback in teacher education have focused on feedback 
given during practicum (White, 2007), teacher-learners’ perceptions of feedback (Dowden, Pittaway, 
Yost, & McCarthy, 2013), and self-studies focused on written feedback (Kitchen, 2008; Pittaway & 
Dowden, 2014). In mathematics teacher education, only Buhagiar (2013) explored written feedback. 
He reported that MTEs’ feedback varied significantly and suggested beliefs about teaching and 
learning as the source of the differences.  

Relationships with learners are important elements in effective feedback practices (e.g., Evans, 
2013; Hattie & Timperley, 2007), allowing MTEs to leverage understandings of teacher-learners 
(Grossman et al., 2009) and contexts in which they work in support of teacher-learners’ development 
of practices and understandings of mathematics teaching and learning. Kitchen’s (2005a, 2005b) 
description of relational teacher education as teacher educators “knowing in relationship” (2005a, p. 
18) is used to understand factors that frame and motivate MTEs’ written feedback as a relational 
practice. Like Fletcher (1998), Kitchen drew from notions of empathy and vulnerability to describe 
relational practice and identified seven defining characteristics: understanding one’s own personal 
practical knowledge, improving one’s practice in teacher education, understanding the landscape of 
teacher education, respecting and empathizing with preservice teachers, conveying respect and 
empathy, helping preservice teachers face problems, and receptivity to growing in relationship. These 
categories are used as an analytical framework to explore factors that influence written feedback as a 
relational practice. Descriptions of each category are shared in the findings section.  

Mode of Inquiry 
To identify factors that frame and motivate our written feedback as a relational practice, we 

undertook a self-study. Identified by Borko, Liston, and Whitcomb (2007) as a form of practitioner 
research, self-study is aimed at improving one’s practice (LaBoskey, 2007) and is characterized by 
openness, collaboration, and reframing (Samaras & Freese, 2009). Self-studies situate questions in 
existing research literature and suggest implications for “the larger audience of teacher-educators” 
(Borko, Liston, & Whitcomb, p. 9). Self-study involves the construction of narratives of experiences 
and conversations with critical friends sharing alternative perspectives on practice, described by 
LaBoskey as data in self-study methodology. This self-study was undertaken with the goal of 
improving our written feedback. We began by analyzing our written feedback using Hattie and 
Timperley’s (2007) framework (see Kastberg, Lischka, & Hillman, 2016b for findings related to this 
analysis). This paper focuses on factors that framed and motivated our feedback, using transcripts of 
eight recorded online conversations about written feedback findings (May-December, 2015) and two 
self-constructed narratives (Clandinin & Connelly, 2000) as data. The first narrative described our 
feedback experiences as leaners and the second narrative described our experience creating 
opportunities for teacher-learners to provide written feedback to mathematics-learners (May and 
December, 2015). This data allowed for reframing experiences by taking the perspective of another 
on one’s practice. 

Narratives and discussions were coded using Kitchen’s (2005a) characteristics of relational 
practice. Evidence of knowing in relation to self and teacher education was coded using Kitchen’s 
(2005a) first three categories and evidence of knowing in relation to teacher-learners the remaining 
categories. Descriptions and exemplars are shared in the findings. 

Blind review precludes specificity, so a sketch of the actors and context is included here. 
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Pseudonyms are used for the authors in the remainder of this paper. The authors work at three 
different institutions with Sandy and Jean both mid-career MTEs working with elementary teacher-
learners and Pamela an early-career MTE working with secondary teacher-learners. All teacher-
learners engaged in letter-writing activities, with MTEs providing written feedback. 

Findings 

Knowing in Relation to Self and Teacher Education 
In restorying our experiences, we gained “self understanding” (Kitchen, 2005a, p. 19) of reasons 

for assignment structures and types of written feedback we provided. 
Understanding one’s own personal practical knowledge. Kitchen (2005b), defined personal 

practical knowledge as “the ways in which past experiences inform present practice and intentions 
for the future" (p. 199). We unpacked our experiences as learners, mathematics teachers, and MTEs 
and considered how they informed our practices. Discussions focused on assignment structures and 
what teacher-learners’ approaches to feedback could teach us.  

An example related to assignment structures involved exploring whether feedback on letters 
supported the teacher-learners to develop their views of mathematics teaching and learning or just to 
complete the task as we had conceptualized it. We wrestled with the question of whether the teacher-
learners could use our feedback. Sandy and Pamela provided feedback on teacher-learners’ 
reflections on feedback provided in letters to mathematics-learners, while Jean had provided 
feedback on teacher-learners’ draft letters and requested revisions. Looking back at our experiences 
giving written feedback, Sandy and Pamela wondered whether the teacher-learners could make sense 
of the feedback.  

Sandy: I think that one of the fundamental assumptions that we operate under, [is that] if we give 
feedback, [teacher-learners] are actually going to operationalize it and use it. But the reality of 
the situation is that we know that really doesn't happen. In part, that is our own fault because … 
we don't provide opportunities to revise your work in light of feedback. When we do, Jean's work 
shows us that they attend to the letter of the law. “Oh, you told me I needed to add this … so I 
did those things.” (November 12, 2015) 

We questioned whether we were supporting only those teacher-learners whose work aligned with our 
views. Retelling our experiences as MTEs, we developed empathy for teacher-learners trying to 
fulfill course demands while extending understandings of mathematics teaching and learning.  

Our discussions of teacher-learners’ approaches to feedback focused on a contrast to our own 
pedagogical principles and strategies used in written feedback. We wondered if interpersonal 
relationships with teacher-learners would encourage them to use our feedback. Teacher-learners’ 
responses to mathematics-learners served as examples of relationship development. For example, 
some teacher-learners first attended to mathematics-learners as people and only highlighted elements 
of the learners’ mathematics after addressing unique characteristics of the mathematics-learner. In 
contrast, our written feedback focused on supporting the teacher-learners to complete the task at 
hand. Looking forward, we discussed if we should, or could build more personal connections into our 
written feedback. 

Pamela: Ok, then maybe I need to think differently about mine [feedback], because I looked at 
the few tasks that I have had a chance to look at and I’m thinking that I don't really attend to the 
PT [teacher-learner] as a person. … But I think I do a lot of that in class, it’s just not in my 
written comments. So I struggled with that one. (June 4, 2015) 

Pamela’s comment illustrates that interpersonal relationships with teacher-learners may be developed 
face-to-face. We then wondered if our written feedback would be more effective if attending to 
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interpersonal relationships before sharing feedback on the task and process. 
Improving one’s practice in teacher education. Kitchen’s (2005a) category “improving one’s 

practice in teacher education” includes exploring experiences and using insights gained to improve 
practice, such as teacher educators trying to communicate “understandings and structure meaningful 
lessons” (p. 23). Efforts to improve our feedback practices focused on the purpose of assignments, 
such as desiring to have teacher-learners explore mathematics-learners’ reasoning. 

Pamela: My intent was just to have them thinking about [mathematics-learners’] thinking.  
Sandy: Yeah me too. 
Pamela: I wanted them to interact with a [mathematics-learner] because they don't have a field 

experience in the course. So I wanted student interaction. (July 28, 2015) 

By comparing and contrasting our course activities, institutional contexts, and feedback practices, we 
proposed changes to our assignments and feedback practice. Pamela and Sandy drew insight from 
Jean’s approach where feedback had resulted in teacher-learners’ improving final versions of letters. 
Proposed improvements included providing feedback on drafts of teacher-learners’ responses, 
initiating class discussions of MTE feedback, and adjusting letter exchange time-lines to allow 
teacher-learners to revise.  

We evaluated proposed changes to our feedback practice based on whether a change was 
productive for teacher-learners and efficient for us. For example, we wanted to reduce time between 
the submission of work and teacher-learners’ receipt of written feedback, but struggled with how to 
construct feedback quickly that attended to individual needs of teacher-learners.  

Understanding the landscape of teacher education. Kitchen (2005a) identified the need to 
“frame individual challenge within a larger institutional and societal challenge” (p. 27) as 
“understanding the landscape of teacher education.” We discussed motivations behind decisions 
about structuring assignments and crafting written feedback that included program assessments for 
accreditation, field structures, class size, the practices of supervisors in practicum, and the Common 
Core movement. Our feedback was part of teacher-learners’ experiences in teacher education 
programs facing increased scrutiny and demands that graduates be expert teachers. In particular, 
Jean’s motivation in developing the letter exchange between teacher-learners and mathematics-
learners was for teacher-learners to develop ideas about providing written feedback, in response to 
data analysis from a program assessment related to accreditation that showed a need for improvement 
in the area of teacher-learners’ feedback to K-12 students. 

For example, Jean and Sandy shared stories about efforts to meet demands of accreditation 
organizations including preparing teacher-learners to collect “data” from their practices. 

Sandy: … because my [colleagues] are asking me for examples of my teacher-learners’ work that 
I think are particularly good and that show that they can collect and have analyzed data and can 
make decisions about what to do next. (August 10, 2015) 

Our conversations revealed the challenges in creating meaningful learning opportunities for our 
teacher-learners (e.g., constructing written feedback on mathematics tasks) while preparing them to 
document their work as required for accreditation. 

Knowing in Relation to Teacher-Learners 
Kitchen (2005b) described the last four elements of relational practice as modeling “respect for 

teachers as curriculum makers” (p. 200) with focus on the MTE/teacher-learner relationship. 
Respecting and empathizing. Central to respecting and empathizing with teacher-learners is “a 

genuine belief that each prospective teacher must construct her or his own meaning as a curriculum 
maker” (Kitchen, 2005b, p. 201) by recognizing and supporting the needs of teacher-learners while 
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encouraging them to probe issues of mathematics teaching and learning. 
Discussions focused on gaining insight into teacher-learners’ experiences and concepts of 

teaching. Knowing about teacher-learners’ stories of experiences in schools could help us understand 
their views of mathematics teaching and learning. Yet, we typically had not asked teacher-learners 
about their experiences. When we did, we did not use that knowledge to inform our written feedback. 
For example, Sandy asked teacher-learners to reflect on their experiences as learners, but described 
still wondering about the sources of teacher-learners’ insights. 

Pamela: So then how do you build on [teacher-learners’] own knowledge and experiences, when 
you haven't found out what those are?  

Sandy: I never really tried to understand where [teacher-learners] were coming from. So when I 
read Jean's [feedback] and then I read mine I was going: “Ok, well this feedback [responses 
to mathematics-learners] that they are giving could be interpreted so many ways.” I wish I 
knew how [teacher-learners] were thinking about it. I had them do the reflections, so you 
would think I would know. But they would make statements about … the students' thinking, 
that I was just like: "I wonder where this is coming from." (August 10, 2015) 

Not knowing the teacher-learners’ motivations and experiences that may have influenced their 
interpretations of learners’ mathematics made developing meaningful feedback difficult.  

Although supporting teacher-learners’ efforts to build conceptions of teaching and learning was a 
goal, we considered how to address their need to survive in practicum. We realized teacher-learners’ 
responses to mathematics-learners, were a function of their conceptions and efforts to complete 
course assignments. To construct productive feedback, we conjectured about teacher-learners’ 
conceptions of teaching and learning from evidence of their experiences. For example, Jean started 
asking “how are you doing?” (November 12, 2015) in individual meetings with teacher-learners 
before launching into feedback about lesson plan drafts. This simple question encouraged teacher-
learners to relay stories from field experience that revealed not only their concerns with practicum, 
but informed Jean’s understanding of their concepts of teaching and learning. Looking forward we 
developed other ways to gather evidence of such experiences. 

Conveying respect and empathy. Describing his efforts to convey respect and empathy, 
Kitchen (2005b) suggested teacher educators can demonstrate their feelings by “acknowledging 
insecurities” (p. 204) and helping teacher-learners face challenges in programs of study. Further, 
teacher educators can express commitment through listening and responding mindfully.  

We were uncertain about challenges teacher-learners faced since we had not invited teacher-
learners to share experiences with us. To gain insights, we discussed our own experiences as teacher-
learners and recalled challenges trying to “fit” into mentor teachers’ classrooms. Using this 
experience, we considered our programs and course activities and the potential in these contexts for 
teacher-learner challenges. For example, in looking back to our letter-exchanges, we discussed the 
challenge of engaging with mathematics-learners whom teacher-learners did not know. This activity 
structure seemed misaligned with possible teacher-learners’ views of teaching and learning situated 
in nurturance and care. 

We discussed how to respond mindfully when teacher-learners shared challenges and 
insecurities. We wondered whether praise would count as part of a mindful response because without 
praise, teacher-learners might read our written feedback as lacking care or concern. Jean looked back 
at shifts in her written feedback from using “smiley face kind of stuff” in her written feedback to 
giving “specific comments” and whether this had impacted her relationships with the teacher-learners 
(August 10, 2015). 

Jean: But then, I wonder if that shifted relationship building because there just seems to be a 
difference between [teacher-learners] that I have had recently versus [teacher-learners] that I 
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remember from say years ago. (August 10, 2015) 

Hypothesizing about challenges our teacher-learners faced was easy; knowing how to construct 
written feedback addressing the challenges was difficult. 

Helping teacher-learners face problems. Kitchen (2005b) described helping teacher-learners 
face problems as identifying and supporting teacher-learners to confront tensions between their 
constructs of teaching and learning and the practical realities of classrooms.  

Discussion focused on problems that could arise when a teacher-learner’s goals did not align with 
her practices. Sandy described asking teacher-learners how to confront errors in mathematics-
learners’ work: “When I addressed dealing with incorrect responses with my [teacher-learners] … 
They were very sensitive to children being told that they are wrong. [Teacher-learners] really think 
there is no place for it” (July 28, 2015). Sandy strove to honor teacher-learners’ perspectives, but felt 
the practice they described was inconsistent with their goals for mathematics teaching. The teacher-
learners’ position on error-handling was consistent with their determination to attend to mathematics-
learners as people, yet seemed inconsistent with their goal of supporting the development of learners 
as mathematicians. Sandy recognized this tension with teacher-learners’ perspectives on errors as a 
potential learning opportunity for them, but did not know how to use feedback to help the teacher-
learners confront this tension. 

Pamela’s feedback was typically in the form of questions addressing what she identified as 
teacher-learners’ problems of practice. For example, sharing a teacher-learner’s response about being 
more clear and specific with mathematics-learners, Pamela illustrated how she used questions to help 
the teacher-learners face problems.  

My response was “I want you to consider whether it is the clarity and specificity that is important 
or the information on which you ask the students to build their thinking. How are you asking 
students to think about their own responses?” (Pamela, July 28, 2015) 

Pamela hypothesized teacher-learners’ conceptions of teaching and learning were surface-level and 
questions in her feedback would encourage teacher-learner reflection, even when directly disagreeing 
with teacher-learners’ claims to help them unpack problems of practice. As Sandy wondered if her 
relationships with teacher-learners could withstand this approach, Pamela maintained that 
interactions with teacher-learners allowed giving critical feedback, asserting teacher-learners would 
attend to feedback due to collegial relationships with the teacher-learners.  

Receptivity to growing in relationship. Kitchen (2005b) described receptivity as identifying 
one’s own problems rather than “the ‘expert’” (p. 206) defining the problem to be faced. MTEs 
discovery of new meaning and development of professional practice is then based on being receptive 
to needs of teacher-learners. 

We discussed receptivity as components of our relationships with teacher-learners, yet having our 
own identities and values seemed to interfere with the development of our relationships at times. We 
discussed wanting intellectual relationships with teacher-learners.  

Sandy: I'm engaged with you because of the possibility of learning something new.  
Pamela: Because of the intellectual possibilities, not the interpersonal possibilities.  
Sandy: I want to know [teacher-learners] in an academic and an intellectual way, but I don't even 

think I do because I'm not taking up the ideas that they provide … except in the most 
superficial way. 

Jean: … Knowing them in an academic and intellectual way. So is there a way to think about 
empathy in terms of that … I mean what would that look like? (September 24, 2015) 

We agreed our love of mathematics influenced our conversations and relationships with teacher-
learners. Sandy felt teacher-learners might need more than our focus on mathematical thinking.  
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What makes your classroom work are those relationships and those moments you have with the 
students where … you are connecting as human beings and the student is going, “Oh yeah, she 
gets me and I can talk to her.” (Sandy, September 24, 2015) 

Our discussions took up the need for human connection with teacher-learners, but the tension 
involved the power we had over their grades and the way that influenced the relationship.  

Pamela: But that is the challenge, I want them to get to the point where they are pushing back a 
little bit. (August 24, 2015) 

Pamela viewed teacher-learners’ questions about her motives and practices as an indicator of a 
mature relationship. We viewed human connection as important to demonstrating and supporting 
receptivity to growing in relationship through discussion of feedback. 

Summary 
Evidence of knowing in relation to self and teacher education showed assignment purposes and 

structures were factors motivating our written feedback. Improvements to our practice were viewed 
through a lens of efficiency, while considering mindfulness in our feedback. Program accreditation 
influenced the design of activities on which we provided feedback, responding to external demands 
of society and our respective institutions for teacher-learners to demonstrate proficiencies. We were 
not consciously attending to these factors as we wrote feedback, but they impacted our attention to 
what and how feedback was provided. Considering improvements, we turned to the teacher-learners’ 
feedback as an example of attending to learners as people first.  

Evidence of knowing in relation to teacher-learners revealed that we knew little about the 
experiences, challenges, and problems teacher-learners faced. To convey respect and empathy we 
attended to elements of teacher-learners’ work on assignments, but without attending to teacher-
learners’ views of mathematics teaching and learning. To build relationships, we relied on in-person 
interactions to encourage teacher-learners to attend to our written feedback. Our love of mathematics 
and desire to have intellectual relationships with teacher-learners motivated attention to mathematics 
in our feedback, without attention to insecurities and problems of practice with which teacher-
learners wrestled. 

Discussion and Conclusion  
Findings revealed factors that framed and motivated our written feedback as a model of relational 

practice. Our written feedback was influenced by knowing in relation to self and teacher education, 
and knowing in relation to teacher-learners. Discussions of our written feedback as a relational 
practice revealed attention to skills and knowledge relevant to tasks involved in teaching 
mathematics. This focus is essential for effective feedback (e.g., Evans, 2013), yet falls short when 
feedback is considered as a model of relational practice. Evidence that our written feedback was 
motivated by “empathy, mutuality, reciprocity, and a sensitivity to emotional contexts” (Fletcher, 
1998, p. 174) was thin, suggesting a way forward in improving our written feedback. Considerations 
of teacher-learners’ experiences and views of mathematics teaching and learning are needed to build 
written feedback as a relational practice.  

Attention to the written feedback of our teacher-learners was a source of inspiration as we 
considered potential insights from the experiences of teacher-learners. Yet we recognized that it is 
necessary to move beyond the responses teacher-learners provided for course assignments focused on 
developing skills and knowledge. Aligned with the finding of Pittaway and Dowden (2014) that 
personal experience with feedback influences teacher educators’ written feedback, our feedback 
experiences motivated activity design and ways in which we structured feedback. Further, our views 
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of mathematics teaching and learning motivated our feedback, as suggested by Buhagiar (2013), and 
in some cases interfered with our relationships with teacher-learners.  

As MTEs seek to contribute to teacher-learners’ relational practice by modeling, the conceptions 
of the learner should be a central factor. Yet as part of an assessment system, feedback can focus on 
task performance without attention to the particularities of the learner. With relational practice as a 
goal, moving beyond the development of skills and knowledge needed to complete tasks in the work 
of teaching, toward gathering insights about and ways to use views of mathematics teaching and 
learning in our practice provides a way forward. Written feedback seen through the lens of relational 
practice should include empathy and build from experiences of learners in an effort to meet course, 
program, and learner goals. 
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Researchers have argued for an orientation to language as a resource that values bilingualism in 
mathematics classrooms. However, little is known about what mathematics teachers can do to 
translate a language-as-resource orientation into productive classroom practice. In this study, I 
analyze video data from two language immersion classrooms to understand pedagogies that are 
possible in contexts where bilingualism is seen as a resource. I argue that teachers’ purposefully 
devised discursive practices used students’ languages in ways that enhanced mathematical learning 
opportunities. I provide examples from the classrooms and discuss implications for research in 
bilingual classrooms where a language-as-problem orientation dominates. 

Keywords: Classroom Discourse, Equity and Diversity 

Mathematics teachers in bilingual classrooms deal with competing language-related orientations. 
While some orientations regard bilingualism as a problem to avoid or overcome, others regard them 
as a resource. Mathematics education researchers have drawn on what Ruíz (1984) called language-
as-problem and language-as-resource (Planas, 2014; Planas & Civil, 2013; Setati, Molefe, & Langa, 
2008). An orientation toward language as a problem creates a hierarchy, namely, one language 
dominates communication while devaluing other non-dominant languages. This orientation 
emphasizes lack of proficiency in the community’s dominant language as a handicap and, ultimately, 
marginalizes users of non-dominant languages. In contrast, an orientation toward language as a 
resource questions language hierarchies by valuing and encouraging bilingualism. Mathematics 
education researchers have analyzed implications of a language-as-resource orientation to 
mathematics classrooms (Planas & Civil, 2013; Planas & Setati-Phakeng, 2014). These studies have 
focused on student-student interactions, describing the benefits of allowing students to speak in their 
preferred languages. Less is known about what else, besides allowing students to use more than one 
language, teachers can do. 

In language immersion classrooms, learning a language other than the community’s dominant 
language is regarded as useful, and learning mathematics in such language is seen as possible. 
Therefore, language immersion classrooms provide opportunities to observe discursive practices that 
are possible when teachers look pass limiting language orientations. In this study, I explore different 
ways in which teachers translate the language-as-resource orientation in which their classrooms are 
embedded into specific discursive practices. I argue that teachers purposefully devised discursive 
practices that used both students’ languages in ways that enhanced students’ mathematical learning 
opportunities. I ask the following research question: What discursive practices do teachers in 
language immersion classrooms enact to enhance mathematical learning opportunities? 
Understanding this question may illuminate what teachers in bilingual classrooms embedded in 
contexts that hold a language-as-problem orientation can do to disrupt restrictive language practices. 

Theoretical Framework  
Instead of regarding discourse as a stretch of speech, Peirce (1989) viewed discourse as guiding 

what is considered possible: 

Discourses, in a poststructuralist theory of language, are the complexes of signs and practices that 
organize social existence and social reproduction. In this view, a discourse delimits the range of 
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possible practices under its authority and organizes how these practices are realized in time and 
space. (pp. 403-404) 

Besides regarding language as part of discourse, this view also sees it as a mechanism to create, 
reproduce and enforce discourse. Language delimits and is delimited by the practices that a discourse 
organizes as possible. Those who participate in such practices are privileged while those who do not 
are marginalized, since “when participants cannot find subject positions for themselves within a 
particular discourse, they may be silenced” (Peirce, 1989, p. 405). Peirce (1989) proposed that 
teachers engage in a pedagogy of possibility, that is, a pedagogy that encourages teachers to 
reconsider which language discourse practices are possible. For the purpose of this study, the notion 
of a pedagogy of possibility draws attention to creative teacher practices that are consistent with a 
language-as-resource orientation. Attending to instances of intentional productive use of languages 
may support teachers in bilingual mathematics classrooms to develop pedagogies that are consistent 
with a language-as-resource orientation. 

Teachers’ regulatory role may silence students’ use of their preferred languages, potentially 
muting all contributions from particular students (Planas & Civil, 2013). Alternatively, teachers may 
enhance learning opportunities through the strategic and intentional use of students’ languages. 
Following previous research on language-as-resource in mathematics classrooms, I focused on 
learning opportunities: “By referring to learning opportunities, we avoid fundamental claims about 
whether or not mathematics learning has actually taken place, but instead put the focus on the 
opportunities for communication and participation created by learners as well as by teachers” (Planas 
& Civil, 2013). I define bilingualism-as-enhancer as the strategic use of more than one language to 
enhance learning opportunities. 

Methodology 
Two Spanish immersion classrooms participated in this research. One was a third-grade 

classroom, with 14 students from middle class families. The teacher, señora Abad, is a US-born 
Latina, who considers both English and Spanish as her native languages. The second was a second-
grade classroom, with 23 students from economically struggling families. The teacher, Ms. Griffin, is 
a US-born Caucasian teacher, whose native language is English. Both teachers conducted 
mathematics class in Spanish. All students’ native language is English. 

Data Sources 
I draw on audio-recorded interviews with each teacher and mathematics class video recordings. 

While video-recording class lessons using a handheld camera, I focused on the teacher during whole 
class discussions, and then alternated focus on different groups during small group tasks. I video 
recorded eight lessons of a geometry unit in señora Abad’s class, and three lessons of a number sense 
unit in Ms. Griffin’s class. Unstructured interviews took place after video recordings. The teachers 
and I discussed the interplay between language and mathematics in video recorded segments. All 
interviews were fully transcribed.  

Data Analysis 
Following Powell, Francisco and Maher’s (2003) video analysis model, I annotated videos to 

identify focal episodes. I engaged in repeated attentive viewing, which included watching the videos 
three time to refine interpretations and redefined episodes I interpreted as bilingualism-as-enhancer. 
Then, for each teacher I selected one lesson that seemed to provide more examples than other lessons 
of the role of using more than one language in enhancing the teaching and learning of mathematics. 
This process resulted in 10 focal episodes: 6 from señora Abad’s class, and 4 from Ms. Griffin’s. 
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Second, each teacher and I analyzed the video of their lesson collaboratively. In-depth focus on 
one video is consistent with the study’s purpose of illustrating possible discursive practices, without 
claiming that what I describe is an exhaustive list. The teachers and I discussed interpretations of the 
role bilingualism played in supporting mathematics learning opportunities. I transcribed these 
discussions and the focal video episodes. I added quotes from the discussions with teachers to 
specific parts of the video transcripts. Finally, following a constant comparative method (Glaser & 
Strauss, 1967), I coded discursive practices in the transcripts and identified emerging themes. I 
followed Young’s (2008) view of discursive practice in language immersion contexts. This view 
attends to the interplay between orientations at the societal level and interactions at the classroom 
level: “The aim of discursive practice is to describe both the global context of action and the 
communicative resources that participants employ in local action” (p. 3). This definition resonates 
with this study’s purpose of attending to societal language orientations—language-as-resource in 
particular—in relation to what teachers do to enhance mathematics learning opportunities. 

Findings 
There were two main teacher discursive practices that relate to bilingualism-as-enhancer: (1) 

choosing the language that more transparently represents a mathematical idea, and (2) supporting 
students’ inference of mathematical terminology. In this section, I present an example from the 
classrooms and an interpretation of what motivated the practice that illustrates bilingualism-as-
enhancer. The transcript conventions are: Emphasis, <Speaker slows down>, Translation, and --- 
silence. 

Choosing the Language that Represents a Mathematical Idea more Transparently 
As Ms. Griffin’s class (second grade, Spanish immersion classroom) worked on a mystery 

numbers task, each student wrote a number that no one else could see. Each student wrote clues for 
the rest of the class to figure out the number. For one of the cards, Ms. Griffin read out loud one clue 
at a time. The teacher solicited guesses and explanations from students. After each clue, the class 
discussed whether they had enough clues to come up with one unique number. In the following 
example (see Table 1), Ms. Griffin had read the clue, “Tengo tres dígitos” (I have three digits). After 
discussing this clue, she read and wrote on the board the second clue, “Soy impar” (I am odd). She 
asked for examples of odd numbers. Ms. Griffin asked Dereck and Karen—two African American 
students who had started in the Spanish immersion program that academic year—what they thought. 

Ms. Griffin and I interpreted this episode as an example of intentionally choosing the language 
that represents a mathematical concept in a more transparent way. The teacher tended to use English 
to support the participation of students new to the Spanish immersion program, like Karen and 
Dereck. In this episode, however, she chose Spanish to support students’ understanding. She used the 
Spanish words par (even) and impar (odd) because she could relate one word with the other and with 
the mathematical concept with which the class was engaging. It seemed like rather than not knowing 
whether a number was even or odd, Karen and Dereck had a hard time remembering to what set of 
numbers the word odd refers and to what set of numbers the word even refers (lines 3-4 and 20-22). 
In English, the words even and odd have different etymologies, and they seemed arbitrary and 
unconnected. In Spanish, the words par and impar seemed related and more transparent as the prefix 
im indicates negation: not even. 

We interpreted this example as bilingualism-as-enhancer because the use of the two languages 
helped students clarify and express a mathematical idea. Applied linguists have highlighted the role 
semantic transparency plays in communication (Bell & Schäfer, 2016). Semantic transparency refers 
to whether the form of a word makes its meaning explicit. For example, the word shoemaker can be 
considered transparent because parts of the word (shoe and maker) describe its meaning, and those 
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parts are easily discernible. In Ms. Griffin’s example, the words even and odd seemed opaque for 
students, whereas par and impar seemed transparent. Although there might be other ways to support 
students’ sense making of the words and concepts of even and odd, in this case the possibility of 
alternating between the two languages enhanced the learning opportunity. 

Table 1: Discussing Odd and Even Numbers 
Line Speaker Spoken utterances Translation Actions 
1  
2   
3   
4   
5   
6   
7   
8   
9   
10   
11   
12   
13   
14   
15   
16   
17   
18   
19   
20   
21   
22   
23   
24   
25   
26   
27   
28   
29   
30   
31   
32   
33  

Ms. Griffin 
 
Dereck 
 
Ms. Griffin 
 
Javier 
 
Ms. Griffin 
 
 
 
 
 
Dereck 
 
 
Ms. Griffin 
 
Karen 
 
 
Ms. Griffin 
 
 
 
 
 
Karen 
 
Dereck 
Ms. Griffin 
Dereck 

Dereck, ¿impar dice even or 
odd?  
Are three, five and seven even 
or odd? 
¿Qué dice par? ¿Alguien 
puede explicar esto? 
Par tienes algo que puedes 
dividir.  
Sí. En números iguales 
La clave dice soy impar. Soy 
impar dice soy no par. 
¿Qué número debe de 
terminar en el lugar de uno?  
 
Impar 
No par 
Three 
So, si este termina en tres, ¿es 
par o impar?  
One, three and seven are 
something, and two, four, and 
six are something. 
Remember, par means 
<puedes dividir en números 
iguales.> 
<And impar means no par> 
Is three par or no par, impar? 
 
So two is par, and one, three, 
five, and nine are impar 
And seven 
And seven 
And two, four and six are par 

Does impar say even or 
odd? 
 
 
What does even say? Can 
someone explain that? 
Even you have something 
you can divide. 
Yes. In equal numbers 
The clue says ‘I’m odd.’ 
I’m odd says I’m not even, 
In what number does it 
have to end in the ones 
place? 
Odd 
Not even 
 
So if this one ends in three, 
is it even or odd? 
 
 
 
Remember, even means you 
can divide into equal 
numbers. 
And odd means not even 
Is three even or not even, 
odd? 

Underlying im 
 
 
 
 
 
Gestures separating her 
hands 
Holds two fingers 
 
 
Pointing at last of the 
dashes that represent 
each of the three digits 
 
Shakes head 
 
Writes 3 on the board 
 
 
 
 
 
 
 
 
 
 
Miss Griffin writes 
numbers under Impar 
 
Writes 7 on the board 

 

Supporting the Inference of Mathematical Terminology 
Señora Abad’s class (third grade, Spanish immersion classroom) was finishing a geometry unit 

focused on classifying two-dimensional (2D) shapes according to the shapes’ attributes. During the 
final lesson of the unit, the class focused on three-dimensional (3D) figures. Señora Abad wanted the 
class to draw on what they knew about 2D figures to name 3D figures. Her goal was to draw 
attention on 3D figures’ attributes, how the names of the figures represented some of those attributes, 
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and the relationship between the 2D figures and the 3D figures. After a class discussion comparing 
and contrasting 2D and 3D figures, señora Abad projected on the board an image of a pentagonal 
prism. 

Table 2. Naming 3D Shapes 
Line Speaker Spoken utterances Translation Actions 
1   
2   
3   
4   
5  
6   
7   
8  
9   
10   
11  
12   
13   
14  
15   
16   
17  
18   
19   
20  
21   
22   
23  
24   
25   
26  
27   
28   
29  
30   
31    
32   
33   
34      
35   
36   
37      
38   
39   
40      

Señora Abad 
 
 
 
 
 
 
 
 
Frank 
 
Señora Abad 
 
Frank 
Gloria 
Señora Abad 
 
Mike 
Señora Abad 
 
 
 
Mike 
Gloria 
Señora Abad 
Frank 
Ismael 
Señora Abad 
 
 
 
Gloria 
Frank 
Gloria 
Señora Abad 
Erika 
 
Señora Abad 
Erika 

¿Cómo tú piensas que se 
llama esto? Voy a darte un 
minuto para pensar. 
Tal vez algunos saben la 
palabra en inglés. Tal vez 
recuerdas algo que aprendiste 
en figuras bidimensionales. 
¿Frank? 
Largo 
 
Es largo ¿verdad? ¿Qué más 
ves en esta figura? 
Cinco esquinas 
Cinco lados 
Ah. Ves <cinco lados> 
 
Cinco pirámide 
Tiene cinco lados. OK. ¿En 
qué se parece a una pirámide 
y en que no se parece a una 
pirámide? 
No tiene triángulos 
Tiene pentágono 
Ah. Ah-ha. 
Pentágono pirámide 
Pentágono cilindro 
Qué interesante. Tiene un 
pentágono 
y es larga como un cilindro 
 
¿Cómo se dice prism? 
Pentágono prismo 
Pentagonal prismo 
¿Por qué? 
Tiene un pentágono y es 
como un prismo 
¿Es como un prisma? 
Como una prisma 

How do you think this is 
called? I’m going to give you 
a minute to think. Maybe 
some of you know the English 
word. Maybe you remember 
something you learned in 
two-dimensional figures 
 
Long 
 
It’s long, isn’t it? What else 
do you see? 
Five corners 
Five sides 
Oh. You see <five sides> 
 
Five pyramid 
It’s got five sides. OK. How is 
it similar and how is it not 
similar to a pyramid? 
 
It doesn’t have any triangles 
It has pentagon 
Ah. Aha. 
Pentagon pyramid 
Pentagon cylinder 
How interesting. It has a 
pentagon 
and it’s long like a cylinder 
 
How do you say prism? 
Prism pentagon 
Prism pentagonal 
Why? 
It has a pentagon and it’s like 
a prism 
It’s like a prism? 
Like a prism 

Points at drawing of 
pentagonal prism 
 
Holds a pentagonal 
prism 
 
 
 
Moves hand 
horizontally 
Moves hand 
horizontally 
 
 
Points at 5 sides of 
the pentagonal face 
 
 
 
 
 
 
 
 
 
 
Points at pentagonal 
face. Moves hand 
along one edge 
 
 
 
 
 
 
 
Moves hands 
horizontally 
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Señora Abad and I interpreted this episode as an example of supporting the inference of 
mathematical terms and phrases. Instead of providing definitions or translations, the teacher 
encouraged students to experiment with language and come up with terms and phrases that made 
sense to them. Mathematical ideas and words students already knew informed their guesses. By 
making and explaining informed guesses, the class explored mathematical concepts such as the 
attributes and names of 3D shapes. Simultaneously, the teacher expected students to author and 
assess mathematical ideas, therefore enhancing students’ mathematical agency. The teacher 
conjectured that if she had conducted the task in English, perhaps Gloria would have said that the 
shape was a pentagonal prism from the beginning. In that case, pentagonal prism might have been a 
memorized expression that some students in the class would not relate to the figures’ attributes. 
Bilingualism seems to have motivated the teacher and the students’ exploration of the figures’ 
attributes and how the name of the figure represents those attributes. 

We interpreted this example as bilingualism-as-enhancer because students are used to using 
language creatively to figure out how to express their ideas. In this classroom, the coinage of words 
emerged as students recurrently asked señora Abad how to say certain words in Spanish in different 
subjects. To raise students’ linguistic awareness and autonomous use of language, señora Abad 
started to ask students to make informed guesses. Applied linguists refer to lexical inventions as 
expressions that look and sound like a word in the language, but that are not formally defined or used 
(Dewaele, 1998). For example, Frank’s ‘pentágono prismo’ (line 33) sounds like Spanish, although 
the expression formally used in Spanish is ‘prisma pentagonal’. In the example, the teacher 
intentionally promotes lexical invention as a strategy to reinvent mathematical ideas. The 
bilingualism in this classroom motivated the inference of mathematical terms and phrases, and the 
discussion about the connection between those expressions and specific concepts. 

Discussion 
Researchers have argued that an orientation of language-as-resource at the societal level plays out 

in classroom language use. Few studies, however, have explored teachers’ role in translating a 
language-as-resource orientation into classroom practice. In this study, I have explored two language 
immersion mathematics teachers’ discursive practices that seem consistent with a language as 
resource orientation. I have drawn on a pedagogy of possibility as a theoretical framework to focus 
attention on teachers’ intentional efforts to devise creative ways to use languages in their 
mathematics classes. 

I have proposed the notion of bilingualism-as-enhancer to foreground two related issues. First, 
bilingualism-as-enhancer focuses on the bilingual dimension of debates about language orientations. 
Second, it draws attention to the possibility of enhancing mathematics learning opportunities when 
teachers purposefully integrate mathematics and communication in more than one language. This 
purposeful integration requires a pedagogy of possibility in which teachers expand and explore 
possible discursive practices. I have focused on teachers, extending previous studies that have 
focused on bilingual mathematics students’ language use. 

I described two overlapping discursive practices that exemplify bilingualism-as-enhancer: (1) 
choosing the language that represents a mathematical idea more transparently, and (2) supporting 
students’ inference of mathematical terminology. These discursive practices illustrate how teachers 
can enhance mathematics learning opportunities by drawing on students’ languages. I have presented 
teachers’ perspectives on the use of these practices to describe their reflective process of exploring 
their particular pedagogy of possibility. 

This study contributes insights on how language orientations at the societal level may play out at 
the classroom level as discursive practices. Language orientations play a role in whether teachers 
enhance or silence particular languages. At the same time, classroom discursive practices also inform 
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language orientations at the societal level. Examples of bilingualism-as-enhancer may inform 
teachers in contexts where bilingualism is regarded as a problem to explore the benefits of specific 
bilingual discursive practices, developing their own pedagogies of possibility. 
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This exploratory case study investigated the role of mindset in the establishment of an elementary 
teacher’s mathematical learning goals at different layers of her classroom and curriculum.  Data 
from the critical case of a teacher displaying characteristics of the growth mindset and engaging in 
the processes of teaching change provided evidence for a unique goal structure that could prove 
useful to a variety of mathematics teachers and mathematics teacher educators.  This layered goal 
structure featured goals at global, trajectory, and content levels that provided opportunities for 
further operationalization of the teacher’s mindset.   

Keywords: Instructional Activities and Practices, Research Methods, Teacher Beliefs  

Introduction   
In bridging the perceived divide that exists among the theories, research, and practices of 

mathematics education, we must begin by addressing ideas that are shared and fundamental to each 
of these facets of the discipline in a way that leverages the unique strengths of each.  One such idea 
involves the mathematical learning goals established by teachers as they interact with learners across 
the days, weeks, and months that constitute the academic year.  As others have observed, this is 
perhaps the most fundamental idea shared between the unique faces of our discipline, as “until 
learning goals are expressed clearly, further analyses are impossible” (Hiebert, Morris, Berk, & 
Jansen, 2007, pp. 50-51). 

A growing body of literature documents that a teacher’s establishment and sharing of appropriate 
learning goals is an essential component of learning mathematics in the classroom (National Council 
of Teachers of Mathematics [NCTM], 2014).  The specific challenges that are experienced by both 
teacher and learner are defined by these learning goals (Hiebert & Grouws, 2007), and the degree to 
which these challenges are overcome is greater in classrooms in which these goals are clearly and 
explicitly defined for all involved (Haystead & Marzano, 2009; NCTM, 2014).  Despite the array of 
knowledge regarding the value of mathematical learning goals, their genesis and interaction with an 
individual’s beliefs about the teaching and learning of mathematics are difficult to measure.  
Additionally, theories that describe these goals in terms of teaching are in notoriously “short supply” 
(Hiebert & Grouws, 2007, p. 373).  The research reported here attempts to bridge this gap by 
examining the influence of a teacher’s mindset, operationalized through the tenets of self-regulation 
theory, on the mathematical learning goals she pursues in the classroom.  In doing so, it establishes a 
crossroads between two important theoretical perspectives and the daily operation of the elementary 
mathematics classroom and promotes the synergy among these factors that is the theme of this year’s 
conference.  

Purpose 
A complete model of mathematics teacher development must describe the teachers’ motivations 

and dispositions for their teaching as well as the influence of these factors on areas such as the 
teacher’s implementation of learning activities, interactions with students and the classroom 
environment, and interpretations of professional development experiences (Opfer & Pedder, 2011; 
Wagner & French, 2010).  The principal purpose of this study was to explore one of these 
motivational factors, the teacher’s mindset, within the contexts of the teacher’s professional 
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development experiences and classroom practices.  However, as the study evolved, it became 
apparent that the teacher’s mindset linked inexorably to the mathematical learning goals she 
established in her classroom and the manner in which she operated on and monitored progress 
towards these goals.  These premises led to the primary research question of the study reported here: 
How do characteristics of the growth mindset influence the mathematical learning goals established 
by a mathematics teacher as she engages in professional development and mathematics teaching?  To 
address this question, the influence of mindset on the teacher’s learning goals as she observed, 
interpreted, discussed, adapted, planned for, implemented, and reflected on a demonstration lesson 
was examined.   

Theoretical Framework 
 The unique strength of the theoretical framework of a research study is in its ability to provide 

an underlying structure for the research that allows the researcher to anticipate, understand, and 
attempt to explain the phenomena under consideration.  Additionally, this framework shapes the 
research design process, and in a single-case study supports the analytic generalizations that are the 
primary product of the research (Yin, 2014).  With this perspective in mind, two important 
theoretical constructs guided this study: the model of implicit theories, commonly referred to as 
mindset, provided the primary theoretical lens for the study, while tenets of self-regulation theory 
operationalized these mindset constructs.  The remainder of this section contains descriptions of 
these theoretical elements. 

The Model of Implicit Theories 
Situated in their prior research on goal orientation and behavior, Dweck and Leggett (1988) 

described the social-cognitive model of motivation and personality that developed into the implicit 
theories framework.  In this model, the authors posited that an individual's implicit assumptions 
about the nature of an ability lead directly to the type of goals he pursues regarding that ability and 
the behaviors he exhibits when faced with challenges to that ability (Dweck & Leggett, 1988; 
Dweck, Chiu, & Hong, 1995).  These mindsets and their associated goal pursuits thus created "a 
framework for interpreting and responding to events" (Dweck & Leggett, 1988, p. 260) that 
promoted observable behavioral patterns when the ability under consideration is challenged.  Two 
implicit theories, the entity theory and incremental theory, exist in this model. 

Incremental theories.  The model described individuals espousing an incremental theory as 
those who view attributes as malleable, with the potential for the related ability to grow over time.  
Subscribers to this growth mindset often establish learning goals that focused on improvement of the 
ability in question (Dweck, 1986; Dweck & Leggett, 1988; Elliott & Dweck, 1988).  When faced 
with challenging situations related to this ability, individuals with growth mindset characteristics 
display adaptive, mastery-oriented responses characterized by engagement with the challenges and 
resilience to failure (Elliott & Dweck, 1988). 

Entity theories.  Individuals assuming an entity theory tended to view attributes as fixed, 
uncontrollable entities, for which ability depended on factors over which the individual had no 
control.  Those with these fixed mindset characteristics adopted performance-oriented goals to gain 
positive judgments for skills they had already mastered or to avoid negative judgments regarding 
talents they had yet to acquire (Dweck, 1986; Dweck & Leggett, 1988; Elliott & Dweck, 1988).  
When faced with challenges, these individuals displayed helpless responses characterized by lowered 
performance and avoidance of challenges (Elliott & Dweck, 1988). 

Generalization of the model.  Although the tenets of implicit theory advanced through research 
regarding characterization of an individual's own intelligence (Dweck & Leggett, 1988), the authors 
soon generalized the model to other attributes and domains.  Additionally, they predicted that for any 
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attribute of personal significance, "viewing it as a fixed trait will lead to a desire to document the 
adequacy of that trait, whereas viewing it as a malleable quality will foster a desire to develop that 
quality" (Dweck & Leggett, 1988, p. 266).  Applications of this prediction culminated in the 
validation of a simple instrument used to assess an individual's implicit theories for a variety of 
attributes (Dweck et al., 1995).  Additional evidence supported the notion that the model holds for 
generalization to other traits, such as the character and attributes of other people (Erdley, & Dweck, 
1993), or mathematical ability (Lischka, Barlow, Willingham, Hartland, & Stephens, 2015; 
Willingham, 2016; Rattan, Good, & Dweck, 2012).   

Self-Regulation Theory and Mediated Pathways of the Growth Mindset 
Burnette, O'Boyle, VanEpps, Pollack, & Finkel (2013) conducted a large-scale meta-analysis 

examining the relationship between implicit theories and self-regulation theory.  Their analysis 
revealed a strong alignment between three key processes of self-regulation theory and the constructs 
of mindset.  Goal-setting processes encompassed the performance versus learning goal orientations; 
goal-operation processes associated helpless and mastery responses; and goal-monitoring processes 
aligned the dichotomy of expectations of success and negative emotional responses.  More 
specifically, the results described the relative strength of association for these mediators of 
incremental theory on an individual’s goal achievement across a wide range of abilities, disciplines, 
and context (Burnette et al., 2013). 

These findings aligned with prior research showing that an incremental theory regarding an 
ability associated with an affinity for learning goals, mastery strategies, and expectations of success 
regarding that ability, and negatively associated with the pursuit of performance goals, helpless 
responses, and negative emotions regarding that ability (e.g., Blackwell, Trzesniewski, & Dweck, 
2007; Dweck & Leggett, 1988; Dweck et al., 1995).  However, this analysis also revealed significant 
findings regarding the positive strength of association between mastery-oriented responses and 
expectations of success with goal achievement and the negative relationship between negative 
emotions regarding an ability and goal achievement.  The most significant findings resulted from 
considering the mediated paths between an incremental theory and goal achievement.  For instance, 
examination of these pathways revealed that the incremental theory’s avoidance of negative emotions 
is more strongly associated with goal achievement than its expectations of success (Burnette et al., 
2013). 

Methodology 
 The unique strength of a well-designed qualitative research study is in its ability to answer 

specific research questions while at the same time testing the boundaries of those questions to 
discover significant relationships as the research evolves (Yin, 2014).  When guided by a well-
grounded theoretical framework, this approach allows important and perhaps unanticipated findings 
to emerge.  The remainder of this section describes the design and contexts of the study, which 
allowed the meaningful goal structures found in the participant’s classroom to surface.                            

The Study’s Design 
Overview.  An exploratory, holistic single-case design (Yin, 2014) supported consideration of 

how characteristics of the growth mindset influenced an elementary teacher’s mathematical learning 
goals.  The study focused on Gale Martin, a second-grade teacher, deemed significant as evidence 
from her engagement in an ongoing professional development project, Project Influence, indicated 
that she represented the critical case of a teacher displaying strong growth mindset characteristics and 
engaging in the processes of teaching change.  Over the course of four months of the fall of 2015, the 
researcher interview and observed Ms. Martin as she engaged in activities including the planning, 
delivery, and assessment of classroom instruction, classroom teaching, assessment, a demonstration 
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lesson, and other professional development activities.     
Data collection.  The data collected throughout the study focused on how Ms. Martin’s mindset 

characteristics influenced her other experiences, beliefs, and practices.  More specifically, the 
researcher collected data regarding Ms. Martin’s mindset and beliefs regarding the teaching and 
learning of mathematics, her described and observed mathematics teaching practices, and her 
adaptation of a demonstration lesson for use in her classroom.  Data sources for the study included 
historical records of her mindset and beliefs, semi-structured interviews, classroom observations, 
artifacts of the observed and enacted demonstration lessons, reflective journal entries, and artifacts 
from Ms. Martin’s lessons.  The researcher collected this data across four stages, including a 
participant selection process, baseline classroom observations, Ms. Martin’s engagement in the 
demonstration lesson through her professional development project, and her adaptation and 
enactment of the demonstration lesson in her own classroom. 

Data analysis.  The researcher then organized this body of data in chronological fashion, 
corresponding approximately with the data collection stages described above, and completed a 
simple time series analysis (Yin, 2014).  A holistic analysis of themes, “not for generalizing beyond 
the case, but for understanding the complexity of the case” (Creswell, 2012, p. 101), was performed 
for the first stage of data through open coding and reduction of these codes into themes consistent 
with the theoretical framework.  The themes emerging from the stage one analysis guided 
interpretation and coding of the stage two data, after which the stage one codes were revisited for 
completion.  The researcher repeated this process through all four stages of data in order to produce a 
comprehensive set of themes to guide a written case description. 

Research Contexts 
The participant.  The researcher selected Ms. Gale Martin, a Caucasian female in her mid-

thirties, as the critical case for the study.  Rationales for this selection included historical survey data 
indicating persistent growth mindset characteristics, a positive record of changes in beliefs regarding 
the teaching and learning of mathematics, and observational records indicating a change in classroom 
teaching practices consistent with the mindset and belief data.  Ms. Martin was an elementary 
mathematics teacher in her second year of teaching second grade and her fifteenth year of teaching 
elementary school who taught in a rural elementary school of approximately 330 students in a 
southeastern state.  Prior to teaching second grade, Ms. Martin had taught one year of kindergarten, 
two years of third grade, and 10 years of fourth grade, providing her some perspective in the 
mathematical content requirements of several elementary grades.  During the course of this study, 
Ms. Martin was also engaged in her third year of ongoing professional development for mathematics 
teaching. 

The demonstration lesson.  As part of the study, Ms. Martin observed a second-grade 
demonstration lesson conducted by the faculty of Project Influence with a lesson goal of “engaging 
students in thinking about subtraction with regrouping, while potentially representing the process 
symbolically” (Demonstration Lesson, October 28, 2015).  The lesson involved students interacting 
with the following task in a problem-solving format.  

On Thursday, Tara was at home representing numbers with base-ten blocks.  The value of her 
blocks was 304.  When she wasn’t looking, her little brother grabbed two longs and a flat.  What 
is the value of Tara’s remaining blocks?  Use pictures, words, and/or symbols to describe how 
you solved the problem. 

During the lesson, students worked in pairs to solve the problem and participated in extensive 
mathematical discussions across pairs, small groups, and the whole group under guidance of Project 
Influence’s expert teacher.  Approximately 30 kindergarten to second grade teachers observed the 
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demonstration lesson, and demographically, the county, school, and class were extremely similar to 
those of Ms. Martin. 

Results 
The unique strength of a teacher’s classroom practices exists in their ability to mediate the 

outcomes of students’ learning (Hiebert & Grouws, 2007).  During the course of this study, Ms. 
Martin’s students consistently displayed a sense of ownership of their mathematical ideas, 
communicated their thinking about these ideas to one another and Ms. Martin, explored relationships 
across their curriculum, and achieved lesson goals with varying degrees of success.  This section 
contains a portion of the results of this study related to different goal pursuits Ms. Martin utilized to 
facilitate these outcomes. 

Overarching Goals 
Ms. Martin professed to believe that a focus on student thinking and ownership of their 

mathematical ideas was one of the most essential elements of her classroom environment, and one 
that allowed students to learn mathematics effectively.  She described her thoughts on the matter, 
referring to how a student from the previous year’s class was ultimately able to be successful in 
learning mathematics in her class. 

[The student] was able to share her ideas, because she heard somebody else share their ideas.  So 
just building that community of “I am my own person in here, and that's okay.  I can show you 
how I know something.  It's just not Ms. Martin's way.  I can have my way.  So and so can have 
their way.  Yeah, Ms. Martin shows us things, but if I don't see it the way Ms. Martin shows us, 
then I can still use my way.”  (Selection Interview, September 9, 2015) 

Ms. Martin credited this student’s willingness to value and share her own ideas to the fact that she 
first heard another student share their thinking and the community norms of her classroom. 

This relationship between students’ willingness to communicate their ideas and their increasing 
level of understanding of mathematics appeared to be one of the motivating beliefs behind much of 
Ms. Martin’s thoughts regarding the teaching and learning mathematics.  She spoke directly to the 
notion that understanding mathematics and communicating about mathematical ideas were 
inescapably linked. 

That's why I always tell them, “If you can explain, you can go home and teach mom or teach 
brother or come to me and show me and explain it in your own words, I think that's how you 
understand it.”  That's why I like for them to do a lot of talking, obviously, because I want them 
to share their ideas with each other and understand it, especially in kid terms.  Because there are 
times when I have said something and a kid will say it differently, and I feel like we've said it the 
same way.  If a kid says it, [other] kids are like, “Oh yeah, that makes total sense.”  (Selection 
Interview, September 9, 2015) 

It appeared that Ms. Martin believed that this focus on student thinking and communication was 
essential to student learning and could help to reconcile differences between adult’s and children’s 
ways of thinking about and describing mathematics. 

Lesson Goals Within a Learning Trajectory 
Ms. Martin also spoke explicitly about her learning goals for her implementation of the 

demonstration lesson and how she believed these goals related to her students’ past and future study 
of mathematics.  In describing these learning goals, she referred directly to her students’ current 
understanding of strategies for operating with two-digit numbers, a topic which directly preceded her 
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implementation of the demonstration lesson.  

I would think that my students need to be able to represent the two-digit number in various ways 
to subtract. . . . I feel like the goals [for the demonstration lesson] are kind of the same, we're just 
kind of changing, we're moving from two-digit numbers to three-digit numbers.  I feel like our 
goal is the same, can they look at these numbers and understand that I need to maybe represent 
the number in a different way in order for me to subtract.  I guess that really works for this whole 
unit.  (Planning Interview, November 10, 2015) 

In this quotation, Ms. Martin established the specific mathematical goals for her enactment of the 
demonstration lesson as extending students’ ability to represent numbers in a variety of ways into 
using these representations with purpose in the form of regrouping for subtraction.  This was a 
substantial change from the goal of the lesson she originally observed.    

Additionally, she described how this goal connected to her students’ recent areas of study and her 
future goals for the semester. 

To me, it's definitely understanding that not only can we represent numbers in different ways, but 
we can do that when we are subtracting as well.  I see where we were several weeks ago where 
we were really focused on the place value and representing those numbers in different ways.  I 
really hope that they can see the tie-in with that to the subtraction.  I really think if they make that 
big connection, then once we get to the algorithm of regrouping this will be no issue.  (Planning 
Interview, November 10, 2015) 

With these words Ms. Martin confirmed the goals described in this section and explained the 
connections among these goals, her emphasis early in the semester on representations of number and 
place value, and the future objective of having her students symbolically represent operations and 
utilize algorithms. 

Reinforcing Goals Within a Lesson 
The previous section presented explicit examples of Ms. Martin’s lesson goals and her 

willingness to change the goals of a lesson she had observed to suit her lesson and trajectory needs.  
In addition to these planned changes, Ms. Martin also displayed the ability to adjust her classroom 
instruction to reinforce the goals she had established for her students.  In closing her implementation 
of the demonstration lesson, Ms. Martin placed a final question on the board, which she read aloud 
with her class. 

All right, here is your last question.  Let’s read it together.  Guys, listen, we’ve got five minutes, 
and this is our last thing.  Ready?  [Read aloud and recorded on the whiteboard] How could you 
represent 407 so that 3 longs could be taken away?  Write a sentence explaining how you know. . 
. . You have to write a sentence, but I don’t mind if you use a drawing to show it as well.  
(Classroom Observation, November 13, 2015). 

As the demonstration lesson Ms. Martin observed ended with students reflecting on what they had 
learned from solving the original task, this extension question provided a substantially different close 
to the lesson that was more aligned with Ms. Martin’s lesson goals. 

In an interview after this lesson, Ms. Martin’s overall assessment of the lesson was that it had 
been successful and that the majority of students had developed further understanding of the need to 
represent numbers in different ways in order to support operations such as subtraction. 

I’d say three-fourths of the classroom. . . were [able to address the exit ticket].  I could pick out 
maybe five or six that were not.  I think, for the most part, they were able to. . . . They understood 
that you had to represent a number a different way in order for them to subtract, which leads to 
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the whole idea of the algorithm and regrouping.  I feel like the trajectory is on target and moving 
towards the overall goal.  (Reflection Interview, December 21, 2015) 

This description further illustrates Ms. Martin’s commitment to her lesson goal and her ability to 
adapt her instruction to continue to reinforce her student’s progress towards this goal based on 
ongoing classroom assessment. 

Discussion and Conclusion 
Utilizing the self-regulation constructs of goal setting, goal operating, and goal monitoring to 

observe Ms. Martin’s operationalization of her mindset in the classroom proved extremely effective.  
Perhaps one of the most important results of this framework was the revelation of three distinct 
layers of goals under which Ms. Martin operated throughout the semester.  Although hierarchical 
language describes these goal structures in the following paragraph, this language relates only to the 
relationships among the goals themselves and not the value Ms. Martin ascribed to these goals as she 
spoken of them with equal importance (see Figure 1). 

 

 
Figure 1. Ms. Martin’s Layered Mathematical Learning Goals 

 

At the highest layer, Ms. Martin established global goals that spanned the length of the school 
year.  These goals tended to focus on widely applicable student mathematical practices such as 
thinking independently about mathematical ideas, communicating these ideas to others, justifying 
this thinking, and critiquing the reasoning of others.  In an intermediate tier, Ms. Martin described 
trajectory goals that involved assessing and moving students along an evolving mathematical 
trajectory by helping them connect various mathematical concepts and representations throughout the 
semester.  She spoke of these goals at the level of sequences of lessons and classroom activities, units 
of instruction, and conceptually related mathematical topics.  These goals appeared to be more fluid 
than the global goals and evolved as the semester progressed based on her students’ current 
understanding.  At the lowest level were Ms. Martin’s content goals, which aligned roughly with her 
learning goals within a lesson or brief sequence of lessons and could be adapted as needed within an 
individual lesson or student encounter.   

These layered goals also offered a variety of opportunities to observe Ms. Martin engaging in 
goal operating and goal monitoring practices on a daily basis.  In general, her goal operating 
practices aligned with utilizing specific instructional strategies to advance individual students, small 
groups, or the whole class towards her goals for them at different layers.  Additionally, she focused 
heavily on her students’ use of mastery strategies throughout her interactions with them.  Ms. 
Martin’s general goal-monitoring strategies focused on making students’ mathematical thinking 
visible to her and the students’ peers.  She then used this thinking as evidence for assessment as she 
compared students’ progress to her learning goals, for facilitation of group discussions, or for 
discussion and critique from the students’ peers. 
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The most directly useful aspect of Ms. Martin’s case for the classroom mathematics teacher is 
likely the fashion in which she operationalized her mindset through her goal-related practices.  
Although all classroom teachers may not operate under the tenets of a growth mindset on a daily 
basis, many of these goal-related practices can be easily adapted to any classroom.  Setting goals that 
support student interactions about mathematics and that focus on mathematical concepts and 
strategies that transfer are broadly useful.  Operating toward these goals by interacting with students 
via advancing, redirecting, and facilitating strategies appears to require little adaptation to the 
questioning approaches many teachers already use.  Goal-monitoring practices such as focusing on 
student thinking and evaluating student progress against a mathematical learning trajectory align well 
with globally accepted assessment practices.  These findings, which are useful to a variety of 
elementary mathematics teachers and mathematics teacher educators, represent the intersection the 
study’s theoretical framework, research design, and observations of classroom practice, and would 
not be possible without the convergence of these facets. 
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This study investigates teacher responses to a common set of high potential instances of student 
mathematical thinking to better understand the role of the teacher in shaping meaningful 
mathematical discourse in their classrooms. Teacher responses were coded using a scheme that 
disentangles the teacher move from other aspects of the teacher response, including who the 
response is directed to and the degree to which the student thinking is honored. Teachers tended to 
direct their response to the student who had shared their thinking and to explicitly incorporate ideas 
core to the student thinking in their response. We consider the nature of these responses in relation 
to principles of productive use of student mathematical thinking. 

Keywords: Classroom Discourse, Instructional Activities and Practices 

Recommendations for effective mathematics teaching stress the importance of engaging students 
in meaningful mathematical discourse (e.g., National Council of Teachers of Mathematics [NCTM], 
2014). Research has begun to help us understand how to effectively orchestrate discourse around 
written records of student work (e.g., Stein, Engle, Smith, & Hughes, 2008), but much less is known 
about how to effectively use the in-the-moment mathematical thinking that emerges during 
classroom mathematics discourse. One issue related to responding to student thinking is that not all 
student thinking warrants the same consideration. Rather, student thinking varies in the degree to 
which it provides leverage for accomplishing mathematical goals. Leatham, Peterson, Stockero, and 
Van Zoest (2015) described a framework to identify those instances of student thinking—MOSTs—
that provide such leverage, but little is known, as of yet, about effective responses to MOSTs. The 
study reported here investigated teacher responses to a common set of MOSTs. Better understanding 
such responses will contribute to better understanding the role of the teacher in shaping meaningful 
mathematical discourse in their classrooms. 

Literature Review 
Research on classroom discourse has identified patterns in teachers’ responses to student 

thinking. Mehan (1979) coined IRE—Initiation, Response, Evaluation—to describe a common 
pattern of classroom interaction where the teacher’s main follow-up to an elicited student response is 
to evaluate it. An IRE interaction is an example of what Wood (1998) referred to as funneling, where 
the teacher’s response is intended to corral students’ thinking within predetermined and often 
narrowly-defined parameters. By contrast, Wood characterized certain other teacher responses as 
focusing; in these responses a teacher “keep[s] attention focused on the discriminating aspects of the 
solution” (p. 175).  

Van Zee and Minstrell (1997) explored what they called a reflective toss—a pattern that consists 
of a student statement, teacher question, and additional student statements. Van Zee and Minstrell 
argued that changing the evaluation component of IRE to a question could positively impact the 
nature of classroom discourse by changing students’ expectations for participation. These results are 
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not unique; in general, research has found that teacher responses matter. Fennema et al. (1996) found 
that increases in teachers’ focus on student thinking in their classrooms were directly related to 
improvements in their students’ achievement. Kazemi and Stipek’s (2001) investigation revealed that 
teachers in high-press classrooms—classrooms in which the teacher responded to their students’ 
contributions to classroom discourse by pressing the students to further engage in thinking about 
important mathematics in their contributions—provided their students with increased learning 
opportunities.   

Other researchers have looked at collections of teacher moves that accomplish a particular 
purpose related to student thinking. Lineback (2015), for example, investigated the construct of 
redirection—“instances when a teacher invites students to shift or redirect their attention to a new 
locus” (p. 419). This work generated a taxonomy of redirections to deconstruct teacher responses and 
analyze the contribution of different redirection responses to instruction. Bishop, Hardison, and 
Przybyla-Kuchek (2016) described the mathematical contributions of students, the moves teacher 
made in response, and the relationship between these contributions and moves, through the lens of 
responsiveness, which they defined as the extent to which teacher responses “mutually acknowledge, 
take up, and reflect an awareness of student thinking” (p. 1173). Connor, Singletary, Smith, Wagner, 
and Francisco (2014) developed a framework that includes teacher responses to student thinking that 
support collective argumentation in the classroom. Their work provides important information for 
focusing on a particular type of student thinking—that which involves mathematical argumentation. 

In the work reported here, we narrow down the type of student thinking to MOSTs and consider 
the extent to which the teacher responses to those MOSTs accomplish the purpose of building on 
them. 

Theoretical Framework 
MOSTs (Leatham et al., 2015) are instances of student thinking worth building on—that is, 

“student thinking worth making the object of consideration by the class in order to engage the class 
in making sense of that thinking to better understand an important mathematical idea” (Van Zoest et 
al., 2017, p. 36). To take full advantage of these opportune instances of student thinking, one would 
want to seek to build on MOSTs in the moment. Such use encapsulates the core ideas of current 
thinking about effective teaching and learning of mathematics (e.g., NCTM, 2014), including that 
student mathematics is at the forefront and that students are positioned as legitimate mathematical 
thinkers, engaged in sense making, and working collaboratively. These ideas serve as the principles 
underlying our conceptualization of productive use of MOSTs (see Figure 1). 

 
1. The mathematics of the MOST is at the forefront. 
2. Students are positioned as legitimate mathematical thinkers. 
3. Students are engaged in sense making. 
4. Students are working collaboratively. 

Figure 1. Principles underlying productive use of MOSTs (Van Zoest et al., 2016). 

We theorize that building on MOSTs is a particularly productive way for teachers to engage 
students in meaningful mathematical learning. Van Zoest, Peterson, Leatham, & Stockero (2016) put 
forth a conceptualization of the teaching practice of building on MOSTs (see Figure 2). Together the 
principles (see Figure 1) and building subpractices (see Figure 2) provide a way to assess the extent 
to which teacher responses to MOSTs instantiate the practice of building. 
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1.  Make the object of consideration clear (make precise) 
2. Turn the object of consideration over to the students with parameters that put them in a 

sense-making situation (grapple toss) 
3. Orchestrate a whole-class discussion in which students collaboratively make sense of the 

object of consideration (orchestrate) 
4. Facilitate the extraction and articulation of the mathematical point of the object of 

consideration (make explicit) 

Figure 2. Sequence of subpractices of the teaching practice of building on MOSTs. 

Methodology 
The Scenario Interview (Stockero et al., 2015) is a tool to investigate how teachers think about 

responding to student thinking during instruction. During the interview teachers are presented with 
instances of mathematical thinking from eight individual students—four each from an algebra and a 
geometry context. The interviewee is situated as the teacher and asked to describe what they might 
do next were the instance to occur in their mathematics classroom and to explain why they would 
respond in that way. The Scenario Interview allowed us to compare teacher responses to a common 
set of student thinking. The analysis reported here focuses on responses to the four instances, two 
from each context, in which the student thinking was a MOST. The four MOSTs and their contexts 
are provided in Figure 3. 

 
Scenario Context MOST 

G1 
Students were sharing their solutions to the following 
task (a corresponding picture was on the board).  
Given two concentric circles, radii 5cm and 3cm, 
what is the area of the band between the circles? 

Chris shared his solution: “The radius of the big 
circle is 5 and the radius of the little circle is 3, 
so the gap is 2, so the area of the band is 4π 
cm2.” 

G3 

Pat explained how he got the same answer as 
Chris (4π cm2) a different way: “π times r2 for 
the big circle is π times 52, which is 10π and π 
times 32 is 6π for the little circle. I minused 
(sic) them and got 4π as my answer.” 

A2 

Students had been discussing the following task and 
had come up with the equation y = 10x + 25.  
Jenny received $25 for her birthday that she 
deposited into a savings account. She has a 
babysitting job that pays $10 per week, which she 
deposits into her account each week. Write an 
equation that she can use to predict how much she 
will have saved after any number of weeks. 

Casey said, “You could also change the story 
so the number in front of the x is negative.” 

A3 

The teacher asked, “How do we find the 
equation given any table?” and put this 
generic table of values [to the right] on 
the board for the students to use in their 
explanation.  

Jamie said, “I found the number in front of the 
x by subtracting the y-values in the table, 21 - 
19, so that number is 2.” 

Figure 3. MOSTs that formed the basis of the teacher responses and their contexts. 

Data Analysis 
The data for this study consisted of video recorded interviews with 25 secondary school 

mathematics teachers from several sites across the United States. These teachers were representative 
of a set of 44 teachers who participated in our larger project. We used Studiocode (SportsTec, 1997-
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2015) video analysis software to segment each interview into the instances of student thinking and 
the teacher responses to each individual instance—everything a teacher said about how they would 
respond to that instance. Transcriptions of the videos were used to facilitate the analysis. For the 4 
instances and 25 teachers of this study, there were a total of 100 teacher responses. In one of those 
responses the teacher did not provide a description of how they would respond to the instance 
because they were not able to envision it happening in their classroom, thus 99 teacher responses 
were analyzed for this study.  

The resulting teacher responses were then coded using the Teacher Response Coding Scheme 
(TRC) (Peterson et al., in press), a scheme that disentangles the teacher move from other aspects of 
the teacher response, including the Actor and the degree to which the student thinking is honored 
(Recognition-Action and Recognition-Idea). Figure 4 provides the TRC coding categories and codes 
that were included in this analysis. 

 
Category Coding Category Description Codes 

Actor Who is publicly asked to consider the 
student thinking 

teacher, same student(s), 
other student(s), whole class 

Recognition-
Action 

The degree to which the teacher response 
uses the student action, either verbal 
(words) or non-verbal (gestures or work) 

explicit, implicit, or not 

Recognition-
Idea 

The extent to which the student is likely to 
recognize their idea in the teacher response 

core, peripheral, other, cannot infer, not 
applicable 

Move 
What the actor is doing or being asked to do 
with respect to the instance of student 
thinking 

adjourn, allow, check-in, clarify, collect, 
connect, correct, develop, dismiss, 
evaluate, justify, literal, repeat, validate 

Figure 4. Subset of the Teacher Response Coding Scheme (TRC) used in this paper. 

Results and Discussion 
We discuss findings related to specific aspects of teachers’ responses to MOSTs as well as 

interactions among those aspects. We first focus on the Actor and Move and their interactions, 
followed by the individual Recognition categories and their interactions. In doing so, we highlight 
how a response might adhere to the principles underlying productive use of MOSTs or contribute to 
enacting subpractices of building.  

Actor and Move 
With respect to the actor, the majority of teacher responses (66%) had the same student as the 

actor, meaning that the teacher proposed a move that was directed back to the student who had 
contributed the original thinking (see Table 1). In about 24% of the instances, the teacher move was 
directed to the whole class.  

With respect to the moves, two occurred much more frequently than the others; together, develop 
(37%) and justify (18%) moves accounted for over half of the data. In a develop move, the teacher 
provides or asks for an expansion of the student thinking that goes beyond a simple clarification. In a 
justify move, the teacher asks for or provides a justification of the instance. Since our data showed 
that these moves had a same student or whole class actor, in both cases the teacher was asking for, 
rather than providing, the expansion or justification. 
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Table 1: Actor and Move 
 Same Student Whole Class Teacher Other Student(s) TOTAL 
Adjourn 0 0 3 0 3 
Allow 0 3 2 1 6 
Clarify 5 0 0 0 5 
Collect 2 4 0 1 7 
Connect 1 4 0 1 6 
Correct 1 0 0 0 1 
Develop 32 5 0 0 37 
Dismiss 0 0 1 0 1 
Evaluate 0 4 0 0 4 
Justify 16 2 0 0 18 
Literal 4 2 0 0 6 
Repeat 4 0 0 1 5 
TOTAL 65 24 6 4 99 
 
Taken together, the Actor and Move findings suggest that teachers might instinctively respond to 

MOSTs by asking the student who provided the thinking to either expand upon or justify their idea. 
Because MOSTs are instances that a teacher can build upon to “engage the class in making sense of 
[student] thinking to better understand an important mathematical idea” (Van Zoest et al., 2017, 
p. 36), however, asking the student to develop or justify their idea may not always be necessary and 
may actually limit students’ opportunities to make sense of mathematical ideas. For example, 
consider scenario A2 (see Figure 3). It turned out that nearly half of the instances of develop moves 
with same student actor (15 of 32) occurred in response to this scenario. The most common teacher 
move in this instance was to ask Casey, the student who made the suggestion, to explain how they 
would change the story (e.g., “Well what do you mean? What sort of an equation, or what sort of a 
real life situation can you think of where that would be a negative?” (Teacher 6 [T6]). Contrast this 
response with a similar one directed instead to the whole class: “Interesting comment… who can 
come up with a story, a situation that would match what Casey is saying?” (T7). In this case, we 
would argue that directing the response to the whole class might be more productive, as it would 
engage all of the students in trying to come up with a situation where the coefficient is negative, 
likely advancing the entire class’s understanding of the mathematics of linear equations.  

Similarly, consider scenario A3. More than two-thirds of the justify moves with same student 
actor (11 of 16) occurred in response to this scenario. The most common response to this instance 
was to ask Jamie why they used the numbers that they did (e.g., “Why did you do the 21 minus the 
19?  Why didn’t you do the 19 minus the 15?” (T14)). This response would allow Jamie to justify 
their idea, but does not engage the whole class in thinking about the importance of taking into 
account the differences between x-values as well as the y-values when calculating the rate of change. 
Consider an alternate response directed to the whole class, such as: “So [Jamie] got 2 from 
subtracting those two numbers, so what if I pick 19 and 15? If I subtract those, I get 4. Why did we 
get two different answers?" (T21). Such a response would allow all of the students to consider the 
mathematics of rate of change. We argue that teachers who respond to MOSTs by asking the student 
who shared the original thinking for justification may be focused on the details of the situation, 
whereas those who ask the whole class for justification may be more focused on the big 
mathematical picture.  

In general, responses that turn the mathematics of a MOST over to the whole class instead of 
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engaging a single student better adhere to principles underlying productive use of MOSTs. Such 
responses provide all students the opportunity to collaboratively engage in making sense of the 
mathematics of the MOST. In doing so, they put the students’ mathematics at the forefront and 
position all students as legitimate mathematical thinkers. These responses may also demonstrate an 
ability to discriminate between those instances that need to be made precise before the teacher can 
turn them over to students (grapple toss) and those that do not. 

Although the goal of building on MOSTs is to have the whole class consider the student 
mathematics of the instance, there are some cases where directing the initial teacher response back to 
the same student might be desirable. For example, in scenario G1, it is quite possible that other 
students in the class would not initially understand Chris’ explanation, so the most common teacher 
response in our data, “ask him to explain by using…pictures and words, like how he came up with 
the 4π” (T18) may be the teacher helping to make Chris’ idea precise before other students are asked 
to consider it. A move such as this could be an instantiation of the first subpractice of building (make 
precise)—an important first step in setting the teacher up to engage in the next building subpractice 
(grapple toss), in which they turn the now-precise student thinking over to the class for consideration. 

Recognition of Student Actions and Ideas 
The Recognition codes operationalize the extent to which the student who provided the instance 

would recognize their thinking in the teacher’s response. As seen in Table 2, the majority of teacher 
responses either explicitly (54%) or implicitly (32%) incorporated the student’s words (verbal) or 
gestures or work (non-verbal). Only 13% of responses would likely not be recognizable to the 
student as incorporating their own actions. Moreover, the vast majority of the responses (75%) 
remained core to the idea in the instance of student thinking. Together the results indicate that a large 
percentage of the teacher responses were both explicit and core (43%), meaning that the teachers in 
this study honored the student thinking by explicitly incorporating the student’s verbal or non-verbal 
actions and staying focused on the student’s core ideas in their described response. For example, the 
response to scenario G1, “I would want to know what he means by gap. Um, and maybe have him 
illustrate that visually, just to kind of picture that as a class,” (T4) is explicit and core as it 
incorporates both the student’s words (gap) and his ideas (having him illustrate his idea visually). A 
response such as this aligns with the principles underlying productive use of MOSTs, as it positions 
the student as a legitimate mathematical thinker by keeping the students’ mathematics at the forefront. 
In general, many teacher responses that are core to the student ideas and implicitly incorporate 
student actions also adhere to the same principles, but may be problematic in that it may not be clear 
to the student(s) what mathematics is under consideration. For example, the response to scenario A3, 
“So I would want to ask her, ‘Why did you do this? What are you thinking? Tell us a little bit more,’” 
(T24) fails to specify what mathematics the teacher wants to know more about. Among other things, 
the teacher could be wondering why the student subtracted or why they chose to select the numbers 
that they did. 

Table 2: Recognition of Student Actions and Ideas 
 Student Ideas  
 Core Peripheral CNI, Other, N/A TOTAL 

Student Actions  
Explicit 43 10 1 54 
Implicit 26 4 2 32 
Not 5 1 7 13 

 TOTAL 74 15 10 99 

Conclusion 
Our findings revealed that the teachers in this study most often responded to MOSTs by making a 
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develop or justify move that was directed to the same student who had shared the initial thinking. 
Additionally, they did so in ways that stayed core to the ideas in the student thinking and often 
explicitly incorporated the students’ actions.  

Responses that either explicitly or implicitly incorporate core ideas of a student’s contribution 
signal that these teachers value the students’ contributions. We also see such responses positioning 
the students as legitimate mathematical thinkers who can make valid contributions to the 
development of the mathematics in the classroom. Hence the words and idea(s) teachers use in their 
responses to students’ ideas could matter in terms of how students are positioned in the classroom. 
When the student action that is being considered is explicit, it is easier for the whole class to 
recognize that student thinking is being honored.  

MOSTs are prime opportunities for teachers to enact the building practice, but teachers’ 
tendencies to direct their responses to the student who had shared their idea could prevent them from 
doing so. As we have illustrated, directing a response to the same student could be productive in 
cases where the student’s idea needs to be made precise before others can consider the idea, but 
many MOSTs do not require clarification. In these instances, rather than going back to the student, it 
would be more productive to toss the already precise student thinking to the whole class to provide 
all students an opportunity to collaboratively make sense of the mathematics.   

The findings of this study advance research on teachers’ in-the-moment responses to student 
mathematical thinking by moving beyond looking at what moves teachers make, to considering to 
whom those moves are directed and to what extent those moves would allow students’ ideas to be 
recognizable to them or other students. In doing so, the study builds on the approaches taken in past 
research on teacher responses to explore more refined approaches that allow the field to look at 
teacher responses in new ways. Decomposing teacher responses in the way we have in this study has 
the potential to help teacher educators and researchers focus their development efforts. For example, 
if the majority of a teacher’s responses honor student thinking, but engage only the student who 
contributed the instance, professional development work with the teacher could focus specifically on 
understanding the potential in directing a response to the whole class, and when it would and would 
not be appropriate to do so. Focused efforts such as this would allow professional developers to 
leverage teachers’ strengths and thus develop teachers’ practice more effectively. 
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TOWARD MULTIMODAL POETIC ANALYSIS: A CASE OF PROPERTY NOTICING 
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This paper uses multimodal discourse analysis to show that discursive form, in addition to words, 
gestures and sound dimensions of speech, is an important linguistic resource for expressing 
mathematical meaning. During a collaborative task, a student spoke an insight about an algebraic 
property five times over a few minutes, in slightly different ways. He consistently used repetition of 
grammar and words, a speech form known as poetic structure. These poetic structures were marked 
elaborately through discursive modes such as pause, intonation and gestures, suggesting that they 
form a meaning-making mode that is real to the speaker.  

Keywords: Classroom Discourse, Problem-Solving, Algebra and Algebraic Thinking 

Introduction  
This paper contributes a methodological example to scholarship on language as a resource for 

learning mathematics. Use of home languages and the interplay of academic and informal discourses 
are known to be central resources (Barwell, 2015; Planas & Setati-Phakeng, 2014). This paper 
suggests that the discursive form of students’ mathematical statements is also an important resource 
for learning. Grammatical repetitions within students’ sentences are just as important as the words 
themselves in focusing attention on key issues within a task.  

This study reports on a task in which two students, Sheila and Joseph, were asked to find a 
formula for the perimeter of a string of n hexagons. The key issue is that the interior sides of a 
hexagon string do not contribute to the perimeter. One of the students, Joseph, noticed this property 
(Pirie & Kieren, 1994), and over the course of about four minutes, stated the property five times 
before his partner agreed to it. Over these moments, we can consider which discursive strategies 
Joseph conserved and which he changed as he tried to make his point. Poetic structures, elaborately 
marked with pauses, changes in intonation and with gestures, were a discursive strategy that Joseph 
used in each property noticing attempt. This paper proposes that poetic structures can be considered 
as a discursive mode in multimodal discourse analysis.  

What Is a Poetic Structure? 
A poetic structure occurs when a speaker repeats a phrase or sentence that was spoken 

previously, while retaining some of the syntax of the prior statement, and at least one word (Staats, 
2016a, 2016b). Repeating grammar helps students talk about math because the syntax establishes 
relationships among small mathematical ideas or images. Repeating the phrase lets students conserve 
or modify these relationships. Looking for repetitions that retain at least one word from the previous 
statement helps the researcher focus on continuity of topic. 

Sometimes a poetic structure occurs within one student’s turn at talk, as an “internal” poetic 
structure (Staats, 2016a). Here, Sheila is describing each diagram in Figure 1, from the n = 1 case to 
the n = 4 case, in which the number of interior sides are 0, 2, 4, and 6, respectively. In the layout of 
the transcript, I have used indentation to call attention to the grammatical repetitions so that they are 
arranged roughly in columns, one column for the phrase would be, one for the total number of sides 
and one for the number of sides that she sees: 
 
So that would be        like a formula, right?   
So this would be         6L,  
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and then this one would be,  uh,   
                     the total number of sides      minus 2 .  
And then this one would be     
                     the total number of sides      minus 4 .  
This would be       
                     the total number of sides      minus 2, 4, 6    
 

Poetic structures can also occur between students, or “across” students, when one student repeats 
and perhaps modifies a phrase that another student said in the past (Staats, 2016a; 2016b). For 
example, a short time after Sheila’s statement above, over several of her turns at talk, she spoke 
fragments of a formula while trying to figure out how to subtract interior sides. At turn 76, she says, 
…So, like in statistics the number of cases would be n and that would be your number minus 2… and 
at turn 77, she says, …Number of hexagons would be 1, 2, 3, 4. 4, uh, times 2…. At turn 78, Joseph 
uses an “across” poetic structure to recombine two of Sheila’s phrases in order to request 
clarification, Times 2 or minus 2? 

In this way, poetic structure analysis can focus on the form of a single student’s mathematical 
commentary, or it can focus on the relationships of commentary that students share, sometimes over 
long stretches of a conversation. This study is concerned with the way Joseph used discursive form to 
explain a property of the hexagon diagrams, and so here we focus on “internal” poetic structures. As 
we see in the examples above, poetic structures can be shown on the page through indentation and 
through underlining. In order to conserve space in this research report, in the following examples, I 
use several forms of underlining instead of indenting to highlight repetitions within Joseph’s 
property-noticing statements. 

Theoretical Foundation 
In recent research reports, I have outlined a methodological foundation for identifying and 

interpreting poetic structures in collaborative mathematical conversations. I’ve shown that poetic 
structures can facilitate activities such as organizing data, generalization, and shifting from a spoken 
mathematical formula to a written one (Staats, 2016a, 2016b). In this research report, I discuss how 
poetic structures contribute to a student’s property noticing statements. 

In Pirie and Kieren’s theory of the dynamic growth of mathematical understanding, three of the 
early stages are image making, image having and property noticing (Pirie & Kieren, 1994). A student 
in the property noticing stage can coordinate multiple abstract images or ideas in order to identify a 
new property of a mathematical object or activity. Martin and Towers have extended this theory to 
describe collective property noticing, in which the insights are distributed across different students, 
with no single student expressing the full idea (Martin & Towers, 2015). Throughout the hexagon 
task, Sheila and Joseph had collaborated closely, and Sheila had voiced many key insights. But in the 
selections below, Joseph was in an individual stage of property noticing. Joseph seemed to be making 
a bid to have his insight validated by Sheila and brought into their collective work. The theoretical 
foundations advanced by Pirie and Kieren on one hand and Martin and Towers on the other allow us 
to locate Joseph’s commentary just at the boundary of individual and collective property noticing. 
Joseph used multimodal discourse in varying ways over five moments of property noticing to gain 
collective engagement, with only some success. 

Participants and Task 
Sheila and Joseph were two undergraduate students who had recently completed a university 

class in precalculus. They participated in a paid, one hour video and audio recorded problem-solving 
session. The hexagon task was based on Wilmot et al (2011, p. 287). The task includes diagrams for 
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strings of 1 to 4 hexagons, shown in Figure 1. It asks the students to fill a table of values for n = 1 to 
n = 5 hexagons with the corresponding perimeters. A correct answer is p = 4n + 2. Sheila and Joseph 
developed an answer of the form #H(6) – 2(N – 1) =    in which H and N both stand for the number 
of hexagons (Staats, 2016a; 2016b). 

 

 
Figure 1. Task diagrams for n = 1 to n = 4 hexagons. 

Methods  
This study uses multimodal discourse analysis to understand a student’s bid to propose a property 

as a collaborative activity. Because this paper is concerned with patterns in syntax and sound, as well 
as gesture, I use an approach to discursive multimodality that is drawn from conversation analysis 
(Bergmann, Brenning, Pfeffer, & Reber, 2012). This approach takes prosody—patterns of sound in 
language such as pitch, intonation, pause or loudness—combined with gesture and syntactic 
structures, as interactional modes that allow people to create meaning. Syntactic units are sometimes 
marked multimodally through prosody and gesture (Szczepek Reed, 2012). Multimodal analysis in 
mathematics education has shown that prosody, gesture, sounds created through gesture, and rhythm 
can be coordinated to express mathematical understanding (Bautista & Roth, 2012; Radford, Bardini, 
& Sabena, 2007). Alibali, Nathan, et al (2014) show that the coordination of speech and gesture is 
particularly important in linking mathematical ideas, particularly for new material. In this paper, I 
introduce poetic structure as an additional discursive modality for creating meaning. 

When Joseph explains the property and Sheila fails to agree with it, he must explain it again but 
change something, in other words, he must deploy a new combination of discursive resources. 
Speakers could shift among many different discursive strategies to try to highlight important 
information for their idea. I consider four elements of speech that a speaker could combine in various 
ways to create a new strategy for explanation: introducing academic vocabulary; elements of 
prosody; gesture; and poetic structures. I represent these elements according to the transcription key 
in Table 1. This mode of transcription doesn’t use punctuation such as commas, periods or question 
marks unless they are defined in the key as features of the sound. In the selections below, I transcribe 
Joseph’s property noticing statements closely, and I present other statements in ordinary prose with 
ordinary punctuation. To identify poetic structures within one turn at talk, I looked for phrases that 
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were repeated and that share some grammar and at least one word. If I could identify alternative 
ways of parsing the statement into poetic structures, I chose the approach that accounted for the 
longest stretch of words. 

Table 1: Transcription Symbols 
Symbol Definition 
↑ or ↓  
 

High pitch or low pitch, respectively, compared to nearby words. Could 
occur at beginning, middle or end of word. 

Bold text Emphasis on a word through loudness, vowel lengthening, or stress 
(x.y) Pause, estimated, in seconds. 
Underlining 
styles                                  

Single, double or bold underlining represent the different poetic structures 
in one turn at talk 

[italics] Descriptions of gestures 

Five Attempts to Explain a Property 
 In this part of the conversation, the students had already developed a numerical method for 

solving the hexagon problem that corresponds to the formula that they had written, #H(6) – 2(N – 1) 
= . The task now asks them to explain their method in terms of the diagram. After a brief discussion 
of whether this refers to the table of values or the images of hexagons on the handout, Joseph states a 
property of the hexagon diagram for the first time in the conversation. 

First Attempt, Turn 171 
 

171 J:  Then this must be the diagram (1.0) so ↑how can we use ↓this (0.2) to prove our point 
(1.4) [Pencil taps vertically on the diagram at each “this.”]  

 
 so the hexagon has ↑six sides (1.4) but when you put a hexagon in a chain they share two 

sides (0.6) so you’re taking away two sides (0.8) from the chain↓ (1.6) so each time you add 
another hexagon in a chain↑ [S: But it’s not asking, this one] you’re losing two sides↑ 
[During part of this segment, Joseph’s hand obscures the paper, so we don’t know precisely 
whether he used small gestures.] 

 
172 S:  This one is not asking about the diagram. It says, how do we know this is true? Why 

does it work? Because the formula matches the diagram and table. 
 

There are two repeated phrases in Joseph’s first statement of the property, which can be 
summarized as:  you/put, add/hexagon in a chain and you’re/taking away, losing/two sides. The 
beginning and ending of each of these four underlined phrases is fairly strongly marked through 
prosody, either through pause, intonation or emphasis. For example, so you’re taking away two sides 
is bounded on either side by a distinct pause. The poetic structure when you put a hexagon in a chain 
is marked as a bounded unit as well, but perhaps less distinctly, with an opening pause and a small 
level of sound emphasis on the word chain. It is important to notice that the beginnings and endings 
of many of the following examples of poetic structures are marked as a distinct unit, primarily 
through intonation or pause, and sometimes through less prominent forms of emphasis that are noted 
with bold text. 

The poetic structure in Joseph’s first explanation introduces a strategy that he uses in some of the 
following explanations: a cause/effect or if/then form of argumentation. Fairly often, the first 
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repeated phrase is a cause or action in some sense, and the second one is an effect. This 
argumentative strategy is conveyed primarily through Joseph’s poetic structures. 

Though gestures are obscured, it appears from Joseph’s hand position that there were probably 
some small gestures. Still, they did not result in Sheila’s acknowledgement of his statement. In the 
next few turns, the students discuss what it means to explain a method in terms of a diagram. Sheila 
wonders if they need to draw a new diagram, which leads to Joseph’s second statement of the 
property. 

Second and Third Attempts, Turns 177 and 181  
 
177.1 J:  ↑I don’t think so I ↑think you just have to explain so (1.8) a ↑hexagon has six 

sides↓ (0.4) [just before “a hexagon”, a heavy tap on the base of the n = 1 diagram]  
  
177.2 and as you add (1.2) an additional hexagon (1.2) [at “add,” light touch on the base; 

at “additional,” light touch on top]  
  
177.3 you add six↑ (0.8) [touch base before “six” and touch top after]  
177.4   because they ↑share two sides↑ (0.6) [circling the top of the n = 1 diagram]  
 
177.5 you subtract↓ two sides↓ [pencil is above the page. At “subtract,” there’s a beat in 

the air near the top of the hexagon and at “sides,” there’s a beat near the base]  
 
 177.6     from their total↓ (0.8) number of sides↓  
 
178 S:  Um. I think this is, I think this is – 
179  J:  Which is essentially this. 
180 S:   The, the number of tables has six sides. And with that multiplied you minus, as they join 

together they lose one side. So for every- 
 
181 J:   One side for (0.2) one (0.2) hexagon. [Overlapping with Sheila’s 180 to 181. No 

gestures; Joseph’s hand is away from the paper]. 
 
182 S:   -For every, for every two tables, one side is lost. So for the, for the, well, uh, the 

formula just states it, right? How do you state the formula? 
 
     At turn 177, Joseph realized that his property noticing was not taken up by Sheila, and so he 

made several prominent discursive changes. He used two mathematical poetic structures, each one 
advancing an “action/result” kind of argument: 177.2-177.3, and 177.4-177.5. Each of these four 
lines was strongly bounded by prosody, particularly pause, but also with some intonation and 
emphasis, except the end of 177.5 which was only bounded by intonation and gesture. In 177.2, 
177.4 and 177.5, each was accompanied by a two-fold pointing gesture that emphasized the words 
add, six, and subtract…sides, respectively. Line 177.3 was marked by a different gesture, circling 
near one side of a hexagon. Generally, the poetic structures in attempt 2 included elaborate 
coordination with gesture and prosody. Joseph also shifted to the more precise mathematical 
terminology of add and subtract with this statement. These layers of multimodal cues suggest that 
these poetic structures were real to the student, rather than a researcher’s analytical imposition.  

     Once a speaker establishes a unit of speech through a poetic structure, it opens up additional 
expressive possibilities. If we think of poetic structure repetitions as a kind of rhythm in speech, then 
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prosody and gesture sometimes form a sub-rhythm that highlights words within the poetic structure 
in ways that enhance the mathematical idea. This is well known for gesture, but multimodal poetic 
structure analysis shows more clearly that gestures and prosody can express comparisons and 
contrasts in mathematical entities that are defined through the poetic structure. 

For example, a subtle sub-rhythm emerges in 177.2, with a slight emphasis on the word add. 
With this word, Joseph introduces a new strategy in attempt 2, to use more precise computational 
terminology. The computational word add is a new idea, and this is enhanced with prosody 
(emphasis and pause) and the first part of a two part pointing gesture. In the repetition in 177.3, 
however, Joseph shifts the emphasis from add to six, with intonation, pause and a two part pointing 
gesture. This sub-rhythm controls and shifts focus within the poetic structure words. It shifts the 
hypothetical action on the diagram of add/additional hexagon and towards the computational 
technique of add/six. The poetic structure of 177.4 and 177.5 also contains a sub-rhythm that is 
coordinated with the repeated words of the poetic structures. Rising intonation on share/sides is 
contrasted with falling intonation on subtract/sides, which, like 177.2 and 177.3, emphasizes a shift 
from action to computation but also realizes that cause/effect argumentation structure. The sense of 
cause/effect was heightened as the circling gesture at 177.4 shifted to a two part beat gesture on 
subtract/sides. Within elaborately marked and bounded poetic structures, sound and gestures help 
Joseph to highlight mathematical actions and relationships. 

Sheila’s response to turn 177 was ambiguous: as they join together they lose one side, and so 
Joseph clarified again at turn 181. With each attempt to explain the property, Joseph uses a different 
combination of discursive tools. Here, his statement, One side for one hexagon, relied on a prominent 
poetic structure with no gestures. His strategy in attempt 3 was minimalism, to explain using as few 
words as possible. A poetic structure allowed him to do this. A subtle sub-rhythm used pauses and a 
small bit of emphasis to highlight the clarification of one hexagon. 

Fourth Attempt, Turn 185 
 

183 J:  Well they want you to use the diagram. So using this we have to explain how that 
formula works. So there are six sides, which is, which corresponds to –  

184 S:  Let’s see. Let’s do 4. For every, for all these tables, four tables, there’s only three 
intersections [Joseph takes a piece of paper and writes “4.”] 

 
185.1  J:  But they all lose two sides at an intersection (1.6) so (0.4) a hexagon has six 

sides, right↑ (0.6) so 4 times 6 is 24↑ [Joseph has now written 4·6 = 24] (1.2)  
 
185.2 um but each (1.0) table when each table touches the other one (1.2) [Joseph has taken 

a second piece of paper, and at “when,” he holds his hand up with palm down] 
 
185.3 they lose two sides↓  [At “lose,” he closes his palm into a fist] 
 
186 S:   Oh, that doesn’t work out mathematically. 
 
Joseph’s fourth attempt to assert property noticing used poetic structures less prominently, 

possibly because he was in the middle of introducing the new modality of writing mathematical 
formulas. The small level of repetition that exists still expresses the cause/effect argumentation 
structure, and this is supported through gesture. The open-handed gesture at 185.2 seems to be a 
gesture of asserting, and the closed fist at 185.3 seems to grasp a conclusion. 
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Fifth Attempt, Turn 187 
 

187.1 J: Because ↑here’s one and ↑here’s one (0.8) here’s one and here’s one (0.4) here’s 
one here’s one (0.4) so you lose six sides (0.8) [Joseph’s hand has obscured the view again, 
but we can hear him scratching over the interior pairs of sides, and we can see him moving 
from the bottom pair to the middle pair to the top pair, making the marks that are visible on 
the interior sides of the n = 4 case in Figure 1. His hand comes away after the last “here’s 
one.”] 

 
187.2 so 24 (0.8) [He writes a negative sign in 4·6 = 24 - ]  
 
187.3 would be the number of ↑sides if they weren’t touching (0.4) but because they’re 

↑touching (0.4) you lose six↓ [He writes 6 after the negative sign]  
 
187.4 and that comes down to 18. [Joseph has now written 4·6 = 24 – 6 = 18.] 
  
188 S: Yeah. Okay, go ahead and write it down. You’re better at that than I am. 
189 J:  I’m just more visual. 

 
The first part of turn 187 has a strong poetic structure based on here’s one and here’s one, in 

which the beginning and ending is marked and bounded off with prosody and a combination of 
gesture and drawing. Alibabi, Nathan, et al (2014) consider this action as a “writing gesture,” though 
this is distinguished from writing linguistic or mathematical text. The various gestures that Joseph 
made near the base and top of a hexagon in several previous statement were here made lasting and 
tangible through a writing gesture.  

At 187.2, when Joseph writes the minus sign, 4·6 = 24 -, he creates a sense of incompletion. We 
could consider this as a sub-rhythm that is not completed until he writes the 6 as he says a part of the 
poetic structure at 187.3, you lose six and then completes the calculation of 18. There is a slight 
dramatic feel to this moment, because he performs the subtraction while he completes the poetic 
structure. Another sub-rhythm is associated with the poetic structure at this moment, the rising and 
falling intonations on touching and lose six. The poetic structure, writing mathematical text, pause 
and intonation are all coordinated to reproduce the cause/effect argument that Joseph used throughout 
his property noticing statements. At 188, Sheila responded with a long, thoughtful sounding Yeah. It 
sounded as if she decided that she agreed with Joseph.  

Conclusion 
Across his five property-noticing statements, Joseph combined expressive modes into distinct 

discursive strategies that finally achieved acceptance if not extended collective engagement. Poetic 
structures were present in all attempts, prominently so in four of them. The poetic structures were 
very commonly marked near the beginning and end through prosody, especially pause and changes in 
intonation. This analysis shows that as syntactic units are repeated, they may continue to be marked 
multimodally, amplifying their expressive quality. 

Poetic structures put units in parallel position into relationships of similarity— as you add an 
additional hexagon/ you add six;  and of difference— because they ↑share two sides↑ you subtract↓ 
two sides↓. Bautista and Roth have similarly observed that sounds produced through gesture mark 
important mathematical similarities or differences (2012). Joseph capitalized on poetic structures to 
add layers of sub-rhythms through gesture, pause and intonation that did quite a lot of the 
mathematical work in Joseph’s five property noticing statements. The co-occurrence of poetic 
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structure and several modalities is strong evidence that poetic structures are not simply abstract 
grammatical mappings applied by a researcher, but rather, highly expressive tools of meaning-
making. Poetic structure analysis is a powerful method to trace the moment-by-moment construction 
and expression of precise mathematical ideas through informal language.  

References  
Alibali, M., Nathan, M., Wolfgram, M., Church, R., Jacobs, S., Martinez, C., & Knuth, E. (2014). How teachers link 

ideas in mathematics instruction using speech and gesture: A corpus analysis. Cognition and Instruction, 32(1), 
65-100. 

Barwell, R. (2015). Language as resource: Multiple languages, discourses and voices in mathematics classrooms. In 
K. Beswick, T. Muir & J. Wells (Eds.), Proc. 39th Conf. of the Int. Group for the Psychology of Mathematics 
Education (Vol. 2, pp. 89-96). Hobart, Australia: PME. 

Bautista, A., & Roth, W.-M. (2012). Conceptualizing sound as a form of incarnate mathematical consciousness. 
Educational Studies in Mathematics, 79, 41-51. 

Bergmann, P., Brenning,  J., Pfeffer, M., & Reber, E., (Eds.). (2012). Prosody and embodiment in interactional 
grammar. Berlin: De Gruter. 

Planas, N. & Setati-Phakeng, M. (2014). On the process of gaining language as a resource in mathematics education. 
ZDM Mathematics Education, 46, 883-893. 

Radford, L., Bardini, C. & Sabena, C. (2007). Perceiving the general: The multisemiotic dimension of students’ 
algebraic activity. Journal for Research in Mathematics Education, 38(5), 507-530. 

Staats, S. (2008). Poetic lines in mathematics discourse: A method from linguistic anthropology. For the Learning of 
Mathematics, 28(2), 26-32. 

Staats, S. (2016a). Poetic structures as resources for problem-solving. In Csíkos, A. Rausch, & J. Szitányi (Eds.). 
Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education. 
(Vol. 4, pp. 227-234). Szeged, Hungary: PME. 

Staats, S. (2016b). From speaking to writing: The role of the reversal poetic structure in problem-solving. 
Proceedings of the 38th Conference of the North American Chapter of the International Group for the 
Psychology of Mathematics Education. (pp. 1266-1272). Tucson, AZ: PMENA. 

Szczepek Reed, B. (2012). Prosody, syntax and action formation: Intonation phrases as ‘action components.’ In 
Bergmann, Brenning, Pfeffer, & Reber, (Eds.). Prosody and embodiment in interactional grammar. (pp. 142-
169). Berlin: De Gruter. 

Wilmot, D., Schoenfeld, A., Wilson, M., Champney, D., & Zahner, W. (2011). Validating a learning progression in 
mathematical functions for college readiness. Mathematical Thinking and Learning, 13(4), 259-291. 
 



Teaching and Classroom Practice 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1194 

USING DISCOURSE ANALYSIS TO UNDERSTAND VARIATION IN STUDENTS' 
REASONING FROM ACCEPTED WAYS OF REASONING 

John Gruver 
Michigan Technological University 

jgruver@mtu.edu 

In this study, I use a systemic functional linguistics approach to examine mathematics classroom 
discourse with the aim of providing a plausible explanation of how students could actively 
participate in productive classroom discussions without adopting ways of reasoning that were 
accepted in the classroom community. In this way, I work in the crossroads of a research tradition 
examining classroom interaction and a research tradition that examines student learning. I found 
that even though particular ways of reasoning about exponentials and logarithms were advanced and 
accepted in the classroom discourse, the way these ways of reasoning were talked about in the class 
did not preclude students from maintaining less sophisticated ways of reasoning Specifically, I argue 
that the two exponential ways of reasoning were not explicitly contrasted, which may have 
contributed to students seeing them as essentially the same strategy. 

Keywords: Classroom Discourse, Teacher Education-Preservice 

Introduction 
It is not uncommon for a novice teacher to be surprised by his or her students' poor performance 

on an exam or assignment after class discussions had seemed to have been going well (see, for 
example, Price & Valli, 2005). This surprise is not unreasonable. At times, students can be integral 
participants in productive class discussions that seem to advance the mathematical agenda, yet later 
still be confused or grappling with a concept that was thoroughly discussed in class. To understand 
this phenomenon in greater detail, I took the lens of the emergent perspective (Cobb & Yackel, 1996) 
to examine classroom interactions. 

The emergent perspective coordinates social and individual aspects of the classroom community 
to explain students’ learning. Specifically, it coordinates classroom social norms, socio-mathematical 
norms, and mathematical practices with their individual correlates. In this study I focused on the 
relationship between classroom mathematical practices, which are specific ways of reasoning that 
become adopted in a class community, and its correlate of individual students' personal ways of 
reasoning. According to the perspective, this relationship is indirect and reflexive. Accepted practices 
arise as individual students posit ways of reasoning. These are then discussed within the class 
community and are either collectively accepted or rejected. In this way, individual students' 
conceptions and ways of reasoning give rise to accepted mathematical practices. Then, students’ 
conceptions are influenced as they continue to participate in established math practices. In this way 
the relationship is reflexive. It is also indirect, meaning that there is not a one-to-one mapping 
between accepted math practices and students' ways of reasoning. This is acknowledged by the 
perspective in at least two ways. First, a math practice is not defined as the conceptions held by the 
majority of students, but as the social status of a way of reasoning in the classroom community. 
Second, Cobb and Yackel (1996) were careful to point out that participation in a practice influences, 
but does not determine students' ways of reasoning. 

Despite the fact that this acknowledgement of variation in thinking existed from the inception of 
the theory, the research community still does not have many images of the nature and extent of this 
variation, much less a well-developed theory of why these variations occur. Of those scholars that 
have explicitly investigated the reflexive relationship between individual cognition and the 
emergence of mathematical practices (e. g. Rasmussen, Wawro, & Zandieh, 2015; Stephan, Cobb, & 
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Gravemeijer, 2003; Tabach, Hershkowitz, Rasmussen, & Dreyfus, 2014), Stephan et al. (2003) gives 
the best image of the nature and extent of individual variation as they tracked two students' 
participation in a class community as various math practices emerged. While they documented 
significant variations in individual ways of reasoning from established practices, these differences 
seemed to resolve themselves through continued participation in the class. One explanation for this is 
that the individual ways of reasoning that varied from accepted practice did not yield correct 
answers, and thus, made it problematic to continue participation in class discussions while using their 
personal way of reasoning. This encouraged the students to reevaluate their way of reasoning and, 
eventually, to adopt ways of reasoning more consistent with the math practice. In contrast, my 
previous work (Gruver, 2016) found that mathematically significant variations in thinking can 
persist, even after instruction has ended. This finding shows that significant variations do not always 
work themselves out naturally through the course of instruction. This underscores the importance in 
further understanding these variations and their causes; this is the focus of the current study. 

Nature of Variations From the Established Practice 
In a previous study, I documented the ways that individual ways of reasoning varied from 

accepted classroom mathematical practices. I first determined which practices were established in a 
classroom of 29 prospective teachers and then compared those practices to the individuals’ reasoning 
during a post instruction interview. I determined which practices were accepted in the class by 
analyzing students' arguments using the documenting collective activity method (Cole et al., 2012; 
Rasmussen & Stephan, 2008). Of the seven students interviewed, I found that four of them reasoned 
in ways that were different in mathematically significant ways from the established practice. In this 
section, I describe the established practice and the ways students reasoned in the interview. 

The math practice emerged as students were developing an exponential number line, which 
would later be used to investigate exponential and logarithmic relationships. Early on, the students 
developed a number line in which powers of 10 were equally spaced. However, the spaces between 
the powers of ten were subdivided linearly. In this way, their number line had an exponential 
structure at the macro level, but a linear structure between the powers of 10. Eventually, this initial 
way of subdividing was eventually overturned in favor of a method that produced a fully exponential 
number line. The math practice, Subdividing the Number Line, consisted of two ways of reasoning 
that were accepted in the classroom community. These two methods for subdivision were cognitively 
distinct, but produced the same answer. The first method, Subdividing Segments by Reasoning 
Linearly About Exponents is characterized by students writing the number they wished to place on 
the number line in the form 10b, ignoring the 10, and then determining the location of the number as 
if they were simply placing the exponent on linear number line. In other words, 101.5 would go 
halfway between 101 and 102, because 1.5 would be halfway between 1 and 2 on a linear number 
line. The second method to subdivide the number line that became normative in the class was 
Preserving the Multiplicative Relationship within the Segments. This way of reasoning emerged as 
students noticed a constant multiplicative pattern at the macro level. Specifically, they noticed that 
the equally spaced powers of ten increased by a factor of ten. This differs from a linear number line 
where equally spaced points would increase by a constant sum rather than a constant factor. They 
then extended this pattern to apply to subdivisions. Thus, to determine the value of the half way point 
between 101 and 102, they would notice that between these two points there is an increase of a factor 
of 10; then, since the half way point divided the segment into two subsections, they would need to 
find a number that when multiplied by itself yielded 10. That number is the square root of ten. Thus, 
the midway point is 10 times the square root of ten. These two ways of subdividing segments on a 
number line emerged around the same time in class, but the first was talked about as a way to 
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efficiently determine the value of subdivisions while the second was used as a way to explain why 
reasoning linearly with the exponents makes sense.  

Three of the students coordinated these two ways of reasoning in the post interview. This means 
that while they may have determined the values of various points on an exponential number line 
using the numeric pattern in the exponents, they could also use multiplicative reasoning to justify 
their placements. However, the other four were not able to use the second way of reasoning, the 
multiplicative pattern, even when probed.  

Since more than half the students interviewed did not include multiplicative reasoning in their 
interview responses, observers were left with the question: How could the students intellectually 
engage in class discussions, but not personally adopt ways of reasoning consistent with the classroom 
math practice? A partial response to this question will be developed in this report. In particular, I will 
focus on the nature of the classroom discourse as multiplicative reasoning was developed in this class 
to address the research question, How might the nature of the discursive interactions in both whole 
class and small group settings give a plausible explanation for students’ variations from the 
emergent math practice? In answering this question, I examine the intersection of classroom 
interactions and individual student learning. This work is at the crossroads of two research traditions 
and contributes to a new path forward for using discourse analysis to give insights into the nature of 
individual knowledge construction. 

Method 
Data collection occurred in a math class for prospective secondary teachers (PSTs). The purpose 

of the course was to deepen the PSTs' mathematical knowledge of secondary topics. The current 
study focuses on a single unit where the PSTs explored exponential and logarithmic relationships. 
This unit was three weeks long. The class met twice a week for an hour and a half each time. Thus, 
the unit included nine hours of instruction spread over six days. Data included video and audio taped 
class discussions and approximately 1 hour problem solving interviews with seven students. The 
purpose of these interviews was to determine students' individual ways of reasoning about the 
content explored in class. These students were distributed among two small groups of four students 
each. The small group interactions of these seven focus students were also video and audio recorded. 

To analyze the discourse, I used a modified version of Herbel-Eisenmann and Otten’s (2011) 
method for thematic analysis (Lemke, 1990; Herbal-Eisenmann, 2011), a systemic functional 
linguistics (SFL) approach (Halliday, 1978; Halliday & Hasan, 1985). Central to this method is the 
assumption that words derive their meaning from their relationships to other words used in the 
discourse. To determine this meaning researchers examine the semantic relationships between words 
expressed in classroom discourse. For example, if a student said, "500 is at the midpoint," They are 
expressing a relationship between "500" and "midpoint." In particular, they express a located/location 
relationship. This helps determine the meaning of both 500 and midpoint, namely that 500 is 
something to be located and midpoint is a location. 

I used this method to examine moments in the classroom where subdivision of an exponential 
number line was discussed to develop networks of semantic relationships between lexical items, 
words or phrases that came up repeatedly in the discourse. I developed a network for each method of 
subdivision based on arguments given in class as well as networks based on canonical arguments, 
those that are representative of how an expert might argue. Comparing the various networks revealed 
subtleties in the discourse and the meanings of various words. 

I then analyzed discourse where students reflected on and talked about the methods of 
subdivision themselves. In these instances, students would explicitly refer to a particular method of 
subdivision as a method of subdivision. This contrasts with the other episodes of discourse where 
students were simply using a particular method. This means that in these instances of discourse, 
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students were referring to a whole network of semantic relationships as a single lexical item. In SFL, 
this is called condensation (Lemke, 1990). In the episodes where students reflected on methods of 
subdivision, they tended to express semantic relationships in a different way than when they used the 
methods. In these episodes they tended to use equivalence and contrast strategies (see Lemke, 1990, 
p. 226) to show whether they thought two strategies were the same or different. This occurred during 
four episodes, though only two will be examined in this report. In the first episode, they contrasted 
linear and exponential methods using the discursive device of parallel environments. This means the 
speakers placed lexical items so that they have the same function in the grammar of two phrases. For 
example, a student might say, “in a linear method you do abc, but in an exponential method you do 
xyz”. Here, the two methods are serving the same function in the grammar, in that they are both 
methods whose steps are being described. Furthermore, the methods are being contrasted and 
positioned as distinct, as one does something different in each instance. In the second episode, 
students explicitly said the two methods of subdivision were the same. 

Results 
Analysis of the four episodes in which students explicitly talked about the methods of 

subdivision themselves provided evidence for the following result: When speaking, students 
distinguished between linear and exponential ways of reasoning, but did not distinguish between 
reasoning linearly with the exponents and multiplicative ways of reasoning. In fact, students seemed 
to think of both of these methods as the same. In these instances, students may have referenced other 
lexical items, but these will be ignored as this analysis focused on references to the methods 
themselves. 

Background to Episode 1 
Students developed an exponential number line over the first three days of a six-day unit. On Day 

1, they were asked to create a timeline that represented the history of the earth. Several approaches 
emerged on Day 1, but by Day 2 the teacher had encouraged them to focus on and develop a 
particular approach in which the timeline had a macro exponential structure, meaning powers of ten 
were equally spaced. However, to place events they subdivided the space between powers of ten 
linearly. Eventually, over Days 2 and 3, this method of subdivision was rejected and the two methods 
that were ultimately accepted were developed. The four episodes in which students in class reflected 
on the methods of subdivision occurred over these two days.  

The first episode occurred near the end of Day 2. Students had already placed two dates on the 
timeline, the Renaissance and the Ordovician Periods, using linear reasoning to subdivide the space 
between two powers of ten. Presumably to problematize this way of reasoning, the teacher asked the 
students to place the Renaissance again, but using 1 and 1,000 and endpoints instead of 102 and 103. 
As part of her question, she specifically asked if 500 would end up in the same place. This led to the 
realization that using the different endpoints resulted in a different placement for the Renaissance. 
The students then considered the idea that the method they were using to subdivide was problematic. 
As they reflected on their method they contrasted how they subdivided the segments with the macro 
exponential structure, using the discursive device parallel environments. This contrast helps support 
the main claim in this paper, that over several discussions in class linear and exponential strategies 
were contrasted in the discourse, while the two exponential strategies for subdivision were not. 

Discussing the Problem of the Renaissance Moving 
The first instance of using parallel environments to contrast the linear relationships with 

exponential relationships came up as Nathan described why their linear method might be 
problematic: 
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Yeah, so ultimately, the issue is, it seems like we're trying to apply a method that's completely 
linear in nature, when our graph [timeline] is not, it's exponential. That is, that's the problem, so 
that means that right there, the solution will not work, because why would it? 

In this quote, Nathan referenced the idea that they were using a “method that’s completely linear 
in nature” and a “graph… [that’s] exponential.” While Nathan argued that there was a mismatch 
between the nature of the method and the nature of the graph, Danna provided even more detail as to 
what the problem might be. She argued that a linear placement would not work, highlighting that it 
inaccurately predicts the placement of the known point 103. 

I started with first doing basically what we did up here [the linear way of reasoning]. So, we 
looked at the difference between 104 and 102, which was 9,900 years. And half of that [points to 
halfway between 104 and 102] should have been the 48 or should be…4,950, but we know that 
it's actually 103, so that right there told me linear doesn't work and it pushes the halfway mark 
closer to the 104 side. So applying the 500 to this one, I knew it was going to be closer to 103, just 
`cause, 500 it's halfway if it's linear, but when it's exponential, you know it's not, based on this 
[points to the number line that she used to argue “linear doesn’t work”]. Then, I realized you can 
do it this way. 

Again, Danna used the discursive device parallel environments to contrast linear and exponential 
ways of reasoning. She began using the linear method to predict the placement 103, a year whose 
placement was already determined from the macro pattern. She then extrapolated, “500 years, it's 
halfway if it's linear, but when it's exponential, you know it's not.” Here the linear and exponential 
relationships have a similar grammatical function, in that she basically said, if it’s linear, then 500 is 
halfway, but if it’s exponential, then 500 is not halfway. She did this again when she said, “We were 
trying to look at it linearly in between each chunk, but the entire timeline is exponential.” Here, she 
contrasted linear and exponential ways of reasoning by saying that in each chunk the structure was 
linear, but the structure of the whole timeline was exponential. 

Background for Episode 2 
Talk about methods of subdivision continued on Day 3. The day began with a student, Lacey, 

introducing the first way of subdividing that eventually became normative. She determined that the 
halfway point between 102 and 103 should be 102.5, using the subdivision method of Reasoning 
Linearly with the Exponents. While discussing this task, Nathan justified her placement by 
introducing the second way of subdividing that eventually became normative, Preserving the 
Multiplicative Relationship within the Segments: 

Well, the way I did this one was I was looking at it where, in the more general sense, each tick 
was, …each thing apart on the bigger one is the same distance… multiplicatively apart, so we're 
going to do the same thing here. We have two so, we have two sections that when multiplied all 
together are 10. So, each side we'd had better have the square root of ten, because that's the only 
thing that's gonna give us 10 when we multiply it again, so I…just took the, I just figured it was, 
the distance away was 102 and then times the 10, which is 3.162. So I got 3.162 times 102. 

Here, Nathan argued that by extending the multiplicative pattern that existed at the macro level, 
one can find the halfway point to be 100 times the square root of 10, or 102.5, as Lacey had said. 
Presumably because the teacher noticed this was a distinct way of reasoning, she asked the students 
to talk about it in small group, specifically asking them to explain where they see the square root of 
ten coming up. However, during their small group discussions, the students said that Nathan’s 
method and Lacey’s method were the same. 
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Reactions to Nathan’s Ideas. 
In both small groups that included focus students, they failed to see the difference between 

Nathan’s and Lacey's ways of reasoning about the subdivisions. In the first group, instead of 
engaging with the ideas of factors and multiplication, one student, Tanya, started the discussion of 
square roots by talking about the exponents. She said, “Well, the exponent one half is the square root 
right? ... So if it’s 102, multiplied by 101/2, right? So it’s 100 times the 10.” Here we see Tanya 
following the teacher’s prompt to attend to the square root, however Tanya is arriving at the square 
root in a much different way than Nathan did. Instead of continuing the multiplicative patterns that 
existed at the macro level, she is arriving at the square root via a previously known rule that 10.5 is 
10. This allowed her to still preserve her linear ways of reasoning about the exponents, while at the 

same time explaining where the square root is coming from as the teacher asked. This made it so she 
did not have to distinguish between the two ways of reasoning. This analysis is consistent with her 
groupmates' comments. Kathy said, “[Nathan’s way of reasoning is] the same thing, because if 
you’re doing 102 times 10 to the square root that’s the same thing as .5.” Rachel concurred saying, 
“He just thought of it as square root instead of…one half.” Kathy summarized by saying, “Yeah, it’s 
the same thing, he just wrote it differently.” 

In the second group, the students also continued to focus on exponents. However, instead of 
engaging with Nathan’s idea, they explicitly said they did not understand it and ignored it. Farah 
said, “Well, I don’t understand what [Nathan] said, but this is how…I thought of it.” She then 
continued with her own idea. 

In these small group interactions, the students explicitly said Nathan’s and Lacey’s way of 
reasoning were equivalent. Even though the teacher prompted them to attend to the square root, an 
idea that was central to Nathan’s idea and absent from Lacey’s, the students treated this as simply a 
notational difference. Tanya began by asking “the exponent one half is the square root right?” Rachel 
echoed this connection when she said, “He just thought of it as square root instead of…one half.” 
This interpretation may have allowed them see Nathan’s idea as simply another expression of 
Lacey’s ideas rather than a new idea worthy of examination.  

Summary 
Analysis of the discourse in the four episodes where students reflected on methods for 

subdivision provide evidence for the claim: When speaking, students distinguished between linear 
and exponential ways of reasoning, but did not distinguish between reasoning linearly with the 
exponents and multiplicative ways of reasoning. In the first episode, when students discussed the 
problem of the point representing the Renaissance moving, they distinguished between linear and 
exponential ways of reasoning. They talked about subdividing the segments as a linear process while 
the macro structure was exponential in nature. This contrast between linear and exponential came up 
again in the third episode when students contrasted halving the values on the line with halving the 
values of the exponents. While this contrast is important, it does not help to disambiguate between 
the two exponential ways of reasoning. Furthermore, when the students talked about Nathan’s 
multiplicative way of reasoning in small groups, they referred to it as the same as Lacey’s method, 
which relied on linear patterns in the exponents. Thus, it is possible that students participating in the 
class discussion could see the two exponential methods as the same, which leaves little intellectual 
encouragement for students who can reason successful by focusing on the exponents to adopt 
multiplicative ways of reasoning. 

Discussion 
This study focused on how the nature of the classroom discourse can help explain how students 

could participate in a classroom where multiplicative ways of reasoning were developed and 
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accepted by the class community, but not adopt those ways of reasoning as individuals. Through 
discourse analysis I discovered that exponential and linear ways of reasoning were contrasted, but 
reasoning multiplicatively and reasoning linearly with the exponents were not. This may mean that 
students thought there were primarily two ways of reasoning, a wrong way and a right way—linear 
reasoning and exponential reasoning. Thus when students heard multiplicative explanations, they 
may have thought that what they were hearing was no different from reasoning linearly with the 
exponents, since both were exponential.  

It is reasonable to think that strongly contrasting linear and exponential methods in the classroom 
discourse is a desirable outcome, since previous research on exponential reasoning suggests that 
making the transition from linear to exponential reasoning is difficult (Berezovski, 2004; Liang & 
Wood, 2005). However, tackling this issue in this classroom seemed to background the subtler 
difference that exists between the two methods for subdividing exponentially. Being able to 
distinguish between the two methods is key to developing conceptual understanding of the 
relationships among numbers on the exponential number line. To develop this understanding, 
students need to coordinate the two methods of reasoning linearly with the exponents and continuing 
the macro multiplicative pattern. If students think of these as the same, then they can simply reason 
linearly with the exponents to get the right answer, without thinking exponentially at all. This means 
that, ironically, since the only contrast between methods of subdivision that existed in the discourse 
were between exponential and linear methods, students were able to participate in classroom 
discourse about exponential subdivision while reasoning only linearly. 

This work raises the question of how to encourage students to see the differences between two 
ways of reasoning, especially when both ways of reasoning yield the same answer, so that they can 
then explore their relationships. In this paper, I have argued that the two exponential ways of 
reasoning were not explicitly contrasted, which may have contributed to students seeing them as 
essentially the same strategy. As such, an implication for teachers of this specific unit is to consider 
asking students to explicitly name and contrast the two exponential strategies. This would make it 
problematic for students who thought of the two methods as the same to continue to participate in the 
discourse. This may encourage them to disambiguate between the two methods, positioning them 
well to explore the relationships between them. 

More generally, teachers teaching any unit should think about various ways of reasoning that 
may arise in the class and if they should be named and contrasted. However, it should be noted that 
determining which methods should be contrasted can be difficult to predict. While the research 
presented here underscores the point that the two exponential methods of subdividing a number line 
should be contrasted, this was not obvious before instruction. While the teacher recognized the 
complexity of transitioning from linear to exponential ways of reasoning and appropriately 
orchestrated the discussion to contrast those two ways of reasoning, she seemed to underestimate the 
difficulty students would have with disambiguating and coordinating the two exponential strategies. 
This highlights that to some extent, familiarity with and competence in executing general discourse 
moves, such as those involved in orchestrating discussion in such a way that strategies are contrasted, 
only goes so far in teaching and even highly effective teachers need support garnered through 
research that illuminates the conceptual difficulties of particular topics and gives insights into how to 
teach those topics. This suggests that teacher education focused on discourse should be paired with 
professional development focused on understanding the cognitive difficulties students face as they 
learn specific topics. 
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This qualitative metasynthesis synthesizes published research papers using qualitative methodologies 
focusing on Culturally Relevant Pedagogy (CRP) and Culturally Responsive Teaching (CRT) 
published between 1994 through February of 2016. Twelve articles were synthesized to understand 
how researchers interpret mathematics teaching practices that support CRP and CRT in pre-
kindergarten through 12th grade. There were six findings: a) caring; b) knowledge of contexts and 
teaching practices using contexts; c) knowledge of cultural competency and teaching practices using 
cultural competency; d) critical consciousness; e) high expectations; and f) mathematics 
instruction/teacher efficacy and beliefs. 

Keywords: Research Methods, Teacher Knowledge, and Teacher Beliefs 

Since 1994, there has been a large body of research focused on Culturally Relevant Pedagogy 
(CRP) and Culturally Responsive Teaching (CRT) across all content areas. Mathematics education 
has benefited from teaching and research using the tenets of CRP and CRT.  Much of the research 
using the tenets of CRP and CRT in mathematics education employs qualitative methodological 
approaches. However, this work has yet to be synthesized and interpreted using methodologies for 
qualitative metasynthesis. Aronson and Laughter (2016) conducted research synthesizing CRP and 
CRT across all subject areas. This research uses a qualitative metasynthesis as a methodological 
approach for mathematics education research discussed by Thunder and Berry (2016). This research 
focuses on understanding how researchers interpret mathematics teaching practices that support CRP 
and CRT in pre-K through 12th grade. 

Theoretical and Methodological Frameworks 
Gloria Ladson-Billings’, Dreamkeepers (1994) outlined CRP as a framework and Geneva Gay’s 

Culturally Responsive Teaching: Theory, Research and Practice (2000) outlined a framework for 
CRT.  Both CRP and CRT are frameworks for unpacking teacher practices embedded in classrooms 
as sites for social change and social justice.  Both connect cultural framing to academic skills and 
concepts, build cultural competence through teaching, and use teaching as a way to critique power 
discourses and representations.  Published peer-reviewed research papers between 1994 and 2016 
using qualitative methodologies focused on CRP and CRT were sought for this qualitative 
metasynthesis. Prior to conducting database searches, inclusion and exclusion criteria were 
developed based on four parameters: topical, population, methodological, and temporal.  All papers 
use CRP and/or CRT as frameworks (topical) and the research focused on mathematics teaching and 
learning in preK-12 contexts in the United States (population).  Qualitative research was the 
methodological framework for all papers; however, mixed methods research studies were included if 
the qualitative findings were distinguishable.  Subject term searches were conducted using EBSCO to 
simultaneously search five databases for peer-reviewed journal articles. Figure 1 shows the flowchart 
of inclusion and appraisal to determine articles for the qualitative metasynthesis. 
  



Teaching and Classroom Practice 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1203 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Flowchart of inclusion and appraisal. 

 
The initial EBSCO search produced 1,224 articles.  Following our initial search, we worked 

through a validation process by looking at the titles, abstracts, subject terms, and full text for 
published peer-reviewed journal articles.  This process left further 39 articles fitting the inclusion 
criteria. Book reviews, reports, chapters, and dissertations are examples of items that were excluded. 
We then performed individual appraisals for each article, appraising the quality of the research 
methodologies using the rubric published by Thunder and Berry (2016, p. 329-330). Following their 
appraisal process, 20 articles were identified. Further, we did a comparative appraisal, dividing the 
articles into two groups: 1) preK-12 teaching and learning; and 2) teacher education. This qualitative 
metasynthesis treats the findings from 12 articles focused preK-12 teaching and learning as 
informants (the 12 articles are marked with an * in the reference). Dedoose, a data analysis software, 
was used to support data analysis and initial codes were developed and defined. Six initial codes with 
eight child codes were used to code the data; we re-read, re-coded, and unpacked the data to 
synthesize and interpret for reporting.   

Findings and Excerpts 
The six findings focus on teacher practices, classroom interactions, and student experiences.  

Each finding is highlighted with representative excerpts in Table 1. 

1. Caring is a continuous cycle of working to establish a rapport, using knowledge gained from 
that rapport to inform teaching practices, and then, reflecting upon teaching and learning to 
understand students’ mathematical knowledge.   
o Teachers created positive learning environments where students saw themselves as 

participatory. 
o Teachers took an active role in seeking out knowledge about students and communities. 
o Teachers supported students emotionally and academically by making mathematics 

content accessible and empowering students mathematically. 
2. Knowledge of context is related to space and place in the ways teachers gained knowledge of 

home, community and neighborhoods.  Teachers integrated mathematics instruction and 
knowledge of context by making meaning of the mathematics curricula and tasks.  
o Teachers actively engaged in communities to work with students’ parents and families.  
o Teaching practices included mathematizing contexts, creating and adapting mathematical 

problems, utilizing questioning strategies to elicit students’ local knowledge, requiring 
explanation and justification as it relates to context knowledge, and creating project-

Articles Remaining:  39 

Articles Remaining:  20 
Articles Eliminated based on appraisal: 19 

Articles Remaining:  115 

Articles Eliminated based on full text: 76 

Articles Remaining:  1,224 

Articles Eliminated based on Title and Abstract: 1,109  

Duplicates Eliminated: 912 

Databases Search:  2,136 

Comparative Appraisal:  Two Groups 
• PreK-12 teaching and learning:  12 
• Teacher Education:  8 
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based opportunities incorporating funds of knowledge.  

Table 1:  Findings and Excerpts 
Findings Excerpts 

Caring When establishing relationships, teachers cannot merely go through the motions because students know when 
teachers are genuine and really care about them…The teachers realize they must have a relationship before they can 
make mathematics lessons relevant to the students. They take the opportunity to know their students and discover their 
motivations and interests. They tailor their instruction with this knowledge. (Jackson, 2013, p. 7) 

Context Ms. Finley often ‘‘walk[ed] the neighborhood’’, taking time out in the evenings to visit with students and their 
families. She knew that this type of connection with the community was important, and she was able to weave the 
knowledge that she gained through these interactions into the mathematical content that was the basis for her lessons. 
(Bonner & Adams, 2012, p. 30)  

Cultural 
Competence 

Inga decided to interview some of her students to better understand their experiences with money when shopping 
for their families. From this, Inga learned about her students in ways she did not expect, finding that those students 
who shopped with their families were able to quickly solve problems regarding currency…The strategies children use 
with money are often non-routine, and this might have offered an opportunity to gain a deeper knowledge of students’ 
understanding. (Wager, 2012, p. 16) 

Critical 
Consciousness 

…the teacher is explaining an adjustment he made to the map’s display to make the trends that they are 
examining more visible…The teacher superimposed the dots over the average income of each census tract with lighter 
colors corresponding to lower incomes…This display and discussion is part of the group's overall argument that de 
facto segregation still exists in Los Angeles. (Enyedy & Mukhopadhyay, 2007, p. 161-162) 

High 
Expectations 

…Ms. Bradley’s classroom was highly structured and disciplined, focusing on high expectations and success 
through “tough love.” When a student did not have his or her homework, for example, Ms. Bradley would take the 
student in the hallway to call his or her parent or guardian. Furthermore, if a student was not participating in the 
group chants or problem-solving activities, Ms. Bradley would “call him [or her] out and take him [or her] to 
church,” meaning she would stop the lesson and “preach” about the decisions students were making and the 
importance of academic success…she indicated that this type of culturally connected communication and maintenance 
of high expectations allowed students to develop racially and culturally “so that they don’t have to give up what they 
are used to for the sake of passing class... (Bonner, 2014, p. 395) 

Mathematics 
Instruction/Teacher 
Efficacy and Beliefs 

…Chela loved math. Chela turned this passion for math into a professional strength—she took advantage of all 
math professional development opportunities and she made mathematics a central part of her practice...Weaving math 
into daily activities was what Chela did best. As she designed different games or visual supports she looked for the 
math hook… (Graue, Whyte, & Delaney, 2014, p. 308) 

3. Cultural competency was found in the ways teachers developed knowledge and 
competencies associated with various forms of communication and funds of knowledge.  
o Teaching practices and strategies primarily focused on classroom discourse including 

storytelling, utilizing call and response, and dynamic forms of interactions. 
o Teachers promoted engagement by incorporating nonverbal communication through 

proximity and by integrating music and movement into teaching practices. 
o Teachers made mathematics accessible by unpacking and connecting cultural artifacts.  

4. While critical consciousness and critical reflections are significant parts of the CRP and 
CRT, only one study (two articles) examined critical consciousness explicitly.  Teachers in 
four studies made reference to critical consciousness and reflection.   
o Teachers and students critiqued and mathematized societal issues.  
o Societal inequities were acknowledged by framing challenges within communities. It was 

not clear how students were using mathematics as an agent for social change. 
5. Teachers must have high expectations both for their students and for themselves.  

o Teachers made necessary teaching revisions based on their students’ needs, interests, and 
understandings as they relate to mathematics.  

o Teachers were warm-demanders by establishing learning environments in which students 
were held accountable and empowered by taking an active role in their own learning. 

6. Mathematics instruction highly correlates with teaching practices and strategies for both 
context and cultural competency. This finding is specific to mathematics teaching practices.  
o Teachers utilized technology, incorporating tools and manipulatives in their 

instruction. 
o Teachers modeled their thinking for students.  
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o Teachers with high confidence in teaching mathematics and high self-efficacy 
believed that mathematics instruction should be student-centered, open-ended, 
inquiry-based, highly interactive, and impromptu, based on students’ needs and 
interests.  

o Teachers with low confidence in teaching mathematics, or low self-efficacy struggled 
with CRP and CRT. This led to limiting tasks focusing on high cognitive demand.  

Implications 
There are significant gaps in the literature focused on mathematics teaching related to CRP and 

CRT.  The gaps primarily exist around unpacking mathematics teacher actions focusing on CRP and 
CRT.  More work is needed in the field for unpacking teaching practices that promote access, equity, 
and empowerment. The findings of this research suggest that CRP and CRT teachers know their 
students and the communities of their students; more work is needed to unpack the continuous cycle 
teachers use to develop rapport.  The findings from this work suggest that mathematical knowledge 
for teaching positively impacted teachers’ lens for CRP and CRT; more work is needed to understand 
and unpack the interactions of teachers’ knowledge of context and culture with knowledge of 
mathematics and teaching mathematics.   
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Understanding how students construct abstract mathematical knowledge in classroom setting and the 
use of various instructional tools in facilitating such abstract constructions have been central themes 
in mathematics education research. This study used Abstraction in Context (AiC) as a theoretical 
framework to study studying high school students’ processes of constructing and justifying of central 
angle theorem in dynamic geometry environment. Data analysis revealed that the although the 
central angle theorem was proposed and verified through dragging and measuring tools enabled by 
a GeoGebra driven simulation, the need to produce a formal proof establishing its validity was not 
realized by the group, suggesting that the dragging and measuring features of the dynamics geometry 
environment may pose challenges for teacher and students to construct abstract formal proofs.  

Keywords: Geometry and Geometrical and Spatial Thinking, Reasoning and Proof, Technology 

Understanding how students construct abstract mathematical knowledge in classroom settings 
and ways to facilitate the development of abstract generalizations and justifications among learners 
has been a persistent theme in research in mathematics education for decades (Mitchelmore and 
White, 2000). Indeed, as it pertains to abstracting and generalizing regarding geometric properties 
and relationships, scholars have argued, with empirical data, that the presence of dynamic geometry 
software (DGS) (e.g. GSP, Cabri, GeoGebra) can provide productive means for allowing students to 
explore, notice relationships, conjecture about potential relationships and construct generalization 
regarding geometric properties and relationship, with the understanding that such environments also 
presents challenges when moving students from inductive verification to deductive formal proof 
(González and Herbst, 2009). However, a majority of work in this area has considered knowledge 
construction of individuals or small groups of students in presence of DGS. Not many studies have 
been reported with a focus on exploring the dynamics of generalizing and justifying within a whole 
group setting, taking into account the impact of peer-teacher interactions on what might be extracted 
from the DGS and what is assumed collaboratively. The current study aimed to address this gap and 
is guided by one question: how do students and teacher in a high school geometry classroom 
construct and justify central angle theorem while working in DGS?  

Theoretical Framework 
Hershkowitz, Schwarz, Dreyfus (2001) proposed Abstraction in Context (AiC) as a theoretical-

methodological framework to investigate the genesis of abstraction. The core of the model consists of 
three epistemic actions: recognizing, building-with, and constructing. Recognizing a familiar 
structure occurs when a student realizes that a structure is inherent in a given mathematical situation. 
Recognizing is often, though not always, at the level of empirical thought. Building-with consists of 
combining existing artifacts in order to meet a goal. When operating at the building-with level, the 
student is not enriched with new, more complex structural knowledge. She or he uses available 
knowledge to produce a viable solution to the problem at hand. Constructing consists of assembling 
knowledge artifacts to produce a new structure, which could be new methods, strategies, or concepts. 
The three epistemic actions are dynamically nested in such a way that building-with includes 
recognizing, and constructing includes both recognizing and building-with. This model has been used 
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to investigate processes of abstraction in a wide range of situations (Dreyfus, 2012). This study will 
use AiC to examine the process of constructing and verifying central angle theorem in DGS.  

Methodology 
Data for the study comes from an ongoing program of research which aims to understand how 

students and teacher in a regular classroom settings interactively work towards constructing and 
justifying generalizations pertaining to geometric properties and relationships. The participating site 
is a high school geometry class consisting of 21 students and 1 teacher. All mathematics lessons have 
been video-recorded daily to capture interactions taking place during instructional activities. All 
student artifacts have been collected to examine the types of inferences and connections students 
make individually/collectively based on group interactions.  

The data used in this report comes from a particular lesson whose objective was for students to 
learn central angle theorem. Prior to this lesson students had explored and seemingly learned about 
(1) all the radii of a circle are congruent, (2) two radii and a chord make an isosceles triangle and the 
base angles of the isosceles triangle are congruent, (3) inscribed angles subtended by a diameter are 
right angles. A GeoGebra simulation was created as in Figure 1a for students to explore the 
relationship between the measure of the central angle and the measure of the circumference angle. In 
the exploration, the center, point C and the diameter of the circle were locked and point D and E were 
not fixed. Students were first assigned to work in small groups to explore in the pre-made GeoGebra 
file and answer the following: (1) As you move D around on the top half of the circumference, what 
happens to the measure of angle E? (2) As you move E around on the bottom half of the 
circumference, what happens to the measure of angle O? (3) What do you think is the relationship 
between angle E and O? And then the teacher initiated a whole-class discussion around their 
observations.  

Findings 
When exploring in GeoGebra simulation all the 21 students have recognized when moving D 

around both angle E and angle O become larger or smaller depending on the moving direction and 
that when moving E around the measures of angle E and angle O stay the same. And when asked the 
relationship between angle E and O, 18 students had constructed the idea that angle E is half of angle 
O. However, it is unclear students understood why angle E is half of angle O. In the whole group 
discussion, the teacher asked students to share their observations and tried to help students to see why 
angle E is half of angle O. The following transcript demonstrates how central angle theorem had been 
collectively verified in whole group discussion.  

                                   
          Figure 1a                                   Figure 1b                                      Figure 1c 

Teacher: If we move angle D, what happens in general to the two angles that are given to you? 
(move D around the circle) 

SS: They change. 
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Teacher: Yes, they are changing. So they are not remaining the same. What about when I move 
around angle E (move E around the circle)? 

SS: They stay the same. 
Teacher: They stay the same. Ok, let’s put this at…here is a good one, because as just said we 

can move around E and nothing will change even if I make it overlap like this. That means I 
can make this as a diameter if I want to. Now it’s a diameter [move E to make CE as a 
diameter as in Figure 1b]. What can I say about what’s going on here? Think about last week 
and raise your hand. [no hand raising in 15 seconds] What congruence marks can I put here? 
[a few hands raising] Chase, what congruence mark can I put here? 

Chase: The middle point and from the middle point to the other side [the teacher then put 
congruent mark on OE and OD]. 

Teacher: Anything else, Oliva? 
Oliva: OD [the teacher put congruent mark on OD].  
Teacher: Ok, these are all congruent. So what’s going on here now? Does it help us connect? 

What do you see Jodi? 
Jodi: Isn’t like since both them are congruent you can put both angles would be equal? 
Teacher: So which angels would be the same? 
Jodi: The 63 
Teacher: This one here 63.13. Now could I find this angle here [point to angle DOE] suppose I 

don’t know this is 126.26 [point to angle DOC]? How would I do that? Andrew, what do I 
do?  

Andrew: add up 63.13.  
Teacher: 63.13 plus 63.13 which is 126.26. Is 126.26 already on there? Hmm, so the sum of 

these two angles give me this [point to angle DOC]. Are these two angles [point to angle 
OED and ODE] always going to be congruent no matter where I move that? 

SS: Yes. 
Teacher: Yes, these two should be congruent. So what do you think the relationship between this 

angle here E and this [point to angle DOC] we call this a central angle because it comes from 
the center. What do you think the relationship might be between angle E and the central 
angle? What do you think, Ethan?  

Ethan: It’s half of the central angle.  
Teacher: So the central angle is twice as much as the circumference angle.  
Ethan: Yes 
Teacher: So even if I have it looking funky like this [move E up] is that relationship still the 

same? Is the relationship down here still the same [move E down]? 
SS: Yes  
Teacher: Yes, that will hold. Here is another way we can prove it. Last week when we looked the 

diameter as the leg of a triangle [move D to make CD a diameter of the circle as in Figure 
1c]. What did we say about this angle here [point to angle E]? What would it always be if this 
is a diameter? Carol, what do you think? 

Carol: 90 degrees.  
Teacher: So this is 90 [point to angle E] and this is 180 [point to angle COD]. Does that 

relationship hold? Is the central angle twice the outside angle?  
SS: hmm.  

To help students understand why angle E is half of angle O, the teacher created the first special 
case of central angle theorem and then asked students what congruence marks could be put on the 
diagram (turn #5). The question triggered students to recognize that OC, OE and OD are radii of the 
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circle (turn # 6 and #8) and therefore triangle DOE is isosceles. Building-with these ideas, students 
concluded angle ODE and angle OED are congruent (turn #10). The teacher then drew students’ 
attention to connect the sum of the two base angles and the central angle (turn # 13 and #15). And 
students finally articulated that the circumference angle is half of its central angle (turn #18). The 
teacher then introduced a second special case to connect central angle theorem with inscribed right 
triangle (turn #23 and #25). Students recognized that E is 90 degrees, which is half of 180 degrees. 
This special case again verified that a central angle is twice as much as its circumference angle. 

Discussion 
Studies have shown that dragging and measuring features of DGS provides students opportunities 

to make and empirically verify conjectures and therefore construct new mathematical ideas 
(González and Herbst, 2009). However, the dragging and the measuring features of this environment 
also pose challenges for students to produce an abstract formal proof. Even though the teacher 
introduced two special cases to demonstrate why central angle theorem holds, a more general proof 
was missing in the whole-class discussion. The first special case has the very potential to be 
developed into a general proof had the teacher made it clear that why the sum of the two congruent 
bases angles of the isosceles triangle equals to the central angle. It’s unclear in whether the teacher 
and students used the angles measures or a theorem (i.e. an exterior angle of a triangle is congruent to 
the sum of the two angles of the triangle that are not supplemental to the given angle) to conclude the 
sum of the two congruent bases angles of the isosceles triangle equals to the central angle (turn #13, 
#14, #15). If the conclusion was drawn based on the theorem, a general formal proof can be more 
easily developed from this special case. However, if the conclusion was drawn based on angle 
measures of the three angles, a deductive proof might be more difficulty to be obtained.  

The data revealed even though central angle theorem was empirically constructed and verified, 
an abstract mathematical proof of the theorem was not collectively constructed by the teacher and 
students. In the process of verifying the theorem the teacher and students were mostly recognizing 
previously learned knowledge and partially building-with existing mathematical ideas. It seemed that 
the measuring and dragging functions prevented the teacher and students to construct an abstract 
formal proof. Further research is needed to explore how to move students to construct abstract proof 
in dynamic geometry environment.  
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A wide range of findings related to Critical Mathematics (CM) have been reported alongside 
descriptions of diverse sets of CM activities and challenges and successes that teachers have 
experienced.  Little research, however, has considered how teaching contexts may influence the 
teaching outcomes of CM.  The intent of this paper is to highlight the importance of teaching contexts 
through a comparison of three cases of CM.  In the cross-case comparison, I examine how the three 
CM teachers take different pathways at the crossroads that I frame as the tension of teaching 
mathematics vs. teaching students (Gutiérrez, 2009).  The comparison offers possible explanations of 
how the teaching context may have influenced such contrasting outcomes of CM, and this adds social 
and cultural contexts (e.g., teacher’s status and power, students’ academic goals, and school culture) 
as another dimension to CM theory. 

Keywords: Equity and Diversity; Instructional Activities and Practices 

In North America, rooted in Frankenstein’s (1983) pioneering work, Critical Mathematics (CM) 
in K-12 settings has gained traction as a way to support marginalized students’ identities and power.  
Although different terms are used for CM (e.g., Teaching Mathematics for Social Justice, Radical 
Mathematics), approaches to CM are commonly characterized by efforts to interweave two types of 
goals: mathematics and social justice, and by aims to synergize two areas of learning: mathematical 
and sociopolitical. 

As an increasing number of CM educators have been examining cases of CM, they have reported 
a wide range of outcomes in secondary school settings.  Often, the discussions focus on how the 
social justice tasks are created and implemented and what challenges the teachers faced within the 
classroom; yet the discussion on how the variety of teaching contexts may have influenced CM has 
been lacking.  Without considering the contextual influence, we may unfairly attribute the 
success/failure of CM to the teachers and their teaching. 

  My intent of this paper is to highlight the importance of teaching contexts for successful CM 
teaching, and I will do so by comparing three cases of CM.  Some scholars have used cases of CM 
(e.g., Gutstein, 2003) and comparisons of cases (e.g., Esmonde, 2014) to expand theoretical 
understanding of CM.  To expand theories of CM to account for connections between CM teaching 
and contexts, I analyzed three existing cases of CM from the research literature using a framework 
for pivotal moments of teaching, and in particular, moments when tensions arise between teaching 
mathematics and teaching students (Gutiérrez, 2009). 

A Theoretical Framework for Understanding Inherent Tension in Critical Mathematics 
CM scholars maintain that teaching CM is not a straightforward task; it requires facing many 

sorts of tensions and negotiating them (Enyedy & Mukhopadhyay, 2007; Gregson, 2013; Gutstein, 
2003).  Because CM aims to synergize two areas of learning (mathematical and sociopolitical), 
negotiating the tensions is at the crux of its success.  To frame the tensions that emerge while 
teaching CM, I borrow Gutiérrez’s (2009) three types of tensions inherent in teaching mathematics 
from an equity stance.  In her essay, Gutiérrez (2009) describes the different types of tensions her 
pre-service teachers experienced when they were interacting with marginalized students in urban 
school settings.  She categorized those tensions into three types: “1) knowing your students and not 
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knowing your students, 2) being in charge of the classroom and not being in charge of the classroom, 
3) teaching mathematics and not teaching mathematics” (p. 12).  Later in the essay, she rephrased 
“not teaching mathematics” into “teaching students” to highlight the focus of one side of tension: 
students.  In this manner, I will call her third type of tension as “teaching mathematics versus 
teaching students.” 

In this paper, I will focus my discussion on the third: the tension between teaching mathematics 
and teaching students, because it reflects the complexity of teaching CM in a classroom context with 
a rigid curriculum while confronting the gatekeeping role of school mathematics.  CM teachers need 
to teach the required curriculum (i.e., teaching mathematics) to help their students advance their 
education and careers, but they also need to engage with their students around issues beyond the 
required curriculum (i.e., teaching students) to support their identities and power. 

Comparing Three Cases of Critical Mathematics Teaching 
To make meaningful cross-case comparisons, I selected three cases of CM teachers within 

seemingly similar contexts (i.e., minimized variation of context) with varying degrees of reported 
tensions (i.e., maximized variation of tensions).  The selected teachers were: (1) Mr. Rico (his 
classroom name) in his own study (Gutstein, 2016); (2) Mr. Brantlinger in his own study 
(Brantlinger, 2013); and (3) Ms. Myles in Gregson’s (2013) study.  They all taught in urban 
secondary school settings where they predominantly served students of color from low-income 
communities. 

In each case, I looked for the descriptions of social and cultural characteristics of the teachers, the 
students, and the schools from the articles.  In addition, I looked for incidents of the teaching 
mathematics versus teaching students tension, and how the teachers negotiated this tension.  The 
summary of the findings is presented in Table 1. 

Discussion and Implications for Expanding CM Theories 
Due to the seemingly similar teaching contexts of the three cases, I was surprised by the 

contrasting outcomes.  Mr. Rico performed a skillful “dance” (p. 469) between mathematics content 
and critical and community content.  Gutstein (2016) presented powerful evidence that illustrated 
how his students were able to use mathematics to understand the unjust society and to advocate for 
changes.  On the other end of the spectrum, Brantlinger (2013) presented his unsuccessful experience 
of teaching CM to the students from similar demographic groups as Mr. Rico’s students.  He initially 
blamed his lack of experience and skills for the failure of his CM activities, but toward the end of the 
paper, he questioned if CM is a good fit for his urban students and his geometry course.  Considering 
these two ends of the spectrum of CM teaching, I ask “What could have made their outcomes so 
different?”  For one possible answer to this question, I now turn to the contexts of their teaching and 
consider the role that subtle differences in context might have played in shaping the tensions teachers 
experienced. 

Differences in Teacher’s Status and Power 
 Table 1 shows the various statuses of the teachers.  Mr. Rico is a university professor, which 

affords him a certain degree of power within society.  In general, professors are seen as people with 
more knowledge and professionalism than secondary teachers.  Moreover, Mr. Rico was involved in 
the founding process of the school, and the school had consulted him for its teacher development 
programs.  Being such an important figure in the school may have come with certain privileges: Mr. 
Rico was allowed to design his own curriculum for his course and to select mathematical topics that 
would fit well with his CM projects and his students. 
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Table 1: Summary of Three Cases 
 Mr. Rico Mr. Brantlinger Ms. Myles 
Teacher University professor who 

was involved in founding 
process of the school and 
teacher development 
activities 

Graduate student with 9 
years of teaching 
experience 

Full-time teacher with 12 
years of experience with 
teaching and community 
organizing 

Students 12th-grade students who 
chose Mr. Rico’s class 
over 2 other options; Mr. 
Rico met with them twice 
prior to the school year. 

Generally, older (18-19 
years olds) students who 
are motivated to pass the 
course but not necessarily 
to learn 

8th-grade students 

School Social justice focused high 
school 

Night school with a 
vocational focus. 
It mainly serves students 
who failed a course in the 
day school or who have 
disciplinary issues. 

Social justice focused 
school (grade 6-12) 
Ms. Myles plays a critical 
role to meet the federal 
requirement for the 
standardized exam.  

Standardized 
Exam 

Not required  Unknown High-stake 

Tensions Not apparent. 
Mr. Rico skillfully 
interweaves mathematics 
and social justice goals. 

Geometry content is not 
relevant to social justice 
topics; Students bypassed 
mathematics during the 
social justice discussions. 

Time demand for social 
justice activities conflicts 
with the time needed for 
preparing for the 
standardized exam. 

Negotiation Moved his emphasis 
between mathematics and 
social justice so that these 
two types of learning 
support each other. 

Incorporated statistic 
concepts that are out of 
the scope of the required 
curriculum; Separated 
mathematics and social 
justice portions of the 
lesson.  

Downsized social justice 
project into a small 
problem-based lesson; 
Focused more on the test as 
the test gets near.  

 
Mr. Brantlinger (a graduate student) and Ms. Myles (a full-time teacher), on the other hand, did 

not appear to have the luxuries that Mr. Rico had.  In contrast to Mr. Rico, Mr. Brantlinger had to 
design his CM activities around the required geometry concepts although he did not see them as a 
good fit for his social justice activities.  A similar tension was present in Ms. Myles’s case: If the 
social justice activity required mathematics that was not emphasized on the gatekeeping assessment, 
the time needed for a social justice activity could consume the time needed to prepare for the 
assessment.  In these two cases, a meaningful negotiation between teaching mathematics and 
teaching students required teacher autonomy to select mathematics content often not included in the 
required curriculum and on high-stake exams. 

Differences in Students’ Academic Goals and School Culture 
Although all teachers predominantly had students of color from low-income communities, I 

noticed differences in students’ academic goals in the respective mathematics classes and different 
foci of students’ schools. Mr. Brantlinger’s students being “more concerned with getting through his 
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course for accreditation than for learning mathematics” (p. 1057) suggested that his students did not 
willingly choose the geometry class but, instead, were required to take the course for high school 
graduation.  Moreover, the focus of his school was not social justice but vocational training.  
Considering the school’s focus and the students’ desire to obtain their geometry credits to move on 
with their post-secondary lives, Mr. Brantlinger’s social justice activities likely came as a surprise for 
his students.  In this sense, it appears reasonable for some of his students to perceive his social 
activities task as a distraction from their academic goals. 

In contrast, the schools of Mr. Rico and Ms. Myles have an explicit vision and mission for social 
justice.  Hence their students had more likely experienced social justice related topics in their 
previous classes, were less likely to resist social justice activities.  Moreover, Mr. Rico’s students 
chose his class out of three options for their fourth-year mathematics courses.  He also met with the 
students twice prior to the school year to discuss the topics; thus his students were well informed 
about political contexts of Mr. Rico’s CM course, and his students’ academic goals were more likely 
aligned with the CM activities compared to the students of Mr. Brantlinger.  This illustrates how the 
particular school culture and students’ academic goals may support CM teachers to negotiate the 
tension in a meaningful manner. 

The above comparisons of the three cases of CM offer the possible explanations to how the 
teachers took different pathways at the crossroads of CM in relation to their teaching contexts.  This 
paper adds one more dimension to the theory of CM: teaching context, in particular, differences in 
teacher status and power, students’ academic goals for the course, and school culture, may heavily 
influence the success/failure of CM.  Similar to Brantlinger (2013) blaming himself, we often 
attribute the instructional success/failure to the teachers’ knowledge, experience, or actions; however, 
this comparison offers another way to look at how the teachers negotiate the tensions of CM.  The 
context, which is sometimes out of the teacher’s control, can funnel the teacher into decisions that are 
far from ideal.  This suggests we need to work not only from the inside (teachers and teaching) but 
also from the outside (broader teaching context), so that innovative teaching methods, like CM, can 
evolve and flourish. 
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DEWEY ON EARLY CHILDHOOD TEACHERS’ EXPERIENCES LEARNING AND 
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Using initial and debriefing interviews around a photo visual narrative inquiry (Bach, 2007), this 
pilot study aimed to create space for 10 early childhood teachers to explore and make sense of their 
experiences learning and teaching mathematics, as well as to hear their voices sharing detailed and 
nuanced views of their strengths, needs, and areas for growth related to mathematics teaching and 
learning.  Components of Dewey’s (1938/1998) experience construct, including continuity, 
interaction, social control, and subject matter were used to understand nuances of the teachers’ 
experiences learning and teaching mathematics.  Initial findings indicate that these teachers had 
negative mathematics learning experiences, but are now enthusiastic early childhood mathematics 
teachers, indicating that their experiences should be valued and explored in training, and by those 
who determine their training. 

Keywords: Early Childhood Education; Teacher Education – Inservice/Professional Development; 
Instructional Activities and Practices; and Policy Matters 

Purpose 
Early childhood teachers ask why they are required to take college algebra courses in which they 

struggle and whose content is not related to the work they do with young children. Their question 
implies that expectations for their training and professional development are not well-aligned with 
their experiences of mathematics preparation or teaching work.  I argue the teachers’ perspectives 
and voices are not included in the dialogue about their mathematics training and teaching work.  I 
aim to create space for early childhood teachers to explore and make sense of their experiences with 
mathematics. Also, I aim to give early childhood teachers a voice and platform from which to share a 
more detailed, nuanced view of their mathematical learning and teaching strengths, needs, and areas 
for growth. I report initial findings from a pilot study in which I joined with a community of early 
childhood teachers to explore their experiences learning and teaching mathematics with young 
children.  

Perspectives and Theoretical Framework 
Standards for professional preparation and early mathematics are well-aligned with the 

mathematics teaching work that teachers do (NAEYC, 2009, 2016; NAEYC & NCTM, 2002; 
NAECTE, n.d.).  However, goals put forth in the standards do not always reach preservice and in-
service teachers (Sarama & DiBiase, 2004).  Accounting for that gap is a set of policy, funding, and 
social viewpoint quagmires (Grunewald & Rolnick, 2010; Heckman, 2008, 2011).  Early childhood 
education policy and funding hail from all levels of government and not-for-profit agencies (US 
Dept. of HHS, 2014; United Way Worldwide, 2016).  Social viewpoints range from understanding 
early childhood education as a salve for educational and social strife to babysitting (Phillips & 
Shonkoff, 2000).  Researchers make suggestions for early childhood teachers’ mathematics practices 
based on their own research observations (e.g., Parks & Blom, 2013).  Missing is the perspective of 
early childhood teachers’ professional voices.  This multi-faceted research puzzle considers gender 
and mathematics (Brooks, 2007; Fennema & Sherman, 1977; Hancock, 2001), early childhood 
education as “women’s work” (Kim & Reifel, 2010) and the social situatedness of teaching and 
learning (Edwards, 2003), which creates a need for a multi-pronged investigation approach.   
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A framework for delving deeper into teachers’ lived experiences with mathematics, in order to 
understand nuances of their experiences (Clandinin & Connelly, 2000) and empower participants as 
early childhood mathematics is used.  Dewey’s (1938/1998) experience construct, including 
components continuity, interaction, social control, and subject matter, is used to understand nuances 
of early childhood teachers’ experiences learning and teaching mathematics. 

Research Questions 
What role, if any, do mathematical learning experiences play in early childhood teachers’ 

mathematics teaching practice?  In what ways do their voices contribute to the professional dialogue? 

Methods 
This study used visual narrative inquiry methods (Bach, 2007) to situate the participants’ 

experiences learning and teaching mathematics within the three-dimensional inquiry space, situating 
it within the teachers’ mathematical history, classroom context, and social milieu.  

Participants 
Ten teachers in an early childhood lab school at a Midwestern state university participated.  

Participants included seven lead teachers, two assistant teachers, and one student teacher.  Teachers 
had been at the center from one to 22 years.  One assistant teacher has a four-course early childhood 
certificate, seven teachers have bachelor degrees related to teaching young children, and two have 
master degrees.  The children in the classrooms range in age from two to 5 years, with 14 to 20 
children in each classroom depending on age. 

Data Sources 
This study included three data collection activities: (1) initial semi-structured interviews with 

classroom teaching teams, regarding their experiences learning and teaching mathematics; (2) 
teaching teams and researcher photographing mathematical activity and materials; and (3) debriefing 
interviews during which each classroom teaching team described the mathematics captured in 
photographs taken by themselves and the researcher.  

Analysis 
Several rounds of analysis were conducted to gain a sense of the underlying relations and 

tensions (Clandinin, Murphy, Huber, & Orr, 2009) that teachers experience as they learn and teach 
mathematics.  Initial interview questions were answered from the transcripts for each teacher.  
Passages from all initial and debriefing interview transcripts were marked for the main principles of 
Dewey’s (1938/1998) experience construct, continuity and interaction.  Additional components of 
Dewey’s experience construct, social control, and subject matter were marked in each transcript.  
Anecdotal snapshots of each classroom were developed, and short narratives of each teacher were 
created that included a timeline and dominant themes found in their individual transcripts.  From 
these pieces, narratives were developed of the teachers as learners and teachers of mathematics with 
young children, along with their philosophies.  Photos related to transcript passages accompany the 
narratives. 

Preliminary Findings 
Here, data are related to components of Dewey’s (1938/1998) experience construct. 

Initial Interview: Union of Continuity and Interactions 
E1 and D2 did not like geometry as students and had trouble learning it (internal condition), but 

as early childhood teachers, they have learned about geometry with and from the children and since 
developed engaging geometry activities (objective condition) (see Figure 1). 
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Figure 1. Geometry Activities.     Figure 2. Table Rhythm.    Figure 3. Letters & Math 

Photographing Mathematical Activity: Social Control 
The researcher photographed S1 pounding rhythmically on the lid of the sensory table (see 

Figure 2).  When asked about this photo, she explained that this is a routine used for multiple 
purposes: a signal to the children to clean up (which they do eagerly when they also get to 
pound), the children practice imitating and following, and they learn patterns and counting.  S1 
used her knowledge of the children’s interests and subject matter in this routine that encourages 
social organization. 

Initial and Debriefing Interviews: Subject Matter 
D2 shared an activity that illustrates several facets of subject matter.  She incorporates patterning 

into the lining up routine to both organize the children and connect an everyday occurrence to 
mathematics content.  Children “keep track” (Dewey, 1938/1998, p. 110) of the pattern, 
reconstructing the experience daily, and self-correct as they line up or notify the teacher when they 
no longer have enough children to keep the pattern going as defined (i.e., more girls than boys mean 
a girl-boy pattern will end with a group of girls).   

While examining photos, S1 and D2 were surprised as they noticed previously unrecognized 
instances of mathematics.  Referring to the Table Rhythm photo (see Figure 2), S1 said, “Gosh, you 
know what? You don’t think about these things. You do it so many times, you don’t think about that. 
I guess I’ve never seen a picture of that before.”  D2 said (see Figure 3), “Look how many letters I 
have, and I was like, oh, my gosh. We’ve got math! So, I quickly found the camera and took that, and 
I guess this research project to me, more than anything, has made me more aware of math is in lots of 
places other than one plus one is two.”                           

         Discussion 
Teacher interviews and photos analyzed using Dewey’s (1938/1998) experience construct and 

components indicate that teachers’ mathematical learning experiences influence their current 
practices, in their dispositions to learn mathematics from and with the children, and to make math 
“fun” so the children associate mathematics positively (Lenz Taguchi, 2005).  The study afforded 
teachers an opportunity to uncover unforeseen mathematics practices, nurturing curiosity in their 
practices and understanding of children’s mathematics.  Teachers eagerly taught mathematics with 
young children, despite many having negative feelings from their own “mis-educative” (Dewey, 
1938/1998, p. 13) experiences learning mathematics.   

Early childhood teacher educators should respect the knowledge early childhood teachers bring 
to training, and help these teachers unpack meanings from their experiences.  Also, this might 
indicate that grounding math methods or content in experiences with young children could more 
productively engage early childhood teachers who feel less competent in mathematics training 
settings (Philipp, 2008).  A next step is for early childhood teachers to communicate their 
experiences to the funders and stakeholders who determine their training. 



Teaching and Classroom Practice 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1217 

References 
Bach, H. (2007). Composing a visual narrative inquiry. In D.J. Clandinin (Ed.) Handbook of narrative inquiry: 

Mapping a methodology (pp. 280-307). Thousand Oaks, CA: Sage Publications. 
Brooks, A. (2007).  Feminist standpoint epistemology:  Building knowledge and empowerment through womens’ 

lived experience.  In S.N. Hesse-Biber & P.L. Leavy (Eds.), Feminist research practice (pp. 53-82).  Thousand 
Oaks, CA:  Sage Publications. 

Clandinin, D.J. & Connelly, F.M. (2000). Narrative inquiry: Experience and story in qualitative research. San 
Francisco, Jossy-Bass. 

Dewey, J. (1938/1998). Experience and education: The 60th anniversary edition. West Lafayette, IN: Kappa Delta Pi 
Edwards, S. (2003). New directions: Charting the paths for the role of sociocultural theory in early childhood 

education and curriculum. Contemporary Issues in Early Childhood, 4(3), 251-266. 
Fennema, E. & Sherman, J. (1977). Sex-related differences in mathematics achievement, spatial visualization and 

affective factors. American Educatinoal Research Journal, 14, 51-71. 
Grunewald, R., & Rolnick, A. J. (2010). An early childhood investment with a high public return. The Regional 

Economist, (Jul), 12-13. 
Hancock, S.J.C. (2001). The mathematics and mathematical thinking of four women seamstresses. In J.E. Jacobs, 

J.R. Becker, & G.F. Gilmer (Eds.). Changing faces of mathematics: Perspectives on gender. Reston, VA: 
NCTM. 

Heckman, J. J. (2008). Schools, skills, and synapses. Economic inquiry,46(3), 289-324. 
Heckman, J. J. (2011). The Economics of Inequality: The Value of Early Childhood Education. American Educator, 

35(1), 31-35. 
Kim, M. & Reifel, S. (2010). Child care teaching as women’s work: Reflections on experiences. Journal of 

Research in Childhood Education, 24(3), pp. 229-247. 
Lenz Taguchi, H. (2005). Getting personal: How early childhood teacher education troubles students’ and teacher 

educators’ identities regarding subjectivity and feminism. Contemporary Issues in Early Childhood, 6(3), pp. 
244-255. 

National Association for the Education of Young Children. (2009). NAEYC standards for early childhood 
professional preparation: A position statement of the National Association for the Education of Young 
Children. Retrieved from http://www.naeyc.org/files/naeyc/file/positions/ProfPrepStandards09.pdf.  

National Association for the Education of Young Children. (2016). Build it better: Indicators of progress to support 
integrated early childhood professional development systems. Retrieved from 
https://www.naeyc.org/files/naeyc/Build%20It%20Better_For%20Web.pdf.  

NAEYC & NCTM. (2002). Executive summary: Early childhood mathematics: Promoting good beginnings: A joint 
position of the National Association for the Education of Young Children (NAEYC) and the National Council of 
Teachers of Mathematics (NCTM). Retrieved from 
http://www.naeyc.org/files/naeyc/file/positions/Mathematics_Exec.pdf. 

National Association of Early Childhood Teacher Educators (NAECTE). (n.d.). Position statement on early 
childhood certification for teachers of children 8 years old and younger in public school settings. Retrieved 
from http://naecte.org/wp-content/uploads/ECE-certification-position-statement.pdf. 

Parks, A.N. & Blom, D.C. (2013). Helping young children see math in play. Teaching Children Mathematics, 20(5), 
pp. 310-317. 

Philipp, R.A. (2008). Motivating prospective elementary school teachers to learn mathematics by focusing upon 
children’s mathematical thinking. Issues in Teacher Education, 17(2), 7-28. 

Phillips, D. A., & Shonkoff, J. P. (Eds.). (2000). From Neurons to Neighborhoods:: The Science of Early Childhood 
Development. National Academies Press. 

Sarama, J. & DiBiase, A.M. (2004). The professional development challenge in preschool mathematics. In D.H. 
Clements, J. Sarama, & A.M. DiBiase (Eds.), Engaging young children in mathematics: Standards for early 
childhood mathematics education (pp. 415-446). Mahwah, NJ: Lawrence Erlbaum Associates. 

US Department of Health & Human Services. 2014. Early Childhood Training and Technical Assistance System.  
Washington, DC.  Retrieved from https://childcareta.acf.hhs.gov/.  

United Way Worldwide. (2016). Education is a cornerstone for success. Alexandria, VA: United Way Worldwide. 
http://www.unitedway.org/our-impact/focus/education. 
 



Teaching and Classroom Practice 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1218 

DO YOU SEE WHAT I SEE?  
CONNECTING MATHEMATICS TO THE REAL WORLD  

 Marcy B. Wood Kristin L. Gunckel 
 University of Arizona University of Arizona 
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This study explored how three high school mathematics teachers thought about using real world 
connections to teach mathematics. Each of these teachers expressed beliefs about mathematical 
objects as entities that could be seen in the real world. This belief was connected to ideas about 
knowing mathematics as seeing these mathematical objects. This paper elaborates this epistemology 
of visibility and describes some of the implications. 

Keywords: Learning Theory; High School Education; Affect, Emotion, Beliefs, and Attitudes 

Most teachers, educational researchers, and policy makers agree that students learn best when 
mathematics problems are embedded in real world contexts. These real world connections support 
students by allowing them to use their prior knowledge and experiences to make sense of new 
mathematical ideas (e.g., NCTM, 2000). These connections can also prepare students for their 
careers and adult responsibilities.  

In spite of widespread agreement about the benefits of real-world connections, there is limited 
research about teacher understandings of and uses of these connections in their classrooms. 
Gainsburg (2008) reported on ways in which teachers used real-world connections including the 
contexts they referenced, the format of problems, and the constraints they noted. Her detailed study 
provides an important overview of real-world contexts in secondary mathematics classrooms. Two 
other studies sought to make sense of how teachers understood and presented the real-world contexts 
in mathematics word problems. Chapman (2006) and Depaepe, De Corte, and Verschaffel (2010) 
examined the epistemological framings, or ways of knowing, teachers brought to the teaching of 
word problems. Both studies considered whether teachers focused on paradigmatic knowing, in 
which the key to knowing was to strip away the context and focus on minimal necessary information 
to reason to an answer, or on narrative knowing, in which the focus was on the social context of the 
word problem. The authors argued that students needed opportunities to consider word problems 
from both paradigmatic and narrative perspectives and that it was challenging for teachers to juggle 
these two different perspectives within a lesson. 

These studies begin to paint a picture of teacher understandings of real-world contexts. However, 
they are necessarily only a small glimpse into what is an important component of mathematics 
education. In our study, we sought to add to this understanding of teachers’ work with real world 
contexts. In particular, we wanted to better understand how teachers thought about mathematics in 
the real world and about what it would mean for students to come to know that mathematics. 

Theoretical Framework 
Earlier studies of epistemology and mathematics teachers’ real-world connections focused 

specifically on paradigmatic and narrative framing of ways of knowing. While this provided 
interesting insights into teachers’ perspectives, it was also a narrow lens on the nature of knowledge. 
In our study, we sought to add to this picture by considering how teachers’ epistemological beliefs 
might be connected to their ontological beliefs. 

Epistemology is the study of beliefs about knowledge and ways of knowing (Olafson & Schraw, 
2010). For example, some people believe that knowledge is created or constructed by the mind and 
has no existence in the real world. Others believe that knowledge comes only from what one can 
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sense. These beliefs are influenced by one’s ontological beliefs, or beliefs about the nature of objects 
and of their existence (Kang, 2008; Packer & Goicoechea, 2010). For example, teachers may hold the 
ontological belief that mathematical ideas are entities that can be treated as though they were real-
world objects. Ontological beliefs are connected to understandings of the nature of knowledge and of 
knowing so that some teachers might think that students need to interact with these mathematical 
objects in order to gain knowledge about them. These beliefs also influence teachers’ instructional 
practices so that if teachers assume that mathematical ideas can be treated as real-world objects, they 
then design lessons in which students have opportunities to find real world examples of mathematical 
ideas. 

In our study, we investigated the ontologies and epistemologies of mathematics teachers as they 
considered the role of real-world connections in teaching students. 

Methods 
This research was conducted in the context of a three-year master’s degree program in 

mathematics and science education at a large research university in the Southwest. Three high school 
mathematics teachers from the master’s program accepted our invitation to participate in the study. 
All teachers were within the first seven years of their teaching careers. They taught in suburban 
public, urban charter, or urban public schools. The student populations at the schools ranged from 
28% to 59% receiving free or reduced-rate meals and were from 33% to 83% non-white. All teacher 
names are pseudonyms. 

Data Collection 
We conducted initial interviews with each teacher, asking about their goals and purposes for 

teaching mathematics, their ideas about what makes mathematics instruction relevant or authentic, 
and their perceptions of how real-world mathematics might relate to school instruction. We also 
observed and recorded field notes on a mathematics lesson in each teacher’s classroom. We 
conducted pre- and post-observation interviews in order to learn more about each lesson. All 
interviews were recorded and transcribed. 

Other data sources included selected written assignments from a graduate course taken the first 
summer of the program. Teachers wrote two short essays on prompts that asked them to reflect on (1) 
what curriculum is and what teachers should do to make connections among students, the disciplines 
of mathematics, and the real world; (2) a lesson that they had taught in the past that made 
connections between students, the school curriculum, and the “real world.”  

Analysis  
For each teacher, we parsed their talk and writing into examples of real-world connections. We 

defined an example of a connection as a description of an activity, lesson, event, or student 
interaction in which the teacher attempted to involve students in learning mathematics or science by 
referring in some way to the real world. This process produced 18 examples. 

We then open-coded (Esterberg, 2002) the data for each teacher, seeking themes in how the 
teachers talked about knowing mathematics in the real world. As we found patterns in these themes, 
we developed a set of categories and then recoded the data using those categories. The findings in 
this paper elaborate just one theme that emerged from the data. 

Findings 

Knowing is Seeing 
When the teachers talked about students and mathematical ideas, they frequently used discourse 

that either literally or metaphorically referenced seeing as a way to know mathematical objects. This 
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talk aligns with other expressions used to describe knowing or understanding. For example, we might 
exclaim, “I see” when we suddenly grasp an idea. This phrase suggests that we understand knowing, 
at least metaphorically, as a kind of seeing.  

For example, one teacher, Brian, described the difference between teaching as giving and 
teaching as showing: 

I’ve gotta teach them the basic principles, I need them to see why that they can do what they’re 
doing, ya know. For instance, the quadratic formula, I could give that to them. I could say here is 
the quadratic formula, let’s divide the square root. But then if I tell them, let’s use it in this 
problem, they don’t know what it means. They don’t know where it comes from, and they just 
don’t see the use of it. Whereas if I go though it with them and actually show, here, here’s how 
you do a y, the actual quadratic formula, they see the purpose behind it. They see the 
understanding and so … they know how it works. [Italics added.] 

Brian started this response by describing the problems with a transmission model of learning in 
which he would merely give the quadratic formula to students. In contrast, he felt it was important for 
students to see where the formula comes from. If they saw the purpose of the formula, they would 
then understand it and could use it to solve problems. 

Another teacher, Rohit, said, 

I show them [students] one video where the parabolas can be used. For example, most of the 
antennas and antennae dish are parabolas and so we can see the focal point. Or the headlights of 
the car and porch lights; all these are to see the parabolic shape inside and built there. And then 
they connect the parabolas, what they learn in here, to the real life applications and it’s kind of a 
little bit fun…It makes a little bit [more] sense to them why they’re learning parabolas and all 
that stuff. [Italics added] 

As students learned to see parabolas in a variety of real world objects, they would understand why 
parabolas were important to learn about.  

These are just two examples of seeing. Of the 18 total examples of real world connections, seven 
contained instances of what we are calling an epistemology of visibility. In other words, these 
teachers seemed to think about knowledge as seeing mathematical objects. While this epistemology 
of visibility was not the only framing of knowing used by these teachers, it was striking that each of 
the teachers made numerous references to seeing as knowing. 

Mathematical Ideas Exist 
This framing of knowing as seeing seems to arise from the teachers’ thinking about the nature of 

mathematical knowledge. When teachers discussed their efforts to connect mathematics to real world 
perspectives, they consistently described mathematics in terms of real objects that could be found in 
the world. For example, in a lesson on congruent triangles, one teacher (Jessica) pointed out 
examples of congruent triangles in structures surrounding the school, including bus stops and high-
rise cranes. In his quotation above, Rohit talked about parabolas as though they were real entities that 
could be visibly perceived. 

The notion of a visual aspect to knowing mathematics is not new. However, studies of 
visualization in mathematics are typically focused on visual representations and contrast those to 
nonvisual representations such as algebraic equations (Rivera, 2011). In contrast, these teachers 
talked about equations as though they were objects that existed and could be known through seeing 
them.  
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Conclusion 
In this study, we noted a novel epistemology, one that we are calling an epistemology of visibility. 

In this epistemology, teachers hold ontological beliefs that mathematical ideas are objects that are 
visible (either literally or metaphorically) in the real world and that knowledge of these objects is 
gained by seeing the objects in the world. In other words, the work of teaching is showing 
mathematical objects and processes to students so that they might come to know them. 

This epistemology is an important variation on the commonly discussed epistemology of 
knowledge as received. Received knowledge epistemologies frame knowledge as something that can 
be conveyed or transferred from the teacher to the student. Knowledge is information like facts that 
can be organized into discrete bundles. Learning is about taking in these facts. In contrast, an 
epistemology of visibility is less about knowledge transfer and more about coming to see or notice 
objects. The knowledge is not contained within the mind of the student, but is instead present in the 
world and noticed by anyone who looks. 

This finding offers important insights into teachers’ attempts and frustrations in using real world 
examples to teach mathematical ideas. Teachers are sometimes puzzled when students, whose 
mathematical vision is not the same as the teachers, fail to see, or become enthusiastic about, 
mathematical objects that are so obvious to teachers. Teachers may also fail to understand how 
students cannot grasp a mathematical explanation that is so clearly illustrated in real world 
phenomenon. 

Real world connections can be an important learning resource for students. However, if teachers 
are going to make the most of these connections, they may need to reflect upon their epistemological 
beliefs and consider how their teaching relies upon a way of seeing that may not yet be possible for 
their students. 
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Observing and responding meaningfully to students’ thinking is a key component of effective 
teaching. In this regard professional noticing of students’ mathematical thinking has become an 
important area of study in mathematics education. Researchers have examined the effect of teachers’ 
experiences on their abilities to notice, however less work has been done examining the role of 
cognitive and psychological factors on what and how teachers notice. In this study, we sought to 
explore if and how these constructs, specifically teacher efficacy, emotions and mathematical 
knowledge for teaching, influenced how and what teachers were able to notice. 

Keywords: Mathematical Knowledge for Teaching; Affect, Emotion, Beliefs, and Attitudes 

Purpose of the Study 
To teach effectively, teachers must attend to students’ thinking during the act of teaching and 

make in-the-moment decisions about the best ways to respond to what they observe (Ball and Cohen, 
1999). In efforts to better understand what teachers observe, how they respond to it and how it can be 
influenced, over the past few years a significant body of work (e.g. Sherin & van Es, 2009) has 
emerged documenting the role teacher noticing has played in teacher learning and subsequently 
improvement of instructional practices (Sherin, Jacobs & Philipp, 2010). Some of the work on 
teacher noticing has focused on the differences in what and how teachers’ notice concluding that 
expert teachers tend to interpret and recall classroom events with greater detail and insight than 
novice teachers.  

Although researchers have examined the effect of teachers’ experiences and professional 
development on teachers’ abilities to notice students’ thinking, less work has been done examining 
the role of cognitive and psychological factors on what and how teachers notice. In particular, we 
were interested in the relationship between the teachers’ mathematical knowledge for teaching 
(MKT) – specifically their common content knowledge (CCK) and their knowledge of content and 
students (KCS) -, emotions, efficacy, and their level of noticing. In this study, we explore if and how 
these constructs influenced how and what teachers were able to notice. 

Theoretical Framework 
We know from research that teachers’ mental lives greatly influence their teaching experiences 

(Schutz, Hong, Cross & Osbon, 2006), commitment to the profession and overall wellbeing. 
However, absent from the literature are the ways in which specific cognitive and psychological 
constructs, such as MKT, TE and emotions, influence teachers’ instructional activity, specifically 
noticing. A growing body of literature on emotion and cognition has shown that one way in which 
emotional valence influences an individuals judgment is by foregrounding and making accessible 
emotion-congruent information in memory (Forgas, 2001). So individuals experiencing positive 
emotions tend to identify and recall positive memories more easily than negative memories, and vice 
versa (Bower, 1981; Forgas, 2001;). Subsequently, individuals in a positive emotional state tend to 
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evaluate people, places, and events more favorably than people in a negatively emotional state 
(Forgas, 2001). As such, the emotions teachers experience as they engage in noticing may influence 
what and how they notice. Teacher efficacy (TE) is defined as a teacher’s belief about her capacity to 
affect how students learn and their overall performance (Tsachannen-Moran, Woolfolk-Hoy & Hoy, 
1998) and has been shown to influence teachers’ willingness to adopt and enact particular 
instructional practices. Knowledge efficacy related to mathematics describes a person’s confidence in 
his/her understanding of mathematics content (Roberts & Henson, 2000). Personal efficacy describes 
a person’s confidence in his/her ability support students’ learning through their teaching. Teachers 
with a strong sense of efficacy tend to exhibit greater levels of planning and organization, are more 
open to new ideas and more willing to experiment.. Mathematical knowledge for teaching (MKT) 
encompasses deep knowledge of math concepts and the knowledge and skills to attend to students’ 
thinking during the act of teaching and make in-the-moment decisions about the best ways to respond 
to what they observe (Ball and Cohen, 1999).  

Methods 
This study involved eight elementary teachers who were involved in a professional development 

program. The teachers were each involved in coaching with each coaching cycle consisting of a pre-
meeting, post-meeting lesson planning, the coaching session and a post-coaching meeting. All 
meetings with the teachers were audiorecorded and the coaching session, in which the coach 
supported the teacher during the teaching of a lesson, was videorecorded. Data for this study was 
drawn from the videorecordings of the coaching sessions, and the audiorecordings from the post-
coaching meetings. Teachers also stated the emotions they experienced prior to, during and after the 
coaching experience. They also completed the adapted SETAKIST (Self-Efficacy Teaching and 
Knowledge Instrument for Science Teachers) for Teachers of Mathematics. The 16-item, 5-point 
Likert scale survey was scored to determine a score for personal (8 items reversed scored with a 
score of 8 being high) and knowledge efficacy (8 items with a score of 40 being high). All teachers 
completed the MKT surveys. The raw scores were converted to IRT scaled scores then aligned with a 
percentile value. Scores above the 80th percentile indicated high MKT, between 61st and 79th 
percentile medium MKT, and below 61st indicated low MKT. To classify their noticing, we first 
watched the coaching video and selected clips that focused on students’ thinking. We also asked the 
teachers to select three videoclips he/she wanted to discuss with the coach in the post-coaching 
meeting. Then we used Van Es (2011) noticing framework (Fig. 1) to analyze the clips the teachers 
selected to determine what and how teachers noticed and compared the emotions they stated, their 
efficacy related to mathematics teaching and their level of MKT.  

Findings  
For the purposes of this proposal, we present the results of two cases to show the relationship 

between teachers’ emotions, TE, MKT and what and how they noticed.  

Table 1: Results of Analyses of Teachers’ Noticing, MKT, TE and Emotions 
 Noticing MKT Emotions Efficacy 
 What How KC KCS Before During  After KE PE 

Bill Level 3 Level 3 High  High Nervous/ 
Anxious 

Nervous/ 
Uncomfortable 

Nervous/ 
Uncomfortable 

Mid Low 

Kathy Level 3 Level 1 Low Low Indifferent/
Excited 

Calm Calm High  High 

 
We observed that the teachers were attending to students’ mathematical thinking to some extent. 

In the cases of Bill and Kathy who both scored level 3, although they were attending to students’ 
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mathematical thinking, they were not consistent in making explicit connections between what they 
noticed and the teaching strategies they observed. In contrast to the score on what they noticed, there 
was variation in how they noticed. Bill identified significant events that showcased students’ 
thinking, and explained why it was noteworthy drawing evidence from the videoclip. For example, 
one of the clips Bill selected to discuss was one where a student drew connections between the 
organization of base 10 blocks into recursive groupings of 10 to the way stickers, packets (10 stickers 
in a packet) and envelopes (10 packets in an envelope) were being used in a place value activity.  Bill 
selected this clip because the student was able to recognize the similarities between the groupings of 
smaller units into larger units around the base of 10 showing his growing conception of place value. 
Although Kathy identified a clip that showed students’ reasoning about number patterns as 
noteworthy, she did not discuss how her teaching strategies were linked to the students’ ability to 
identify number patterns. She also made general comments about the difficulty grade one students 
experience in identifying number patterns, without any evidence, justification or suggestions of 
pedagogical approaches that would support their learning.  

 
 Level 1 Level 2 Level 3 Level 4 

What 
teachers 
notice 

Attend to whole class 
environment, behavior 
and learning to the 
teacher pedagogy 

Primarily attend to teacher 
pedagogy 

Attend to 
particular students’ 
mathematical 
thinking 

Attend to the relationship 
between particular students’ 
mathematical thinking  and 
between teaching strategies and 
mathematical thinking 

 Begin to attend to particular 
students’ mathematical 
thinking and behaviors 

  

How 
teachers 
notice 

Form general 
impressions of what 
occurred 

Form general impressions and 
highlight noteworthy events 

Highlight 
noteworthy events 

Highlight noteworthy events 

Provide descriptive 
and evaluative 
comments 

Provide primarily evaluative 
and some interpretive 
comments 

Provide 
interpretive 
comments 

Provide interpretive comments 

Provide little or no 
evidence to support 
analysis 

Begin to refer to specific 
events and interaction as 
evidence 

Refer to specific 
events and 
interactions as 
evidence 

Refer to specific events and 
interactions as evidence 

  Elaborate on 
events and 
interactions 

Elaborate on events and 
interactions 

   Make connections between 
events and principles of 
teaching and learning 

   On the basis of interpretations, 
propose alternative pedagogical 
solutions 

Figure 1. Noticing framework. 

We observed that there was alignment between high MKT and strong noticing abilities. Bill, who 
had high MKT also scored on average at level 3 with respect to what and how he noticed. However, 
Kathy who scored low on MKT, was level 3 on what she noticed and level 1 how she noticed. These 
results would suggest that to be able to identify significant incidents of students’ mathematical 
thinking and to attend to the relationship between such thinking and teaching strategies (key aspects 
of high level noticing) requires deep understanding of mathematical concepts and how students make 
sense of mathematical ideas (key aspects of MKT). On the other hand, low MKT may not be a 
significant in order to attend to particular students’ thinking but essential to making connections to 
instructional practices.  
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The relationship between teachers’ efficacy, their MKT and how they noticed was interesting. In 
particular, Bill had mid-low scores for both knowledge and personal efficacy, yet he had high levels 
of MKT and noticing. In contrast, Kathy had high scores for efficacy but demonstrated low levels of 
MKT and noticing.  We also observed that unpleasant emotions, such as anxiety and nervousness 
was positively related to how teachers noticed, while more pleasant emotions aligned with lower 
scores on how they noticed. In this context, we believe teacher efficacy may have a significant 
influential factor, in that Bill had fairly low confidence in his knowledge of math and teaching which 
may have encouraged him to pay more attention to students’ thinking in the class as well as how his 
teaching actions supported or hindered students’ reasoning. It may also have contributed to his 
feelings of anxiety throughout the experience. On the other hand, Kathy was very confident about her 
knowledge of mathematics and teaching so she may have attributed any struggles students had to the 
individual student, or students in general, therefore not focusing attention on how her teaching 
actions may have influenced their thinking. Overall, low knowledge and high efficacy aligned with 
more pleasant emotions, while high knowledge and low efficacy aligned with unpleasant emotions 
(e.g., nervousness, anxiety). 

Discussion 
It’s not surprising that a teacher with strong MKT is able to identify significant mathematical 

events, interpret them meaningfully and connect them with instructional practices. This finding 
aligns with existing research that suggests that high quality teachers are skilled at effectively utilizing 
students’ thinking to drive instruction. Of note however is that a teacher with low MKT can also 
attend to students’ thinking but may struggle to interpret the thinking or meaningfully connect it with 
pedagogical solutions. Our findings suggest there may be other factors at play or there are 
dimensions of MKT that may better support noticing. In this regard, the relationship between teacher 
efficacy and noticing provides some insight. Being overly confident about one’s mathematical 
knowledge and teaching may negatively influence a teacher’s response to observed students’ 
thinking, in that the teacher may overlook the ways teacher moves influenced students’ thinking 
(particularly in the case of errors or misconceptions) or may not have the knowledge needed to make 
connections to principles of teaching and learning or to propose alternative solutions. Further 
examination of the full corpus of data should provide greater insight into the nature and strength of 
the relationship among these constructs. 
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HOW STUDENT QUESTIONS IN MATHEMATICS CLASSROOMS ARE RELATED TO 
AUTHORITY DISTRIBUTION  

Melissa Kemmerle 
University of Michigan  
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This paper analyzes the questions students ask in two very different middle school mathematics 
classrooms. Both classrooms were taught by experienced and respected mathematics teachers, but 
the instruction was very different between the two classrooms. Mr. Cordoba characterized his 
instruction as student-centered, project-based, and focused on understanding. Mr. Ezzo used a more 
traditional approach. Classroom instruction was videotaped, student questions were highlighted and 
categorized, and instructional moves were analyzed. Results show that authority distribution in the 
classroom is connected to the types of questions students ask in mathematics lessons. 

Keywords: Classroom Discourse, Middle School Education, Equity and Diversity  

Objectives and Framework 
Studies show that teachers who distribute authority within their classrooms promote more 

productive discourse than teachers who maintain all the authority with themselves and with the 
textbook (Herbel-Eisenmann, 2007). An important component of classroom discourse is student 
question asking. This study seeks to build on Herbel-Eisenmann’s work by showing that the types of 
questions students ask in mathematics lessons are linked with the way authority is distributed in the 
classroom.  

Methods  
Two middle school mathematics teachers, Mr. Cordoba and Mr. Ezzo, were selected for this 

study because their students frequently ask questions in whole-class lessons and their instructional 
styles are very different from one another. Mr. Cordoba engages in complex instruction (Cohen & 
Lotan, 2014) and asks students to collaborate (more than half of class time is spent in small group 
work). He presents his students with tasks that require high cognitive demand (Stein & Smith, 1998) 
and states that students should be “active participants in mathematical activity through generating 
and discussing mathematical ideas in class.” Mr. Ezzo’s approach is what some might call 
traditional: every day class begins with a scoring of the previous night’s homework followed by a 
lecture on new material. Each night for homework, students in Mr. Ezzo’s class solve mostly 
context-free problems in the precise way they were taught by their teacher.  

Data for this study consisted of approximately 15 hours from each teacher of transcribed 
videotape of whole-class lessons (i.e. small group work was not transcribed). Extensive field notes, 
semi-structured interviews with each teacher, and student surveys were also used. All student 
questions were highlighted in the transcripts. These questions were then counted and coded using a 
categorization schema (Kemmerle, 2016) designed to highlight the different kinds of student 
questions asked during mathematics lessons. See Table 1 for a selection of the categories that showed 
up most frequently in the data. 

During whole class lessons, students in Mr. Cordoba’s classroom asked, on average, 11 questions 
per hour and these questions most often fell in the Mathematical Curiosity/Extension, Visual 
Representation (Conceptual), and Seeking Conceptual Information categories. Students in Mr. Ezzo’s 
classroom asked, on average, 56 questions per hour and these questions most often fell in the Correct 
Answer, Form of Answer, and Meeting Teacher’s Expectations categories.  
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Next, the video transcripts and interview transcripts were open-coded (Glaser, 1978) for 
instructional moves or instructional philosophies that might affect the questions students ask, and it 
was found that distribution of authority (Cobb, Gresalfi, & Hodge, 2009; Boaler, 2012) appeared to 
be related to the types of questions students asked during their mathematics lessons.  

Table 1: Abbreviated Categorization of Student Questions in Mathematics Classrooms 
 
Question Category Examples from Transcripts 

Form of Answer  -Do I have to show it as a repeating decimal, or can I round up? 
-I didn’t simplify, is that okay? 

Correct Answer -I got 74%. Is that right?  
-But what is the answer? 

Assessment/Grading -Could I get extra credit for this? 
-Can we do any of these ways on the test? 
-How many points are on the quiz? 

Meeting Teacher’s 
Expectations  

-Wait, do we copy down the percents bar model too? 
-Do you want us to draw it or label all the points? 

Seeking Procedural 

Information 
-How did you get 16? 
-What is your shortcut for filling in your t-table? 

Seeking Conceptual 
Information 

-Wait, how is it 3 out of 5? 
-Why did you have to cross out the 40 and the 10? 

Visual Representation 
(Conceptual or 
Informational) 

-If your x were to get bigger and then the trend line, would your 
points, can it ever cross the x line? 
-Where would it be on the graph? 

Mathematical Curiosity/ 
Extension  

-Can k be an odd number, like 27, and could you still have x and y 
be the same number?  
-If k were to be bigger and the k was negative, where would it be? 

 

Findings and Conclusion 
Mr. Cordoba and Mr. Ezzo handled authority very differently in their respective classrooms. 

During whole class discussions, Mr. Cordoba almost always stood in the back or at the side of the 
classroom and asked students to present ideas to each other. During one lesson, a group of four 
students gave a presentation to their classmates about indirect variation (y=kx). After their 
presentation, a few students in the audience asked fairly simple questions such as “Could you please 
repeat your summary statement because I couldn’t hear?” and “What was your k because I don’t see 
the point on the graph?” At this point, Mr. Cordoba instructed the class on what kind of questions he 
expected from them. He said, 

You guys have done a good job asking clarifying questions. Like I especially appreciate whoever 
asked Sophia to clarify her [ideas] because the first time I didn’t know what she was talking 
about, but the second time I understood it much better. Now I’m wondering if you have questions 
that would, not just clarifying questions, but questions that would push them further. Let me say 
why I’m saying that. Three of you have really clear summary statements. Remember I am 
looking for the summary statements to include statements about the graph, t-tables, and reasons 
and I don’t think any of you covered all three of those. So [to the audience] can you think about 
what you heard from each of them and ask them a question that pushes a little bit, so they can get 
full credit just like everybody else? 
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There are multiple norms depicted in this excerpt. First, Mr. Cordoba thanks the audience for 
being helpful. He also makes it clear that they are a community of learners, responsible for each 
other’s success. The audience is expected to listen carefully and take their peers’ explanation of 
mathematics seriously. Mr. Cordoba thus shares his authority with the four group members who are 
presenting; he expects them to explain their thinking using “graphs, t-tables, and reasons.” His 
expectation that the presenters use mathematical representations and reasons requires the presenters 
to first understand the content and second to explain it in a convincing way. Mr. Cordoba requires 
them to be the experts who have real mathematical knowledge to present to the class. In addition, he 
expects the audience to also have knowledge and understanding and to share in the responsibility of 
pushing the community forward in their mathematical understanding and their ability to explain it to 
the class.  

Immediately after Mr. Cordoba’s statement, audience members proceeded to ask the presenting 
group questions that fell mostly into the Mathematical Curiosity/Extension and Visual 
Representation—Conceptual categories. Here is a partial excerpt from the transcript: 

Student from Audience:  Did you notice any patterns on your t-tables? 
Student Presenter:  I noticed that when x was smaller, it had a bigger y and when x was bigger it 

had a smaller y. 
Student from Audience:  Is there a way that your point could cross the x and y axes?  
Student Presenter:  No, it could not, because in order for it to cross, a number times zero would 

have to equal 16 and a number times zero is zero, so it couldn’t cross. 
Student from Audience:  Are any of you guys, do you know what would happen if your k was 

negative? 
Student Presenter:  What would happen to what? 
Student from Audience:  If your k was negative, would you notice any patterns? 
Student Presenter:  My graph, if my k value was negative, then I would have to multiply a 

negative number by a positive number to get my negative k so it would be down here (points 
to graph), depending on if the x number is negative or the y number is negative. 

The shift in authority is clear here. Students are the source of mathematical ideas for each other. 
Student questions from the audience guide and direct the discussion. Mr. Cordoba is not the source of 
all mathematical knowledge; instead, he encourages students to ask each other and answer 
meaningful questions, thus shifting expert authority away from himself. On other occasions, Mr. 
Cordoba said the following statements to students who were asking questions to the presenting 
group, “Can you try your question again because what you are asking is really important and here’s 
why…” and “I’m really glad you asked that, Luis” and “That’s a good question, Carlos, did you 
understand her answer?” These statements encourage students to ask meaningful and productive 
mathematical questions. 

In Mr. Ezzo’s classroom, in contrast, the teacher stood in the front of the classroom almost 100% 
of the time and was the only person in the classroom who wrote on the Smartboard. When a student 
Emily asked, “I didn’t simplify, so is that okay?” Mr. Ezzo replied, “No, that’s wrong. Sorry.” This 
simple statement implies that Mr. Ezzo is the ultimate authority on whether or not an answer is 
correct or incorrect. During a daily homework check, the following dialogue occurred:  

Monique:  When you do 21 over 25, is that the fraction? 
Mr. Ezzo:  Yes, that’s the fraction and you have to convert it to a decimal and a percent. 
Emily:  And you already have the fraction, but no, [the textbook] says to write a fraction and a 

percent, so the answer would actually be… 
Mary:  Do we have to draw it like that? 
Emily:  It says to write a fraction and a percent, so would the answer be 21 over 25 and 84%? 
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Mr. Ezzo:  I’m going to answer Mary’s question first, Emily, and then I’ll come to you. 
Emily:  Sorry. 
Mr. Ezzo:  That’s okay. So how did you do it, Mary? 
Mary:  I just wrote the steps… 
Mr. Ezzo:  Perhaps you did it like this…(writes on board). My friend Mary punched 21 divided 

by 25 into her calculator and the calculator said 84 hundredths, and she converted the 84 
hundredths into 84%. 

Emily:  But wait, what’s the answer then? 
Mr. Ezzo:  84% 
Emily:  Yeah, but it says fraction and a percent, so would it be 21/25 and 84%? 
Mr. Ezzo: Uh yes, so I’m looking for this (points to the two forms of the answer on the 

Smartboard). 

In this excerpt we see that not only is Mr. Ezzo considered the authority on mathematics in the 
classroom, but also the textbook is revered as authority. Throughout his lessons, Mr. Ezzo 
encouraged students to participate and he was kind, but his statements such as “That would be 
wrong, dear” and “Yes, that is correct” indicate that students should look to him as the authority and 
rely on him to determine the mathematical validity of their work. Mr. Ezzo’s students asked many 
more questions per hour than Mr. Cordoba’s students, but this is, in part, because most questions in 
Mr. Ezzo’s class can be answered in a quick and concise (sometimes yes or no) way. 

The data above show that authority distribution in a mathematics classroom impacts the types of 
questions students ask. Through focusing on authority issues as well as reflecting on the types of 
questions we want students to ask, we can help teachers begin to see themselves and their students as 
mathematicians at work together. This does not mean that teachers need to relinquish authority 
completely, but rather to share authority in a community of inquisitiveness, respect (for each other 
and for mathematics), and productivity.  
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MASTERY-BASED GRADING: AN EXPLORATION OF ONE TEACHER’S 
IMPLEMENTATION OF REFORM GRADING PRACTICES 
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The following paper is a brief report of a qualitative case study of a mathematics teacher as he 
planned for and implemented instruction in a mastery-based learning classroom. This study took 
place at a college preparatory high school in a large community in the Rocky Mountain region. 
Interviews, classroom observations, and lesson reflections were collected over the course of one 
week. The data were analyzed for common tensions that arose within the teacher’s activity system. A 
rich description of the teacher’s experiences includes a discussion of how timing and content 
coverage, lack of student preparation, and mastery-based grading impacted how the teacher planned 
for and implemented instruction.  

Keywords: Teacher Beliefs, Instructional Activities and Practices, High School Education 

Successful mathematics teaching involves navigating a complex series of decisions and 
consequences with respect to how teachers engage in classroom instruction (Schoenfeld, 2008). 
Schoenfeld (2008) argued that mathematics teachers mold classroom instruction by identifying goals 
and designing classroom activities to achieve those goals. Specifically, teachers are constantly 
making decisions, some obvious and other less so, which impact the flow of classroom activity. The 
purpose of this qualitative case study was to explore the planned and unplanned decisions made by a 
mathematics teacher, and how those decisions impacted instruction and student learning 
opportunities as classroom instruction continued from one day to the next. This paper will focus on 
the first of three research questions: What do secondary mathematics teachers attend to during the 
lesson planning process?  

Methods 
Mr. Jones is a secondary mathematics teacher who was working towards implementing reform 

teaching practices. During the time of the study, Mr. Jones was in his fourth year of teaching at a 
college preparatory high school in a large community in the Rocky Mountain region. This research 
study focused on Mr. Jones’ planning and implementing instruction in an upper-level, college 
preparatory mathematics course, which covered topics studied in a traditional college algebra course. 
Students in the course included sophomores, juniors, and seniors of whom Mr. Jones described most 
as being of advanced ability level. 

A semi-structured initial interview was conducted to understand Mr. Jones’ initial plans for the 
observed lessons. In addition to instructional plans, the interview focused on better understanding the 
classroom norms, students, and typical lesson design for the class under consideration. That is, the 
initial interview was intended to gain an understanding of Mr. Jones’ initial activity system 
(Engestrom, 2015). Data collection involved audio- and video-recording lessons during one week of 
the focus course. Additionally, Mr. Jones was asked to record a lesson plan summary prior to 
teaching each lesson his goals and plan for the upcoming lesson, his rationale for the flow of the 
mathematical concepts, and other lesson plan decisions. During the day following the last classroom 
observation, Mr. Jones participated in a stimulated-recall interview during which he was asked his 
perspective on the success of the observed lessons as well as to reflect on specific, video-recorded 
episodes of classroom instruction.  
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Cultural-historical activity theory (CHAT) is a perspective of human cognition which takes as its 
minimal unit an activity system consisting of six components: subject, object, instrument, 
community, division of labor, and rules (Engestrom, 2015). Activity systems transform when 
tensions or contradictions emerge between or within the components of an activity system. With 
respect to the mathematics classroom, these tensions or contradictions have a direct impact on what 
the teacher attends to when planning for and implementing instruction. In the present study, all 
interview and classroom observation data were transcribed and coded based on the CHAT coding 
scheme developed by Herbst and Chazan (2012). Specifically, coded data were analyzed for common 
themes in the form of tensions or contradictions within the transformation of Mr. Jones’ classroom 
activity system over the course of the observed lessons.  

Mastery-Based Learning 
A significant characteristic of Mr. Jones’ teaching philosophy and classroom policy is his use of 

something he called competency-based grading; this is commonly called mastery-based grading 
(Vatterott, 2015). Mastery-based learning differs from more traditional learning philosophies in that 
“instead of teach, test, and move on in one large group, learning is a series of masteries for individual 
students – teach, check for understanding, apply learning, get feedback, revise learning, and get more 
feedback until mastery is achieved” (Vatterott, 2015, p. 29). Students are given a list of learning 
targets on which they must demonstrate mastery by the end of a learning term (e.g., a semester). Over 
the course of that learning session, students will be given multiple opportunities to demonstrate 
mastery with only their best attempt being used as part of final grade calculation (Vatterott, 2015). 
Implementation of this learning model requires a fundamental shift in classroom activity from a 
teacher-centered classroom to a more individualized, student-centered classroom (Vatterott, 2015). 

Summary of the Activity System 
Analysis of data self-reported by Mr. Jones during his initial, semi-structured interview provided 

insights into his activity system (Engestrom, 2015). The following is a summary of the subject, 
object, instruments, community, division of labor, and rules. 

Mr. Jones expressed enjoyment in learning mathematics. He believed that this stemmed from 
mathematical problem-solving and the tools mathematics provides for problem-solving in the real-
world. He believed that it is important to make meaningful connections between the mathematical 
concepts being taught and the real-world applications of that content.  

Mr. Jones expressed both short- and long-terms goals. These are the object of his activity system 
(Engestrom, 2015). For the short-term, he wanted to focus on two main goals: (1) review of previous 
content and (2) introduction of new content. Specifically, he wanted to give his students an 
opportunity to go back and review the mathematical concepts, or learning targets, that were missed 
on the most recent quiz as well as move forward with an exploration of functions with the ultimate 
goal of discussing inverse functions. As for long-term goals, Mr. Jones acknowledged that there was 
a set amount of curriculum that he was expected to cover during the semester. This was especially 
the case in the observed course as it was the first in a two-course sequence. 

Mr. Jones noted several instruments that he utilized during lesson planning and instruction. These 
instruments, or tools, included a list of objectives for which students needed to demonstrate mastery, 
a school resource website, and the course curriculum. Based on prior courses, Mr. Jones had a 
complete map of the course over the entire academic year. This resource served as a pacing guide 
and as a list of objectives for achieving mastery. With the goal of being able to spend more time in 
class on exploration, Mr. Jones utilized an online course website where he posted class materials and 
links to videos for students to watch. In addition, this website included discussion boards that Mr. 
Jones used to identify student misconceptions and prior knowledge before class instruction. As a 
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college-preparatory course, Mr. Jones was restricted by an official curriculum. However, he used this 
curriculum as a resource for identifying mathematical tasks and course activities. In addition, he used 
previous exams as a resource for developing new assessments as well as homework assignments. 

Mr. Jones identified multiple members of the community which had either direct or secondary 
impact on his lesson planning process. In addition to himself, this community included his students, 
their parents, students in another section of the same course, the members of the mathematics 
department, and the administrators in the school district. His students consisted of multiple grade 
levels who, in Mr. Jones’ estimation, had varying degrees of academic maturity, desire to learn, and 
mathematical understanding. Based on his philosophy of mastery-based grading, this was expected 
and encouraged. Mr. Jones believed that his students’ parents were supportive of this new grading 
policy because many expressed a dislike for learning mathematics and, therefore, valued any 
attempts to teach it better than what was their experience. Mr. Jones perceived support for his 
implementation of mastery-based learning practices from both the other members of the mathematics 
department as well as administrators in the school district. 

With respect to his classroom, Mr. Jones described the division of labor in terms of his role as the 
teacher and his students’ role as a class or individual students. As the classroom teacher, it was his 
responsibility to present the content in such a way that makes mathematical connections clear as well 
as makes the mathematical concepts relevant to students. In contrast, Mr. Jones expected his students 
to be active participants during class instruction. Mr. Jones believed that it was important for students 
to ask questions. Mr. Jones encouraged his students to be reflective learners. Students were expected 
to work continually towards mastering the course content.  

Mr. Jones focused primarily on how the philosophy of mastery-based learning influenced his 
classroom expectations. He argued that students shouldn’t stop learning following a test and that 
students should be able to improve their grade. As a result, it was the expectation that students would 
continue to work towards mastering the learning targets covered by a specific test. Mr. Jones 
implemented a soft deadline when it came to collecting homework. That is, homework was never 
truly due and students had access to a complete answer key. In Mr. Jones’ view, homework was a 
formative opportunity for students to measure their progress towards mastery. 

Lesson Planning Tensions 
Data analysis revealed three lesson planning tensions that were pervasive over the course of the 

week of instruction. These tensions involved timing vs. content coverage, lack of student preparation, 
and mastery-based grading. 

Timing vs. Content Coverage 
Mr. Jones expressed concerns about taking the time to explore concepts in depth while making 

sure that all important mathematical concepts were addressed. Adding to the complexity of this issue, 
the mastery-based learning model, adopted by Mr. Jones, emphasized that learning is individualized 
where students are given the opportunity to work at their own pace. This manifested itself as a 
tension among the object, instruments, and rules within Mr. Jones’ activity system. Mr. Jones found 
himself having to make instructional decisions during lesson planning that took into consideration a 
balance of coverage, timing, and individual student needs. This resulted in a fewer application 
problems than he would have liked to have done. 

Lack of Student Preparation 
In order to help reduce the amount of content coverage needed during class, Mr. Jones 

implemented an online course website where he posted resources for students to learn basic skills 
prior to attending class with the hope that class time could be spent focusing on more advanced 
problems and topics. Students were expected to complete discussion board questions in order to help 
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Mr. Jones gauge student understanding. During the observed lessons, students were not completing 
these pre-class tasks. This tension among the object, division of labor, and rules within Mr. Jones’ 
activity system forced Mr. Jones to modify his desired lesson plan. Instead of focusing on 
exploratory activities aimed at helping students grow their understanding as well as provide time for 
students to go back to prior concepts, he spent more class time engaging in direct instruction in order 
to cover all of the concepts necessary for class. 

Mastery-Based Grading 
A significant component of Mr. Jones’ mastery-based learning model was the policy that students 

would only be graded when they were able to achieve mastery of a particular concept. When a 
student achieved the basic level of mastery, they were given an 80% in the gradebook, otherwise they 
were given a 0% in the gradebook. Students could improve their grade above an 80% by working 
beyond basic mastery.  This policy caused a tension between the community and the rules within Mr. 
Jones’ activity system. For many of his students, this was their first experience with this type of 
grading system. During the week of observations, the students were returned their first quiz. On this 
quiz, there were quite a few missing, or below mastery, scores. As a result, there was a significant 
amount of stress surrounding their grades. Mr. Jones spent time during every lesson reassuring 
students that their grades will improve as long as they put forth the effort to obtain content mastery. 
This caused Mr. Jones to reduce the amount of time spent on instruction than he had planned. 

Discussion and Future Research 
This case study focused on the experiences of a single mathematics teacher while planning for 

and implementing instruction in a mastery-based learning classroom. For Mr. Jones, timing and 
content coverage, lack of student preparation, and mastery-based grading impacted how he planned 
for and implemented instruction over the course of the week of observed instruction. His 
instructional issues were supported by general education literature focused on mastery-based grading 
(Vatterott, 2015). However, there is limited available literature focused on implementation of these 
models in mathematics classrooms. Future research is needed to explore how mastery-based grading 
models can be implemented in mathematics classrooms. 
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MATHEMATICS LESSON PLANNING PRACTICES OF NOVICE ELEMENTARY 
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Lesson planning is a focal activity in elementary teachers’ teacher preparation, however existing 
research suggests that teachers’ lesson planning practices shift as they enter the profession. In this 
paper, we report results from a large-scale project that interviewed 99 early career teachers (ECTs) 
about their planning for mathematics lessons twice during the 2015-2016 academic year. We 
analyzed transcripts to determine factors related to lesson planning, including when they conducted 
their planning, who they planned with, and what resources they used when planning. Our findings 
also shed light on district-level influences on teachers’ use of resources when planning.  

Keywords: Elementary School Education, Instructional Activities and Practices, Policy Matters 

Introduction 
Following the widespread adoption of the Common Core State Standards (NGA & CCSSO, 

2010) and the accompanying federal reforms such as Race to the Top, early career teachers (ECTs) 
have faced unprecedented pressure to fulfill expectations of “highly effective” teachers, such as 
producing strong results on standardized assessments with their students, early in their careers. The 
supports ECTs receive from their schools and districts, including mentoring offered through 
interactions with school-based colleagues, can help them face such pressures. As lesson planning is a 
common practice shared among novice and experienced teachers alike, albeit manifesting in different 
forms (Borko & Livingston, 1989), the broad focus of our inquiry is to understand the nature of 
ECTs’ planning for mathematics instruction in this “high-stakes” era, including how planning 
practices shift as ECTs gain more experience and the role of institutional factors, such as mentoring 
from school-based colleagues, on ECTs’ planning. 

Researchers have long faced the challenge of understanding what teacher planning is and how 
teachers conduct it. The focus of existing research on planning has largely considered the time units 
that characterized teachers’ planning (e.g., daily, weekly, unit) (Clark & Peterson, 1986) and 
concluded that unit planning was often unproductive because of the unpredictability of classroom life 
(e.g., McCutcheon, 1980). While most teachers do not produce written plans on a regular basis 
(McCutcheon, 1980; Morine-Dershimer, 1979), teachers’ routine planning often involves practices 
such as envisioning connections within the academic content and determining activities students will 
engage with to learn the content (Morine-Dershimer, 1979; Mutton, Hagger, & Burn, 
2011).  However, ECTs may struggle with these planning practices, as they lack the experience to 
visualize how their mental plans are likely to play out (Norman, 2011) and their teacher preparation 
does not fully prepare them to plan capably given the pressures and time constraints of full-time 
classroom instruction. Thus, novice teachers are likely to need targeted assistance for planning 
(Mutton, Hagger, & Burn, 2011). 

Given this conceptual foundation, the research questions guiding our work are: What is the 
nature of elementary ECTs’ mathematics lesson planning practices? What district-level influences do 
ECTs mention as influential on their lesson planning practices? 



Teaching and Classroom Practice 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1235 

Methods 
This study was a part of a larger study investigating the mathematics instructional practices 

of elementary ECTs in the Common Core era and the relationship between instructional practices 
and factors such as collaboration with school-based colleagues and the instructional practices of 
those colleagues. We conducted a lesson planning interview with each participating ECT (n = 
99) in conjunction with observations of their mathematics instruction over the course of two 
consecutive days in both fall 2015 and spring 2016. All participants were within the first four 
years of their careers, teaching grades K-5. 

The research team members received training on interview techniques prior to conducting 
interviews, and shadowed an experienced team member for the first few observations before 
conducting observations and interviews on their own. Each team member was instructed to 
follow the interview protocol closely and only use follow-up questions to ensure that questions 
were answered clearly. The interview data was audio-recorded, and each interview was fully de-
identified and transcribed prior to analysis. The results in this paper focus on participants’ 
responses to the following set of questions, asked in this order: How did you start? How did you 
decide what content to focus on? What resources did you use when you planned this lesson and 
why? How did you decide to use these resources? When did you do the planning of today’s 
lesson? Did you talk with any other teachers or staff to help you prepare for this lesson?  

Analyses of responses began by having individual research team members review a sample of 5 
responses to a single question. From their review, they generated a set of codes they felt captured the 
essence of the majority of responses to the question. Then, the entire research team analyzed 
additional responses to assess the utility of the initial coding frameworks for each question. The team 
met bi-weekly to discuss individuals’ reflections on the emerging codebook and to suggest 
improvements. Then, in the final stage, individual team members were assigned to focus on all 
responses for a single question and review the codes assigned to make sure codes had been applied 
consistently and revise coding if necessary. This method allowed for collective input and review of 
the codebook for all questions by all research team members, rather than solely obtaining inter-rater 
reliability between two of the raters for analyses of each question. 

Results 

With Whom Are ECTs Planning Their Mathematics Lessons? 
Overall, most ECTs in our sample engaged in some aspects of mathematics lesson planning with 

other school-based colleagues (n=73 in fall 2015) rather than planning solely on their own (n=26). 
The nature of these discussions, however, varied among the participants and could be described as 
one of four types: (1) informal collegial conversations; (2) formal collegial conversations; (3) 
informal planning and (4) formal planning.  These four categories describe the level of engagement 
(collegial conversations tended to be more general compared with planning activities which focused 
specifically on what to do and what resources to use) and routine (informal interactions were not 
arranged in advance compared to formal interactions that happened as the result of meetings being 
set by teachers/teams/schools/districts). 

Although many ECTs described interactions with others when planning, some answered “no” 
when asked specifically: Did you talk with any other teachers or staff to help you plan this lesson? 
For example, one ECT described talking with a grade-level peer regarding “if they typically find this 
is a more difficult lesson” for the purpose of gauging what to expect from her students during the 
lesson, yet she did not consider this conversation to be planning with a colleague. Overall, we found 
our participants did not consider discussing resources, struggling students, or the curriculum in 
general with others to be planning with a colleague. 
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When Do ECTs Plan for Mathematics Lessons?  
We received three types of responses to the question When did you do the planning of today’s 

lesson?, either (1) day-by-day; (2) weekly overview planning, with some modifications day-by-day; 
or (3) weekly, with little to no modification. One trend we noted was shifts in ECTs’ responses from 
the fall interview to the spring interview. Notably, the majority of ECTs (fall, n=48; spring, n=63) 
indicated that they planned for their mathematics lessons on a weekly basis, usually with their fellow 
grade-level teachers in their building (as noted in the findings above). Approximately 30 ECTs 
indicated that, in either semester of observation, they also planned weekly but with modifications 
based on assessment of student understanding on a daily basis. Yet, in the fall, 24 of the 99 
participants indicated that they planned primarily day-to-day, whereas, in spring, only 11 indicated 
that they planned day-by-day. While not surprising, the findings suggest that ECTs may start the 
school year planning day-by-day, but are likely to switch to either planning weekly, or weekly with 
some daily modifications as the school year continues. 

What Resources Do ECTs Use When Planning Mathematics Lessons? 
Participants mentioned a variety of resources they utilized for mathematics instructional planning 

in response to the question: What resources did you use when you planned this lesson and why? as 
well as questions such as How did you start? Overall, a total of eight coding categories arose from 
ECTs’ responses to the interview prompts: (1) prior classroom experience; (2) professional 
development; (3) pacing guides or curriculum maps; (4) students’ performance on in-class 
assessments; (5) students’ standardized test performance or specific items from standardized tests; 
(6) learning standards (e.g. Common Core State Standards or the specific content objectives of a unit 
or lesson); (7) teachers’ knowledge of students’ understanding, based on students’ work on non-
assessment-oriented classroom tasks; and (8) supplemental materials from sources online such as 
Teachers Pay Teachers. Results show that the ECTs primarily draw from supplemental materials 
when planning (fall, n=64; spring, n=60), along with pacing guides or curriculum maps (fall, n=57; 
spring, n=54). In general, the number of ECTs using each type of resource decreased from fall to 
spring, except for the number of teachers using learning standards as a resource, which increased 
(fall, n=34; spring, n=40). Ongoing analysis will unpack the different types of resources coded into 
the category of supplemental materials. 

What External Factors are Salient for ECTs’ Mathematics Lesson Planning? 
Throughout the interview, many (though not all) ECTs discussed how various external factors, 

particularly pertaining to the institutional context in which they work, influenced how, when, and 
with what resources they conducted their planning of mathematics lessons. We characterized their 
descriptions as aspects of fidelity, using a notion of fidelity that resonates with the definition 
“faithfulness to a person, cause, or belief” (Fidelity, 2017). Three codes related to fidelity to the 
curriculum emerged in ECTs responses, namely: (1) Fidelity to scope of curriculum, with option to 
modify sequence; (2) Fidelity to scope and sequence; (3) Fidelity to “script” of curriculum. 

ECTs’ responses were most frequently coded as fidelity to scope of curriculum, with option to 
modify sequence. For example, ECTs made statements such as:  “I can’t tell you specifically if we 
follow directly the, the pacing guide. We get to choose the order” (231.062, spring). To a lesser 
extent ECTs described fidelity to scope and sequence of curriculum, with statements such as: “So we 
did a scope and sequence, one for the first half of the year and one for the second half of the year and 
then we just kind of follow that to see. It goes weekly what we are suppose[d] to be doing this week, 
what are we suppose[d] to be covering” (121.053, spring). Finally, some ECTs (n=28) stated 
following the curriculum in a scripted fashion (“everything is all scripted. It’s all laid out for you,” 
120.011, fall). 
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District directives pertaining to curriculum use appeared to influence ECTs’ fidelity to the 
curriculum to a larger extent than the nature of the curriculum provided. For example, while District 
230 provided the Go Math curriculum for teachers, a curriculum that provides step-by-step guidance 
for how teachers are to implement the lessons, the majority of participants from that district indicated 
that they closely followed the scope but took liberties to adapt the sequencing of the content. In 
contrast, teachers from District 210 all described that they followed the scope and sequence of the 
curriculum (Everyday Math) closely. Ongoing work involves investigating the fidelity of 
implementation during the video-recorded lesson observations to triangulate evidence of teachers’ 
stated fidelity to the curriculum. 

Conclusion 
Taken together, the results present a snapshot of mathematics lesson planning practices for ECTs 

in an era of accountability. Some trends are promising; ECTs increasingly seek out school-based 
colleagues as resources when planning. However, other findings suggest that teachers may not 
modify plans on a daily basis in response to student progress. As we continue to develop this line of 
inquiry, we plan to analyze how these variables interact with other data that we have gathered from 
surveys and observations. Most importantly, this descriptive work can inform those working in 
instructional improvement through policy and professional development to consider ways to change 
institutional supports and constraints so as to create more effective mechanisms for ECTs to prepare 
to engage in high quality instruction for all students.  

Endnotes 
1Research reported in this paper was supported by the National Science Foundation and the 

William T. Grant Foundation under award numbers (NSF REAL 1420532, WT Grant 182764). 
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MATHEMATICS PEDAGOGY AS SOCIAL JUSTICE ACTIVISM:  
THE CASE OF MS. LARA 

 Manjula Peter Joseph Jenna Tague 
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This case study occurred in a culturally, ethnically, and linguistically diverse fifth grade classroom. 
Ms. Lara’s (pseudonym) mathematics pedagogy exemplified equitable teaching practices. Data from 
video recordings of lessons and interviews were coded using equity and social justice pedagogy 
codes to identify nuances of social justice mathematics pedagogy. The findings present the teacher’s 
activism for social justice, and have implications for teacher practice and teacher education.   

Keywords: Equity and Diversity, Elementary School Education, Instructional Activities and Practices 

Introduction 
Teaching mathematics for social justice is understood in multiple ways - teaching about social 

justice issues using mathematics, teaching mathematics with a social justice lens, or teaching students 
to use mathematics to challenge social injustices (Gutstein, 2006). Rarely do we find a discussion 
about a teacher’s pedagogy as work for social justice. Imagine a classroom where students are 
accepted for who they are and respected for what they bring, especially when, some of what they 
bring is pain and struggle. Not all students have such an opportunity and students thus marginalized 
continue to under-perform. Achieving equity involves creating opportunities for all students to access 
engaging mathematics including high quality teaching and pedagogy. Equity in mathematics 
education remains elusive for various reasons, such as teachers with fewer mathematics experiences 
and lower Mathematics Knowledge for Teaching (MKT) (Hill, Rowan, & Ball, 2005). This study 
identifies pedagogical practices, and argues that development of such pedagogy is the teacher’s 
activism for social justice.  

Theoretical Framework 
Four key features of teaching for equity are commonly agreed upon by multicultural education 

theorists: 1) recognizing that racism exists at individual, institutional, and cultural levels, 2) racism is 
perpetuated in educational settings, both in curriculum and practice, 3) the purpose of education must 
go beyond content knowledge and passing standardized tests, and 4) building students’ critical 
consciousness must be an expected outcome of education. Banks and Banks (1995) describe equity 
pedagogy as teaching that is dynamic, by being strongly student-centered and flexible in being able 
to cater to individual student needs. Ladson-Billings (1995) posits a culturally relevant pedagogy: 
“specifically committed to collective, not merely individual, empowerment” (p. 160); a pedagogy 
that places high expectations on all students, and helps them achieve academic excellence, cultural 
competence, and critical consciousness. Three dimensions of a teacher’s pedagogy are considered 
critical to equitable mathematics instruction: focus on rigorous mathematics content, learner-
responsive pedagogy, and application of real-world contexts (Erchick, Joseph, & Dornoo, 2014; 
Gutstein, 2006). Students also need the opportunity to understand the world critically and become 
agents of social change (Banks & Banks, 1995; Gutstein, 2006). Studies are needed to inform the 
“theoretical understanding of the issues as well as [our] practical efforts to reduce existing 
disparities” (Gutstein, 2006, p. 95). This study, which is part of a larger study (Joseph, 2013), fulfills 
such a need. 



Teaching and Classroom Practice 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1239 

The Study 
This interpretive ethnographic study took place in a fifth-grade classroom in a low performing 

urban school. Student-demographics showed 61.4% non-white, 89.9% on free/reduced lunch, and 
20.5% limited English proficiency. The participant, Ms. Lara, provided a potential exemplar of 
teaching for equity and social justice. She has a certification in special education and Montessori 
training. She completed part of a doctoral program in Educational Philosophy, has 30+ years of 
teaching experience, and was invited to Liberty Elementary because of her commitment to students. 

Data Sources and Analysis 
Multiple sources of data informed the study (Joseph, 2013): audio-recordings of interviews, 

video-recordings of teaching sessions, student work samples, field notes, and participant reflective 
notes. Data was analyzed using a research-based codebook (shown in Table 1.)  

Table 1: Equity and Social Justice Mathematics Pedagogy Codebook (Joseph, 2013) 
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Esmonde (2009) 

SVA Fore-grounding Student Voice and 
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EMR Explicit attention to Mutual Respect  Bartolome (1994) 

ECT Encouraging Critical Thinking 
Gutstein (2006) 
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The research-based codebook consists of instructional practices in teaching mathematics for 
equity and social justice. They are grouped into four categories: content objectives (teacher’s 
attention to mathematics), pedagogical orientation (purposeful support of students as learners), 
contextual relevance (awareness of instructional context), and social justice objectives (intentionality 
for student self-empowerment). Transcripts were chunked collaboratively coded, and reached inter-
rater reliability of 85%. 

Key Elements of Ms. Lara’s Work 

1. Developing students’ critical thinking as a personal process – Ms. Lara’s activism was seen 
in providing students opportunities to develop critical thinking skills. She required students to 
reflect on their realities, make choices, voice their decisions, and make a conscious decision 
to learn. 

2. Having informal and informative assessment strategies – Assessments tend to be framed in 
ways that disadvantage students who are from cultural and linguistic backgrounds different 
from the school (Morgan, 1999). Ms. Lara’s informal continuous assessment of her students 
helped her to ‘keep her finger on the pulse’ of her classroom and learners. 

3. Intentionality in getting to know her students – Ms. Lara made deliberate choices in her 
commitment to her students – work in a high-need environment, understand, and connect 
with students. She communicated with her students to know them – their context, their hopes 
and aspirations, and made instructional decisions based on that knowledge. 

4. Helping students build mathematical and social identities –Ms. Lara’s practice characterized 
student identity building through collaboration. Her classroom represented a ‘learning 
community’ in which students from all ethnic, cultural, language and ability groups engaged 
in learning and legitimate participation (Lave & Wenger, 1991) to produce knowledge and 
benefit in positive ways both personally and as a community. 

5. Students as the locus of authority for both mathematics and instruction - Having students as 
the locus of authority meant focusing on student thinking. Ms. Lara’s students were 
invigorated to think deeply and take responsibility for their participation. From being often 
considered ‘deficit’ in their mathematical knowledge, her students became endowed with 
credibility and had their ideas valued.  

6. Paying explicit attention to “connected knowledge” – Making connections is required in the 
process of helping students learn mathematics. Ms. Lara not only made connections through 
multiple representations of content and across content areas, but she also made connections 
with students’ lived experiences.  

Implications for Teacher Practice and Teacher Education 
Providing equitable learning environments for students in mathematics classrooms is a 

challenging endeavor. Besides needing in-depth MKT, teachers need to facilitate ‘bringing the world 
into the classroom’ (Gutstein, 2006). Teachers often reject the idea based on the perception that 
attending to social justice means moving away from rigorous content (Erchick & Tyson, 2011). 
Another reason for rejecting the idea of teaching mathematics for social justice is that teachers 
believe that it requires curriculum and resource changes over which they have little control. This 
study provides a vision of social justice mathematics pedagogy where subtle actions can produce 
classrooms with no barriers to learning: classrooms where every child is provided the unique 
opportunity to explore, learn, know their voice is heard, and follow their dreams.  
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Challenges to Social Justice Pedagogy 
Teachers like Ms. Lara face many challenges to their work, such as policies that call for strict 

adherence to a curriculum detailing step-by-step instructions, standardized testing, and programs that 
are not necessarily aligned with student needs. Standardized tests continue to show students from 
linguistically diverse and poverty backgrounds as academically unsuccessful. This has grievous 
impact on student confidence and leads to students accepting this as a sign of their inability and 
giving up. Students’ lack of effort and teachers’ acceptance of their lot may lead to a vicious cycle of 
a society that continues to marginalize underserved communities. In such a context, a teacher’s role 
is critical. Ms. Lara found ways to negotiate these challenges by using her own means of assessing 
students through verbal communication and representations, and finding ways to help students regain 
confidence in themselves, their abilities, and even take pride in what they know.  

In understanding the kinds of knowledge teachers bring to their work for equity that include 
mathematical and pedagogical knowledge, Gutierrez (2012) added political knowledge: “negotiating 
the world of high stakes testing and standardization, connecting with and explaining mathematics to 
community members and district officials, and buffering oneself, reinventing, or subverting the 
system in order to be an advocate for one’s students.” (Gutierrez, 2012) This aspect of a teacher’s 
work for social justice is perhaps the most crucial. 
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MEASURING RECOGNITION OF THE  
PROFESSIONAL OBLIGATIONS OF MATHEMATICS TEACHING 

  
 Patricio Herbst Inah Ko 
 University of Michigan University of Michigan 
 pgherbst@umich.edu  inahko@umich.edu 

We show validation data of surveys that estimate high school teachers’ recognition of four 
obligations of the mathematics teaching profession. Measures of internal consistency show three 
instruments reliably measure three of the four obligations, while the fourth has lower internal 
consistency. Factor analyses support a 3-factor model for the disciplinary obligation and 2-factor 
models for each of the individual, institutional, and interpersonal obligations. We inspected 
correlations between recognition of obligations and teachers’ beliefs: Low correlations found 
suggest recognition of obligations and beliefs are different constructs.  

Keywords: Instructional Activities and Practices, Measurement, Teacher Beliefs, Research Methods 

The Study of Mathematics Teaching: Background and Theoretical Framework 
Our research contributes to theoretical and methodological progress understanding the work of 

mathematics teaching. Teaching has often been described as the expression of teacher characteristics 
or as the enactment of behaviors (Shulman, 1986). In mathematics education these have led to studies 
of teachers’ beliefs and teacher knowledge (e.g., Even, 2009; Leatham, 2004), on the one hand, and 
studies of classroom discourse, norms, and patterns of interaction (e.g., Cobb, 1998) on the other 
hand. These two approaches have complemented each other, often drawing data from classroom 
observations, but seeing it alternatively as projection of an individual teacher goals, beliefs, and 
orientations (Schoenfeld, 2010) or as adaptations of the teacher to the context of his or her 
interactions with the students and the content (Voigt, 1985).   

Less prominent has been attention to how the environments of instruction (Cohen, et al., 2003) 
frame both what it means to be a mathematics teacher and what a teacher is required to do in 
mathematics teaching. Yet these environments warrant the encounters among teacher, students, and 
content. How do those environments create expectations that frame the position of mathematics 
teacher? Herbst and Chazan (2012) proposed the notion of professional obligations to identify those 
expectations. The position of the mathematics teacher obligates mathematics teachers to stakeholders 
that look at mathematics teaching from four different perspectives, which Chazan, Herbst, & Clark 
(2016) call Knowledge, Client, Society, and Organization. From the Knowledge perspective, 
mathematics teachers are obligated to the discipline of mathematics--to engage students with 
mathematically correct knowledge and practice. From the Client perspective, mathematics teachers 
are obligated to the individual students--to tend to their cognitive, emotional, physical, and other 
needs. From the Society perspective, mathematics teachers are obligated to the interpersonal 
collective of their class--to promote social values such as fairness and respect. From the Organization 
perspective, mathematics teachers are obligated to institutional policies and practices of the system, 
district, school, and department.  

These obligations are hypotheses; confirmation requires looking at how much mathematics 
teachers themselves recognize being under those obligations in contrast with other people that might 
not be so obligated. We developed the PROB surveys to measure the extent to which teachers 
recognize each of the four obligations and describe its properties below.   
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The PROB Surveys 
There are four PROB surveys, PROB-MATH, PROB-INDV, PROB-INTP, and PROB-INST, 

designed to measure recognition of the obligations to the discipline, the individual student, the 
interpersonal collective of the class, and the institutions of schooling respectively (see also Herbst et 
al., 2014). Each of the items in all four surveys asks participants to consider a statements that 
avowedly describes mathematics teaching (e.g., "Mathematics teachers take time to discuss school 
policies") and then asks participants to “Rate the degree to which mathematics teachers are expected, 
as professional educators, to act in the manner that this statement describes” using a 4-point Likert-
type of scale that ranges from (1 = Teachers are never expected to act in this manner to 4 = Teachers 
are always expected to act in this manner). We developed the survey through several iterations that 
included brainstorming, item writing, cognitive pretesting, internal and external vetting, piloting with 
teachers, and examining the collected pilot data using classical test theory (Crocker & Algina, 1986). 
The rating prompt, resulted from a design process informed by cognitive pretesting, oriented to elicit 
the participant’s sense of whether mathematics teachers were expected by others to act in the way 
described.  

Method 
We administered the PROB surveys to a national representative sample of  U.S. high school 

mathematics teachers (497 teachers, 47 states), along with other questionnaires using the 
LessonSketch online platform. Participants were majority Caucasian (83%) and female (59%), which 
is consistent with nationally representative data obtained from the NCES database. On average, 
participants had been teaching mathematics for 14.1 years (SD = 8.7), and had taken 14 college-level 
mathematics courses (SD = 7.25). The analysis looked at the internal consistency of the surveys and 
dimensionality of the constructs we attempted to measure.  

Analysis 

Reliability as Internal Consistency  
To document the reliability of the PROB surveys, we evaluated internal consistency of retained 

items using both Cronbach’s Alpha and the mean inter-item correlation (MIIC). Cronbach's Alpha 
values over .7 are usually seen as acceptable and over .8 as good, while acceptable mean inter-item 
correlation values range between 0.15 and 0.25 (Kline, 1995; Clark & Watson, 1995). As can be 
noted in Table 1, the disciplinary, interpersonal, and individual surveys had good internal 
consistency, but the institutional survey had acceptable Cronbach alpha and low MIIC. 

Table 1: Internal Consistency of PROB Surveys 

Obligation Number of items Mean inter-item correlation Cronbach’s Alpha 

Disciplinary 18 0.273 0.8711 

Institutional 20 0.1117 0.7154 

Interpersonal 29 0.2226 0.8925 

Individual 18 0.3082 0.8891 

Dimensionality Validation 
Cronbach’s Alpha is a good measure of internal consistency if it is possible to assume that items 

are unidimensional, that they are all equally good to measure the construct, and that their errors are 
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uncorrelated. Because the possibility existed that one or more of those assumptions was not met, we 
examined the factorial structure of disciplinary, individual, and interpersonal scales using factor 
analysis. The WLSMV estimator, which is optimal for categorical variables with a small sample size 
was used to test the factor model. To find the best model that is not only meaningful but also satisfies 
fit criteria, we considered the Root Mean Square Error of Approximation (RMSEA) looking for a 
value of RMSEA <0.6, the Tucker-Lewis index (TLI) and the Comparative Fit Index (CFI), in both 
of these looking for values greater than 0.95 (Hu & Bentler, 1999). Factor means were set to 0 and 
factor variances were set to 1. The specific factor models tested are described in detail below.A 
three-factor model, where 7 items have the same estimated loadings (discrimination) and two pairs of 
items are correlated due to the same wording, fits our PROB-DISC data well with all standardized 
factor loadings greater than 0.5. Three suggested factors are interpretable in regards to the item 
statements (see Figure 2). 

 
F1:  Obligation to the discipline insofar as member of a community contributing to increase 
and extend appreciation of knowledge outside of the classroom (9 items) 
F2:  Obligation to the discipline insofar as responsible for its correct representation in 
classroom interaction (5 items) 
F3:  Obligation to the discipline insofar as responsible for its correct representation in study 
resources  (3 items) 

Figure 2. Factors of the disciplinary obligation. 
 
Using similar procedures we determined that the items in the PROB-INDV survey could inform a 

two-factor model of recognition of the individual obligation. The two individual factors we found are 
defined in Figure 3a. The items in the PROB-INTP survey were also best accounted for by a two-
factor model which are defined in Figure 3b. Items in the PROB-INST also loaded in a hypothesized 
two factor model (Figure 3c). The results above show a mostly positive outcome of the PROB 
surveys. It is of interest to investigate how these measures relate to other constructs being used in 
research on teaching, particularly other measures of teacher characteristics. Years of experience 
teaching showed significant positive correlation with the all three PROB-DISC factors though no 
significant correlations with either of the others.   

 
F1: Obligation to the 
academic needs of 
individual students  

(12 items) 

 F1: Obligation to support 
social interaction among small 

groups of students  
(16 items) 

 F1: Obligation to support 
policies for school-wide 
events and activities (4 

items) 
F2: Obligation to the socio-

emotional needs of 
individual students  

(6 items) 

 F2: Obligation to support 
social interaction in the whole 

class (8 items) 

 F2: Obligation to support 
school policies that 
concern classroom 
activities (9 items) 

Figure 3a. Factors of the 
individual obligation. 

 Figure 3b. Factors of the 
interpersonal obligation. 

 Figure 3c. Factors of the 
institutional obligation. 

 
Our participants had also taken the survey by Stipek, et al. (2001), which measures 7 different 

aspects of teachers’ beliefs. We were interested in correlations between factor scores in the 
obligations and mean scores in belief factors. Significant correlations were found, yet the most 
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important finding is that those correlations are uniformly low. This suggests that recognition of 
obligations does not measure the same thing as this measure of beliefs. 

 Endnotes 
1 Work reported here was done with the support of NSF grant DRL-0918425 to P. Herbst. All 

opinions are those of the authors and do not necessarily represent the views of the foundation. A 
longer report including more details of the psychometric work is available at 
http://hdl.handle.net/2027.42/136788 
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SECONDARY MATHEMATICS AND SCIENCE TEACHERS’ DATA USE WITHIN AN 
ASSESSMENT-AS-ACCOUNTABILITY CONTEXT  
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The test-based accountability movement has had profound impact on classroom practice, 
particularly at the high school level where teachers’ experiences may differ from elementary and 
middle schools where students are tested on a yearly basis. We use a multiple case study to examine 
how high school mathematics and science teachers use data and what challenges they face in the 
current accountability context. Our findings reveal unique aspects of data directly related to test-
based accountability. Expectations for what mathematics looks like (subject area expertise) as well 
as testing schedules (state and federal policy) influence their data practices, along with district 
structures and norms. Individual teachers’ beliefs about data and what it means to know a student 
also had a significant impact on their day-to-day work. 

Keywords: Assessment and Evaluation, High School Education, Teacher Knowledge 

Background 
Data-driven decision-making (DDDM) has become a central focus for educational policy and 

practice at all levels as a strategy to support teachers in developing the skills and knowledge 
needed to engage in these key tasks of teaching (Gill, Borden, & Hallgren, 2014; Luo, 2008; 
Mandinach, 2012). DDDM is broadly defined as “the use of data analysis to inform choices 
involving policies and procedures” (Gill et al., 2014, p. 338). Educators must integrate 
assessment results with data from other sources, such as attendance and discipline data, to fully 
understand student development. Data-literate educators can be a driving force of student 
learning because of the emphasis on data-based evidence and decision-making (Orland, 2015).  

Teachers’ subject areas likely influence their data practices, especially for secondary teachers 
whose practices are based largely on their content-specific education (Daly, 2012). Within a 
building, high school teachers are most likely to meet with their subject area departments on 
regular bases, whereas elementary school teachers are more likely to meet with teachers who 
teach the same grade level. In addition, different content areas have criteria for student success, 
which translates to differences in assessing students, identifying relevant data, and measuring 
knowledge (Datnow, Park, & Kennedy-Lewis, 2012).  

As mathematics has been at the forefront of the high-stakes accountability culture, data use 
practices of mathematics teachers are a viable subset to detail. They are expected to skillfully 
handle data such as scores from external, interim, and benchmark tests, district-level program 
assessments, classroom-level assessments, classroom behavioral, demographic, and attendance 
data (Schleppenbach, 2010). Additionally, science’s heavy emphasis on scientific practices, 
hands-on inquiry activities, and scientific knowledge merits additional investigation into the 
specific data use practices of science teachers (Rangel, Monroy, & Bell, 2016). The existing 
literature, however has not focused on content-specific distinctions (Rangel et al., 2016). There is 
also little research on how high school teachers experience the current accountability context in 
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ways that are similar to or different from elementary and middle schools, in which students are 
tested on a yearly basis. In this study, we address the research questions: (1) How are high 
school mathematics and science teachers using data? (2) What challenges do high school 
mathematics and science teachers face in the current test-based accountability context? 

Framework 
Systems theorists (Bronfenbrenner, 1994) argue that in order to understand learning and 

practice, we must attend to the influence of larger systems in which individuals are situated. 
Bronfenbrenner’s model identifies a series of “nested structures” that situate individuals within 
multiple contexts. Microsystems refer to individuals and institutions that immediately impact the 
individual, which likely includes teachers’ peers, building administrators, students and 
community, and their teacher preparation. The mesosystem highlights that all of the elements 
within the microsystem are in constant interaction with each other with the high school teacher at 
the center. The exosystem includes norms around district practice and policy related to data use, 
curriculum, and standards. The macrosystem involves dominant ideologies and beliefs around 
teaching and learning and state and federal policy. In considering teacher data practice, it is 
necessary to consider policies that mandate specific types of data use, different school and 
district practices and norms around data use, subject-specific practices and norms around data 
use, and individual teacher practices, beliefs, knowledge, and dispositions around data.  

Methods 
We address the research questions through a case study of data use amongst science and 

mathematics teachers at one high school conducted over two years. We conducted 30-50 minute 
interviews with the mathematics and science teachers and principals to gain an in-depth 
understanding of practices, beliefs, knowledge, and dispositions around assessment, 
accountability, and data use. We first coded the teacher interview transcripts using line-by-line 
coding (Charmaz, 2006) and then looked for pattern codes within each teacher’s transcript. 
Examples of pattern codes include “online assessments,” “role of intuition,” and “school 
expectations.” We then read the codes across transcripts to identify similarities and differences 
with teachers from the same district. Using these pattern codes, we next analyzed the transcripts 
of principals and developed case narratives (Stake, 2013). We also analyzed through the lens of 
systems-theory, using the systems identified as the nested structures in which teacher data use 
occurs. We inductively coded data within each system to develop a set of pattern codes, which 
we overlay to understand how the nested structures influenced data use.  

Findings 
The case study revealed that specific aspects of expectations for what mathematics looks like 

(subject area expertise) as well as the testing schedules (state and federal policy) in particular 
influence their data practices. District structures and norms also influence teacher data use, 
though individual teachers’ beliefs about data and what it means to know a student also had a 
significant impact on their day-to-day work. We share a sample of findings here. 

Showing My Work, Online: The Role of Computers in Test-Based Accountability Systems 
To monitor students’ progress and prepare them for on-line assessments, the district invested 

in various software programs for teachers and students. This presented a significant challenge for 
Patricia, an Algebra 1 teacher, who identified several reasons that online assessments were not a 
useful tool. Patricia shared that online assessments are “a little deceiving because you really don't 
know what's going on behind the scenes.” Patricia uses the online assessment platform provided 
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by the district “once a year,” which she finds nice because the assessment platform scores the 
assessment. However, she finds this problematic because “I don't really know much about the 
score because I didn't physically grade it. I don't know what they really did when it says 72.” 

In addition to concerns about a numerical final score on an assessment, Patricia also found 
that using online platforms that were open-ended were tedious in the mathematics classroom: 

We just had a chapter on exponents. We did the whole chapter on paper by way of 
worksheets and the reason, I told the kids, "Here's the reason we're doing it. Because it's 
going to take you forever to type to the power of, to the power of." Like (4m^2)(y^3)(z). 
Well, that'll take forever, when they could write it so much faster. 

For Patricia, it does not make sense to have students complete certain types of mathematics 
problems on the computer because of the inefficiency of having students type specific equations. 

 Alexa, however, also an Algebra 1 teacher, finds great value in an online program that 
creates reports showing “each student and what they're struggling with...That helps to see if 
everybody's struggling with this concept, maybe I need to re-teach it again.” Alexa increased her 
use of online quizzes “to make sure the kids are all hitting these standards” that will most likely 
be tested. Alexa reported that she uses data from these assessments to determine who needs extra 
help and who to “keep an eye on.” She also appreciated that online platforms give students 
“immediate feedback” if they get a problem right. However, she expressed concern, “because if 
[students] do keep getting [a problem] wrong and they don't write their work down, they're just 
trying to do it in their head, I can't see the steps.”  

Mary, a biology teacher, spoke about, 
A variety of ways you can structure tests and quizzes and assessments, where they are 
matched to other certain objectives or standards. Then you can get a report through [the 
online program]…so I utilize that a lot…I want the kids to know their own data, and I want 
them to know where they fall along with the rest of the class. Usually after a test, I'll ask 
them to assess whether they've mastered a certain standard… 

Mary acknowledged that “for biology, everything I do is standard-based... because we have a 
state test tied to the biology, we push it a little more.” This push includes more regular use of 
online assessments to monitor student mastery.  

The test-based accountability context has led to an emphasis on online assessments that 
provide immediate, easy, and efficient data to teachers and students about their work; however, 
for teachers in the same school, these online assessments are used differently.  
Intuition Versus Tests: How Teachers Determine Student Growth Objectives (SGO) 

As part of the state’s guidelines, all teachers were required to identify Student Growth 
Outcomes (SGOs) — rigorous learning goals aligned to standards-based, common assessments 
that are specific and measurable. To develop SGOs, teachers are to use previous standardized 
assessment data as a baseline. However, several teachers reported that their intuition led to the 
same conclusions about student mastery as students’ prior performance on standardized exams. 
Kate, a biology teacher, said that the “[summative assessment data] does usually correlate when 
I'm looking at who are my low kids in a class.” Patricia agreed, noting that she initially develops 
her SGOs based on the knowledge of students developed over the first two weeks of school, and 
then when she compares her informal assessments to the state standardized assessments scores 
later in the year, she shares, “It’s the same list. I spend an hour fighting through the data when I 
already knew what the data was.” Sean, a science teacher, had a similar attitude toward “data” 
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and intuition, and wondered, “what could the data tell me that I don't already know?” He 
developed his SGOs in part based on students’ prior science and math grades, but he does not 
“place a lot of emphasis on the standardized tests.” He is more interested in how students 
perform in various settings, and would rather know about students’ learning styles, interests, and 
comfort levels with content than their prior performance. Overall, teachers’ beliefs about a 
teacher’s intuition and what it means to know a student lead them to question the usefulness of 
data in informing their practice, even within a context that requires certain data practices.  

Discussion and Implications 
Not surprisingly, mathematics and science teachers face unique challenges related to data use in 

the test-based accountability context. The heightened use of online platforms for regular assessments 
of student mastery, for example, is a challenge for teachers to know how students are thinking. The 
expectation to use specific assessments to evaluate student growth also is a place of challenge, 
particularly for science teachers who students have not taken a science assessment since 6th grade. 
Different mathematics and science subjects draw on different types of knowledge, and a student who 
did well in a prerequisite may not do well in the next course. It is unclear what valid prior 
standardized data can be used to help teachers to develop useful SGOs, and what prior data can be 
used as the comparison point at the end of the year. 

This study highlights the need for greater research into how different subject areas are impacted 
by different mandates and policies related to test-based accountability. While all courses are aligned 
to state standards, teachers and the principal give that extra push to the tested subjects. The teachers 
in this study, with an average tenure of 22 years, shared how their assessment practices have changed 
over time and the specific impacts of the test-based accountability on their practice. It was clear that 
the macrosystems of federal and state policies were not totalizing forces that drove all of their 
decisions, but it was also clear that these policies influenced how they view data and its role in 
education. While some embraced the changes, they largely viewed “data” as something tedious and 
not as a meaningful way to improve practice.  
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STORIES OF AGENCY: DO GRADUATE STUDENTS PERCEIVE THEMSELVES AS 
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Graduate student teaching assistants (GTAs) are responsible for the instruction of undergraduate 
students in critical introductory courses, but are not yet in the position of professors. Given their 
unique status, we ask if there are differences in how graduate students and professors express their 
agency when speaking about their responsibilities and how graduate students position themselves as 
members of the community of mathematicians. We use tools from systemic functional linguistics 
(Halliday, 1994) to analyze 16 interviews with graduate students and professors from research I 
universities. We found important differences in how graduate students and professors perceive their 
agency, and agency varies according to whether it concerns disciplinary or institutional 
responsibilities. Future research can investigate how to create more opportunities for developing the 
agency of GTAs in institutional decisions. 

Keywords: Post-Secondary Education; Affect, Emotion, Beliefs, and Attitudes 

Each year approximately 743,000 undergraduate students enroll in calculus courses and 834,000 
enroll in introductory level courses (e.g., pre-calculus) taught in mathematics departments (Blair, 
Kirkman, & Maxwell, 2013). In some departments GTAs are only responsible for leading recitations 
and grading, but in other departments they teach over a third of all course offerings (Lewis & Tucker, 
2009). Graduate students benefit from the experience because teaching is an aspect of being a 
mathematician, the community into which they are entering. As Lave and Wenger (1991) stressed, 
teaching and learning do not only occur in an individual’s mind, but rather are mediated by social 
situations in a community of practice. Teaching positions, as part of the graduate education, assist in 
the socialization of graduate students into the faculty positions they may eventually take (Austin, 
2002). However, GTAs have little to no experience and are given little training. Preparation 
programs range from a few hours’ orientation to weeklong workshops (Ellis, Speer, & Bookman, 
2016). How can we support the apprenticeship into teaching for graduate students while fostering 
quality instruction? This study seeks to understand differences between how professors and GTAs 
perceive and manage their roles as instructors. We compare their social positioning and agency. 

Researchers have noted the significance of agency, or “who has control over the way 
mathematics is done and expressed” (Wagner, 2007, p. 36), for the doing of mathematics in the 
context of voice in textbooks (Herbel-Eisenmann, 2007; Herbel-Eisenmann & Wagner, 2007; 
Morgan, 1996) and in classroom discourse (Wagner, 2007). Previous research has addressed teacher 
and student agency in their interactions with each other and the discipline, but it has not addressed 
agency in two key areas: comparing agency of different groups of teachers and comparing agency in 
different aspects of teaching. We will compare graduate students and professors in two aspects 
provided by our theoretical framework. 

Theoretical Framework 
Herbst and Chazan (2012) proposed a framework of four professional obligations that 

mathematics teachers must respond to as professionals: towards representing the discipline of 
mathematics appropriately (disciplinary), treating individual students as persons with unique assets 
and needs (individual), creating a socially and culturally appropriate environment for students to 
share space and resources in a class (interpersonal), and respecting institutions such as the school, 
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department, district, State, or unions in matters including curriculum, assessment, and policy 
(institutional). We use the institutional and disciplinary obligations as lenses for agency because they 
are most relevant to how a graduate student socializes into the mathematics community - the 
departmental community (institution) and the work of a researcher (the discipline). We explore the 
remaining obligations elsewhere.   

Our study of agency uses tools from systemic functional linguistics (Halliday, 1994), which is a 
theory of language that enables us to explore how meaning is construed by the language people 
choose. In this study we draw from what Halliday refers to as processes, which are aspects of a 
clause that report about “the event or state that the participants are involved in” and are canonically 
realized by verbal groups (Thompson, 2013, p. 87). Processes are typically categorized as material, 
relational, mental, verbal, existential, or behavioral. We wanted to identify processes that revealed 
happenings with actors or doers, so we focused on material processes, which are processes of 
physical actions (e.g., I taught…, if you are writing..., students have to solve…), and verbal 
processes, processes of saying (e.g., I can talk about..., we have to tell our students that..., I asked 
them to...) (Thompson, 2013). We contend that analyzing the actors that instructors identify in 
material and verbal processes will reveal important insights to who feels agentive in different 
contexts, leading us to ask the following research questions: 

1. Are there differences in how graduate students and professors express their agency when 
speaking on their responsibilities to represent the discipline of mathematics and to their 
institutions? 

2. How do graduate students position themselves as members of the community of 
mathematicians and/or the departmental community? 

Methods 
The source of the text analyzed in this study was a set of sixteen hour-long interviews with eight 

doctoral graduate students and eight tenured or tenure-track faculty members from large midwestern 
research universities. We focused on responses to questions about the institutional and disciplinary 
obligations. Participants read and listened to a full definition of each obligation (taken from Chazan, 
Herbst, & Clark, 2016) and were asked to respond to the question, “Given this description, how does 
this obligation play a role in your own teaching practice?”  

We analyzed the interviews by transcribing them and identifying material and verbal processes 
with their corresponding actors and sayers. In the following results, we have italicized actors and 
underlined material and verbal processes. We counted the actors of almost every material and verbal 
process and decided to count instances of I, we, you, the institution, and students because they were 
most frequent. Infrequent actors or processes with ambiguous actors were counted under “other” to 
create accurate percentages (see Table 1). Certain material and verbal processes were excluded or 
indicated a lack of agency. Details on the specific ways these were determined are available in a 
longer report. 

Results 
The largest distinction between graduate students and professors was in their use of ‘we’ in 

material (portraying physical action, e.g., “we break [problems] into simple pieces”) and verbal 
processes (saying, e.g., “we talk about why it’s wrong”) when speaking about how the institutional 
obligation plays a role in their practice. Professors used the pronoun we in 24% of their clauses, 
compared with 3% from graduate students (see Table 1). The complement to this observation is that 
graduate students referred to the institution as an actor for 18% of their material processes, compared 
with 9% by the professors. For instance, student 2 explained, “There are certain due dates that are 
part of the, that are already designed and built in by the institution.” These observations suggest that 
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when GTAs enact the institutional obligation, they perceive the institution as an external actor while 
professors perceive themselves as part of the institution. Professor 7 elaborated,  

So in terms of institutional obligation…at least as far as the university is concerned, is to 
ourselves.  We decide a policy, and we enforce them... And those things are our obligations to 
policy that we set ourselves and the policies are ones we deem reasonable. 

Here, the professor has situated himself as a member of the departmental community.  
A different story of community emerged in discussions around the obligation to the discipline 

(see Table 1). We did not find as large of a difference in how graduate students (7%) and professors 
(13%) used we to express agency. The following quote illustrates a graduate student speaking for 
mathematicians:  

Whatever we have done, say for centuries before, that subject is built on truth and truth only. At 
every step we had this choice, zero or one, and every time we choose one, and the whole subject 
is built upon it. So that I feel that I must impart to students. 

He situated himself as one of the mathematicians who knew what was important to represent about 
the discipline. 

Between the two obligations, the largest difference in agency is in the use of ‘I’. Both sets of 
instructors use ‘I’ to represent the agents of verbal and material processes more often in the 
disciplinary obligation (36% and 37%) than in the institutional obligation (19% and 15%). This 
signals that they have much more personal agency when acting on behalf of representing 
mathematics than when addressing institutional practices. 

Discussion 
To address our first research question, our findings suggest that there are important differences in 

how graduate students and professors perceive their agency, and agency varies according to which 
obligation is at stake. Both professors and graduate students had more individual agency speaking 
with ‘I’ in responses to the disciplinary obligation. Graduate students use ‘I’ as often as the 
professors, which may indicate that the students feel as agentic as the professors when representing 
the mathematical content at stake--this suggests that the issue is not reducible to developmental 
differences in the sense of agency, or, that agency varies depending on the obligation undergirding 
what instructors feel responsible to. One valued purpose of course policies is to create a uniform 
experience covering the same core material at least for the students that pass through a given 
institution (Rasmussen & Ellis, 2015). But we question whether this is achieved, and why graduate 
students are disproportionately assigned to these introductory courses that are critical for so many 
students.  

In response to the second research question, we did find evidence that students position 
themselves as members of the mathematics community by their use of the pronoun we. Wagner 
(2007, p. 42) said that “student[s] who want to show that they are members in this collective of 
people who do things right have the we voice at their disposal.” Both students and professors were 
able to position themselves as members of the group that holds knowledge of mathematics. However, 
graduate students were much less able than professors to speak for the community of the department 
or institution. Professors may feel they can represent their institution due to the stability of their 
tenure or tenure-track positions and as a byproduct of other work they do to serve their institution. 
Although the graduate students did not seem oppressed by institutional constraints, they were not 
affiliating with the choices made by the institutions. Future research should investigate how to create 
more opportunities for developing the agency of GTAs in institutional decisions. 
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Table 1: The use of actors or sayers as indicators of agency 
Obligation Actors/Sayers GTAs  Professors  
  Frequenc

y 
%  Frequency %  

Disciplinary I 27 36  33 37  
 Students 19 25  11 12  
 We 5 7  12 13  
 You 16 21  12 13  
 Institution 0 0  0 0  
        
Institutional I 22 19  12 15  
 Students 24 21  9 11  
 We 3 3  20 24  
 You 6 5  3 4  
 Institution 19 17  5 6  
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This paper reports on the development of a national lexicon for describing what happens in middle 
school mathematics classrooms in the United States. Using primarily surveys and focus groups with 
mathematics teachers, 100 terms were widely agreed upon as familiar to the teachers. The terms 
varied on a number of features including whether they referred to particular classroom activities or 
broader instruction-related concepts, whether they focused on teacher or student actions, and the 
degree to which teachers reported using the terms. Challenges experienced by teachers in the 
process of reflecting on their own language use are discussed, and implications for research and 
classroom practice are addressed.  

Keywords: Classroom Discourse, Instructional Activities and Practices, Middle School Education, 
Teacher Knowledge  

Introduction 
Over 30 years ago, Lortie (1975) lamented the absence of a “common technical vocabulary” (p. 

73) for describing teaching. More recently, Grossman and McDonald (2008) continued to advocate 
for a “framework for teaching with well-defined common terms for describing and analyzing 
teaching” (p. 187). Despite these important claims and some recent work investigating teachers’ 
adoption of new terms (e.g., Davis & Boerst, 2014; McDonald, Kazemi & Kavanagh, 2013), teaching 
in the U.S. still lacks a precise common language for describing what takes place in classrooms. The 
work we present here is a first step towards identifying a lexicon used by middle school mathematics 
teachers in the U.S. to describe mathematics teaching and learning. 

 

Theoretical Framework 
Gaining insight into the common language of U.S. middle school mathematics teachers is 

important for several reasons. In writing about social communication, Carroll (1980) discusses the 
difference between the linguistic forms of naming and describing. Carroll explains that names come 
to stand in for descriptions once items become “nameworthy,” that is, once they become familiar 
enough to warrant a name for more efficient reference. As he explains, “Shorter name expressions 
are substituted for more lengthy descriptions when a social and referential familiarity is established” 
(p. 321); therefore, names provide a means of communicating socially shared ideas. In the same way, 
mathematics teachers’ names for what happens in their classrooms indicate what they deem as 
communally important. Furthermore, research suggests that names can also help us to recognize and 
make sense of phenomenon of interest, such as teaching and learning in mathematics classrooms. 
Sapir (1958) wrote of the “language habits” of a community, claiming that “we see and hear… 
largely as we do because the language habits of our community predispose certain choices of 
interpretation” (p. 69). Thus, naming an object can help to make the object more salient to those 
familiar with the name. In the domain of secondary mathematics teaching, Milewski and Strickland 
(2016) worked with teachers to create a framework that defined and characterized the different ways 
that teachers responded to students in the moments of instruction. The researchers found that once 
teachers had names for particular “moves,” the teachers were better able to shift their practices in 
ways that increased their responsiveness to students. Thus, names have the potential to shape both 
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communication and practice. Here we explore this idea through the development of a teacher-
generated lexicon representing terms that U.S. teachers currently use to describe and discuss their 
classrooms. To be clear, our goal is not to focus on a set of ideal instructional practices. Rather, we 
aim to be fairly comprehensive in the terms we include, as long as they are familiar to teachers.  

Methods and Data: Three Phases 
This research was conducted as part of an international study in which teams from nine countries 

sought to construct local lexicons of mathematics teaching and learning at the middle school level. 
This paper reports on the findings from the U.S. team. 

Initial Generation of Terms  
To begin, two middle school teachers and two researchers watched classroom videos from eight 

countries. The videos served as a stimulus for the teachers and researchers to note things that 
happened for which they had a name. This process generated approximately 70 terms that the 
researchers and teachers agreed were familiar terms used to describe what happens in a mathematics 
classroom in the United States. Next, approximately 20 former and current mathematics teachers 
known to the researchers were asked to brainstorm 5-10 terms that they would use to describe middle 
school mathematics teaching and learning. In all, 157 terms were identified. The initial team of 
teachers and researchers then wrote definitions for the 157 terms. 

Local Validation 
A process of local validation was conducted with three focus groups comprised of middle school 

mathematics teachers with a range of teaching experience. One group included three teachers from 
different schools (one suburban public, two urban private), a second group included four 
mathematics teachers from a suburban public school, and the third group involved four mathematics 
teachers at an urban religious-affiliated private school.  

Teachers first completed a Q-sort task (Block, 2008) in which they separated lexical terms into 
familiar and unfamiliar. Familiar terms were subsequently sorted into somewhat familiar and very 
familiar. Teachers then provided feedback on the definitions of those terms with which they were 
very familiar. Teachers were also invited to propose new terms that they would use to describe what 
happens in a mathematics classroom but that had not been included in the lexicon. 

Teacher ratings of familiarity were compiled and terms were ranked by the number of teachers 
who were very familiar with each. Any terms with which three or fewer teachers were very familiar 
were removed. Following this analysis, 103 terms remained in the lexicon. Definitions of those terms 
were then edited by the researchers based on teachers’ suggestions. 

National Validation 
Finally, a survey was developed to gather national data regarding the lexicon. The survey asked 

teachers to review a subset of the lexicon and rate their familiarity with the terms, as well as how 
frequently they use each term in conversations with colleagues. Teachers also identified whether the 
written definitions matched their own understanding of the terms, recommended changes if needed, 
and proposed new terms that were familiar to them but did not appear in the survey. In total, the 
survey was completed by 241 teachers (131 female, 49 male, 53 did not respond) from 28 states 
across the U.S. Fifty-nine teachers reported teaching in urban schools, 67 in suburban schools, and 40 
in rural schools. Of the 183 teachers who recorded their years of teaching experience, 31 reported 1-3 
years of experience, 84 reported 4-14 years of experience, and 68 teachers reported 15 or more years 
of teaching experience.  

To determine the final lexicon, we sorted terms by the percentage of teachers who rated each 
term as very or extremely familiar (1 or 2 on a 5-point scale). Three of the 103 terms did not meet the 
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threshold of 75% of teachers rating the term as very or extremely familiar and thus were removed 
from the lexicon.  

Findings 
The resulting U.S. lexicon consists of 100 terms, a subset of which is listed in Table 1. Several 

key distinctions were noted. First, the terms represent different aspects of mathematics classrooms, 
including general classroom activities (offer feedback, note taking), more specific practices (compare 
multiple strategies, pattern recognition), participation structures (partner work, student presentation) 
and assessment-related terms (remediation, differentiation). Second, some terms refer to activities 
that occur during instruction (homework check, warm up), while others refer to broader educational 
concepts (high expectations, student accountability). Third, some terms refer to actions that are more 
typical of either the teacher (assign seats, give directions) or the students (struggling, memorizing). 
Fourth, terms represent actions and events that occur over different time scales (aha moment, whole-
class discussion). This range of terms seems to highlight the complexity of teaching, which involves 
a wide array of activities, is multimodal, and requires attention to many things simultaneously 
(Sherin & Star, 2011).  

Table 1: Sample of Terms in U.S. Lexicon 
Asking Questions Posing questions to either a teacher or student(s). 
Justifying Providing evidence to support one's explanation, idea, or solution in 

order to illustrate that the solution or explanation is reasonable. 
Scaffolding Teacher providing a series of supports, hints, or questions to move 

students forward on a problem, assignment, or concept. 
Wait Time Several second pause provided by the teacher to allow students time 

to respond to a question. 
Warm Up Brief activity used at the beginning of class, often for review.  

  
Several challenges emerged for teachers as they worked to identify the terms they use to 

describe mathematics teaching and learning. First, questions arose about what it would mean to say 
that a term was familiar and should be included in a national lexicon, as many teachers had never 
before reflected on what terms they use to discuss their teaching. Teachers in the focus groups 
sometimes recognized terms as familiar but did not consider them to be part of their own practice, 
and thus questioned whether these terms belonged in the national lexicon. For example, Eliza 
acknowledged that assign seats was a familiar term, but she categorized it as outside of her lexicon 
and thus unfamiliar. This example illustrates a key challenge related to evaluating the familiarity of 
terms: How should teachers treat a term that they recognize and understand if it does not describe the 
teaching and learning that takes place in their own classrooms? Related, teachers were frequently 
familiar with multiple terms that describe the same action or idea. For example, when discussing 
what term reflects the idea of “a sudden discovery made by a student,” the focus group teachers 
suggested both aha moment and light bulb. Some teachers then raised the issue that they might be 
more likely to use the term light bulb but that aha moment was, in fact, more familiar. While our 
lexicon includes only the most familiar term for each practice or idea, we acknowledge that many 
alternative terms exist that teachers use to describe those same practices. 

Finally, differences emerged in teachers’ familiarity with terms as compared to their usage of 
terms. While all of the 100 final terms were very or extremely familiar to at least 75% of the 
teachers, not all terms were used frequently. In fact, only 35 of the 100 terms were used daily or 
weekly in conversations with colleagues by at least 75% of teachers (e.g. asking questions, 
clarifying, collaborating, differentiation, partner work, proving, reasoning, struggling, warm-up). 
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While discussing differences in usage of the terms, some focus group teachers reported using 
different terms when speaking with different communities. For example, John mentioned that he uses 
the term critical thinking “a lot more with parents and… colleagues,” while he would talk to his 
students about “how you’re thinking.” Mike and Christina, in contrast, do use the term critical 
thinking with students. We suspect that some differences in usage might be related to teachers’ 
preparation and professional development experiences and thus plan to examine such connections in 
the future using existing data. 

Discussion and Conclusion 
We believe this lexicon has the potential to serve as both a window into teachers’ practices and a 

lever for change. On the one hand, we gain insight into how teachers describe mathematics teaching 
and learning today and how they define key components of their practice. Doing so at different points 
in time and with different populations of teachers might provide valuable information about the state 
of mathematics teaching in the U.S. In addition, interacting with this lexicon can prompt teachers to 
reflect on both their language use and teaching practices. Because naming a practice can promote the 
spreading of that practice, this lexicon can be an important resource for teacher education and 
professional development. Developing a shared language is a key component of that work, both 
because it enables teachers to communicate with each other about their teaching and because it can 
highlight for teachers gaps in their language – and perhaps even their practice. In future work, we 
plan to expand the national validation to a broader sample of U.S. teachers and compare the current 
teacher-generated lexicon with one developed by teacher educators. Once all international teams 
have completed their lexicon generation, we will also begin a phase of comparative work. These 
comparisons will help us to both identify gaps in the language that teachers use to describe teaching 
and learning in the U.S. and reflect on unique features of the U.S. lexicon. 
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Equity remains an enduring challenge for mathematics education. The experience of many 
students is one of marginalization such that school mathematics is disconnected from their lived 
experiences (Chazan, 2000). This is consequential because such disconnect, together with 
systemic factors of oppression, contribute to disparities in achievement (Ladson-Billings, 1994). 
Research has demonstrated the benefit of drawing on students’ community-based knowledge and 
experiences in mathematics instruction and the importance of attending to both children’s 
mathematical thinking (CMT) and their community knowledge (FOK) to support mathematics 
learning (Aguirre, et al., 2013). This poster examines how connecting to authentic student 
experiences supports students’ opportunities to learn rigorous mathematics by studying the work 
of teachers and students around the following task: How many bottles of water does our class 
need for one day, based on recommended daily amounts of water for children (40 oz/day)? 
Students’ FOK included their experiences of their community’s ongoing water crisis, which 
required students to use only bottled water for washing, cooking, and drinking at home and at 
school. CMT included eliciting student thinking, use of discourse moves, etc. Data sources were 
videos of two classroom sessions. In multiple passes, we looked for evidence of attending to 
CMT and attending to FOK. In subsequent passes, subcodes were identified. We used Studio-
code to identify every instance of each subcode, to indicate the duration of each instance of a 
subcode across the two classroom, and to see the back and forth across the two broad codes. Our 
analysis revealed that teachers attended to student thinking in a variety of ways, connected to 
students’ funds of knowledge throughout the lesson, and effectively cycled between the two to 
provide a rich context for student learning. The teachers’ decisions to connect mathematics 
learning to students’ lived experience provides mathematics teachers and mathematics teacher 
educators with evidence of practices to do this work effectively. The lessons were 
mathematically rigorous and the deep connection to the lived experience provided a context for 
teachers and students to refer back to. The research reported in this article was supported with 
funding from the NSF (Award #1417672). Any findings, conclusions or recommendations 
expressed are those of the authors and do not necessarily reflect views of the NSF. 
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While there has been a considerable increase in research related to learning trajectories (LT) in 
mathematics (e.g., Clements, Wilson & Sarama, 2004), more recently, researchers have begun to 
explore LT-based professional development (PD) programs (Wilson, 2014) and how teachers use 
LTs in their instruction. Little attention, however, has been paid to teachers’ own conceptions of LTs, 
conceptions that are often (re-)formed from their instructional interactions with students over time. In 
this poster, we characterize teachers’ informal conceptions of LTs in middle school math to better 
understand ways of supporting teachers to effectively navigate students’ LTs during instruction. 

Data from this study is taken from the BLINDED Project, a multi-year project focused on 
developing LT-based instructional resources and PD for middle school teachers. Ten participating 
teachers were interviewed at least 3 times across the first year of the project about their instructional 
and assessment practices. Our analysis focuses on how teachers think about LTs in the context of 
these interviews. We define LTs as an empirically-supported description of ordered experiences 
students progress through instruction, moving from informal to formal ideas with increasing 
sophistication over time (Confrey, 2008). We are particularly concerned with the landmarks and 
obstacles that define such a progression. 

Results of our analysis raise several important issues. First, teachers’ described sequences of 
student learning and obstacles students typically encounter as part of these sequences, which 
comports with definitions of LTs. However, teachers described these sequences and obstacles at 
different grain sizes of specificity. For example, three types of grain size emerged from the data: LTs 
at grade level, LTs at instructional unit level, LTs at math topic level. We found that teachers 
generally talk about LTs at a large grain size (e.g., students struggle with fractions), but seldom 
attend to finer grain size levels of LTs, especially levels of sophistication in students’ thinking, which 
echoes those of Wilson (2014). Second, we identified the concept of gap in teachers’ reflections 
about LTs, which we define as a lack of prior math knowledge that students should have become 
proficient in previously. While teachers help students tackle obstacles from newly-learned topics, 
they have to address the knowledge gaps relevant to the math concept understudy. We argue that it is 
important for LT research to not only on develop LTs, but also on the development of instructional 
resources that support teachers in managing obstacles and gaps.  
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At a four-year public university in the western United States with over 5,000 students and 40 
degree programs, more than half of the population of students are students of color, 51% are first 
generation college students, and a large proportion of students come from low-income backgrounds 
or are non-traditional students. With this population, many students enter the university 
underprepared for the rigors of college level mathematics and are placed in courses below Calculus. 
As a STEM focused campus, a significant population of students enter the institution with the 
intention of majoring in disciplines for which Calculus is a prerequisite. Thus, many of these students 
find themselves at a crossroad of whether to stay straight on their path to a STEM career or to turn 
because of a lack of mathematics background.  By the time students actually declare a major, the 
number of students choosing STEM disciplines has declined by over half.  These proportions are 
even higher for women and students of color. Although there are many reasons for which students 
change their intended major, mathematics has been consistently cited as a contributing factor. In an 
effort to make STEM majors more accessible to all students, faculty are reforming mathematics 
curriculum of courses below Calculus using ambitious strategies outlined in recent research 
(Bressoud, Mesa, & Rasmussen, 2015) to include more active learning, group work, multiple 
representations, as well as metacognitive strategies.    

The Study 
The purpose of this research is to study the effects of these changes to add to the knowledge of 

effective practices for educating all students in mathematics for the 21st century. The full study seeks 
to begin to answer the question: What effect does using active learning, group work, multiple 
representations, and metacognitive strategies have on students’ beliefs about mathematics, their 
ability to do mathematics and their attrition from STEM fields? The subset of the study featured in 
this poster specifically examined the effect of group interactions on students’ understanding of 
graphical, tabular, symbolic and verbal representations of mathematical concepts and the connections 
between them.  

The study uses a mixed-methods design with observation instruments, video analysis of group 
interactions and discourse patterns, and student work. The data provides insight into how groupwork 
contributes to students’ understanding about different mathematical representations. Preliminary data 
suggests that student discourse during group interaction plays a significant role in students’ sense-
making of different representational forms. Although research on the relationship between multiple 
representations and student understanding is abundant, this study seeks to connect theory and 
practice by considering the impact of pedagogical practices and student discourse on students’ sense-
making of representations. Pedagogical practices are significant because, as first year courses are 
revised, consideration should be given to planning opportunities for student communication when 
learning concepts that are heavily loaded with multiple representations.  

References 
Bressoud, D., Mesa, V., & Rasmussen, C. (2015). Insights and Recommendations from the MAA National Study of 

College Calculus. Mathematical Association of America Press. 
 



Teaching and Classroom Practice 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1261 

EXAMINING DISCOURSE STRUCTURE IN CHINESE AND U.S. ELEMENTARY 
FRACTIONS LESSONS 

 Michelle Perry Shuai Wang 
 University of Illinois SRI International 
 mperry@illinois.edu shuai.derek.wang@gmail.com  
 

 Marc McConney Leigh Mingle 
  Parkland College College Ready Promise 
 marc.mcconney@gmail.com leighmingle@gmail.com 

Keywords: Classroom Discourse, Elementary School Education, Rational Numbers 

Introduction and Background: Horizontal, Vertical, and “Teacher-Facilitated” Discourse  
Public policy, theory, and evidence suggest that mathematical learning is supported in U.S. 

elementary classrooms when students voice their understanding directly to each other, following 
horizontal discourse patterns. In contrast, in Chinese classrooms, where students have been reported 
to excel in mathematics, both Confucian tradition and cultural expectations dictate that teachers 
remain in control in guiding their students, thus following vertical discourse patterns. The question 
examined in this investigation was: To what extent do we find these two patterns and an additional, 
hybrid pattern—teacher-facilitated horizontal discourse—in U.S. and Chinese classrooms and what 
roles might they play in students’ construction of mathematical knowledge? 

Method  
We videotaped one lesson on equivalent or adding fractions from each of 31 4th- and 5th-grade 

classrooms (14 from a mid-size city in the U.S. and 17 from Beijing, China). These topics were 
chosen because they are central to the mathematics curricula in both countries. Next, we transcribed 
all classroom talk and then coded each student statement to identify to whom the student was 
directing that statement. We identified three forms of discourse: vertical (the student statement was 
directed only towards the teacher), horizontal (the student statement was directed towards another 
student), or teacher-facilitated horizontal (the student statement was directed by the teacher to 
respond to another student). We also coded the mathematical terms mentioned by the student in each 
response statement. 

Results 
Using a generalized linear mixed model with log transformation, we did not find significant 

differences in vertical discourse between the U.S. lessons and the Chinese lessons, F(1, 56) = 1.36, p 
= .74. We did, however, find significantly more horizontal discourse responses in the U.S. lessons 
than in the Chinese lessons, F(1, 56) = 8.53, p < .001. We found significantly more teacher-
facilitated horizontal discourse responses in the Chinese lessons than in the U.S. lessons, F(1, 56) = 
17.09, p < .001. Moreover, Chinese students used more mathematical terms than U.S. students in 
both their vertical and teacher-facilitated horizontal discourse.  

Discussion 
The hybrid “teacher-facilitated horizontal” discourse—in which the teacher in control, but the 

students to address each others’ ideas—may potentially be significant in helping to understand how 
Chinese teachers appear to engage their students to learn mathematics successfully, in ways 
theoretically supported, but at the same time maintaining control of classroom discourse, in concert 
with cultural expectations. This hybrid form may act like horizontal discourse, in that students must 
reckon with each other’s ideas and, in this way, provoke cognitive discord that provides fertile 
ground for cognitive change.  
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STUDENTS’ ENGAGEMENT WITH THE SCIENCE AND ENGINEERING INTEGRATED 
CALCULUS TASKS 

Enes Akbuga 
Texas State University 

Calculus acts as a filter to the STEM pipeline, which blocks students’ access to STEM careers 
(Steen, 1987). Therefore, a strong foundation and understanding of calculus concepts is an important 
requirement for all STEM degrees (Young et al., 2011). Students who are engaged during learning 
activities, achieve better grades and educational activities are positively related to academic 
performance (Kuh et al., 2008). 

Schools should provide opportunities to learn about mathematics by working on problems arising 
in contexts outside of mathematics (NCTM, 2000). Literature shows tendency towards integrated 
science and mathematics education; however, more empirical research grounded in these theoretical 
models is clearly needed (Berlin & Lee, 2005). Therefore, this study aims to investigate the 
following question: 

• How students engage with the Science and Engineering Integrated Calculus Tasks? 

The Science and Engineering Integrated Calculus Tasks refers to the calculus tasks that includes 
ideas from science and engineering fields and requires students to use calculus tools to perform. 

The Science and Engineering Integrated Calculus Tasks refers to the calculus tasks that are 
science and engineering related in nature. Since this study was a small-scale study for those tasks, 
physics and computer science tasks were selected and piloted. Participants were students who were 
enrolled to calculus courses at a Southwestern university in the U.S. Data come from task-based 
interviews involving the participants working on the tasks. 

Strong evidence showed that the tasks supported the participants in connecting physics and 
science to calculus. One participant states that:  

It’s to me it’s coming up, its creating and designing a solution to something that could be a real-
world problem and so I think that I think that adds more to the experience. It certainly gives a lot. 
Like I feel like I am doing something I feel like I am not just doing a bunch of math you know? 

Evidence shows that the tasks were interesting and enjoyable for the participants and that they 
felt motivated through this experience. This finding suggests that interdisciplinary approaches might 
increase students’ engagement and thus contribute to positive learning experiences with calculus. 
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In the context of a doctoral project, this poster presents a pilot study on the process of becoming a 
postsecondary mathematics teacher. More precisely, the context is set in cegep institutions (general 
and vocational colleges), the first step in postsecondary education in the province of Quebec, Canada. 
The program in those institutions covers about the same mathematics as the last year of high school 
and the first year of university in the United States. Our focus is on new cegep mathematics teachers 
and how they negotiate the transition from being a mathematics students (graduate or not) to teaching 
at postsecondary level, without any formal training in teaching or education. Little is known about 
the process of becoming a mathematics teacher at postsecondary level (e.g. Speer & Hald, 2008) and 
our work is meant to contribute to this issue. We also hope to contribute to the discussion on the 
mandatory (or appropriate) education to teach in those types of institutions.  

Framed by Dewey’s philosophy (1916, 1938), our goal with this work is to shed some light on 
their experience as new teachers, in order to know more about the process of becoming a teacher.  

With a methodology based on narrative inquiry (Clandinin, 2013; Clandinin & Connelly, 2000), 
weekly meetings were arranged with two cegep teachers during a whole semester. The first one was 
staring his third year as a teacher, the other was starting his second. They shared stories of events 
they lived and identified as significant for their teaching, and of reflections they made about these 
events. An account was written of these stories as the interviewer heard them, and of their reflections 
about them. An analysis was then performed according to the three-dimensional framework designed 
by Clandinin & Connelly (2000), with a focus on the teachers’ relationship with mathematics and 
education. This poster discusses what this pilot taught us about our choice of method and about our 
general topic. It also addresses possible changes in the method and what are the next steps to be taken 
to get closer to our goals. 
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Facilitating whole class discussions is highly valued in math classes because they can support 
deeper conceptual understanding by making the elements and connections within mathematical 
systems visible to students (e.g. Ball, 1993; Cobb, Wood, Yackel, & McNeal, 1992; Kazemi & 
Stipek 2001). In addition, discourse during whole class discussions can provide opportunities to 
develop new epistemic practices that more closely resemble the epistemologies in STEM professions 
(Ford & Forman, 2006, p. 3). However, the value of class discussions varies widely, and high-quality 
discussions require facilitation from a teacher skilled in “effectively guiding whole-class discussions 
of student-generated work toward important and worthwhile disciplinary ideas” (Stein et al, 2008, p. 
319). Teachers need significant support to develop the practices necessary to do this challenging 
work. Because of this, their effectiveness can vary due to differences in teacher facilitation. 

This poster describes an innovative approach to supporting teachers to continuously reflect on 
their facilitation of classroom discussion called Visualizing Practice with Data (VPD). The VPD 
approach systematically supports teachers to reflect on practice through exploring data visualizations 
that represent their whole class discussions. This new routine for teacher collaborative reflection is 
designed to orient teachers towards specific problems of practice, and to link these problems to 
conceptual framings that can support continual improvement (Horn & Little, 2010). 

We will report on a pilot design study (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2004) 
conducted with two 7th grade teachers over a three-week period. The author co-planned a three-week 
unit on probability, modeling, and inference with two teachers. The author created data 
representations of the discussions, and the teachers used the visualizations to collaboratively reflect 
on their lessons. VPD sessions provoked replays of classroom practice and rehearsals of future 
lessons with strategies for improvement, which we will share and elaborate on (Horn, 2010).  
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The main question of this study is: what linguistic resources did a teacher use to bridge 
contextual elements of a problem and mathematical ideas during public discussions?  I analyze a 
teacher’s choices for creating the collective memory using Systemic Functional Linguistics (Martin 
& Rose, 2007).  I focus on choices for keeping track of people or things (i.e., participants) using 
options from the system of identification: presenting, presuming, possessive, comparative, and text 
reference.  Madeline (a pseudonym) taught a problem-based lesson about the theorem stating that the 
set of points that are equidistant to two given points are on the perpendicular bisector of the segment 
connecting the two points.  The problem was situated in the context of finding a fair location for an 
after-school center, considering two schools.   

Madeline used more contextual participants during the launch than in the summary (Table 1).  
In contrast, the summary focused on mathematics.  In addition, Madeline’s references to the 
geometric diagram during the summary connected the problem’s context and underlying 
mathematical ideas for solving the problem.  The diagram illustrated the segment connecting the two 
schools, its midpoint, and the perpendicular bisector of the segment.  

Table 1: Participants and Tracking 
Activity  Contextual 

 Presenting Presuming Possessive Comparative Text Reference 
Launch 7 35 0 0 1 
Summary 0 2 0 0 0 

 Mathematical 
Launch 1 0 0 0 0 
Summary 8 37 0 2 1 

 
The study shows a case of how a teacher created the collective memory of the mathematics 

class by shifting students’ attention from the problem’s contextual to mathematical ideas, using the  
context as a starting point to reach the mathematical goal of the lesson.  
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This study examines teacher beliefs about good mathematics teaching viewed through the lens of 
social justice teaching [SJT]. I define SJT as teaching that considers diversity for inclusive learning 
community and promotes equitable learning for all students, which is grounded in anti-oppressive 
teaching (Kumashiro, 2008). Teachers’ beliefs serve as filters through which they view education; 
mediate knowledge; and work as a guide for teaching (Thompson, 1992). Given the powerful 
influence of teaching on learning, what a teacher believes results in equitable or inequitable learning; 
therefore, attending to teaching mediated by beliefs is important. Employing a case-study design, I 
investigate two Korean teachers’ common sense of good mathematics teaching through espoused and 
enacted beliefs, using SJT perspective. Despite a Korean contextualized study, it could provide an 
opportunity for the dissemination of SJT to improve school mathematics because equity is a matter 
for everyone, regardless of countries.  

In this study, the key notion is equity: All students should not receive identical instruction but 
access to meaningful mathematics through appropriate accommodations, along with uniformly high 
expectations (NCTM, 2000). For this, previous studies suggest that mathematics instruction 
considers all students’ active participation in learning process; helps find out their mathematical 
strengths and hold positive identity as learners; and includes beyond classical knowledge and 
connects funds of knowledge. Also, mathematical authority should be shifted from teachers or 
textbook to learning community (e.g., Boaler, 2002; Moll et al., 1992). These all contribute to 
developing the conceptual framework to analyze espoused and enacted beliefs of teachers. 

According to their interviews and teaching practices, the teachers could not well recognize the 
notion of equity and its importance and necessary in mathematics education, which is related to a 
general conception of mathematics (e.g., absolute, value-free) and a Korean educational context (e.g., 
excessive competition, emphasis on students’ uniformity, rather than diversity). Also, the teachers 
felt tensions between efficient, effective, meaningful, and equitable instructions, and a priority 
presented in their teaching lacked consistency. Last, their teaching processes/goals were not often 
aligned with their students’ learning processes/goals in terms of equity. Findings suggest that 
teachers need learning to teach for productive beliefs and knowledge against oppressiveness and 
inequity in teaching and learning mathematics. 
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Schroeder and Lester (1989) distinguish between three approaches to problem solving 
instruction: teaching about, for, and through problem solving. Each approach has distinct tasks and 
emphases in students’ learning. Teaching about problem solving (TAPS) focuses on learning of 
heuristics and/or processes of problem solving; teaching for problem solving (TFPS) helps students 
to understand concepts and procedures in problem solving first thin use the knowledge gained to 
solve problems; in teaching through problem solving (TTPS), students learn a concept or procedure 
through an experience as they engage in problem solving. As states and districts adopt new standards 
such as the Common Core State Standards for Mathematics (CCSSM) that focus more on reasoning 
and sense-making, teachers should align their instructions to meet these standards. Since TTPS 
contexts are feasible with CCSSM and demonstrate ways to align these standards with a problem-
solving focus (Bostic, 2011), I used the following research method to develop a protocol to support 
teachers in implementing a problem solving approach based on TTPS. This protocol answered the 
research question: “What are descriptors of teaching for, about, and through problem solving in 
grades 4-6 mathematics teachers’ instruction?”. In this protocol, I provided detailed descriptions of 
strategies for each approach in problem-solving instruction and presented many examples of each 
strategy to elucidate the practices that would support a change to TTPS.  

Participants in this study were teachers from fourth-, fifth-, and sixth-grade classrooms. These 
teachers participated in a PD program to improve their understanding of the CCSSM and thereby 
their pedagogy overall. Data were collected using two sources: teachers’ lesson plans and video tapes 
of the lessons being taught after attending the PD program. I used the constant comparative method 
of qualitative analysis to compare newly-collected teacher data with previous findings elaborated in 
literature about TAPS, TFPS, and TTPS in order to develop an observation protocol to describe each 
of the approaches to problem solving.  

This protocol can be used to determine which type of teaching a teacher uses and which practices 
he/she might change to move toward TTPS approach. This protocol can be useful for mathematics 
teachers who are looking to develop their classroom practice in relation to problem solving. It can 
also serve as a self-directed orientation for teachers’ professional development. Finally, it can be 
useful to administrations and teacher educators who work for practicing teachers in professional 
development settings.  
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Recent research has examined teacher attention, studying activities in the classroom that teachers 
notice (Jacobs et al., 2010; Russ & Luna, 2013), such as a pivotal teaching moment (PTM), defined 
as a student-generated disruption to the flow of discussion where a teacher can respond flexibly to 
extend or enhance student thinking (Ruiz-Primo & Furtak, 2007; Stockero & Van Zoest, 2013). 
Questioning is an important consideration within the context of noticing.  

This multiple case study compared three novice and three experienced secondary mathematics 
teachers’ noticing of PTMs and use of questions during PTMs. Six participants from five schools 
took part in two interviews and five lesson observations. The research question examined was: What 
similarities and differences exist in questions and responses to students during PTMs between novice 
and experienced teachers? 

Analysis of lesson and interview transcripts and field notes revealed: 1) Both novice and 
experienced teachers emphasized proper procedures but reflected this emphasis differently; 2) One 
novice teacher and one experienced teacher placed emphasis on connections within and outside of 
mathematics; 3) One experienced teacher emphasized efficient problem solving.  

The first finding showed participants emphasized mathematical procedures differently when 
using questions during PTMs. Tom’s procedural focus was coupled with conceptual understanding, 
and Samantha emphasized correct procedures without emphasis on related concepts. Dana steered 
her students tightly toward correct procedures to avoid misconceptions.  

The second finding showed one novice teacher and one experienced teacher emphasized 
connections within and outside of mathematics. Amy made connections to pop culture and other 
disciplines. Kathleen used questions to connect current topics with previously learned concepts.  

A third finding relates to one experienced teacher’s emphasis on efficient problem solving 
strategies. Amy used questions to prompt students in sharing their strategies with classmates and 
explain why a particular strategy was or was not useful for solving particular problems.  

The topic of PTM noticing and response has many avenues for further research in mathematics 
education. The current literature in mathematics education could be enhanced with more study of 
teacher questioning in relation to the noticing and response to PTMs. Empirical studies on a larger 
scale can examine teacher noticing and PTMs with regards to how a teacher frames the questioning 
before, during, and after a PTM.  
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Despite the promise of differentiated instruction (DI) as a way to address cognitive diversity, it is 
least likely to be used in secondary mathematics classrooms (Gamoran & Weinstein, 1998), due in 
part to the many challenges of implementation. DI requires proactive planning to meet diverse needs 
of students while still maintaining a cohesive classroom community (Tomlinson, 2005). To follow 
through on the promise of DI it is vital to investigate the how secondary math teachers—starting with 
middle school—understand and implement it. This poster presents preliminary findings from a year-
long Teacher Study Group (TSG) with 15 middle school math teachers from around the state of 
Indiana that, together with a university research team, investigated DI. 

This research is drawn from the third year of a 5-year study of DI for middle school students and 
their teachers. The members of the TSG met for a 3-day workshop during July 2015, for 8 monthly 
meetings from August to April, and for 1 day of sharing and presentations during June 2016. 
Between monthly meetings, participants completed and shared assignments about DI, drawing on 
student thinking from their classrooms. The analysis for this poster was drawn from a comparison of 
questionnaires completed by teachers in July 2015 and June 2016. 

Over the course of the TSG, we saw development in two domains: teachers’ ideas about students’ 
thinking and their ideas about DI implementation. At the beginning, their discussion about both 
reflected grand goals but somewhat superficial details. For example, their discussion about students 
was about innate ability or procedural accuracy rather than student reasoning about particular 
mathematical ideas. They discussed DI as a key to closing achievement gaps among students, and 
their ideas about implementation often involved giving students work that differed in appearance or 
quantity but not necessarily in depth or complexity of the mathematical thinking required. By the end 
of the year, teachers had made some changes in how they thought about the endeavor of 
differentiation. Teachers commented on the need to build on what students were thinking, which 
involved gathering careful evidence of that thinking, posing tasks that could allow students to make 
small steps, and focusing on mathematical meaning. With regard to their implementation of DI, they 
recognized more clearly what they were already doing in their classroom to differentiate, what was 
meaningful to them about differentiation, and focused on making small changes to better meet the 
needs of their students. 

As researchers, our ideas about DI evolved alongside those of the teachers; we began to 
understand how important it is to focus on student thinking as a foundation. We began to understand 
how important it is to make small steps, tailored to the needs of both students and teachers. 
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Equal Sharing story problems can be used to teach fractions when the context involves quantities 
that can be individually partitioned. For example, the Equal Sharing problem of 11 bars shared 
equally among 4 children results in a remainder of 3 bars that can be partitioned to exhaust the bars 
and give each sharer a fractional amount. The specific numbers in Equal Sharing problems can 
influence the accessibility of problems for a child, the knowledge a child might use to solve 
problems, and the mathematics that can be addressed. Teachers’ choices for numbers used in Equal 
Sharing problems are therefore a potentially powerful component of planning for fraction instruction. 

Studying teachers’ number choices for whole-number story problems, Drake and Land (2014) 
identified the need to investigate how teachers select numbers for problems used during instruction. 
We answered their call by exploring teachers’ reasoning for number choices in a fraction story 
problem by interviewing 43 teachers of grades 3-5 after a classroom observation where they posed an 
Equal Sharing fraction problem of their choice. These teachers had participated in 1, 2, or 3 years of 
professional development focused on children’s fraction thinking. We asked: How did you decide on 
this problem for these students? How did what you know about your students inform your number 
choice(s)?  

We found that teachers’ number choices were informed by children’s mathematical thinking in 
two main ways: (a) Sometimes teachers drew on general information about children’s fraction 
thinking (e.g., children often draw to solve such problems); and (b) sometimes teachers drew on 
detailed information about specific children’s fraction thinking (e.g., Rosie’s repeated halving). In 
addition, teachers’ number choices were informed by the mathematical content they wanted to 
address, also in two main ways: (a) Sometimes teachers described how their target content emerged 
in children’s strategies (e.g., a strategy where each brownie was split into 8 parts and the parts 
combined for each share could be used to address addition of unit fractions);  and (b) sometimes 
teachers described target content with minimal connections to children’s thinking (e.g., “I chose 10 
sharers because I wanted to work with decimals”). These findings highlight critical components in 
teachers’ reasoning about number choices for fraction story problems and lay the groundwork for 
research on such choices in instructional planning. 	
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One way to communicate and clarify one’s thinking is through giving mathematical explanations 
(Clark, Moore, & Carlson, 2008), which has been connected by researchers to students’ 
understanding of mathematics (Goos, 1995). Yet, studies have shown that students struggle with 
giving mathematical explanations (e.g., Brunstrom & Fahlgren, 2015). To understand the genesis of 
this struggle, it is important to explore how teachers scaffold students’ mathematical explanations. 
Through scaffolding, the anticipation is that the support offered will enable the learner to internalize 
the strategies required to complete a similar task independently (van de Pol, Volman, & Beishuizen, 
2010). That said, if students are to demonstrate the competency in explaining their work, then 
studying how teachers foster such competency is worth considering. 

In this study, we employed a case study design to explore what two high school mathematics 
teachers perceived as a sufficient mathematical explanation, what they thought are scaffolding 
methods that support students in giving mathematical explanations, and their methods of scaffolding 
students in giving mathematical explanations. The two participants from a suburban independent 
school and a suburban public school were selected following their practice of asking students to give 
mathematical explanations during their lessons. Data were collected using two semi-structured 
interviews and four lesson observations, each roughly one hour in length. A constant-comparative 
data analysis method was employed, where analysis involved three phases: (a) transcribing all 
recorded interviews and lessons observed; (b) through open-coding, identifying names, events, and 
actions that seemed to address the research questions; and (c) categorizing all codes and creating 
analytical memos. We identified three major themes: (1) teachers’ perception of a sufficient 
mathematical explanation; (2) methods perceived to scaffold students’ mathematical explanations; 
and (3) enacted methods of scaffolding mathematical explanations. 

Our poster will present findings and their implications. In sum, teachers in this study perceived a 
sufficient mathematical explanation to reference the quantities of the problem in context (Clark et al., 
2008). They also perceived diverse and common methods of scaffolding students’ mathematical 
explanations, which some were observed during their lessons. Our poster will provide examples of 
these methods. 
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From its inception, Advanced Placement calculus was implemented to not only bridge the gap 
between high school and college level courses by providing a challenging curriculum, but to promote 
equity by providing opportunities for motivated students who excelled in mathematics in the public 
school system. Certain teaching norms may differ from one context to another (Herbst & Chazan, 
2012), from an Advanced Placement calculus classroom environment to a college calculus course in 
a university setting with respect to practical rationality and instructional activity. The purpose of this 
study is to explore whether this has an impact on student learning with respect to the concept of 
derivatives, and whether certain teaching norms e.g. inquiry-based tasks, are either less prevalent in a 
university setting, in upper level mathematics courses, or possibly both.  

This study is situated with the perspective that instructional strategies in the calculus classroom 
vary with regard to procedural and conceptual understanding of the content (Törner, Potari, & 
Zachariades, 2014). Educators’ perceptions of effective practice with respect to teaching derivatives 
can impact the depth of student learning, which will be explored with the following research question 
through the lens of practical rationality to examine aspects of procedural and conceptual 
understanding: How do college and high school level calculus instructors describe teaching norms for 
the concept of derivative, and what justifications do they use for endorsing or departing from these 
norms? 

Two high school AP calculus teachers and two college calculus instructors are participants in this 
study. Participants were interviewed with the objective of gaining insight into instructional methods, 
curricula, and perceptions of effective practice. This study could impact the way calculus is taught in 
both high school and college classrooms, and provide insight into the alignment between AP calculus 
and college calculus courses. 

In each interview lasting approximately 45 minutes, four scenarios were developed using the 
platform LessonSketch.org to see how participants respond to two teacher focused scenarios and two 
student focused scenarios, designed to elicit certain responses regarding instructional practices. 
Preliminary analysis of interview responses revealed that college calculus instructors recognized 
more instructor-centric teaching as normative at the collegiate level, regardless of whether they 
endorsed these norms individually. AP calculus instructors were more likely to have higher 
expectations of their students, responding immediately with confidence that their students were able 
to describe the relationship between a function and its derivative. 
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Communicating about their thinking in mathematics is challenging for young children. The 
Common Core State Standards for Mathematics requires children, beginning in Kindergarten, to 
construct viable arguments and critique the reasoning of others. While the CCSSM (2010) does not 
specifically require children to construct their arguments in writing, children in grades three and up 
are asked to construct arguments on standardized assessments, requiring them to write about their 
mathematical reasoning. However, while writing in mathematics helps children consolidate their 
thinking (NCTM, 2000), undeveloped metacognitive awareness frequently limits their ability to put 
that thinking in writing. Since the early elementary grades are a foundation for future success, 
exploring ways to help young children develop writing about their mathematical thinking is 
warranted (Cohen et al., 2015).  

The CCSSM (2010) specifically state that first grade students explain the reasoning used when 
adding and subtracting two-digit numbers and multiples of ten.  To study the impact of writing on 
students' ability to explain their reasoning, two classes of first graders engaged in eight 45-minute 
lessons in which they solved simple word problems using a strategy of their choosing, such as direct 
modeling, counting or an invented algorithm (Carpenter et al., 2015). Students then shared their 
solution strategy with a partner. After sharing with a partner, students wrote about how they solved 
the problem. Finally, the whole class engaged in a conversation about the students’ solution 
strategies and the mathematical goals of the lesson.  

To determine change, the students participated in a pre/post assessment in which they explained 
in writing how they solved a Join Result Unknown problem. The written responses on the pre-
assessment were vague and mainly limited to describing their drawings, such as I drew ten blocks 
and one blocks. The written responses on the post assessment included more mathematical 
vocabulary, including add, more, counted, tens and ones. Students demonstrated conceptual 
understanding of adding two-digit numbers and multiples of ten by writing statements such as " I 
used 3 tens 6 ones and made 36. I used 4 tens 0 ones and made 40. I counted them and made 76. 
Students also demonstrated mathematical reasoning by explaining that they knew to add because “he 
went to the store and got more.” The student responses on the post assessment demonstrate that very 
young children are able to write about their mathematical thinking in deep, thoughtful ways. 
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Teaching mathematics through social justice supports students’ perceptions of relevance in 
mathematics (e.g., Gutstein, 2006). However, while some research reports tension between 
mathematics and social justice (e.g., Enyedy & Mukhopadhyay, 2007), Gutstein (2017) describes it, 
instead, as an interweaving dance, and this study investigates the choreography of teaching 
mathematics through social justice. How do tasks support students’ development of critical 
dispositions toward social topics, or their views of mathematics?  

A growing body of scholarship has informed our understanding of teaching mathematics through 
social justice and has emphasized the usefulness of real-world contexts in creating opportunities for 
math and sociopolitical learning. The data were collected in a semester-long Calculus course. This 
study contributes to literature by addressing the following questions: 

1. What capabilities and constraints are observed when teaching and learning mathematics 
through social justice?  

2. How can teachers and students “dance” between social justice pedagogy and mathematical 
content? 

University calculus students (n=106) conducted social justice projects. Classes were audio-
recorded, transcribed, and analyzed. In questionnaires, students tended to identify constraints in 
correlation with mathematical content (p<.05) and capabilities in correlation with cultural knowledge 
(p<.05). While these correlations inform the tensions between content and culture, the qualitative 
analysis reveals more about the dance between mathematical and sociocultural knowledge. For 
example, a thematic analysis reveals a humanization of mathematics. After analyzing homeless rates 
among psychiatric patients, one student reported, “It puts a face on the numbers.” Other themes 
included access and action, encouraging critical dispositions. 

By analyzing the instructor’s perspective, practical implications include affordances in 
developing engaged dispositions toward Calculus and social justice-themed activities. Theoretical 
implications include refinement and extension of Gutstein’s framework. 
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This paper explores how students’ mathematical ideas can spread across the mathematics 
classroom space during seatwork. Recent reform recommendations emphasize the importance of a 
well-designed challenging task forming the core of students’ in-class mathematical experiences (e.g., 
NCTM, 2000). Maintaining each individual student’s cognitive demand while solving this central 
task is a major part of teacher work during the implementation phase of a mathematics lesson. 
However, in a class where communication, collaboration, and joint cognition are expected, valued, 
and encouraged, students’ own interactions can paradoxically and ironically undermine the teacher’s 
attempts to maintain the cognitive load of a teacher-posed task for each individual student. As 
students listen to each other’s thoughts, successful solutions to teacher-posed cognitive task can 
rapidly promulgate across the classroom space. When students adopt successful ideas of their peers, 
their cognitive demand (relative to the central task) is diminished.  

To better understand this dilemma, this study explored ways in which students’ mathematical 
ideas can spread across the mathematical classroom space. Using an  idealized classroom space of 
36 student desk locations (six desks across by six desks deep), 3,568 separate computer simulations 
were run on a computer program based on the initial parameters of (a) spread initiating from a single 
location and (b) propagating in eight possible directions (c) based on a pre-set percentage chance of 
idea spread from one student location to the next. 1,561 simulations allowed for (d) possible new 
student understanding to potentially and spontaneously crop up at other locations in the classroom (to 
simulate the possibility of unique student understanding developing that was unconnected to the 
original student’s idea, as seatwork progressed). Results from these computer simulations include (1) 
empirical justification for the theory of placing more able students on the periphery of the classroom 
space slowed the spread of mathematical ideas (which allowed slower students the opportunity to 
experience longer the vital element of struggle so important to mathematics learning), (2) the 
distributions of the number of time iterations for full classroom understanding were not normally 
distributed, and (3)   

This study contributes to the growing body of research on the development of authentic 
mathematical communities in mathematics classes, although this study is limited in scope. Better 
understanding how student ideas can spread across the mathematics classroom landscape will enable 
more robust theory generation for the dilemma of maximizing students’ cognitive demand during 
seatwork of teacher-posed challenging tasks while simultaneously respecting the need for appropriate 
communication. More research utilizing more precise computer simulations that better model how 
student ideas spread across mathematics classroom spaces is needed to better understand how to 
maintain students’ cognitive load during mathematics task activity. 
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Existing literature on formative assessment focuses on the characteristics, cyclic processes, and 
ongoing conceptualization of formative assessment (Black & Wiliam, 2009; Cowie & Bell, 1999; 
Heritage, 2010; Wiliam, 2014). The purpose of this qualitative case study research was to identify the 
formative assessment processes of three secondary mathematics teachers who used technology to 
gather feedback/answers from students during instruction. Data collection included audio-recorded 
non-participant classroom observations, audio-recorded semi-structured pre- and post-observation 
interviews, and when applicable, screen capture of student responses through technology. The 
conceptual framework of formative assessment by Black and Wiliam (2009) was used to analyze 
transcribed classroom observations to determine how each teacher utilized, implemented and 
sequenced the five key strategies (KS) of the framework during instruction.  

Results indicated that all three teachers incorporated eliciting evidence of student understanding 
and learning (KS2), providing feedback to move learning forward (KS3), and activating students as 
instructional resources for one another (KS4) into instruction. All three teachers verbally shared 
learning objectives with students, but only one clarified and shared learning intentions and criteria 
for success with students (KS1). Two teachers activated students as owners of their own learning 
(KS5). Only one teacher implemented all five KS into their formative assessment process. In addition 
to identifying the KS that emerged during the formative assessment processes, the implementation 
and sequencing of strategies was also revealed. Each teacher demonstrated their own unique process 
of formative assessment. Diagrams depicting the sequence of KS implemented by each teacher 
during their formative assessment process will be shared. 

Future implications include continuing to explore teachers’ implementation and sequencing of 
KS of formative assessment using technology, how each teacher’s mathematical disposition impacts 
their process of formative assessment, and the impact of each formative assessment process on 
student achievement. In the three cases presented, some instruction occurred prior to using 
technology to elicit evidence of student thinking. How did this implementation and sequencing of KS 
impact student understanding and achievement? How would varying the sequence of KS impact 
student understanding and achievement? Additional work is needed to learn more about how teachers 
use the key strategies of formative assessment in practice and the impact these formative assessment 
processes have on student understanding and achievement in mathematics.  
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DEVELOPING PRESERVICE TEACHERS’ UNDERSTANDING OF FUNCTION USING A 
VENDING MACHINE METAPHOR APPLET 

 Allison McCulloch Jennifer Lovett Cyndi Edgington 
 NC State University Middle Tennessee State University NC State University 
 allison_mcculloch@ncsu.edu jennifer.lovett@mtsu.edu cpedging@ncsu.edu 

The purpose of this study is to examine the use of a Vending Machine applet as a cognitive root for 
the development of preservice teachers understanding of function. The applet was designed to 
purposefully problematize common misconceptions associated with the algebraic nature of typical 
function machines. Findings indicated affordances and limitations of the applet as a cognitive root, 
motivating revisions to the applet for further study.  

Keywords: Algebra and Algebraic Thinking, Instructional Activities and Practices, Technology 

Functions are a critical base for mathematical understanding of STEM disciplines and are often 
regarded as the unifying element of much of secondary mathematics. This is recognized in the 
CCSSM where the study of functions is given its own domain, separate from Algebra, in grades 9–12 
(National Governors Association Center for Best Practice & Council of Chief State School Officers, 
2010). The conceptual obstacles with respect to putting function front and center have been well 
documented in the literature (e.g., Even, 1990, Tall et al., 2000) and have proven particularly hard to 
overcome. Rather than constructing their own definition of function based on tasks, students are 
often presented with a highly theoretical definition, resulting in a disconnect between their concept 
definition and their concept image (Even, 1990). The same is true for undergraduate students 
(Carlson, 1998), including preservice mathematics teachers (PSTs). Thus it is important that PSTs 
have an opportunity to develop a deep conceptual understanding of functions that remedies any 
existing misconceptions and understand how to engage students in tasks to develop and test their own 
definitions. 

Theoretical Framework 
There is evidence that PSTs often have a view of function that is limited to algebraic expressions 

and their associated graphs (e.g., Carlson 1998; Even 1990). Such understandings typically result in a 
“vertical line test” related definition of function (e.g., Carlson, 1998). Furthermore, those working 
with a vertical line test definition of function or an equation view of function often have the 
misconception that constant functions (horizontal lines) are not functions (Bakar & Tall, 1991). One 
suggested strategy for mitigating these common misunderstandings is the use of a function machine 
as a cognitive root.  

The idea of a cognitive root was introduced by Tall as an “anchoring concept which the learner 
finds easy to comprehend, yet forms a basis on which a theory may be built” as he was developing a 
cognitive approach to calculus (Tall et al., 2000, p.497). One common example is the use of a 
function machine (sometimes referred to as a function box) as a cognitive root for the development of 
a definition for function as well as for building understanding of independent/ dependent variables 
and domain/range. The machine metaphor suggested by Tall and colleagues was typically a “guess 
my rule” activity. In such activities the inputs and associated outputs are provided, and students are 
challenged to determine what happened in the function machine (i.e., determine the function rule). 
While students are presented with a machine to embody the function concept, the rules used by the 
machine are algebraic in nature. Using such machines proved quite promising, yet some students still 
struggled with connecting representations and determining what is and is not a function (McGowan 
et al., 2000).  
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Given the potential of the machine metaphor as a cognitive root for function, in our work 
designing learning experiences for PSTs that incorporate technology, we originally followed Tall and 
colleagues’ recommendations and created a function machine using GeoGebra to engage PSTs in 
“guess my rule” activities, including designing their own function machines. Our PSTs demonstrated 
misconceptions that were similar to those in the literature, namely, that all functions needed to be 
represented by a formula, difficulty differentiating between the terms unique and exactly one output, 
and identifying constant functions as non-functions.  

As a result, we set forth to design a set of machines that would not only be a familiar anchoring 
concept, but would hopefully also push and probe PSTs current understandings about functions in 
ways to intentionally problematize these misconceptions. To do this we considered Carlson’s (1998) 
key aspects of function as they related to the function machine metaphor: interpreting and 
characterizing independent and dependent variables, ability to identify and describe the domain and 
range, using one representation of function to make sense of another, and distinguishing between 
functions and non-functions. The function machine as a cognitive root and these aspects of function 
as they related to common misconceptions framed both the design of our applet and our analysis of 
PSTs’ work with the applet. 

Design of the Applet 
Unlike previous machine metaphors PSTs had experience with, the function machine applet we 

designed contains no numerical or algebraic expressions, rather the applet was built on the metaphor 
of a vending machine. The Vending Machine applet (https://ggbm.at/LdtLR0ex) is a GeoGebra file 
that contains five vending machines each with buttons for: Red Cola, Diet Blue, Silver Mist, and 
Green Dew. The directions state to explore the five machines and determine which are functions 
(Figure 1; McCulloch et al., 2015). When the user presses a button (input), one or more cans appear 
in the bottom of the machine (output). To remove the can(s) from the machine, the user clicks a reset 
button. The functionality of each machine was designed to address misconceptions from the literature 
on distinguishing functions and non-functions that our PSTs had previously demonstrated. Machine 
A is the identity function; each button produces a can of the corresponding color.  

 

 
Figure 1. Screenshot of function machine applet.  

Machine B is the same as A except when Silver Mist is selected, it produces two silver cans. This 
machine requires students to wrestle with the notion of what represents an element in the range. For 
Machine C, every button results in a single green can. The purpose of which is to present PSTs with a 
constant function to consider (i.e., the same number of cans of the same color for each button). For 
each button on Machine D a single can is produced, but the color is different from the color of the 
button pressed. This machine was designed to problematize their occasional use of the term “unique” 
when thinking about outputs. Finally, Machine E is similar to D, except the Silver Mist button 
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randomly produces cans of different colors each time it is pressed. The purpose of Machine E is to 
provide a context in which testing the buttons on the machine once is not sufficient for determining 
whether or not the object is a function. Thus machines B, C, and E explicitly address the 
misconceptions we found when using function machines with associated algebraic expressions or 
graphs.  

The purpose of this study was to examine the effectiveness of the Vending Machine applet as a 
cognitive root for function. In this paper we specifically address the following research question: 
What understandings of function do PSTs develop from engaging in a task using a vending machine 
metaphor applet?  

Methods 
To answer our research question, we engaged PSTs enrolled in a content-focused methods course 

in a task exploring the Vending Machine applet. Nine PSTs (referred to as S1-S9) engaged in the 
task; of the nine, seven were undergraduate secondary mathematics education majors (three of the 
seven were also dual mathematics majors), and two were enrolled in the Master of Arts in Teaching 
(initial licensure) program.  

Data Collection and Analysis 
The study began by asking PSTs to individually write a definition of a function, including 

examples and non-examples. After doing this independently, a whole class discussion was facilitated 
using their definitions through which the class agreed upon the following definition: A function is a 
mathematical relationship such that each input has exactly one output. Then, they were asked to 
engage in the Vending Machine applet task as a homework assignment; they were to explore the 
machines to determine which were functions and which were non-functions. Each PST captured a 
screencast of their work as they followed a “think aloud” protocol while working on the task. 
Simultaneously, they completed a worksheet to provide written documentation of their thinking. 
Following the task, PSTs completed a written reflection where they were asked to revise the agreed 
upon definition of function based on their experience with the task, to reflect on the different 
representations of functions presented in the task, and to discuss aspects of function highlighted by 
different machines with which they engaged (including possible uses with students). The PSTs 
uploaded their screencasts to a shared, secure online folder and submitted their written work during 
the following class session.  

We began by examining the data to develop a code book based on four key aspects of function 
(Carlson, 1998) we previously identified that informed our theoretical framework. We chose two 
students’ data (screencast, written worksheet, and reflection) and used open coding to identify themes 
related to each key aspect. We used a constant comparison method (Strauss & Corbin, 1998), which 
allowed for emerging categories within each key aspect and the refinement of these categories as 
they were contrasted with new data. Since we were particularly interested in how PSTs made sense 
of the applet, we also looked for evidence of the affordances and limitations of the applet, as well as 
misconceptions/errors, and an “other” category to capture any unanticipated themes. Then, to check 
for reliability, each author individually coded the two original students’ data, plus an additional 
student’s data, using the code book.  

For the screencasts, we recorded the code and machine the PST referenced. For example, when 
working on Machine E, one PST commented “Machine E is a non-function because the silver button 
points to different colored cans” This was coded as “Distinguishing between functions and non-
functions” and “Machine E” since the PST was justifying why that particular machine was a non-
function. For the written artifacts, we coded their written explanations and drawings. For example, on 
the worksheet, several PSTs drew mappings that described each vending machine. These drawings 
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were coded as “Interpret and characterize independent and dependent variables” and labeled with the 
letter of the corresponding machine that the drawing was in reference to. The researchers met to 
discuss the codebook and emerging themes and to clarify the codebook.  

Once the codebook was finalized and reliability achieved, we coded all of the remaining data. We 
then looked within each code to understand the ways in which the PSTs engaged with the function 
machines to make sense of each key aspect. Finally, we examined the data by each function machine 
(for example, we looked at all codes associated with Machine A) to understand how each particular 
machine supported (or conflated) PSTs understanding of function, in particular the key aspects, as 
well as the affordances and limitations of the applet.  

Results 
Of the nine PSTs that completed the function machine task, five of them provided correct 

responses for all five machines. The other four PSTs’ errors were related to Machine B and/or 
Machine E (see Table 1). Their interpretations and characterizations of the independent and 
dependent variables (referred to as “inputs” and “outputs” by most PSTs) were central to their 
determination of whether or not each machine was a function. Here we focus on the ways in which 
the PSTs made sense of two specific machines, B and E. These machines are the only two for which 
PSTs provided incorrect answers and as such they provide insight to the aspects of function that the 
machines were designed to elicit. For the purposes of this paper we discuss two specific code 
categories, distinguishing between functions and non-functions and interpreting and characterizing 
independent and dependent variables, and the ways they provide insight to student sense making. 

Table 1: PSTs’ Worksheet Responses: Function or Non-Function 
Machine S1 S2 S3 S4 S5 S6 S7 S8 S9 

A F F F F F F F F F 
B F N F N N N F F F 
C F F F F F F F F F 
D F F F F F F F F F 
E N N N F F F N N N 

The Case of Machine B 
As a reminder, pressing the Silver Mist button on Machine B results in the production of two 

cans of Silver Mist. The other three buttons act as the PSTs expected, producing one can of the soda 
noted on the button. Noting that Machine B is not a function was the most commonly made error in 
this task (n=4). The characterizations of the independent and dependent variables were quite different 
for those students that determined B was a function and those that determined it was not. 

When examining the machines, the PSTs that described the independent and dependent variables 
(called inputs and outputs from here on out) only attending to how many elements there were in the 
output for each input determined that the machine was not a function. For example, S4 explained, 
“Red cola has one output, diet blue has one output, silver mist has two outputs, and green dew has 
one output...since silver mist has two outputs, I would say that is not a function.” Similarly, S5 noted 
“So you put in an input and you get two outputs, in a function you are not supposed to get two 
outputs.” Notice that both PSTs were focused on the number of outputs for each input.  

In contrast, other PSTs were attending to not only the number of elements in the output, but also 
what they were and if the mapping from input to output was “predictable”. S3 stated, “Exactly one 
output for each input, 2 silver mist cans is the output for silver mist.” S9 went further and explained 
the importance of the output being “predictable” when he said, “Even though silver mist comes out 
with two cans versus one can but it always comes out with two silver cans, instead of three silver 
cans one time and two silver cans another time.” While the idea of two cans being the output was not 
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problematic for some students, there were a few that grappled with it as they made sense of the 
situation. For example, S1 noted  

So silver mist comes out with two sodas...hmmm...[keeps pressing]...that's interesting...cuz it 
depends on what you consider the output. The output could be how many different kinds of sodas 
there are...so it could be like you're putting in red you're getting out one, you're putting in blue 
you're getting out one, you're putting in silver you're getting out two, it doesn't necessarily mean 
it's not a function...it's just a different value.  

The difference between these responses and those from the PSTs that focused on only the number of 
elements was that these students identified a mapping.   

The Case of Machine E 
Like we saw for Machine B, attending to only how many elements in each output was also 

problematic when trying to determine whether or not Machine E represented a function. As a 
reminder, Machine E included a button for Silver Mist for which the output was random, so it was 
not a function. S4 explained, "Red cola has an output, diet blue has an output, silver mist has an 
output, and green dew has one output...again [presses buttons]...they each have one output, silver 
mist has one output but it is a blue soda as well...each choice has one output...so it is a function." 
Even though she clearly identified that the Silver Mist button did not always produce the same 
output, she determined it was a function because it always produces one output. S5 only tried each 
button once, so he did not see that the Silver Mist button was unpredictable. He said, "For Red Cola 
you get a Red Cola, for Diet Blue you get you a Diet Blue, for Silver Mist you get a Green Dew, for 
Green Dew you get a Green Dew. I still think it's a function...you can get two of the same outputs 
because you are still getting one output for each input." While he did not have the opportunity to see 
the different outputs, the fact that he only tested the button once suggests that he does not understand 
what it means for an input to map to exactly one output.  

The PSTs that interpreted outputs to have characteristics beyond just “how many” elements, 
correctly identified Machine E as a non-function. We have taken to describing this coordination 
between inputs and attending to multiple characteristics of the outputs as “mapping thinking”. The 
following explanations are examples of what we are referring to as mapping thinking: 

• “Silver mist can give you any soda. Yeah this one is not going to be a function because the 
silver mist button can give you all kinds of sodas. Machine E is not a function because it has 
different outputs for the same input.” (S9) 

• “Every input is supposed to have one output. It’s not supposed to change all the time...The 
assignment of inputs to outputs can’t change all the time. It has to be a unique prescription. It 
looks like it varies all the time.” (S8) 

•  (S7) 

These explanations not only include an interpretation of independent and dependent variables 
beyond simply how many elements in an output are associated with a given input, but also show 
evidence of a deeper understanding of the definition of function. This understanding goes beyond 
“one input gives one output” and is not attached to an equation or graph. 
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Revising Definitions Based on Machines B and E 
In a reflection assignment the PSTs were asked if they would suggest any changes to the agreed 

upon definition: A function is a mathematical relationship such that each input has exactly one 
output. The PSTs that misidentified both B and E did not suggest any changes to the definition. S1, 
who misidentified only B, wrote, “I think that to be a function, it had to map colas to one other cola, 
not change the colas it was giving out or producing more. So, I think that our definition is still a good 
one.” Notice that he is still focused on the number of elements in the output. In contrast, all of the 
PSTs that correctly identified all 5 machines suggested some changes to the definition to address the 
misconceptions that might be associated with working in the context of vending machines. For 
example, S3 suggests,  

I would like to change it to a “function is a mathematical relationship such that each input 
produces the same output at all times.” [...] I noticed that in Machine B, each input produced one 
can except Silver Mist, which produced two cans, and this made me initially say it wasn’t a 
function. However, I know that you can have a function that is not uniform, so producing two 
cans each time is an appropriate thing for Silver Mist to do without violating the function rules. 
Thus, the “exactly one” language is misleading… Then, Machine E threw me off because each 
input produces exactly one output, but Silver Mist produces a different output each 
time...Because of that discovery, I realized that the language “exactly one output” could be very 
confusing to students and does not exactly explain what is going on in a function, which is that 
no matter when you place an input into the function, you will always get the exact same output 
that you got the last time you put that particular input into a function. That is what we mean by 
“exactly one output,” but the language restricts students from really understanding what the 
function is doing with that input.  

It is clear from these suggested revisions that the context of a vending machine was not only a 
powerful cognitive root for the PSTs’ own understanding, but it also resulted in an understanding of 
ways to mitigate their future students’ possible misunderstandings.  

Discussion 
As this was our first use of the Vending Machine applet as a cognitive root for function with 

PSTs, it is important to note affordances and limitations of its design. Machines B and E, the two 
most commonly misidentified machines, are nice examples of how these PSTs make sense of the 
definition of function within the context of the Vending Machine applet being used as a cognitive 
root and provide insight to the ways that they interpret independent/dependent variables and apply 
them to their existing definition of function. Results showed that through these experiences, PSTs 
recognized that the use of the commonly used phrase “exactly one output” in the definition of 
function can be problematic. Furthermore, the fact that the applet used non-expression objects seems 
to have been a helpful context for this realization. 

The need to press the reset button to remove the output was first seen as a limitation as PSTs 
often forgot to do so and ended up with multiple outputs showing at once. However, this feature was 
also an affordance in that it offered insight to their thinking and, for those that did it intentionally, 
provided a representation of the range. Another limitation was the number of machines that were 
included in the applet. There were not enough examples of non-functions or functions with more than 
one element as an output. In more than one instance PSTs got to the final machine and assumed it 
was a non-function simply because “at least one of these must be”. Finally, it is possible that 
agreeing upon a class definition of function prior to engaging with the task might have changed the 
way that PSTs interacted with the applet. It was not clear if all PSTs were actually in agreement with 
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the adopted definition. If one did not understand the agreed upon definition, it would be difficult to 
apply it to an analysis of the machines.  

From our research on the PSTs’ engagement with the applet and the affordances and limitations 
identified, a revision to the applet has been made. The new version has been created to address PSTs’ 
interpretations of Machine B and Machine E and the limitations noted above. It consists of four pages 
(Figure 2). The first two pages contain two vending machines, on each page one machine is labeled 
as a function and the other is labeled as not a function. The two non-function machines each have at 
least one button that produces a random can when pressed. The new applet provides the opportunity 
for PSTs to make a conjecture, after page two, on why Machines 1 and 3 are functions and Machines 
2 and 4 are non-functions. They then test their conjecture on the pages three and four, that each 
contain five machines. The five original machines are included, along with five new machines. These 
new machines provide additional opportunities to examine machines that are not one-to-one, produce 
random pairs of cans as an output, and have random outputs for all four inputs.  
 

Figure 2. New version of the applet (https://ggbm.at/MAEdhkH6). 

Conclusion 
Our findings suggest that the Vending Machine applet might be a powerful tool (cognitive root) 

for building understanding of key aspects of function as identified by Carlson (1998). In thinking 
about the theme of this conference, this work suggests a potential change in route in the ways we 
might consider engaging PSTs with concept of function. However, to determine whether or not these 
findings are generalizable the use of the applet needs to be studied on a larger scale. We are currently 
conducting a larger study using the new version of the applet with approximately 40 PSTs from five 
universities across the country. Our hope is that through further study and revision, this work results 
in a solid cognitive root that remedies existing misconceptions and on which deep conceptual 
understanding of function can be built. 
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This research report presents the final year results of a three-year research project on computational 
thinking (CT). The project, funded by the National Science Foundation, involved training teachers in 
grades four through six to implement Scalable Game Design and LEGO® EV3 robotics during 
afterschool clubs. Thirty teachers and 531 students took part in the Year-3 study that blended game 
design and robotics. Eight of these teachers and 98 students participated in a large urban city in 
Pennsylvania, while the remaining 22 teachers and 433 students participated in rural Wyoming. This 
paper reports on the results as it pertained to teacher outcomes, specifically, teachers’ development 
of CT beliefs and engineering practices.  

Keywords: Technology 

Computer science is a rapidly growing field (Bureau of Labor Statistics, U.S. Department of 
Labor, 2016) that when coupled with engineering offers youth a broad, multidisciplinary pathway to 
occupations that provide both intrinsic and extrinsic rewards and benefits. Computing is integral to 
science, technology, engineering, and mathematics (STEM) in general and roughly 67% of 
computing jobs will be in non-STEM industries (Israel et al., 2015). Underrepresented minority 
students have limited opportunities to engage in high-quality STEM education. As access to school-
based technology increases, opportunity expands to out-of-school time (OST) programs. Given the 
data-rich context in which we live, this expansion fills a critical need to identify the tools, pedagogy, 
and practices deemed essential for promoting STEM learning.  

This report describes our Year-3 study, which blended game design and robotics to provide 
elementary school teachers with a robust curriculum that would allow them to engage students in 
computational thinking (CT) at high levels. While several teachers were familiar with robotics, few 
had previously worked with game design. Because competency in computer science and engineering 
demands an understanding of mathematical and scientific processes and problem solving, we believe 
our pedagogical approach—to couple game design and robotics within the context of culture—is 
both necessary and innovative. Culture is defined as “a group’s individual and collective w ays of 
thinking, believing, and knowing, which includes their shared experiences, consciousness, skills, 
values, forms of expression, social institutions, and behaviors” (Tillman, 2002, p. 4) and can be used 
to motivate students to learn difficult concepts. Game design and robotics were used to promote CT 
as students engaged in abstraction, logical thinking, and debugging to create game conditions using 
simple commands and to make the robot perform a task. Specifically, we were interested in how 
teachers’ beliefs and practices changed as a result of their work in STEM with rural or urban 
elementary students during OST. 

The research questions that guided the study reported here were as follows: 
How did teachers’ beliefs about computational thinking change as a result of the study? 
How did teachers’ engineering beliefs and practices change as a result of the study? 
How did teachers’ instruction change in comparison to baseline observations? 
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How did focal teachers describe their teaching practices during OST? 

Theoretical Framework 
The theoretical framework is grounded in theories of cognitive development that emphasize a 

developmental and constructivist view of the relationship between cognition and culture. The Saxe 
(1999) model is grounded in developmental and constructivist theories of learning and emphasizes 
the relationship between cognition and culture. Saxe argued that individuals create new knowledge 
while participating in culturally influenced goal-structured activities that occur in social settings. The 
model focuses on three areas: (a) goals for learning structured by common cultural practices, (b) 
particular cognitive forms and functions created to reach goals, and (c) identifiable characteristics 
involved in the interplay across learning in different cultural contexts.  

First, the goal structure of cultural practice consists of the tasks or activities that must be carried 
out. “Games are inherently artifacts of culture through which cultural roles, values, and knowledge 
bases are transmitted” (Nasir, 2005, p. 6). In African American communities, for example, goal 
structures may be communal as success of the group is valued over individual success (Coleman et 
al., 2016). Intricate roles of help-seeking and help-offering strategies occur during game design, 
revealing the intertwining characteristics of individual and sociocultural systems of cognitive 
processing (Nasir, 2005). These roles may also be evident in game design and robotics, particularly if 
teams of students work together. In game design, goal structures are associated with creating unique 
agents and developing functional games to maximize points; in robotics, goals are associated with 
movement and carrying out specific tasks.  

Second, according to the Saxe model, sign forms—such as counting systems and cultural 
artifacts — are needed to execute and influence goals that emerge in cultural practice. “Practice-
linked goals are influenced by many dynamics of activity, including social interaction between those 
engaged in a practice, the organizational structure of a practice, individuals’ prior goals and 
understandings, and artifacts, norms, and conventions of the practice” (Nasir, 2002, p. 216). There 
are shifting cognitive processes in game design to adapt the game to meet gamers’ needs and goals 
(Nasir, 2005). These cognitive processes may be noticeable in game design and robotics as students 
developed CT strategies via learning progressions. The role of the teacher as a facilitator is critical to 
students’ development of these skills. 

Literature Review 
While STEM encompasses a wide range of disciplines, the literature review focuses on digital 

game design, robotics, and computational thinking as teachers used CT strategies and engineering 
practices to broaden equitable participation in STEM.  

Digital Game Design 
K-12 students are part of a digital and gaming culture. Game design and simulation have been 

used to address elementary and middle school students’ motivation and interest in computer science 
courses and careers (Webb et al., 2012). Software tools like Scratch (Mouza et al., 2016; Israel et al. 
2015) and Scalable Game Design (SGD) (Repenning et al., 2015) have been used successfully to 
help children design digital games. SGD uses instructional units to support game design and 
simulations through the use of AgentSheets and AgentCubes, allowing students to engage in higher-
level thinking skills as they use code to move the agent through obstacles in a game (Repenning et 
al., 2015). Scratch, AgentSheets, and AgentCubes were used in this study to provide teachers with 
robust curriculum.  
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Robotics 
Sullivan and Heffernan (2016) conducted a review of research on robotics construction kits 

(RCKs) as computational manipulatives in P-12 settings. They define computational manipulatives 
as those that have internal computing capabilities, programming, or microcomputers embedded in the 
hardware. Grounded in the LOGO (i.e., logic oriented graphic oriented) programming language, 
computational manipulatives allow children to engage in analytical and embodied cognition (Papert, 
1993). Sullivan and Heffernan assert that RCKs have a dual function as students engage in both 
cognitive and physical aspects of learning. For example, during LEGO® robotics, students may 
mimic the physical motions of the robot as it travels along a path while also engaging in reasoning, 
reflection, discussion, and problem solving to complete a robotics task. Most importantly, students 
may follow a learning progression, such as sequencing, causal inference, conditional reasoning, and 
systems thinking, as they interact with RCKs (Sullivan & Heffernan, 2016).  

Computational Thinking 
CT is an evolving field that also emerged from the work of Papert (1993), who was the first to 

use the term. Wing (2006) defines CT as a human endeavor that “involves solving problems, 
designing systems, and understanding human behavior by drawing on the concepts fundamental to 
computer science” (p. 33). CT is a cognitive skill that all students are expected to use across 
disciplines and in multiple contexts (Mouza et al., 2016; Weintrop et al., 2016; Yadav et al., 2014). 
Weintrop et al. (2016) developed a taxonomy to incorporate the computational nature of mathematics 
and science into more recent educational endeavors. Their taxonomy for CT in mathematics and 
science includes the following practices: using data, modeling and simulation, computational 
problem solving, and systematic thinking. We use this definition of CT because it aligns well with 
both the computer science and engineering aspects of our study.  

Methodology 

Participants and Setting 
Thirty teachers participated in most aspects of the Year-3 study. However, we limit this report to 

19 teachers new to the project and 4 teachers, who chose to continue from the Year-2 study; these 23 
teachers fully participated in the Year-3 study.  

All of the teachers received the same training, which consisted of two logistics meetings and an 
eight-week course on game design and robotics. Game design was taught by a computer scientist, 
who was a member of the research team. Lesson plans focused primarily on creating mazes, Frogger, 
and PacMan games using SGD. Robotics was taught by a science educator, who was also a member 
of the research team. Lesson plans focused on using LEGO® EV3 robotics kits to make the basic car, 
gyro boy, and sumo bot. MINDSTORMS® programming controlled the robot’s movements and use 
of ultrasonic, color, and touch sensors.  

Data Analyses and Data Sources 
Mixed methods were used to analyze data in the Year-3 study. Quantitative data were used to 

examine changes in teachers’ CT beliefs (Yadav et al., 2014) and engineering practices (i.e., 
Engineering Education Beliefs and Expectations Instrument for Teachers (EEBEI-T) (Nathan et al., 
2010). Internal reliability of the survey instruments revealed Cronbach alphas were in the acceptable 
range (Black, 1999): CT survey (α = 0.76); EEBEI-T (α ≥ 0.70). The CT survey consists of 21 items 
related to understanding CT (i.e., definition), dispositions (i.e., comfort, interest, and classroom 
practices), and future careers. Examples of these items included: “Computational thinking involves 
thinking logically to solve problems; Knowledge of computing will allow me to get a better job. 
Using a 4-point Likert scale, scores ranged from 1 (strongly disagree) to 4 (strongly agree). Two 
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constructs on the EEBEI-T were analyzed for this report: STEM Integration of Content and Applied 
Knowledge (13 items) and Engineering Cycle (5 items) to query teachers about the use of curriculum 
and engineering practices. Since these two constructs were specifically developed for use with 
teachers in Project Lead the Way (PLTW), reliability parameters are not available.  However, the 
EEBEI-T survey in its entirety and inclusive of these two constructs does possess established content 
validity (Nathan et al., 2011). An example of these items included: “I use curriculum activities that 
rely on application and design activities as a way to introduce students to basic laws in math and 
science.” Using a 5-point Likert scale, scores ranged from (0-never; 1-almost never; 2-sometimes; 3-
often; and 4-almost always). The T-statistic was used to analyze pre-post scores on each of these 
surveys. We set the confidence interval at 0.90 since the sample size was small (Quinn & Keough, 
2002).  

Qualitative data included using the Dimensions of Success (DoS) instrument to collect field notes 
and rate teachers’ practices (Noam et al., 2014). Factor analysis revealed the 12 DoS dimensions can 
be aggregated into two groups: student learning and learning environment (Gitomer, 2014). Student 
learning may be further divided into three domains: (a) Activity Engagement; (b) STEM & 
Knowledge Practices; and (c) Youth Development. A score of 3 constitutes what researchers 
document as reasonable evidence while a score of 4 constitutes compelling evidence. Ratings were 
shared with teachers at the end of the study year as member checks. Additionally, three teachers 
agreed to serve as focal participants to share their experiences and reflections on the project.  

Results 

Computational Thinking (CT) and EEBEI-T Surveys 
Twenty-three teachers completed pre-post CT surveys. The data (see Table 1) reveal significant 

differences on the CT survey from pre-post: (t = -2.173; p = 0.041; Cohen’s d = 0.34). Cohen’s d 
shows a small effect size for this increase. Two teachers who completed the CT did not complete the 
EEBEI-T. Table 1 also reveals significant differences from pre-post on the modified EEBEI-T (t = -
2.882; p = 0.009; Cohen’s d = 0.78). Cohen’s d shows a large effect size for this increase. 
Interpretation of the data reveal teachers ranged from ‘almost never’ to ‘sometimes’ on the STEM 
Integration of Content and Applied Knowledge and Engineering Cycle constructs on the pre-survey 
but tended toward ‘sometimes’ on these constructs on the post-survey. Thus, teachers made progress 
on use of engineering practices in the Year-3 study.  

 

Table 1: Results of Teachers’ Survey 
Construct Pre-Survey 

Mean 
Standard 

Deviation 
Post-Survey Standard 

Deviation 
CT Survey (n=23) 3.34 0.30 3.45* 0.30 
EEBEI (n=21) 1.88 0.57 2.40* 0.77 

    * p < 0.05 
 

Dimensions of Success 
We observed 23 teachers during the Year-3 study using the DoS instrument. However, three 

teachers were observed only once and, therefore, removed from the sample. Mean ratings (M1) of the 
first observation were used as a baseline, and mean ratings (M2) of the last observation were used to 
show growth. The interval between teaching episodes was typically four to six weeks unless the 
teacher participated in multiple years. Four teachers engaged in co-teaching and 12 taught lessons 
individually. Thus, 16 total observations were analyzed by lesson type to show trends on the three 
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domains of interest (see Table 2). Teachers’ ratings were slightly higher on robotics than game 
design at the baseline. Teachers’ ratings showed compelling evidence (M2 = 4.0) for Purposeful 
Activities, STEM Engagement, STEM Content Learning, and Relationships on final observations in 
the game design context. Scores increased from M1 = 2.9 to M2 = 3.6 for game design. However, the 
lowest rating was on the Relevance dimension (M2 = 2.8). DoS scores dropped from M1 = 3.3 to M2 = 
3.2 in the robotics context, with the most substantial drop on STEM & Knowledge Practices. Overall, 
teachers’ practice improved from M1 = 3.1 to M2 = 3.3 regardless of context. The strongest domain at 
the end of the study was Activity Engagement, which was followed by Youth Development and 
STEM & Knowledge Practices. Relevance (M2 = 2.4) was the weakest dimension in Year 3 as well as 
in prior years (Leonard et al., under review).  

 

Table 2: Analysis of DoS Observation 
 
Observation  

ACTIVITY ENGAGEMENT STEM & KNOWLEDGE PRACTICES YOUTH DEVELOPMENT  
Mean Student 

Participation 
Purposeful 
Activities 

STEM 
Engagement 

STEM 
Content 
Learning 

Inquiry Reflection Relationship Relevance Student 
Voice 

Baseline – 
Gaming 
(n=9) 

2.9 3.2 3.6 2.8 2.9 2.4 3.8 1.8 3.0 2.9 

Final – 
Gaming 
(n =6) 

3.7 4.0 4.0 4.0 3.2 3.2 4.0 2.8 3.3 3.6 

Baseline – 
Robotics 
(n=7) 

3.1 3.7 3.9 3.4 3.3 3.0 3.9 2.4 3.1 3.3 

Final – 
Robotics  
(n= 10) 

3.3 3.4 3.7 3.0 3.1 2.8 3.8 2.2 3.1 3.2 

Total 
Baseline 
(n=16) 

3.0 3.4 3.7 3.1 3.1 2.7 3.8 2.1 3.1 3.1 

Total Final 
(n=16) 

3.4 3.6 3.8 3.4 3.1 2.9 3.9 2.4 3.2 3.3 

  

Case Narratives 
The cases of three focal teachers allowed us to examine the complexity of enabling CT and 

engineering practices during OST. Each of the teachers worked with students during before- or 
afterschool clubs teaching game design and robotics for 20 hours in each context for a total of 40 
hours or more. These teachers ⎯ one White female (rural), one African American female (urban), 
and one White male (urban) ⎯ wrote extensive narratives about their teaching experiences during 
this project. Pseudonyms were used for anonymity. 

Annette. A technology specialist in rural Wyoming, Annette worked with nine White fourth- and 
fifth-grade students for two hours per day, four days per week, before and after school. Class sizes in 
rural Wyoming are typically 10-14 students. As a facilitator, Annette allowed her students to develop 
agency by having “deeper experiences, more meaningful conversations with peers, and ownership of 
the project” while “working towards a common goal.” During game design, her students faced a 
challenge creating PacMan games. “The students understood that the chasers needed to chase their 
main character, but were not quite sure how to accomplish this. Now, I was able to teach them about 
hill climbing and diffusion because it was finally relevant. The main character had to emit something 
that would attract the chaser…[like] ‘stinky feet.’ Tracking the scent, is called a hill climb, and the 
scent being detected [is] diffusion, not to be confused with osmosis, which requires water. The video 
game needed to be programmed to take the main character’s scent and diffuse it throughout the 
game. The chaser needed to be able to ‘sniff’ in all four directions and start to move in the direction 
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that the scent was strongest. I got lots of nods, and ‘Oh, that makes sense.’” Thus, Annette provided 
students with opportunities to use more advanced CT strategies (Repenning et al., 2015) within a 
constructivist paradigm, which aligned with Saxe’s (1999) cognitive theory and supported the finding 
for high Activity Engagement and STEM & Knowledge Practices on the DoS. Her ratings across the 
three DoS domains were stable M1 = 3.6 (game design) to M2 = 3.6 (game design). 

Charles. As a teacher-leader in science and technology at an urban elementary school in 
Pennsylvania, Charles worked with 20 predominantly African American students for 90 minutes two 
times per week. None of his students had participated in robotics or game design before. He 
described how he laid the foundation for learning: “…I explained that computers are machines that 
are programmed to perform computations or actions based on the input they receive. We discussed 
the inputs that the human body might receive through senses, as well as the concept of involuntary 
reflexes.” Then he distributed cards with conditional statements to help students understand how 
commands are implemented. “For example, if they heard someone say ‘thank you,’ someone else 
would respond, ‘you’re welcome.’ I explained that computer programming was binary ‘if/then’ or 
‘yes/no’ language that we needed to understand before creating a program.” This activity revealed 
that cognitive and physical activity may be intertwined in computer science as well as robotics 
(Sullivan & Heffernan, 2016). However, Charles found that challenges to programming “involved 
rudimentary debugging. Having learned from their own mistakes, students became more effective in 
identifying problems in their classmates’ games. Students were able to create increasingly intricate 
programs. Some chose to create multiple levels, multiple games, or multiple rules on a single 
worksheet.” These activities showed how cognitive processes shifted as students engaged in social 
interactions (Nasir, 2005) and communal practices (Coleman et al., 2016). It also supported 
reasonable evidence of STEM Knowledge & Practices and Youth Development. Charles’ ratings 
across the three DoS domains increased from M1 = 3.0 (game design) to M2 = 3.4 (game design). 

L’wanda. As the school librarian, L’wanda was able to work with 20 students for 90 minutes a 
week at two different urban schools in Pennsylvania. None of the 40 predominantly African 
American students had participated in robotics before, and only one had previously experienced 
game design. L’Wanda was able to use “iPads to reinforce the skills students needed to develop CT 
skills. There were 10 robotics kits so students were able to work in groups of two. However, some 
students preferred to work in groups of three or four. Students used iPads to access templates on the 
LEGO website that helped them learn to build the robots. Students developed their research skills as 
they searched for information to improve their designs. Students used the scientific method to 
develop programs that would allow their robots to go longer distances and avoid obstacles. As they 
raced their robots against other teams, they constantly revised their designs and made changes to the 
programs to build better bots that would help them achieve their goals. Participation in the club was a 
turning point that changed attitudes toward learning. My students were able to see themselves as 
capable, intelligent leaders, who were able to be producers and not just consumers. Students used 
iPads to create videos that explained the steps they took to create their robots. These videos 
demonstrated the depth of their understanding of the material and showed that they had a real sense 
of purpose.” Thus, L’Wanda’s students engaged in learning progressions as they used RCKs to 
develop CT. L’Wanda’s ratings across the three DoS domains increased from M1 = 3.0 (robotics) to 
M2 = 3.2 (robotics). 

Discussion 
The findings of our Year-3 study are promising. Teachers’ pre-post surveys on computational 

thinking beliefs and engineering practices improved significantly, and overall, teachers’ ability to 
implement STEM during OST showed improvement when baseline data were compared to final 
observations. Trends in terms of the overall DoS show teachers met the threshold of 3 on all domains 
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during the last observation. The narratives were rich and provided examples of the learning that 
occurred during OST. Teachers were facilitators that provided guided inquiry when necessary to help 
students engage in independent learning. Both game design and robotics provided students with 
opportunities to engage in highly cognitive tasks without sacrificing cultural norms (Nasir, 2005). 
For example, students engaged in communal learning in urban settings (Coleman et al., 2016). 
Teachers encouraged student collaboration, and some children became peer coaches at times. 
Children were successful in designing digital games and performing robotics challenges (Leonard et 
al., 2016; Repenning et al., 2015; Sullivan & Heffernan, 2016). Nevertheless, some teachers did not 
promote cultural relevance or career awareness during their lessons. Although we encouraged 
culturally relevant pedagogy (CRP) (Ladson-Billings, 2009), some teachers paid cursory attention to 
students’ culture and were less likely to link computer science and engineering tasks to STEM 
careers. We will address the issue of CRP in future studies through teacher reflection, case studies, 
and co-generative dialogue. 

Significance 
In this study, robotics and game design were used to broaden STEM participation in rural and 

urban communities. We learned that game design facilitated co-generative dialogue that allowed 
learners to take familiar concepts and apply them to a range of complex tasks including the creation 
of representations and models. We strongly believed that the research design not only facilitated CT 
applicable to STEM but also promoted the kinds of social engagement and collaboration that will 
build 21st century skills and normative habits that allow students to develop computer science and 
ICT skills.  

Limitations 
The results of this study are limited to the participants and settings where the study took place 

and should not be generalized to teachers in other contexts. One limitation was the smaller number of 
robotics clubs for baseline observations, which may have skewed the DoS tabulations. Another 
limitation associated with the quantitative data is the absence of reliability parameters for the two 
EEBEI-T constructs used in this study.  
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INTEGRATING INTERACTIVE SIMULATIONS INTO THE MATHEMATICS 
CLASSROOM: SUPPLEMENTING, ENHANCING, OR DRIVING? 

 
 Kelly Findley Ian Whitacre Karina Hensberry 
 Florida State University Florida State University University of South Fl. St. Petersburg 
 kfindley@fsu.edu iwhitacre@fsu.edu khensberry@mail.usf.edu 
 

High-tech tools can be integrated to serve a number of purposes in the mathematics classroom, with 
different purposes being appropriate for different learning goals. We focus specifically on the 
various purposes for interactive simulations (sims). This study followed three experienced middle-
school mathematics teachers integrating PhET sims into their classrooms for the first time. Using 
both our data and literature about high-tech tool integration, we offer a framework defining three 
categories of purpose for sims in the classroom and describe how the teacher positioned the sim to 
meet that purpose. We also touch on each teachers’ beliefs about high-tech tools in the classroom 
and the link between their pedagogical beliefs and sim integration practices. We believe this 
framework contributes to the field by defining varying categories of integration for a tool with 
growing utilization in the mathematics classroom. 

Keywords: Teacher Beliefs, Technology, Modeling 

The last two decades have seen an upsurge in the number of high-tech tools being introduced in 
classrooms. However, effective instruction is not guaranteed by mere inclusion of such tools (U.S. 
Department of Education, 2010). Despite easy accessibility to computers, teachers often integrate 
them to complement teacher-centered practices, rather than to transform the classroom environment 
to one that is more student-centered (Cuban, Kirkpatrick, & Peck, 2001). Even when a teacher holds 
positive views towards the advantages of technology, their teaching practices may be hindered by 
various classroom constraints (e.g., high-stakes testing, packed curriculum, limited planning time) 
(Ertmer, 1999; Hew & Brush, 2007).  

We focus on one particular high-tech tool in mathematics: interactive simulations. We define 
interactive simulations (sims) for mathematics as dynamic environments that model a mathematical 
concept, relationship, system, or phenomenon and allow users to interact with the model within that 
environment. Sims may facilitate the use of multiple representations, support students’ efforts to 
construct their own knowledge, focus student attention on conceptual ideas, and allow immediate 
feedback (D’Angelo et al., 2014; Hensberry, Moore, & Perkins, 2015).  

Though sims offer great potential to benefit mathematics classrooms, it is how the teacher 
integrates this tool that will determine its effectiveness. In this article, we define a framework 
categorizing three different purposes sims serve and describing how the teacher may position the sim 
to meet those purposes. We also investigate how teachers’ pedagogical beliefs influence how they 
position sims in their instruction. Specifically, we examine how teachers’ views on whether sims 
offered affordances or created constraints to their teaching affected the sim’s purpose and positioning 
in the lesson. We find this research pivotal as we consider a path for technology integration beyond 
mere tool inclusion, but rather a path where such tools offer opportunities to drive the lesson in new, 
transformative ways. Our research questions are as follows: (1) What purposes do sims serve in 
mathematics lessons, and how do teachers position sims to meet those purposes? (2) How do 
teachers’ positioning of sims relate to their pedagogical beliefs about integrating high-tech tools and 
meeting content standards? 
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Conceptual Framework 

High-Tech Tool Integration 
In lessons involving high-tech tools, teachers assign various roles to such tools. We define this 

assignment of roles as positioning. Harré and Van Langenhove (1998) discuss positioning as the 
dynamic roles between members of a group. These positions hold varying levels of authority (e.g., 
leader, follower) that determine who is driving any particular activity in the classroom. Wagner and 
Herbel-Eisenmann (2009) note that positioning is “immanent,” meaning that actors do not hold a 
permanent role, but instead hold roles that vary depending on the other actors surrounding them. 
They also describe positioning as “reciprocal,” meaning that when one actor takes a leader role, other 
actors are positioned as followers. In applying positioning theory to sims, the sim’s role is dependent 
on the tasks the teacher has set up for the students. The same sim could be positioned to drive the 
lesson in one task or to supplement lecture-style instruction in another. Student positioning will be 
reciprocated by the sim’s positioning. 

With these two aspects of positioning in mind, we examined integration frameworks from the 
literature with an eye for how high-tech tools like sims may be positioned in multiple ways and how 
other actors’ positioning is affected. Such frameworks are beneficial in understanding what 
characterizes expert use of a high-tech tool, as well as the pedagogical beliefs associated with such 
use. Three frameworks, each outlining multiple categories of integration, guide our understanding of 
the purposes sims may serve in a lesson and how teachers position sims in the classroom to meet 
those purposes. The Technology Integration and Curriculum framework focuses on the relationship 
between high-tech tools and lesson content (Ertmer et al., 1999). The SAMR Model is concerned 
with the influence of high-tech tools on lesson tasks and instruction (Puentedura, 2010). And a tool-
specific framework (featuring interactive whiteboards (IAWs)) provides an example of how specific, 
high-tech tool features can be considered when describing sophistication in integration practices 
(Miller, Glover, & Averis, 2005). We have built our framework with each of these three lenses in 
mind. 

Pedagogical Beliefs 
Teachers’ beliefs about how students learn are manifested alongside their beliefs about how 

various classroom constraints (e.g., time, resources, testing, student behavior) are appropriately 
managed (Skott, 2001). These constraints often have both an intrinsic and extrinsic component; the 
teacher cannot influence their existence, but she can decide how they should best be managed 
(Philipp, 2007). For the purposes of this paper, we define pedagogical beliefs as comprising teachers’ 
beliefs both about how students learn and beliefs about the balancing and resolution of these 
classroom constraints. 

Research on successful technology integration finds successful teachers are confident in their 
ability to use high-tech tools (Ertmer, Ottenbreit-Leftwich, Sadik, Sendurur, & Sendurur, 2012). 
These teachers overcome internal barriers by having a well-defined classroom vision that focuses on 
the affordances such tools offer (Ottenbreit-Leftwich, 2007). Teachers must be motivated for change 
by taking “positive approaches”—actively and autonomously choosing change in their classrooms 
with high-tech tools (Kershaw, 2016). 

Research Methods 

Setting 
This study took place at a large, public charter school with a diverse student population reflecting 

state demographics. We focus on three middle-school mathematics teachers new to using PhET sims 
in their instruction who agreed to integrate PhET sims centrally in some of their lessons. All teachers 
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were female and had at least seven years’ experience teaching mathematics. Two members of the 
PhET research team introduced the teachers to the project through two introductory workshops. The 
three teachers taught a total of 11 lessons involving sims, each of which spanned one or two class 
sessions. Nine of the 11 lessons were observed and recorded by the researchers. Ten out of 11 lessons 
were authored by the teachers (with feedback provided from the researchers) and one was authored 
by one of the researchers. 

Data Sources 
Data sources consist of videos from end-of-year reflective interviews with the teachers, group 

meetings involving the three teachers and the researchers, nine lessons involving PhET sims, and six 
“business-as-usual” lessons in which the teachers did not use sims. We also collected the worksheets 
and lesson plans from the sim lessons. Finally, email correspondence was collected as supplemental 
data that enabled us to capture the interaction between the teachers and researchers concerning the 
teachers’ lesson planning progress. 

Methods of Analysis  
To answer Research Question 1, we first took a grounded approach to define different categories 

of sim positioning. We began by investigating the recorded sim-based and business-as-usual lessons 
through a process of open coding in which we charted the lesson structure and noted various teacher 
instructional methods within each lesson (Savin-Baden & Major, 2013). We also inspected the 
worksheets teachers provided to students during each lesson and discussed how the various questions 
and directions contained on the worksheets positioned the sim in the tasks students completed. 
Through this preliminary descriptive analysis of the lesson videos and worksheets, we were able to 
define an initial set of sim positioning categories based on the kinds of tasks the students were asked 
to complete and the instructional methods implemented. 

After this grounded analysis, we then took a more theory-driven approach by drawing on extant 
high-tech tool integration frameworks (Ertmer et al., 1999; Miller et al., 2005; Puentedura, 2010) to 
situate our framework in the current literature. We used this combination of data-centered and 
theory-driven analysis to iteratively revise our sim positioning categories. This process resulted in a 
three-tiered framework that defines three general purposes sims serve in mathematics lessons and 
describes how the teacher positions the sim to meet those purposes.  

To answer Research Question 2, we used multiple-case study analysis (Yin, 2009) to create a 
profile for each teacher that described the affordances and constraints teachers faced in relation to 
integrating sims. These profiles were grounded in the interview data and email correspondence and 
were informed by themes and barriers highlighted in the literature. We completed a cross-case 
synthesis by identifying similar themes and concerns in the teachers’ remarks about sims in the 
classroom. We also used pattern matching and explanation building to unpack each teacher’s 
pedagogical beliefs and relate those beliefs to her sim positioning tendencies. The first author 
presented the teacher profiles to the second and third authors for evaluation and further revision. We 
noted distinct characteristics about each teacher’s beliefs and categorized them under cross-cutting 
themes that seemed consistent across all three (see Table 1). Finally, the researchers mapped the 
teacher profiles to the framework categories, giving careful attention to how the profiles connected to 
kinds of sim positioning enacted in the classroom. The results are thus grounded in the available data 
and represent the consensus of the authors.  
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Table 1: Cross-Cutting Themes 
Vision Alignment Barriers 

Teacher’s description of ideal 
classroom environment and 
the role that high-tech 
tools/sims should fill in this 
environment 

Remarks about success or 
difficulty in adapting a sim to 
meet certain content standards 
and whether sim integration 
competed with meeting content 
standards 

Remarks about other 
difficulties involving sim 
lessons, such lack of adequate 
planning time, low self-
efficacy, and other concerns 
about high-tech tools  

 

Results 

Supplement, Enhance, Drive (SED) Sim Positioning Framework 
Based on our analysis, we created a framework to define different categories of purpose for sims 

and the respective roles sims are assigned in these categories. Those categories are as follows: Sims 
positioned to supplement the lesson, enhance the lesson, or drive the lesson. We unpack each 
category by providing a general description and an example from our data. 

Supplement. In this category, the sim aids the teacher in implementing a lesson with no critical 
differences from the lesson that the teacher might otherwise administer. The sim supplements the 
learning goals by making the lesson more precise or time-efficient, but the content is unchanged in 
terms of both depth and scope, and the tasks students complete are fundamentally the same. Sims in 
this role may act as a direct tool substitute or lesson add-on. 

As an example of this category, Arlene used the “Graphing Lines” sim to supplement her lesson. 
Graphing Lines allows users to create lines on a Cartesian coordinate plane by moving points to 
define the line and seeing the slope equation adjust automatically. Arlene’s two-day lesson had 
students first complete several rate problems and graph the ratio pairs on a Cartesian coordinate 
plane. After completing several rate problems on paper, students plugged in the values from the 
tables into the sim by creating a line with points matching the coordinate pairs they had recorded by 
hand. Students then recorded the slope values resulting from these lines. 

While the sim afforded more precise graphs and verifications of slope calculations, Arlene did 
not position the sim to expand the range of content addressed or to enrich the presentation of the 
mathematics beyond what a paper or whiteboard drawing could accomplish. Students’ attention was 
not drawn to the sim’s dynamic features; rather, they focused on the static result after having inputted 
the numbers on their worksheet. The task that students completed with the sim was an extension of 
the task completed by hand to verify answers. For these reasons, we conclude the sim was positioned 
to supplement this lesson. 

Enhance. In this category, the teacher integrates exclusive sim features to enhance lesson tasks 
beyond saving time or increasing precision. Opportunities for pattern-noticing and sense-making are 
made available through the sim’s dynamic, interactive environment to enrich the content. Learning 
goals are influenced by this enrichment but are ultimately accomplished afterwards with the sim 
serving as a launching vehicle to meeting learning goals. Unique sim features are integrated but do 
not reinvent the tasks students complete. The content addressed is enriched without being expanded 
or reoriented to a new perspective. 

Becky’s sim lesson using “Equation Grapher” fit the enhance description. Equation Grapher 
allows students to observe dynamic changes in the graph of a linear or quadratic equation as the 
coefficient sliders are adjusted. Becky’s learning goal focused on having students explain how 
changes to the parameters of a linear equation are reflected in its graph. Becky used this learning goal 
as an opportunity to emphasize the use of correct vocabulary when describing shifts in the graph. The 
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lesson alternated between timed episodes of worksheet-directed sim use and episodes in which 
selected students responded to closed-ended prompts from Becky. 

Even though Becky’s lesson incorporated unique sim features (e.g., sliding coefficient scales 
resulting in dynamic changes to graph), these features served as a vehicle to enhance the lesson’s 
procedural learning goal. The learning goal was addressed during the teacher-centered dialogue 
between Becky and the students and involved the sim as a common reference point. This task of 
applying vocabulary was certainly influenced by students’ interaction with the sim, but this lesson 
was not set up for students to accomplish the learning goal solely through their interaction with the 
sim. 

Drive. For this category, the sim serves as an impetus for lesson transformation as learning goals 
are accomplished in students’ meaningful exploration and interaction with the sim. The range of 
content is expanded and/or an innovative perspective is achieved. 

In Carmen’s lesson involving the “Graphing Lines” sim, students were instructed to create 
various systems examples and comment on them. For example, “Do you think these lines will ever 
cross again? Why do you think that?” At one point, students were asked to create two lines they 
thought would never intersect. Carmen positioned the sim as a setting for exploration and discovery. 
As students moved through the worksheet, they collaborated with their neighbors and tried to identify 
patterns and generalize results. Carmen circulated around the room, challenging students to use 
precise language and supporting students who were struggling. During a summary discussion, 
Carmen had students share their answers and pushed for explanations.  

Carmen did not position herself to introduce mathematical ideas; she instead created 
opportunities for students to share sense-making moments they had experienced while working with 
the sim. Carmen took a facilitating role that encouraged students to articulate their own connections 
more clearly. This contrasts with an enhance positioning in which the learning goals are 
accomplished away from the sim and depend on heavy teacher guidance. 

Table 2 presents the SED Framework, which builds on the foundational lenses discussed in the 
Conceptual Framework to elaborate on each category as it applies to sim use. 

 

Table 2: SED Framework 
 Supplement Enhance Drive 
 

Curriculum  
 

Sim supplements 
presentation of 
mathematics by making 
the lesson more precise 
or time-efficient. 

Sim enhances and 
enriches presentation of 
mathematics through 
engaging graphics and 
interactive features. 

Sim drives presentation of 
mathematics by 
facilitating innovative 
perspectives and/or 
making new content 
accessible. 

Nature of 
the Lesson 
Tasks 

 

Students use sim to check 
and verify work 
completed by hand or to 
complete an unrelated, 
non-critical task. 

Students complete a task 
that is influenced by their 
engagement with unique 
sim features. Sim is 
common reference point 

Students complete task 
directly with the sim that 
directly addresses learning 
goals. Post-sim discussion 
is student-centered. 

Unique 
Features 

Interactive, dynamic 
features are largely 
absent from the lesson. 

Interactive, dynamic 
features are present and 
tangentially influence the 
completion of the 
learning goals. 

Interactive, dynamic 
features are present in the 
lesson and are used by 
students to directly 
accomplish the learning 
goals. 
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Sim Positioning and Pedagogical Beliefs 
The teachers in our study demonstrated a range of approaches to positioning PhET sims into their 

instruction. Our findings indicated that sim purposes and positioning were influenced by each 
teacher’s beliefs about whether the sim would bring affordances or create constraints for her 
teaching. We captured each teacher’s perspective regarding sim affordances and constraints by 
coding her interviews for three emergent, cross-cutting themes: Classroom vision with sim, 
alignment between sim and content standards, and barriers to implementation. We next present each 
teacher’s profile and connect their profiles to their sim positioning tendencies. 

Arlene’s profile: Sims as a tradeoff. Arlene’s sim lessons consistently positioned sims in a 
supplementary role. Her vision for high-tech tools was constrained, most notably, by her concern that 
having students behind screens would detract from teacher–student interaction. She viewed these 
tools as creating hindrances within her vision of a normal classroom environment. Arlene stated that 
sims often worked best toward the end of the unit after students are familiar with the content; 
otherwise students might be confused and fail to engage with the sim productively. 

Arlene’s views regarding alignment between the sims and the content standards were partly 
demonstrated in her selectivity with choosing sims. She frequently mentioned that there were not a 
lot of options on the PhET website for sims that could be used in 6th grade math. She struggled to 
find PhET sims that she saw as aligned with the content standards or to find a way to adapt the 
available sims to her needs. Arlene described sim lesson planning as an “awaking moment” where 
“things just pop up,” suggesting that she perceived creating a sim lesson as being more like waiting 
for a stroke of brilliance rather than systematic planning that she could control.  

In summary, Arlene viewed sims as something to accommodate into her lesson. While she 
frequently talked about being excited to learn more about using high-tech tools and about liking sims, 
that optimism did not translate into a smooth, sophisticated integration. Arlene’s lack of an 
established vision for how sim lessons could enhance or drive her lessons left her to dwell on 
concerns about what she might lose by integrating sims. We believe this lack of vision explains her 
frequent positioning of sims as an extension to traditional, business-as-usual tasks. 

Becky’s profile: Sims as a visual aid. Becky’s classroom vision had sims positioned to enhance 
the lesson, allowing students to visualize the mathematics they were working on. She remarked that 
student understanding was facilitated by “seeing” rather than “memorizing.” She was excited during 
the interview as she recounted how students would commonly reference the sim as they motioned 
and verbally described the shapes and shifts of various graphs. She viewed sims as a means to launch 
the class into various mathematical tasks later on. 

Becky initially struggled to balance PhET recommendations of facilitating student discovery with 
her perceived need to move quickly through the “packed” Algebra I curriculum. In response to that 
tension, she felt the need to cut discovery time short and fall back on more traditional, teacher-
centered instruction, even though she saw value in letting students discover.  

Becky demonstrated a compromise positioning in both of her sim lessons that included 
opportunities for sim-driven student exploration, but ultimately sidelined the sim as a reference tool 
during teacher-led discussions. She used students’ experience with the sim as a reference point from 
which to draw from as she directed the class’ pivotal discussion times. 

Carmen’s profile: Sims as an advantage. Carmen, who positioned the sim to drive the lesson in 
2 of her 4 recorded sim lessons, articulated a vision that focused predominately on what sims could 
afford. She described high-tech tools as a central focus of her lessons. She cited the necessity of sims 
and similar tools for fostering increased student engagement, facilitating opportunity to do 
mathematics as students might in a real job, and creating space for discovery. She also had strong 
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opinions on sims being best incorporated at the beginning of a unit: “I mean it’s not discovery 
learning if you’ve already told them all the rules.” 

Carmen valued student discovery while also acknowledging students’ tendency to get off track if 
left to work unsupervised for too long. She referred to the moments where she brought the entire 
class together as “checkpoints” to ensure that they were still heading in the right direction and to 
better understand what they were gathering from their activities with the sim.  

Like Arlene, Carmen mentioned limitations to the PhET math sims available at the time; 
however, she was able find science sims that could be linked to relevant mathematics. Carmen 
believed that her sim lessons appropriately prepared students for standardized testing. She saw 
making connections between the standards and available sims as an intriguing challenge. Rather than 
feel constrained by the lack of sims clearly linked to 7th grade mathematics, Carmen seemed to 
approach sims with an open mind and found creative ways to relate them to the standards. 

While Arlene and Becky both focused on external barriers or constraints related to integrating 
sims, Carmen primarily focused on the affordances. Barriers were things to be overcome. Her 
classroom vision for high-tech tools clearly articulated the many affordances of sims and provided 
motivation for sim-centered lessons. Like Becky, Carmen valued the importance of creating space for 
student discoveries, but for Carmen, the importance of discovery was not diminished by the need to 
meet standards. She avoided that tension through her flexible integration of both mathematics and 
science sims and her ability to facilitate student discussion toward learning goals. Carmen’s 
comprehensive technology vision combined with her flexible sim integration practices explain how 
she positioned sims to drive her lessons. 

Discussion and Conclusion 
The SED framework identifies three distinct roles in which sims may be positioned in math 

lessons and describes the purposes of each role—supplementing, enhancing, or driving. We see this 
framework serving the research community by applying knowledge of high-tech tool positioning to a 
growing collection of sims with great potential to drive classroom learning environments.  

Although the SED framework consists of defined categories, we do not see the categories as 
describing a hierarchy of less to more effective. We believe that all three sim roles can be appropriate 
in different situations. For example, Carmen administered two sim lessons at the driving level, but 
toward the end of the year, she decided to position the “Graphing Lines” sim as a demonstration tool 
to introduce the Pythagorean Theorem. That does not mean that Carmen’s pedagogical beliefs 
changed or that she had a fluke lesson; she simply saw an opportunity where one particular sim 
supplemented her lesson by saving time and aiding in the teaching of a mathematical idea.  

In classifying these three teachers as consistently embodying one of our categories, we have 
chosen to highlight certain moments that we believe will help readers understand each category. But 
we also recognize that each teacher is complex and aggregately reflects characteristics of all three 
categories. No teacher fits a perfect pedagogical stereotype, but instead exemplifies both traditional 
and reform-based teaching practices (Crespo, 2016). Similarly, we believe teachers may articulate 
pedagogical beliefs from multiple categories of our positioning framework.  

There were fundamental differences in how each teacher chose to position sims and in their 
related pedagogical beliefs. Constraining views about what sims could and could not do narrowed 
what Arlene and Becky considered to be in the realm of possibility. Enabling a teacher to envision a 
purpose for sims across the spectrum—from supplementing to driving the lesson—and likewise 
position the sim to accomplish that purpose seems inextricably linked to whether she sees sims as 
tools to be administered under constraints or tools that unleash possibilities.  
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Endnote 
This material is based upon work supported by the National Science Foundation under grant 

number 1503510. Any opinions, findings, conclusions, and recommendations expressed in this 
material are those of the authors and do not necessarily reflect the views of NSF. 
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MATHVISION: A MOBILE VIDEO APPLICATION FOR MATH TEACHER NOTICING 
OF LEARNING PROGRESSIONS 
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We report on the development and evaluation of MathVision, a mobile-application designed to 
develop Virtual Professional Learning Communities through asynchronous discussion about 2nd, 3rd, 
4th, and 5th grade students’ mathematical thinking.  MathVision allows teachers to upload videos of 
problems solving sessions using Cognition Based Assessment tasks and foster discussion aligning 
those strategies to research-based learning progressions for Length and Measurement. Our findings 
indicate that while it was possible to develop such an interface, sparking productive online 
discussion was difficult. The application served as a tool for enhancing physical teacher meetings 
and drawing attention to student thinking consistent with conducting task-based interviews, rather 
than actually facilitating this talk entirely. 

Keywords: Learning Progressions, Technology, Elementary School Education, Geometry and 
Geometrical and Spatial Thinking 

MathVision is a mobile application learning technology designed to help 2nd, 3rd, 4th, and 5th-
grade elementary teachers develop a virtual professional mathematics community in their schools 
around noticing student’s mathematical thinking. Specifically, teachers use MathVision as an all-
inclusive tool to capture short video of their students solving validated mathematical tasks and then 
engage in chat room-like asynchronous, online discussions about what they notice in these videos. 
We built MathVision upon the extensive research on mathematics teacher noticing (Jacobs, Lamb, & 
Philipp, 2010; Sherin, Jacobs, & Philipp, 2010), teacher video clubs (Van Es & Sherin, 2008, 2010), 
learning progressions (Battista, 2011, 2012), and professional learning communities (DuFour, 2004). 

In building and piloting MathVision in an elementary school, we explored the following research 
questions: 1) How should a Virtual Professional Learning Community (VPLC) environment be 
created that enables elementary mathematics teachers to base their teaching on research-based 
mathematical Learning Progressions, without requiring timely and resource-heavy physical 
interactions between teachers thus making teacher learning more accessible? 2) What affordances of 
MathVision will teachers utilize (i.e. commenting on each other’s videos, noting each other’s 
learning progressions ratings, a database of mathematical tasks) within their classroom practice? 3) 
How might using these features affect their teaching practice? 4) How will physical team-meetings 
be altered or augmented through the use of this technology, which allows teachers to view each 
other’s videos before these meetings? And 5) How will teachers interact and talk to each other in 
reference to the technology? 

Background and Rationale 

Mathematics Teacher Noticing 
Emphasizing how a teacher specifically listens to and responds to what a student says or does is 

one of the core tenants of modern mathematics education reform, often referred to a “professional 
noticing” (Jacobs et al., 2010). The very act of listening itself opens up space for a student to share 
his or her mathematical strategy, thereby positively impacting a student’s mathematical growth 
(Empson & Jacobs, 2008). However, learning how to listen to and respond to student’s mathematical 
thinking is a complex process that takes years to develop (Jacobs et al., 2010). There has been some 
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evidence that video clubs, in which teachers watch video of each other’s classroom teaching, can 
help teachers in the same school develop these crucial noticing skills (Van Es & Sherin, 2010). 
However, video clubs require busy teachers to find a common space and time to meet. Yet, when 
teachers watch and analyze student’s mathematical thinking on their personal devices (e.g. 
smartphones, tablets), they can more better focus on the nuances of a student’s thinking in much 
more detailed ways than video clubs (Author).  

Virtual Professional Learning Communities 
One research-based solution for supporting teacher learning without requiring high demands of 

support and time involves using Professional Learning Communities (PLC), which revolve around 
learning, collaboration, and instructional action (DuFour, 2004). Teachers working within PLC 
structures often have better instructional approaches, are more satisfied with their careers, and are 
more likely to remain in teaching long enough to become accomplished educators (Fulton & Britton, 
2011). Yet because of a lack of shared spaces, meeting times, and the small number of teachers with 
common mathematics grade-levels in the same building, elementary school culture in the U.S. often 
prevents effective PLC organization. To solve this problem, we developed a learning technology 
environment that fosters the creation of a Virtual Professional Learning Community (VPLC) that can 
go beyond school boundaries so that elementary mathematics teachers can connect with each other 
without having to find a common meeting time and space (McConnell, Parker, Eberhardt, Koehler, & 
Lundeberg, 2012).  

Research-Based Learning Progressions to Understand Students' Mathematical Thinking 
Often missing from most mathematics teacher support models is assessment practices utilizing 

research-based Learning Progressions (LP), which help teachers understand the complexities 
involved in students’ evolving mathematical thinking. The Cognition Based Assessment series 
provides research-based assessment tasks for teachers to identify students’ Learning Progressions and 
then follow-up with relevant instructional tasks. However, the successful implementation of CBA-
based mathematics instruction requires teachers to regularly meet to watch video from each other’s 
classroom and discuss how they would interpret individual student’s thinking on the learning 
progressions. As stated earlier, however, modern elementary school culture in the U.S. makes it 
difficult for regular teacher meetings to come together to focus on mathematical thinking or 
pedagogy (Horn, Garner, Kane, & Brasel, 2017). 

Building upon these various literatures on mathematics teaching, we built a mobile application, 
MathVision, to see what would happen if teachers could capture and upload videos of students 
working on CBA tasks and then use the same application to discuss these students’ strategies and 
how those strategies aligned to the established learning progressions. Key to this research was 
building technology that met teachers where they are: the technology had to work on multiple 
devices (e.g., laptops, phones, tablets), had to be intuitive to use for capturing and commenting on 
video, and had to contain all necessary supports and materials (i.e., the CBA tasks, the learning 
progressions framework, etc.). 

Methods 

Research Design and Measurement/Instruments 
Since the main purpose of this study involved building and piloting a new learning technology, 

the research design followed a case study methodology of teachers using the actual technology, 
videos and discussion captured from within the MathVision application, observations from teacher 
team meetings after they had used MathVision in their teaching, and interviews with teachers. 
Teachers used MathVision as a grade-based team, meaning that all the 4th-grade teachers viewed and 
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commented on each other’s videos. 
During this 4-week intervention, teachers regularly used this learning technology to assign CBA 

research-based mathematics tasks about Length and Measurement to their students (Battista, 2012). 
Teachers then selectively captured video of their students’ strategies as they solved these tasks, 
focusing on particular on strategies that might elicit conversation among their professional learning 
teams. Within each team, teachers uploaded, commented and categorize on each other’s videos 
according to the CBA-framework and selected where on the Learning Progression scale they feel the 
student was in their mathematical thinking (Figure 1 & Figure 2). Teachers then engaged in chatting 
with each other about the specific videos through these online discussions.  In particular we were 
interested in how teachers came to consensus with respect to student comments on particular 
corresponding CBA levels and the means by which they recommend instructional support to scaffold 
students through their thinking. 

 

 
Figure 1. Video upload page where teachers enter metadata for video files including grade level, 
initial alignment to CBA level, corresponding task and initial thoughts or comments on problem 

solving strategies.  
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Figure 2. Repository of team videos designating grade, Learning Progression level, and comments 

where teachers can organize videos by team, individual videos or all videos. 

Classroom Observation and Teacher Generated Video 
During this 4-week intervention, our first point of data involved visiting the partnering 

classrooms to observe and capture video of how teachers and students used and interacted with the 
technology. This involved a research team member capturing video of the mathematics classroom, 
following the teacher as he or she used the MathVision technology with students. 

Additionally, while the teachers used MathVision, they continually generated video and text data 
through uploading videos of their students and commenting on their own and other teachers’ videos 
(Figure 3). Our second point of data involved our research team monitored this data collection as it 
unfolded, noting the progression of the teacher discussion and sophistication of the students’ 
mathematical strategies. 

Finally, at the end of the 4-week intervention, our research team met up with all the teachers, the 
mathematics instructional team, and the administrators who used MathVision for a reflective debrief. 
For our third point of data, our research team conducted follow-up focus group interviews with the 
teachers, instructional leaders, and administrators about their experience with the technology and 
how they used it. The focus of these interviews was to learn how the MathVision application helped 
in their professional practice, what particular changes or features might be beneficial to add, and how 
MathVision might fit into their school culture.  
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Figure 3. Video watching and commenting page allowing teachers to look at student strategies and 

engage in asynchronous chatting with other team members on aligning those strategies to CBA 
levels.  Each comment (on the right) is tagged with a CBA level as a means for calling attention to 

particular aspects of the learning progression. 

Sample 
The Sample for this study consisted of the 2nd, 3rd, 4th, and 5th-grade teacher teams, the 

mathematics instructional team, and the administrators of a public elementary school in a high-
socioeconomic neighborhood in a mid-sized city in Midwestern United States. Each math team 
consisted of 3 teachers and their 20 to 25 students.  The mathematics instructional team consisted of 
the schools permanent mathematics instructional coach who also taught enrichment mathematics 
classes, and the administration group consisted of the head principal and the instructional leader for 
the school. 

Internal Validity 
While this research study utilized a case study methodology based around observation of 

participants using the technology, we also focused on the building and usability of the technology 
along with observing its use by teachers. Study bias was mitigated by not utilizing the developers of 
the technology to be involved in the data collection or the observation. Additionally, we began 
continual conversation with the research participants and presented our analysis to them for a form of 
“member checking” to ensure that our conclusions mirrored their own experiences with the 
technology. 

 

Data Analysis  
The primary data used for this study were the uploaded videos and comments generated from 
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participants within the MathVision application. These were analyzed by the research team to 
understand the evolution of the professional knowledge that teachers exhibited through and with the 
application. This analysis involved continual watching and reading of this data, research team 
meetings to discuss our interpretations, and member-checks back to the teachers in the final 
interview. The secondary data involved video observations from the classroom. This data was 
analyzed through a grounded theory methodology (Corbin & Strauss, 2008) in order to notice any 
emergent themes that inform us as to how teachers and students utilized (or did not utilize) the 
technology. 

Results 
Our analysis uncovered the following results to our research questions. First, to answer how a 

VPLC environment might be created that enables elementary mathematics teachers to base their 
teaching on research-based mathematical Learning Progressions, without requiring timely and 
resource-heavy physical interactions between teachers, we found that this was possible through 
mobile technology. However, a larger finding was that teachers did not actually use this technology 
to house their discussions. For instance, teachers primarily focused on the novel ideas associated with 
doing individual task-based interviews with their students rather than having collective discussions 
about their respective strategies and aligning them to the learning progressions. The discussions 
themselves that emerged as a result of these task-based interviews were primarily done physically 
rather than through the web-based application.  The technology itself was mainly used as a place to 
sore and retrieve the videos in an easily accessible way. 

Second, to answer the question of what affordances of MathVision teachers utilized and how 
these features affected their teaching practice, we found that teachers did not actually engage in 
watching each others videos prior to their physical meetings, but rather used the meeting time to 
watch and discuss each others videos.  It seemed that the physical meeting space afforded teachers 
the ability to meet, think about and discuss the video data itself. We ponder as to whether that had 
teachers a specific timeframe to upload and view/comment on each others videos might have been 
beneficial in accomplishing prior commenting. 

Finally, in asking how will physical team-meetings be altered or augmented through the use of 
this technology, which allows teachers to view each other’s videos before these meetings as well as 
how will teachers interact and talk to each other in reference to the technology, we found that 
teachers collaborated within this VPLC environment, teachers seemed to support each other through 
the process, but that seemed to be primarily due to the collaborative infrastructure that previously 
existed in the school.  However, teachers indicated that the videos unveiled a level of depth into each 
student’s individual thinking that they had previously not seen. 

A number of results also emerged with respect to enhancing student learning.  In particular we 
found that the instructional decisions and discussion that teachers had with each other about 
supporting the needs of their students, based on the strategies they saw, were important as they 
uncovered student conceptions related to solving particular length and measurement problems.  In 
response, the teachers hoped that more instructional tasks could come about from this experience to 
support learning in this area. 

As a result of this study we also observed that the teachers did engage in significant 
conversations about student learning process and their alignment to the research based learning 
progressions. This is one area that we feel may be appropriate for future inquiry. 

Discussion 
Overall in looking across these findings we offer the following overarching results.  First in 

consideration of the proof of concept of this study we observed that it was possible to build a 
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functional interface for teachers to have meaningful discussions about student strategies and align 
them to the CBA framework. However, with respect to this mobile application, we found it still very 
difficult for teachers to utilize for a number of reasons. First, the selection of length and measurement 
as a focus caused some difficulty, as this was not aligned to the current content they were teaching 
and treated more as an “add-on” to their already busy schedule. Additionally because the technology 
platform was still in a “beta” phase of development, the platform did not always perform as it was 
envisioned, particularly as teachers access to it over the school’s WiFi wavered during the course of 
the study. 

Additionally, the small-group meetings where the learning progression alignment was discussed 
were not consistent across teachers. When teachers were in the same physical space, there was 
seemingly less motivation to challenge each other’s lines of reasoning and agree on a particular level 
after only a short explanation. With the drive of the interface as being to produce a space for 
disagreement and reconciliation of those disagreements through productive chat, this is something 
that we had hoped would arise through the use of the application. Furthermore there was a 
considerable number of interviews conducted by a relatively small number of teachers with one 
teacher in particular conducting a much larger number than others due to the busy schedule of the 
participating teachers. We question how our observed interviews would have been different with 
additional teacher voices conducting the interviews. 

One other result was that the teacher who was presenting her own students’ strategy often felt a 
sense of pride and ownership in the student’s mathematical thinking. Teachers reflected that when 
their peers critiqued or commented on their students’ thinking, their first reaction was often to take it 
as a personal critique and not a learning opportunity. Perhaps the immediacy of watching video on 
one’s own mobile device or tablet instills a sense of ownership or connection to the student. 

While teachers were excited and motivated to pilot this web-based application, we wonder as to 
the extent that which VPLC’s were actually established, as there was initially little dialogue that 
occurred online. Rather simply participating in the study and having a home for the relevant video 
data sparked physical discussion on students’ levels of reasoning and actually was able to bring out 
instances where students who were deemed as being high performing fell apart on tasks due to the 
nature of the CBA tasks. In one particular example, a young male student “Dylan”, a pseudonym, 
responded incorrectly on a measurement task with an incorrect line of reasoning.  Initially the 
teachers had wanted to dismiss this as a poor interview, but later realized that they were uncovering 
quite a bit of detail on the students’ line of mathematical reasoning.   

We did uncover some positive results with respect to using this interface during the course of our 
study. Teachers reported that this experience was helpful to their teaching practice, in particular in 
being able to watch and talk about each other’s recorded videos. Teachers also felt this project 
connected strongly to the existing practices they see in other educational roles, in particular with their 
Reading Recovery program, in which they present student reading and work to the team of teachers 
for discussion. Further, through conducting these interviews, teachers were able to get a better 
understand of their students’ lines of thinking as well as increasing familiarity with other teachers’ 
students. Finally, and arguably most important finding, the teachers felt they gained significant 
knowledge in mathematical interviews and learned much about the learning progressions. As a result 
of this, our teachers reported that they had to question their own assumptions of mathematics 
learning and achievement and would be better equipped to use the learning progressions in their own 
teaching. 
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OPPORTUNITIES TO POSE PROBLEMS USING DIGITAL TECHNOLOGY IN 
PROBLEM SOLVING ENVIRONMENTS  
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This article reports and analyzes different types of problems that nine students in a Master’s 
Program in Mathematics Education posed during a course on problem solving. What opportunities 
(affordances) can a dynamic geometry system (GeoGebra) offer to allow in-service and in-training 
teachers to formulate and solve problems, and what type of heuristics and strategies do they exhibit 
during this process? Results show that combining semi-structured problems with the use of 
GeoGebra can be useful in motivating and involving teachers in various episodes of problem 
formulation. In this context, important strategies included analyses of the variation in the attributes 
of figures using dynamic points and loci. 

Keywords: Problem Solving, Technology, Geometry and Geometrical Spatial Thinking, Teacher 
Education-Preservice, Teacher Education-Inservice/Professional Development 

1 Introduction 
It is widely recognized today that formulating, or posing, problems is a central activity in the 

practice of professional mathematics and a fundamental component of mathematical thinking (Cai et 
al., 2013). In this regard, in the past two decades problem formulation and problem solving have 
been identified as central topics in mathematics education (Rosli et al., 2015). On this theme, Osana 
and Pelczer (2015, p. 470) commented that: 

A growing movement in mathematics education that placed problema solving at the center of 
school mathematics  further contributed to researchers’ focus on problem posing, particulary its 
role in teaching and learning. (p. 470). 

In this perspective, and in educational contexts, mathematical activity is conceived as a form of 
thinking in which a community (teacher and students) formulates questions and new problems to 
give meaning to, and resolve, problematic situations. In this scenario, the community recognizes the 
importance of seeking different means of supporting their responses. Santos-Trigo, Reyes-Martínez 
and Ortega-Moreno (2015) observe that one objective of mathematical activity is to identify and 
contrast diverse approaches to representing, exploring, conjecturing, resolving and formulating new 
problems. In communities of this kind, the role of teachers is determinant for students’ learning 
because they are responsible for choosing and presenting the tasks that will allow learners to develop 
their ability to formulate and resolve problems. However, some researchers recognize that, in 
general, in-service and in-training teachers experience serious difficulties when confronting the tasks 
involved in preparing and posing problems (Rosli et al., 2015; Lavy, 2015). 

What role does the use of digital technologies play in learning communities that promote and 
value problem posing and problem solving? In mathematics education digital technologies can 
provide an effective way of developing mathematical knowledge and transforming teaching scenarios 
by orienting them towards the formulation and resolution of problems  (Aguilar-Magallón & Reyes-
Martínez, 2016). To date, however, little research has been conducted on the role of technology in 
designing and implementing tasks whose goal is to enhance the ability to formulate and resolve 
problems (Abramovich & Cho, 2015). 

In light of the foregoing, the principal objective of this study consisted in analyzing how the 
systematic use of a Dynamic Geometry System (DGS) by in-service and in-training teachers can 



Technology 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1314 

contribute to the processes of problem formulation and problem solving. Thus, our research is 
oriented by the following questions: what opportunities (affordances) can the GeoGebra Dynamic 
Geometry System offer current and future math teachers in relation to problem formulation and 
problem solving, and what kinds of heuristic resources and strategies are exhibited in this process?  

2 Conceptual Framework 

Posing Problems and the Use of Digital Technologies  
The literature sustains that the process of posing problems centers on two fundamental activities: 

formulation and reformulation. The formulation consists in generating new problems based on 
certain information, situations or contexts, while the latter entails elaborating new problems by 
modifying the conditions and/or objectives of an earlier, given problem (Silver, 1994). Reformulation 
activity also occurs when a problem that is in the process of resolution is transformed or re-posed in 
order to simplify it (Silver, Mamona-Downs, Leung & Kenney, 1996). According to this 
characterization, formulation and reformulation activities may take place before (the formulation or 
understanding of a statement), during, or after (reformulation) the resolving problems (Silver, 1994). 

Following these ideas, Stoyanova and Ellerton (1996) presented a typology of problems that 
specifies the following three categories: open, semi-structured, and structured, as a function of the 
formulation or reformulation activities they involve. In open problems, individuals must posit 
problems based on information presented in the form of figures, tables, numbers, etc. The statement 
of problems of this kind do not include any specific requirements or objectives. In semi-structured 
problems, individuals are required to generate and/or add conditions in order to reach a solution; that 
is, the statement of this type of problem contains only partial information or conditions. Structured 
problems, finally, stipulate both the objective and all the information and conditions necessary to 
resolve them. Thus, open problems entail primarily formulation activities, while structured problems 
involve reformulation activities. Semi-structured problems can propitiate both formulation and 
reformulation activities. Silver (1997) holds that open or semi-structured problems can be useful in 
propitiating episodes of problem formulation. 

Santos-Trigo, Reyes-Martínez and Aguilar-Magallón (2015) underscores the importance of the 
systematic utilization of various digital tools in environments of problem formulation and problem 
solving. Here, the goal is to have individuals constantly identify and examine distinct types of 
relations, posit conjectures, determine and analyze patterns, employ different systems of 
representation, establish connections, apply distinct arguments, generalize and extend initial 
problems, communicate their results, and posit their own problems. Some research has focused on 
examining the processes involved in posing problems using specific digital tools, such as DGS 
(Leikin, 2015; Lavy, 2015). According to Lavy (2015), a DGS constitutes a cognitive visual support 
based on immediate interactions between the tool and its user that can facilitate the processes 
involved in posing problems. Imaoka, Shimomura and Kanno (2015) recommend that the design of 
problem formulation activities utilizing a DGS entail exploring variable attributes of such figures as 
areas, perimeters, lengths, and angles, among others. They further advise designing problems that can 
be represented and solved in distinct ways; that is, they underline the importance of posing problems 
that are not made trivial once a DGS is applied. Leikin (2015), finally, argues that an important 
strategy for designing activities related to posing problems consists in transforming structured 
problems into open or semi-structured ones; i.e., eliminating the specific conditions or objectives of 
structured problems to encourage exploration and research with the aid of a DGS.  
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3 Methodology 

Participants  
The participants in this study were nine students enrolled in a Master’s Program in Mathematics 

Education. The study design consisted of fourteen weekly sessions, each with duration of three and a 
half hours. The group included six in-service and three in-training math teachers, all of whom had 
formal academic training in the field of mathematics.  

Design of Activities 
A total of five activities were implemented during the study, taking into account the ideas 

proposed by Imaoka et al. (2015) and Leikin (2015); that is, we began with a series of structured 
problems related to the area of figures that were then transformed into semi-structured research 
topics. In this report, we analyze the results of one of those problems. That problem emerged when 
the structured problem used by Schoenfeld (1985) was transforming by modifying its conditions 
(Table 1).  

 

Table 1: Transformation of a Structured Problem Into a Semi-Structured One 
Structured Problem Semi-Structured Problem 

You are given a fixed triangle T with base B. 
Show that it is always possible to construct, whit 
straightedge and compass, a straight line that is 
parallel to B and divides triangle T into two parts 
with equal area. Can you similarly divide the 
triangle into five parts of equal area? Schoenfeld 
(1985, p. 16). 

P.1. Given any triangle, divide it into two 
regions with the same area. 

 

Implementation of the Activity and Data Collection 
The development of the activity can be characterized as including three phases: 1) individual or 

pair work; 2) plenary discussions; and, 3) on-line discussions. The first phase consisted in three 
(weekly) in person sessions of three hours each. They took place in a computer laboratory so that 
each student had access to a personal computer with internet. During the plenary discussions, 
participants presented their ideas or advances in resolving the activity to the whole group. The on-
line discussions utilized a digital wall (Padlet) that allowed participants to continue the discussion 
outside and beyond the in-person sessions. Study data were collected by video taping the in person 
sessions, recording the participations in the digital wall, GeoGebra worksheets, individual written 
reports, and interviews.  

4 Results 
In this section, we discuss the resources, heuristics and strategies that were presented in 

participants’ efforts to solve the problem (P.1). Special emphasis is placed on the episodes involving 
problem formulation propitiated by the use of GeoGebra.  

Initial Solutions 
In a first instance, participants solved the problem using two basic ideas: 1) bisecting the area of 

the triangle by means of a median (i.e., dividing the base in two equal parts while maintaining the 
height); and, 2) bisecting the area by dividing the height into two equal parts but conserving the 
initial base. Thus, participants used both static and dynamic solution strategies. Some of the initial 



Technology 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1316 

dynamic solutions are shown in Table 2. One essential aspect of these approaches was the search for 
diverse ways to identify regions with the same area. 

Table 2: Some Initial Dynamic Solutions to the Problem 
Solution Resources and Strategies 

 

Resources: circumference to transfer 
measurements, mobile point on the segment, mid-
point, triangle. 
Dynamic strategy:  point F on AB. Construct a 
dynamic triangle, FGD, with the same height as 
triangle ABD, but a movable base, FG, of constant 
length equal to AE where  
AE = ½AB (infinite solutions). 

 

Resources: Median, regular polygon, mobile 
point on the segment. 
Dynamic strategy: use a slider, “m”, to draw a 
regular polygon of “m” sides and reflect it by 
means of the median; add and subtract dynamic 
polygons of the same area on both sides of the 
median (infinite solutions). 

 

Resources: parallel mean, mid-point, triangle, 
mobile point on the segment, Euclidean 
proposition 37. 
Dynamic strategy: divide the height in two parts by 
the parallel mean, ED, and construct two triangles 
with the same base (equal to half of side AC) and 
mobile vertices, G and H, on the parallel mean 
(infinite solutions). The area of the green region is 
equal to that of the blue region. 

 

Problems Posed by Participants 
After presenting their initial solutions in a plenary discussion, participants proposed new ways to 

find regions with the same area as the given triangle, motivated by the dynamic exploration of 
elements inside the configuration (Table 3). For example, one participant suggested using a circular 
sector to divide the triangle in two sections of the same area. Another focused attention on a 
construction that involved a quadrilateral. All approaches were based on a graphic representation of 
the variation of the area of the figures involved (Table 3). 

 

Table 3: Problems Posed with Exploration and Solution Strategies 
Problem Posed Resources and Solution Strategies 

1.1. Divide the triangle with a 
quadrilateral whose sides are perpendicular to 
two sides of the triangle (variation of a point D 
on side AC). 

Exploration. Constructing a family of 
quadrilaterals based on mobile point D and 
with 
sides perpendicular to those of the triangle. 
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Important question: where should point D be 
placed on side AC so that quadrilateral 
EDFB has the same area as the sum of the 
areas of triangles AED and DFC? 
Solution. Construct the dynamic points  
P = (x(D), areaDEBF) and 
Q = (x(D), areaABC - areaDEBF).  

The intersections T and S of the loci 
described by P and Q upon moving D determine  
solutions U and V. 

1.2. Use a circular sector to divide the 
triangle (variation of a point E on side AB). 

 

 

 
Exploration. Constructing a family of 

circular sectors of variable area “e” from mobile 
point E. 
Important question: where to place point E on 
side AB so that circular sector BEF has the same 
area as section AEFD? 
Solution. Create the points  

H = (x(E), e) and  
G = (x(E), areaABD – e).  
The intersection N of the loci described by H 

and G upon moving E determines solution P. 
 

1.3. Division by means of a straight line 
parallel to one of the sides (variation of a point 
D on the side). 

 

Exploration. Constructing a family of 
triangles DBE with D mobile on AB and side DE 
parallel to side AC of the initial triangle ABC. 
Important question: where to place point D on 
side AB so that quadrilateral EDAC and triangle 
DEB have the same area? 
Solution. Create the points 
P = (x(D), areaADEC) and 
Q = (x(D), areaDBE).   The intersection R of 
the loci described by P and Q upon 
moving D determines solution 

1.4. Division by means of a straight line 
perpendicular to one of the sides (variation of 
a mobile point D on the side). 

Exploration. Constructing a family of right-
angled triangles ADE from mobile point D on 
side AB and with side DE perpendicular to side 
AB of the initial triangle ABC. 
Important question: where to place point D 
on side AB so that quadrangle DBCE and triangle 
ADE have the same area? 
Solution. Create the points 
P = (x(D), areaADE) and 
Q = (x(D), areaDBCE) 
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The intersection R of the loci 
described by P and Q upon moving D determines 
solution T. 

1.5. Bisect the area by means of a free 
mobile point, F, inside the initial triangle and 
another 
mobile point, E, on the base.  

    

Exploration. Constructing a family of 
triangles AEF from mobile points F and E. Point 
F moves freely inside triangle ABD. Point E 
moves freely on side AB. 
Important question: where to place points E and 
F such that triangle AEF has half the area of 
triangle ABD? 
Solution. Create point G = (x(E), areaAEF)  

The intersection H of the loci described by G 
(upon moving E) and the straight 𝑦 = á!"#$%&

!
 

determine solution K.  

1.6. Use any straight line to divide the 
triangle. 

 

 
Exploration. Constructing a family of 

triangles AFJ from mobile points J and E. 
Important question: where to place points E 
and J so that triangle AJF has half the area of 
triangle ABD? 
Solution. Create point G = (x(E), areaAFJ). 

The intersection O of the locus described by 
G (upon moving E) and the straight line             
 𝑦 = á!"#$%&

!
 determine solution Q. 

 

 
The exploration strategy applied in these problems consisted in constructing dynamic sections 

(quadrilaterals, circular sectors, triangles) inside the initial triangle and then visualizing the change in 
the area of those sections by dragging points until the section had half of the initial area. 
Visualization of the change in area was performed using dynamic points and their respective loci. 
Solutions were determined in terms of intersection points between those loci (Table 3). 

New Problems Posed After Solving the Original Problem  
The solutions reached by participants were reviewed in a plenary discussion. Those solutions 

involved using such loci as parabolas and hyperbolas. New problems emerged as a product of this 
discussion, and participants then attempted to resolve them by: i) determining the important elements 
geometrically (focus, directrix, axis of symmetry, vertex, etc.) of the conic sections utilized to resolve 
the problem; and, ii) finding the equations of those conic sections and obtaining a general algebraic 
solution of the problem. To find the important elements of the conics sections, participants had to 
review their geometric properties (in different on-line resources); for example, to find the focus of 
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parabolas they used their reflexive property, while to find the equations, they generally used 
parametrization of the attributes of the triangle and extreme cases (Figure 1). Finally, participants 
pondered extending the initial problem by considering how to divide a triangle in three and more 
sections of the same area. 

 

 
Figure 1. Parametrization and use of extreme cases to find the equation of the parabola used to 

resolve problem 1.4. 

5 Discussion of Results 
The results shown suggest that using the Dynamic Geometry System (GeoGebra) makes it 

possible to generate processes for posing problems by transforming a traditional (structured) problem 
into a semi-structured research problem. This transformation is achieved by not making certain 
objectives or conditions explicit. In the initial problem, not making the condition of dividing the 
triangle by means of a straight line parallel to one of the sides explicit proved to be determinant in 
leading the participants to formulate and resolve diverse problems. 

Thanks to the ability to drag objects inside the dynamic configurations, participants were able to 
resolve the problem by applying dynamic approaches. These approaches allowed them to find 
infinite solutions that would be very difficult to visualize using traditional static tools like pencil and 
paper. Moreover, the dynamic exploration of the task motivated participants to pose a series of 
problems whose solution required analyzing variations in the areas of the figures. The use of 
dynamic points and their respective loci was crucial in this analysis. Later, another phase of posing 
problems emerged as participants explored the loci (conic sections) obtained to determine their 
important elements (focus, directrix, vertex, etcetera), their equations and, finally, algebraic solutions 
to the problems. 

6 Conclusions   
Any attempt to include the posing and resolution of problems in teaching and learning contexts in 

mathematics education depends, first and foremost, on the teacher(s) involved. In this regard, posing 
or formulating problems is important for teachers both in terms of their own training in the discipline 
and for their teaching practice. On the one hand, formulating problems allows both in-service and in-
training teachers to develop their creativity and construct or strengthen their knowledge of 
mathematics. On the other, formulating problems is a fundamental pedagogical ability, because it is 
always necessary to formulate or reformulate problems as a function of students’ needs, resources, 
ideas or errors. In this sense, it is necessary to address two key issues: 1) teacher training; and, 2) 
designing tasks that require formulating problems. 
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 This study presented an example of the design and implementation of such a problem-
formulation task. The use of a DGS was fundamental because it made it possible to transform a 
traditional problem in an activity that required exploration and research. We can conclude that the 
DGS can motivate processes of exploration and research that will eventually lead to the formulation 
and resolution of distinct problems. This idea could well become an essential element in the design of 
teacher training programs based on posing and resolving problems with the aid of digital 
technologies. 
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The focus of the current proposal is to examine the effect of two dynamic simulations on the 
participants’ conceptions of rate of change. Conceptions of rate of change were measured according 
to Carlson et al.’s (2002) Mental Actions framework and how the participants related the physical 
simulations to the graphical representations (Heid, et al., 2006). Results indicate that the simulations 
increased participants’ covariational understanding, but did not help the students create a more 
accurate understanding of rate of change. 

Keywords: Technology, Algebra and Algebraic Thinking 

Students who do not understand the concept of rate of change are unlikely to develop a 
conceptual understanding of algebra (Roschelle, Kaput, & Stroup, 2000) or calculus (Thompson, 
2008). It has been suggested that dynamic simulations could help students, particularly in the middle 
grades, develop a better understanding of rate of change (Rochelle, et al., 2007). However, new 
simulations are created continuously, and it is unclear how these simulations affect the cognition of 
the individuals who interact with them. Thus, the focus of the current paper is the following question: 
How did two dynamic simulations affect middle school, high school, and undergraduate students’ 
understandings of rate of change? 

Significance 
Past research has shown that visualizations are important in: developing an understanding of rate 

of change (Roschelle et al, 2007), and the historical mathematical development of rate of change 
(Struik, 1969). Roschelle, Kaput, and Stroup (2000) propose the inclusion of technology as a 
necessary aspect of introducing rate of change to students before algebra or calculus. 

However, visualizations and simulations change the way that students interact with and develop 
an understanding of various concepts (Hegadus, 2005). Even when educational experts have 
designed visualizations, novices notice different features or interpret the features differently than the 
experts intended (Roschelle, 1991). Further, the introduction of dynamic simulations may result in 
the development of different or undocumented cognitive obstacles. For instance, in a study of 
preservice teachers’ understanding of the definition of limit in interactive geometry environments, 
Cory and Garofalo (2011) found that their participants became unsure of which variable is dependent 
on which (amongst N, epsilon, and delta). Because of the structure of the technology, some of the 
well documented cognitive obstacles disappeared (i.e. what N, epsilon, and delta represent 
physically), but the misunderstanding of dependence appeared as a new cognitive obstacle. 

Other work provides evidence of what tasks or teaching practices would be important in using 
dynamic simulations as part of rate of change instruction (i.e. Roschelle et al, 2007). However, it 
does not address how, separate from instruction, simulations may impact an individual’s cognition. It 
is essential to examine how simulations affect the students’ conceptions of rate of change. This 
information will allow for informed implementation of dynamic simulations centered on rate of 
change into a learning environment and into future research on rate of change. 

Background 
Development of an understanding of covariation has been linked to an improved understanding 

of rate of change (Thompson & Thompson, 1996; Confrey & Smith, 1994). An understanding of 
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covariation refers to the understanding that as one variable changes continuously, the other 
dependent variable changes simultaneously. Thompson and Thompson (1996), in documenting a 
teaching experiment with one 6th grade student, indicated that students tend to initially conceptualize 
speed as a compound unit called speed-lengths: the time it takes to travel a given distance. That is, 
the participant was only able to understand discrete parts of the variation, rather than describe how 
continuous variation in time affects the continuous variation in distance. The authors reasoned that 
school learners first understand “speed as a distance and time as a ratio (total length/speed-length)” 
(Thompson & Thompson, 1996, p. 3). 

In a study of secondary teachers’ creation of a graph of a bottle that is similar to the boiling flask 
shown in Figure 4, the researchers used two lenses to examine the participants’ work: “use and 
coordination of macro-perspective and micro-perspective; and coordination of mathematical entities 
and their features” (Heid, et al., 2006, p. 4). The study postulated that a central theme in students’ 
reasoning about the bottle problem was the “macro-perspective” (examining the overall view) and 
the “micro-perspective” (examining a smaller part such as small changes in the height to consider 
what change in the volume that would cause) (p. 5). A key factor in how successful their participants 
were was whether or not the participants were conscious of both perspectives and whether or not they 
could shift between them to overcome obstacles. The second key factor in the participants’ success 
was how the individuals related the mathematical entities (the graph) and the physical entities (the 
bottle). For example, sometimes participants would be unable to coordinate the mathematical and the 
physical entities or other times the participants would fixate on a particular connection and use only 
that connection to generalize. 

Thus, the current literature indicates that students will likely have difficulty thinking about how 
the variables in rate of change tasks are related. In addition to this, participants will struggle to 
understand when gestalt views of the objects/graphs or piece-wise views of the objects/graphs will be 
helpful to their reasoning. 

Research Design 
The current qualitative study included two tasks that were part of a larger effort to document 

students’ conceptions of rate of change (Tague, 2015). Each participant took part in a task-based 
based interview (Goldin, 2010) lasting, on average, 70 minutes. The goal of the interviews was not to 
design instruction nor to teach the participants, but instead, to document the participants’ conceptions 
of rate of change before and after use of a dynamic visualization. As such, the interviewer did not 
push the participants toward a correct solution; however, follow-up questions were asked to clarify 
the participants’ conceptions. 

Each interview was video recorded, and transcribed verbatim. The video recordings captured the 
participants written work, their hand movements, and their interactions with the visualizations. The 
transcripts included gestures where the participants did not possess the vocabulary to articulate their 
full understanding of rate of change (Roorda, Vos, & Goedhart, 2009). For example, one of the 
participants showed, using her hands, that when the bottle narrowed, the graph would increase in 
slope, by tilting her hands in and then out because she could not articulate the vocabulary for 
narrow/widen.  

The transcripts were then analyzed according to the Mental Action Framework (Carlson, et al., 
2002) shown in Figure 1 to determine the level of the participants’ understanding of covariation. The 
framework was developed through studying second year calculus students’ understanding of average 
rate. The authors argued that determining level of understanding of covariation involved examining 
many mental actions that might be elicited by a task, and that an individual should not attain higher 
levels of mental actions without mastering the lower levels. We also examined what other features or 
conceptions were important in completing the task (Heid et al., 2006), in interacting with the 
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simulations, and in completing the task a second time. For example, if a participant matched bottles 
to graphs in the Water Filling task by iconic translation (how closely the shape of the graph matched 
the physical shape of the bottle) (Monk, 1992), that individual was not actually using any kind of 
covariation to complete the task. 

 

 
Figure 1. Mental actions and indicators of the covariation framework (Carlson, et al., 2002, p. 357). 

Participants 
The participants (Table 1) were chosen purposefully to represent students at specific educational 

levels - before algebra (middle school students), after algebra (high school students and students 
taking calculus courses), and after calculus (students enrolled in differential equations courses). 
Algebra (Saldanha & Thompson, 1998) and calculus (Thompson, 2008) have been shown to be key 
places where a robust understanding of rate of change is necessary. 

Middle school and high school participants were recruited through letters sent to parents from 
teachers in a large professional development program. In the case of the undergraduate students, 
participants were recruited through Calculus and Differential Equations courses at a large 
Midwestern University. Participants were chosen from the volunteers to maximize variation amongst 
the participants. When possible, the participants were chosen from different parts of two Midwestern 
states, or different courses.  
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Table 1: Participants and Pseudonyms 
Participant Grade Level Pseudon

ym 
Middle School – 6th grade Forrest 
Middle School – 8th grade Amy 
High School – Precalculus Sarah 
High School – Precalculus Kristi 
Undergraduate - Calculus Kyle 
Undergraduate - Calculus Angela 
Undergraduate - Calculus Brian 
Undergraduate - Calculus Amanda 

 

Task Design and Choice of Simulation 
Two simulations were used, and in both cases, the participants were asked to complete a task 

before the simulation, to interact with the simulation, and then to complete the same task again. 
During the second time through the task, the participants’ original work was put away, and they had 
the option of continuing to use and test options in the simulations while working. 

The first dynamic simulation was a Java applet called “The Moving Man” shown in Figure 1 
(PhET). The applet has the image of a man that begins in the middle of a horizontal axis. The man 
can be dragged using the mouse or he can be programed to move in a particular way by choosing an 
initial position, velocity, and acceleration. If the user moves the man manually, the position, velocity, 
and acceleration change simultaneously. 

 

 
Figure 2. Screenshot of The Moving Man (applet by PhET). 

The task associated with this dynamic simulation is the following: Draw a picture of what you think 
the position, velocity, and acceleration graphs will look like if the man starts at the tree, realizes he 

is hungry, and then goes home to eat. The task was deliberately left vague in order to allow 
participants to connect with their intuitive knowledge of how people move and how that motion 
affects their velocity and acceleration. Participants were also asked if they understood the terms 

position, velocity, and acceleration, and were given explanations if necessary. 
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The second dynamic simulation was a screenshot video of an individual playing with Wolfram 
Alpha’s Bottle Filling simulation shown in Figure 3. In the online environment, the user can drag the 
outside points of the bottle, and then drag the fluid height level up. As the bottle is filled on the left 
side, a simultaneous graph of volume versus height is created on the right side. The participants 
could pause the video at any time, drag the action backwards or forwards, and watch as many times 
as they wanted to while they completed the task for the second time. 

 
Figure 3. Screenshot of water filling simulation applet (Wolfram Alpha). 

The task associated with the water filling simulation stated, “Imagine filling each of the six 
bottles below (Figure 4), pouring water in at a constant rate. For each bottle, choose the correct 
graph, relating the height of the water to the volume of water that’s been poured in” (Annenberg 
Learner). Note that the graphs of C, G, and H do not match with any of the bottles, but their bottles 
would look like those shown in Figure 5. After the participants matched the bottles to graphs, we 
asked them to choose any graph they had leftover and sketch what the associated bottle would be. 

 

 
 
 
 
 
 
 

 

Figure 4. Task associated with the bottle filling simulation 
with the intended matches marked. (Annenberg Learner). 

Figure 5. Bottles matching graphs 
C, G, and H from Figure 4 

(Annenberg Learner). 

The two dynamic simulations were chosen purposefully to be accessible, yet challenging to all 
participants from middle school through differential equations students. Both simulations were also 
chosen because they represent physical activities that the participants were likely to have 
experienced. The Moving Man represents a graphing of position, velocity, and acceleration, which is 
a paradigmatic type of rate of change problem that many individuals come to equate with their 
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definition of rate of change (Zandieh, 1997). The bottle filling task is one that has been used by many 
researchers examining rate of change, and so would allow for comparisons with previous literature 
(Carlson, et al., 2002; Heid, et al., 2006). 

Results and Discussion 
Table 2 illustrates the mental actions of the participants associated with covariation before and 

after interacting with the simulations. As the tables illustrate, the participants generally moved 
toward a more covariational view of rate of change or maintained their current level. However, more 
covariational mental actions did not always coordinate with a more accurate physical understanding, 
as explained further. 

 

Table 2: Mental Actions Before and After the Dynamic Simulations 
 Water Filling Moving Man 

 Before After Before After 
Forrest None None MA1 None 
Amy None None None None 
Sarah MA5 MA5 MA5 MA5 
Kristi MA3 MA5 MA1 MA3 
Kyle MA2 MA3 MA3 MA4 
Angela MA4 MA5 MA4 MA5 
Amanda MA5 MA5 MA4 MA5 
Brian MA5 MA5 MA5 MA5 

 
The middle school participants, Forrest and Amy, matched bottles both before and after the 

simulation, using Monk’s (1992) description of iconic translation. Monk (1992) described how 
students sometimes create graphs that replicated the physical features of a problem. For example, 
when asked to create a rate graph of someone biking across a flat surface and then biking up a hill, 
students are likely to create a horizontal line attached to a positive sloping line. Forrest and Amy 
matched the bottles with the graphs based on the physical features of the bottle that matched the 
physical features of the graphs. For example, they both matched graph D with the vase, and Amy 
explained, “because I think I was just trying to match the shape of it and not the actual amount of 
liquid it can be filled with.” Further, Amy’s explanation indicated that she was not even considering 
either of the variables involved in the task, and rather looked at the overall shapes to match. Neither 
one attempted to draw a bottle from one of their leftover graphs. 

The rest of the participants were either at the highest covariational understanding of rate of 
change (for the water filling problem), or moved towards a better understanding (Table 2). Still, as 
before, improvement in understanding of covariation did not necessarily indicate a more accurate 
response. For example, Kyle’s matches were based on a generalization of one physical feature of the 
bottles – corners. His reasoning was similar to that of the participants in Heid and colleagues’ (2006) 
study, in that, although he was considering different uniform changes in volume and how that would 
correlate to height, he based those changes around relating the physical features of corners to 
physical corners in the graphs. However, he was ranked at MA3 afterwards because he could 
describe that wider parts of the bottle would results in more volume, but less height whereas before 
the simulation he could only describe as more water was added, the height would increase. 

The Moving Man interaction seemed to have none or a negative effect on the rate of change 
conceptions of the middle school participants. Forrest actually moved from creating graphs where he 
considered the change with respect to time to creating graphs with iconic translation (Monk, 1992), 
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or using the physical motion of the man to create the shape of the graph. Note, from Figure 6 that all 
of his graphs were horizontal and the man’s movement can only be horizontal. Forrest had no 
cognitive dissonance about the fact that his graphs differed from those on the simulation. He was 
insistent that the graphs must look “just like the man moved.” In Amy’s case, she persisted in 
creating three discrete points for the graphs: one at (18,8) on the position, one at (18,8) on the 
velocity, and one at (8,6) for the acceleration. Like Forrest, she was undisturbed by the difference 
between her graph and the simulation. For the rest of the participants, the simulation moved them 
towards a more covariational understanding of rate of change. However, all of the other participants 
also copied what the simulation created, whether or not they understood it. For example, Kristi 
originally created a linear position function, and after interacting with the simulation, she changed it 
to curved. When she was asked why, she was unable to provide reasoning until the interviewer asked 
her what would happen if the acceleration were set to 0. 

 

 
Figure 6. Forrest's graphs before and after the Moving Man simulation. 

Conclusion 
In summary, the dynamic simulations moved the participants’ conceptions of rate of change 

towards a move covariational understanding. However, a better covariational understanding did not 
directly mean that they produced a more accurate graph/bottle/etc. It’s possible that in addition to 
developing an understanding of how the variables co-vary, individuals also have prior experiences 
that cause them to focus only on one aspect of the physical situation or to use iconic translation. A 
better understanding of the relationship between the prior experiences and how they relate to 
covariational understanding is necessary to be able to describe fully individuals’ understandings of 
rate of change. 

It is clear from the current study, that questioning is essential because exposure to the 
simulations, in some cases, caused new misconceptions, led to less use of covariational reasoning, or 
did not address underlying misconceptions. Furthermore, technology is essential in studying 
understanding of rate of change, but it also transforms understandings, and as such, requires attention 
to changes caused by the technology, and further study on what kinds of questions and tasks would 
help students maximize their understandings. 
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In this study, we investigated how Grade 3 and 4 students’ organizational structure for volume units 
develops through repeated experiences with a virtual manipulative for building prisms. Our data 
consist of taped clinical interviews within a micro-genetic experiment. We report on student strategy 
development using a virtual manipulative for counting cubes as a measure of prism volume. A 
descriptive case of one student, Jim, is included as an example of how students developed 
increasingly efficient counting strategies built on understanding of structuring, composite units, 
multiplicative thinking and an understanding of the number of cubes along an edge. We found 
students were able to develop structure for volume and advance their level of thinking along a 
learning trajectory for volume measure.  

Keywords: Geometry and Geometrical and Spatial Thinking, Learning Trajectories, Measurement, 
Technology.  

Introduction and Theoretical Framework 
Volume measurement is an important component of elementary school mathematics; however, 

geometric and spatial structuring is a topic that presents students with significant challenge (Barrett, 
Clements, & Sarama, 2017). Unlike length or area measurement, students must coordinate the 
measurements from three dimensions to measure volume. Spatial thinking is related to enumeration 
strategies as children measure volume (Battista & Clements, 1996). Thus, it is important to 
characterize the development of enumeration strategies. We have established hypothetical learning 
trajectories to characterize such development and to support the development of curriculum and 
enhance teacher knowledge (Barrett et al., 2017). A trajectory includes the mathematical learning 
goal, the thinking and learning in which students might engage and the pertinent learning activities to 
support growth from one level to the next (Simon, 1995). We employed a trajectory to classify 
student growth patterns and to design and test a learning activity. In this study, we designed and 
tested a virtual manipulative intended to support organizational structuring of volume units. 

Students initially attempt to organize and structure volume units by working without coordinating 
the set of cube faces on the prism. We now describe this level of thinking as volume unit repeater 
relater (VURR), a fourth of seven hypothetical levels in that trajectory (Barrett et al., 2017). As 
children gain capability for coordinating spatial components, they see the array as space filling (i.e., a 
child may rightly predict an entire collection of rows to fill a layer given only one visible row). This 
level of thinking is described as volume initial composite 3D structurer (VICS), the fifth level. Once 
children completely integrate a set of locally coordinated structures within a global structure, they 
use layering strategies to enumerate the volume of a prism. This level is called volume 3D row and 
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column structurer (VRCS), the sixth level of the trajectory. There is still a need to expand our 
knowledge of effective instructional interventions for any given level in this trajectory. We 
developed an intervention intended to bring students up to the VRCS level. Battista and Clements 
(1998) found that most grade five students, but only 20% of grade three students, characterized a 
rectangular prism as a series of layers of rows and columns of cubes. Thus, we focused on grades 
three and four. 

We developed and used a computer manipulative, our intervention, to help students recognize 
that edge lengths can be used to predict the number of cubes along an edge, and develop their use of 
composite units or units of units. We hypothesized that the manipulative would highlight the 
efficiency of enumerating composite units by constraining how students interact with increasingly 
complex units: first single cubes, then row collections of cubes, then layered collections of rows of 
cubes. Further, we expected to prompt for a correspondence between an edge length and the number 
of an appropriate unit along that edge. The following research questions guided our investigation:  

• How does a student’s organizational structure of volume units change through repeated 
experiences with a virtual manipulative for building prisms?  

• What are the critical features of the treatment that supported student development? 

Methodology 
In this study we investigated the thinking of 31 participants in Grade 3 (14 students) and Grade 4 

(17 students) at a private school in the Midwest. We used a microgenetic method to focus on growth. 
Three aspects of this provide insight on growth: (a) observations that span the whole period of 
rapidly changing competence, (b) the density of observation within this period is high, relative to the 
rate of change; and (c) observations of changing performance are analyzed intensively to indicate the 
processes that give rise to them (Siegler & Sventina, 2006, p. 1000). All 31 students participated in 
five interviews with one or two researchers. During each interview (taking approximately 15 
minutes), the students completed three trials. A trial included first a paper version of a prism to 
measure, and then a virtual manipulative of the same prism. 

 

 
Figure 1. Paper portion of trial.     Figure 2. Virtual manipulative of trial.  

For each trial, students had to find the volume of a rectangular prism (see Figure 1) using a pencil 
and a paper showing a prism with some edges labeled for length (in cm). The interviewer asked, 
“The volume of the small cube is one cubic unit. What is the volume of the larger solid?” After the 
student completed the paper task, they were asked to predict the volume of the same rectangular 
prism using a virtual manipulative. Each student was prompted to predict the next outcome of a 
button sequence, first for width, then length and finally altitude. They were asked, “How many cubes 
will you have when you are done pressing the green button [the first button sequence, width of 
prism]?” The green button sequence produced one complete row. Likewise, we asked students to 
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predict for the second button sequence (the blue button; forming one layer of rows, now width and 
length), and for the third button sequence (red button; the total volume) (see Figure 2) if they 
continued making correct predictions about the accumulation of cubes and groups of cubes. If not, 
the interviewer directed them to press the relevant button so they would accumulate the cubes along 
that current dimension; this produced a report of the number of cubes associated with the button 
sequence they had been predicting. Our approach merely hinted that the prediction had been 
incorrect. Working thus, in three stages, students gradually filled the rectangular prism shown on a 
computer screen (see Table 1). (The virtual manipulative can be found at: 
https://www.geogebra.org/m/FgQVdDTb).    

Table 1: Virtual Manipulative Program  
 Click 0 Click 1 Click 2 Click 3 Click 4 

 
First button 
sequence 
(green) 

 
 
 
 
 
 

  
 

NA 

 
 
NA 

 
 
NA 

 
Second 
button 

sequence 
(blue) 

 

     

 
Third button 

sequence 
(red) 

 

     
 
NA 

 

Results and Discussion 
Our research question focuses on changes in students’ organizational structure of volume units, 

so we categorized our participants into three categories to select participants who had changed their 
structuring. Of the 31 participants, eight (two Grade 3 and six Grade 4) showed prior, adequate 
knowledge of the structuring of volume and thus were not positioned to benefit during the study. Of 
the remaining 23 participants, eight (five Grade 3 and three Grade 4) did not display any meaningful 
changes in their ability to leverage the structure of 3D arrays to find volume. This left us with 15 
(seven Grade 3 and eight Grade 4) participants out of a possible 23 (65%) who demonstrated changes 
in their organizational structuring of volume. The fact that 65% of the participants who could have 
benefited from this study suggests the virtual manipulative helped them measure prism volume by 
emphasizing and portraying structured sequences of units. To find the nature of the changes and 
relate them to their experiences, we describe a case study of one student. We anticipated finding a 
correspondence between changes in structuring the groups of units and the salient features of the 
virtual manipulative. 
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Case Study: Jim 
Jim, a fourth-grade student, demonstrated the VICS and VRCS levels across the eleven trials. We 

trace his development of increasingly sophisticated use of units and understanding of length labels. 
We begin the case study by sketching our own model of his strategic interaction with the interviewer 
and the tasks and the given tools: initially, Jim’s structuring included rows as units but the number of 
units in a row was not connected to the labels. Trial 4 was the first time he incorporated the length 
labels to guide his structuring of units. Next, he extended his structuring to include rows as units 
guided by the length labels, and then he extended his structuring to include layers as units. Finally, 
Jim’s skip counting evolved into multiplication as a scheme for finding volume of rectangular 
prisms. Next, we offer a detailed interpretation across four trials. Lastly, we interweave observations 
and interpretations to present an ongoing model of Jim’s thinking in keeping with our theoretical 
perspective drawn from the learning trajectory of volume measurement. 

On the paper portion of Trial 1 (2 by 5 by 4 rectangular prism; see Figure 1), Jim referred to the 
unit cube as one, pointing to it. Next, he mentioned five, “it was five long, right?” dragging his finger 
across the bottom front edge (edge labeled 5). Jim then dragged his finger up the image of the prism 
skip counting, “five, ten, fifteen, twenty, twenty-five.” He then said, “twenty-five of those” pointing 
back to the unit cube. We note that on the first trial Jim was already skip counting, an indication that 
he was treating a collection of five as a repeatable unit. However, he counted five sets of five, which 
was inconsistent with the length labels of 5 and 4. Additionally, he appears to have only dealt with 
two of the dimensions to arrive at his final answer of 25.  

On the computer portion of Trial 1 Jim moved the unit cube inside the prism. He pointed with the 
cursor to the cube and said, “one”. He then pointed to the next place he expected a cube would fit and 
said “two”. He paused and continued in a regular pattern: “3, 4,…, 5, 6, …, 7, 8, …, 9, 10”. Each 
pause included a motion to the next position on the base of the prism. We take this pattern in his 
counting and motion as an indication that although he was still counting single units. He was also 
attending to groups of two units to fill the bottom layer of the prism. 

Still, prior to pushing any buttons (i.e., he could see just one cube inside the prism corner), he 
moved the cursor along the bottom front edge and the bottom back edge (edge labeled 5) saying, “so 
five, five”. Then he took the cursor as he had moved his finger earlier on the paper portion and 
moved up successively on the front face. This time he skip counted by tens instead of fives and said, 
“So it would be 50 not 25. Ah, that is 25 times 2.” His actions and statements indicate to us his 
attention to five countable entities during this trial: a unit cube, a row of two cubes, and a row of 5 
cubes, horizontal layers of 10 cubes and vertical layers of 25 cubes. Although he exhibited an 
understanding of composite units, he did not mention or make use of the three distinct length labels. 
He treated the height as if it were five units high, even though that edge was labeled “4”. We believe 
he was counting by visual estimation and repeated pointing gestures to find the height. This seems to 
indicate the VICS level because he attended to unit cubes as parts of rows, and rows as parts of 
layers, yet he was not using all three dimension labels to structure his groups (as he would if he 
operated at the VRCS level).  

Continuing with the computer portion of Trial 1, the researcher asked Jim to predict how many 
cubes he would have when he finished with the first button sequence (colored green). He answered 
correctly, “two”. Next the researcher asked him to predict the number of cubes after pressing the 
second button sequence (blue). Note that the second button was designed to add additional rows 
along the second dimension of the prism. Jim’s response did not match that of the computer 
environment, “There will be five (motioning along the blue line) plus one is six. There is going to be 
six blocks.” Because he used the cursor to touch five points along the back edge, and then one in the 
front left corner, he counted six cubes that included a row plus one cube next to that row. Next, Jim 
clicked through the first button sequence (green), and stopped with two cubes (to form a row). Thus, 
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his prediction of two matched the number of cubes displayed. At this moment, Jim said, “wait no it 
adds two times five. The blue is going to add four more.”  We believe he meant four more groups of 
two cubes each. The interviewer asks him how many he would have when he finished using the blue 
button (which is the second button sequence) to add cubes. He said, “ten” (the correct number of 
cubes following the blue button sequence). We infer that he was creating a more sophisticated 
approach to counting composite collections of units that incorporated multiplicative operations. He 
was counting not only single cubes, but by coordinating the two dimension labels, of 2 and 5 along 
the base edges, he was able to use multiplication to group 10 cubes as five sets of two. 

The researcher then asked him how many cubes he thought he would have when he finished with 
the red button (the third button sequence that builds vertically). Jim said he thought that it would take 
30 for the whole box to be full. If he was thinking he would have to add 30 more, he was correct, but 
30 cubes was not the total. Now the researcher asked him to use the blue button (the second 
sequence). While clicking along the blue line, Jim stated that he was wrong because it only added 
two and he thought he would click it once to add eight. We believe Jim was making sense of the 
program and the structuring of volume. Once he finished pressing the blue buttons (the second 
sequence), Jim was asked to predict how many cubes there would be when he was finished with the 
red button (the third button sequence). Jim said there would be fifty, which is incorrect. Nevertheless, 
after one click of the red button with 20 cubes showing, Jim said, “no, it only adds the ten more.” Jim 
then went on to say, “now I get it, each one adds one more, like times two.” We think this statement 
influenced his later work and solution on the paper portion of Trial 3. Once Jim filled the box, he said 
that the answer was forty but said he did not know for sure. Recall his work on the paper portion and 
his first two predictions on this computer trial were 25, and 50 cubes, rather than 40. To sum up, we 
think Jim relied on visual estimates to find the number of cubes in the rows during trial 1. 
Alternatively, he may have reported the number of square faces on the front of the prism. 

Moving on to trial 2, we expected improved performance from Jim, particularly on the computer 
portion, as he had now practiced using the sequence of three buttons. Also, we anticipated that Jim 
would build on his use of composite units evidenced by his skip counting and multiplication strategy 
for counting row groups in Trial 1. On the paper portion of Trial 2 (5 by 4 by 3 rectangular prism), 
Jim drew a cube inside the rectangular prism, mimicking the virtual manipulative. He then said that it 
was four across, three up, consistent with the length labels. He counted four across and then said 
twenty; we take this as evidence that he was treating a row of five as a composite unit, and four of 
these rows would be consistent with the bottom layer of the rectangular prism. Next, he said “twenty 
times three, twenty times two, forty. I think it is forty.” We notice a shift in his use of units, as he is 
now counting groups of twenty. The researcher then told Jim that if he needed help with calculations 
he could help. Jim responded, “Then you go one, two, three, four, five, that is four times five that is 
twenty. Then you already have one floor done, then you times two, that is forty. That fills the full 
box.” Here we take his counting, one, two, three, four, five as another instance of his counting 
composites, five sets of fours, which gives him twenty; we also interpret his actions as a way of 
unitizing the twenty as “one floor”.  

On the computer portion of Trial 2, Jim correctly predicted the first button sequence and the 
second button sequence (he finds 20 on the floor layer), but not the third (for the whole prism). He 
said, “There will be thirty [in the whole prism].” Next, Jim used the virtual manipulative to fill the 
rectangular prism (the computer screen showed: volume = 60 cubic units). When he finished, he said, 
“No, 60…. I know why I am wrong.” The interviewer asked Jim what he thought the actual volume 
was. After a pause, Jim said, “I don’t know. I am thinking 60 cubic units and I did 40 cubic units on 
the last one (he refers to his answer on paper). I am thinking 60 but I don’t know. It might be, hum… 
I think it is 60.” We believe Jim is still operating at the VICS level because he has now begun 
coordinating spatial components more widely, but has not yet completely integrated the set of local 
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structures into a global structure. His ability to identify a layer without finishing the structure to find 
60 cubes indicates a transitional state of thinking.  

Next, on the paper portion of Trial 3 (3 by 3 by 4 rectangular prism), Jim said, “4, 3, 3… now I 
get it.” While he said that he pointed to the length labels of each number. Next, he said, “that would 
be nine on the bottom… nine, nine plus nine is 18… 18 plus 9 is …” The researcher told him that 
was 27. Then Jim said, “I have to add 27 more. Twenty-seven plus 27.” He said, “44, …, no, 54.” 
Then he said, “I am going with 54. I hope I get this right.” The correct answer was 36. During, this 
portion of Trial 3, we believe Jim showed a development in composite units; he found the bottom 
layer of nine and then used that number of cubes to accumulate another unit of nine, perhaps another 
layer. He appeared to skip count, adding 9’s, but when he reached the third layer he doubled that 
quantity of 27, reaching 54. Why did he do this? We believe he followed a pattern he had set in his 
work on the virtual manipulative for Trial 1 when he had explained moving from one layer to two as 
a doubling. Because it had been the first layer, a doubling process was equivalent to adding one 
layer. But he did not try this doubling approach with higher levels until this instance, and here he 
doubles the third layer sum of 27 to get 54. He appears to intend this 54 as the accumulation of the 
fourth and final layer. 

For the computer portion of Trial 3, Jim correctly predicted the first button sequence and the 
second button sequence, giving a correct prediction for the number of cubes in the bottom layer, 
similar to his paper task work. Next, Jim was asked how many cubes there would be when he was 
finished with the red button (third button sequence). He said, “it goes up 9, 18, wait… 27, 27 plus 
9… I know it is 54.” As Jim filled the rectangular prism with the red button sequence, he skip 
counted by nine. After the prism was completely filled with cubes, Jim explained, “I went too many 
high because for 54. I added 18 more at 27 because 27 plus 9 is 36 … I know why I keep screwing it 
up.” Next, he said that he thought the box (pointing to the unit cube) was smaller and he “did tiny 
ones”.  

We believe this experience with trial 3 was transitional for Jim and this is where he made a 
connection between the length label for the height of the rectangular prism and the number of layers. 
When Jim was asked what the actual volume was, he said it was 36 cubic units without hesitation as 
before. We believe Jim was transitioning toward VRCS in Trial 3, but still operating at the VICS 
level. Next we describe trial 4 which took place at the beginning of the second interview.  

On the paper portion of Trial 4 (3 by 5 by 4 rectangular prism), Jim paused his work on paper to 
comment how he thought the virtual manipulative (computer task) worked. He said (pointing to the 
left bottom of his paper prism), “There are three here” and he made three marks with his pen (see 
Figure 3). While pointing to the computer, he said, “You hit the green, you would get one more, no 
wait, you would get two more.” Next, he wrote down 3 units along the green line. Following he said, 
“The blue, you would get three more” and he wrote that down on the page along the blue line. Next, 
he said, “The red goes up one more but adds three” and wrote that on his page along the red line. 
Then he said, “So you get three (pointing along the green line) and then three more and three more, 
no that is six, six more and then you will have twelve.” The researcher asked him if he thought 12 
was the total volume and Jim responded, “No, no, you have twelve altogether right there in that little 
square” pointing to the 3x4 vertical face. The researcher asked, “What happens after that?” Jim 
responded, “You go, 3 and 5 (pointing to the base of the prism) that is 15, 15 + 15 is 30, wait no… 
15 so, 15 (drawing one mark under the prism), 30,… two (drawing another mark below his prior), um 
45 is three (drawing another mark), and then 50, no, 60 is four, yeah. So there is going to [be] 60 
blocks in all.” On this trial, Jim integrated a set of locally coordinated structures within a global 
structure, and used a layering strategy to enumerate the volume of a prism. We interpret this incident 
to mean Jim is operating at the VRCS level for measuring volume. He coordinates sets of cubes as 
rows and groups of rows as layers. 
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Figure 3. Jim’s paper portion of Trial 4.  

On the computer portion of Trial 4, Jim correctly predicted the number of cubes for each button 
sequence. After he filled the prism, Jim appeared very excited,  “Got that one right!” Jim is 
demonstrating thinking consistent with the VRCS level. On the rest of the Trials (5-11), Jim 
completed the paper and computer predictions correctly. As he worked on the paper portions, he 
talked about how the computer program would work. At the end of Trial 5, Jim said he could use 
multiplication. He explained that you just do the six times the five, times the two. Jim showed 
another advancement of thinking. He shifted from skip counting to multiplying to predict the number 
of cubes. However, on the Trial 6 Jim used repeated addition again to find the answer. He said he 
was surprised he had the right answer because, “threes and sixes are hard for multiplication.” Beyond 
Trial 6, Jim mostly used multiplication to multiply three edge lengths. 

Conclusions and Implications 
Measuring volume is a challenge for students (Barrett et al., 2017). We found that only six of the 

31 participants in the study exhibited prior knowledge of spatial structuring for measuring the 
volume of rectangular prisms. Fifteen of the 23 participants who could have benefited from the 
experiences in this study developed more effective strategies and answered with increasingly correct 
measures. We take this as evidence that the treatment in this study was effective in guiding students 
to build a more structured understanding of volume.  

We have used Jim’s case to represent many students who did not initially use the length labels to 
predict the number of units fitting an edge. It was not until Trial 4 that Jim first used length labels to 
predict the number of units along an edge. Specifically, students developed more efficient 
enumeration strategies as well as a meaningful interpretation of the length labels as a way to predict 
the number of volume units fitting along an edge. The effectiveness of this treatment suggests an 
intervention to complement the volume learning trajectory we used to design the treatment (Barrett et 
al., 2017). The features of the treatment that supported student growth were those that prompted 
students to associate length measure labels on the prism edges with 3D arrays and those that 
promoted the flexible use of unit groups. Thus, the repeated pairing of length measurements (length 
labels) with the corresponding number of volume units was an important feature in helping students 
discover the predictive power of the length labels. We emphasized the pairings of labels to edge 
length by the continual, predict-and-check questions about accumulating quantity, through various 
unit groups (i.e., “How many will there be when you are done with the blue button?”). Second, 
students operated the three sequences of buttons independently, to meet goals of filling along three 
different but related dimensions of the prism. Their actions resulted in predictable but different 
numbers of additional cubes filling out various prism cases. We believe this was an important feature 
in guiding students to develop more efficient enumeration strategies. Students were expected to cope 
with a single button press resulting in three possibilities: the addition of a single cube, a row of 
cubes, or a layer of cubes, depending on the sequence. The pairing of a single action (a button press) 
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with the appearance of either a 1D, 2D or 3D array of units suggested to students the value and utility 
of grouping units, and of the global coordination of those units. 

In summary, we claim that changes in students’ organizational structure of volume units followed 
from their experience with particular aspects of the virtual manipulative we employed. Secondly, we 
found students learned organizational structure of volume units through developing a flexibility of 
single units and composite units (i.e., single unit cubes, rows as units, and layers as units). Lastly, 
students enhanced their strategies for calculating volume by transitioning from repeated addition to 
multiplicative thinking. 
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A PRELIMINARY ANALYSIS OF USERS’ INTERACTIONS WITH AN ARTIFACT: 
STUDYING LINEAR RELATIONSHIPS WITH TECHNOLOGY 
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Technology as a cognitive tool helps students to externalize their internal representations and take 
actions on them in dynamic, interactive environments. In this study, the instrumental approach 
provided a conceptual lens to analyze the students’ introductory interactions with an artifact in a 
technological environment. The results highlighted various aspects of the instrumental approach 
such as various instrumentation and instrumentalization instances via different utilization and 
instrumented action schemes.  

Keywords: Technology, Middle School Education, Algebra and Algebraic Thinking  

In Principles to Actions, the National Council of Teachers of Mathematics (NCTM, 2014) 
promotes the effective use of mathematical action technologies: “the ability to shift between different 
representations of a problem…can help students develop a deeper understanding of mathematical 
concepts” (p. 84). Changes in individuals’ mathematical thinking as a result of an experience in an 
environment supported with technology is a main theme Heid and Blume (2008) synthesized as 
emerging from the research. Mathematical action technologies allow “students [to] learn 
mathematics by taking mathematical actions…on mathematical objects… observing the 
mathematical consequences of those actions, and reflecting on their meanings” (Dick, 2008, p. 334). 
This study aims to understand how students interact with these technologies and how their 
understanding shapes and is shaped these experiences as they decide what actions to take on different 
mathematical objects and reflect on the consequences of their actions. Once we learn more about 
individual students’ ways of using the technology, we then are better equipped to enhance the 
teaching and learning environment when technology is used consistently in a classroom setting 
(Özgün-Koca, 2016). 

Theoretical Framework 
The instrumental approach provides a lens to analyze “the learning process in technological 

environments of increasing complexity” (Drijvers & Trouche, 2008, p. 366). An artifact is the bare 
tool available to the user with some constraints and possibilities.  The instrumental approach argues 
that an artifact (which contains external representations) mediates the activity and influences the 
mental processes. Only after the user becomes aware of how the artifact can extend one’s cognitive 
processes, it becomes an instrument; so instrument=artifact + scheme. The bidirectional relationship 
and interaction exists between the artifact and the user. Possibilities and constraints of the artifact 
shape the conceptual understanding. This process is called instrumentation. “The conceptions and 
preferences of the user change the ways in which he or she uses the artifact” (Drijvers & Trouche, 
2008, p. 369) and even allow him or her to shape the artifact, “loading it progressively with 
potentialities, and eventually transforming it for specific uses” (Artigue, 2002, p. 250). This process 
is called instrumentalization.  

Trouche and Drijvers (2010) also distinguish techniques and schemes. Since we cannot directly 
observe students’ mental schemes, we are restricted to observing their actions, what they describe as 
instrumented techniques which are “more or less stable sequences of interactions between the user 
and the artifact with a particular goal” (p. 673). Instrumented techniques are results of utilization and 
instrumented action schemes. Utilization schemes are elementary schemes directly linked to the 
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artifact. Instrumented action schemes are global schemes built up from utilization schemes. Both 
utilization and instrumented action schemes are mental schemes involving both technical and 
conceptual aspects of an activity (Drijvers & Trouche, 2008, Trouche & Drijvers, 2010).  

Data Collection Methods 
The participants were eighth grade students (n=44) from three middle schools enrolled either in 

pre-algebra, remedial algebra, or algebra classes and were chosen by convenience sampling. Students 
participated in 30-45 minute clinical interviews during which they did a mathematics activity using 
the computer software version of TI-Nspire. The interviews were digitally recorded to save the 
computer screen, the students’ interactions with it, and surrounding audio. This way the main visual 
and audio cues were recorded for further detailed analysis of participants’ instrumented actions as 
they interacted with an artifact. This kind of recording is defined as “observational recording” by 
Penn-Edwards (2004) where “a researcher follows subjects engaged in an activity” (p. 268). During 
the clinical interviews, students were encouraged to think-a-loud when working with the program. 

The activity using TI-Nspire was designed to help students to explore the effects of dynamically-
linked representations when completing tasks on linear relationships.  The software was a novel 
instrument for most of them, and most had previously studied linear functions. The larger design of 
this study had the main goal of studying the effects of multiple linked dynamic representations. 
Therefore, there were different representations available to different users and two of four tasks in 
the activity were different for different users. This was a purposeful design decision to see how and 
when the utilization of various capabilities (potentialities) of an artifact would allow students to make 
connections between different representations of a linear relationship. Hence, we can observe 
students’ utilization and instrumented action schemes. 

Ratcliff’s (2003) variation of Erickson’s microanalysis approach was adapted and followed when 
analyzing the digital recordings. Following a five-step approach (Ratcliff, 2003), each digital 
recording was viewed in its entirety without pausing or rewinding while taking notes. Next, playing 
and replaying the video identified major events/segments. Linkages between major events/segments 
were sought. Vital statements and nonverbal behaviors from the major events/segments were 
transcribed. Finally, the analysis of major events/segments was compared to the remainder of the 
video data. Member checks, thick descriptions, and considering rival explanations were used to 
ensure trustworthiness of this study (Guba & Lincoln, 1989).  

Results 
A preliminary analysis of all interviews highlighted various aspects of the instrumental approach 

such as various instrumentation and instrumentalization instances. In this paper, detailed evidence for 
only chosen results will be shared: Deciding the algebraic form from a line graph—(i) as students 
enter the y-intercept and slope at the same time versus enter the slope and y-intercept separately with 
many attempts and (ii) as students use informed versus uninformed guess and check.  

A part of the activity called Match Game asked participants to decide on the algebraic form of a 
line graph. The user’s task was to match a bold red graph on the screen by making changes to the 
algebraic form f2(x) = x.  Four algebraic forms were used: 4x, x-3, 2x+4, and -3x-3. Schematic aspects 
of the techniques for deciding the algebraic form from graphical and/or tabular representations 
included both utilization and instrumented action schemes: 

• How to change the algebraic form, the label notation, entry line, or the notation cell in the 
table (if the table representation was accessible) 

• How to enter the slope and y-intercept into the algebraic form 
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o Some students entered signs of the slope and y-intercept such as 4x+-3 which was 
accepted by the software. But when +4x+-3 was entered, the software did not 
produce a graph due to its syntax rules.  

• Noticing, relating, and using the algebraic, graphical, and tabular representations during 
the decision making. 

• Recognizing the effects of changes in the algebraic, graphical, or tabular representations. 
• Using feedback from previous changes effectively in subsequent rounds of changes.  

While the first two schemes are utilization schemes, the last three are instrumented action 
schemes built on a combination of the first two utilization schemes and mental schemes. Table 1 
shows one user’s interaction with the software during the last task of the match game.  

Table 1: Match Game With Informed Guesses 
User’s Comments Screenshots 

All right, this one’s negative (see the figure to the right). 
So, the slope is going to be a negative number. So, it is 
going to be negative 2.  
Int: How did you decide that number?  
Well, you figure that if the number is too high, then it is 
going to be too steep. But if it is not high enough, it is 
going to be too horizontal. So, I am just going to pick a 
number and if it’s wrong, then the reference it to be 
steeper or…And then, with the y-intercept, it’ll probably 
be negative 2…A negative 3… Enters -2x-3. Probably the 
slope is going to be negative 3. Enters -3x-3. 

 

 

 
He recognized that he needed to change both the slope and y-intercept and he could think about 

the changes to the slope and y-intercept simultaneously. He could immediately differentiate the 
negative slope and determine the y-intercept.  Although he was not able to determine the slope in one 
step, he had a strategy that depended on feedback from the software. So, this affected how he used 
the artifact according to his needs or wants; hence influencing the instrumentalization process. 
Finally, he was able recognize the effect of his changes in the algebraic representation and use the 
feedback from his previous change to inform his next moves. Knowing how to interpret the graphical 
representation and how to make changes to the algebraic form while using this software positively 
affected the whole process. 

Some users were more dependent on the feedback from the software. Trying to match the red line 
(y=2x+4), a student’s first choice for the y-intercept was -2. Immediately, she recognized that a 
negative y-intercept was not what she wanted. Even though she made multiple rounds of entries to 
match the y-intercept, she could recognize the effect of her changes and used the feedback from her 
changes effectively in her next rounds of changes. Although she could not show the y-intercept of the 
red line on the graph initially, she knew when she had matched them at the end. Her thinking was 
shaped by the artifact; the instrumentation process was influenced.   

Both students noticed and used the algebraic and graphical representations in the artifact during 
the decision making. While the first student was immediately able to detect the type of slope or the 
exact y-intercept from a graphical representation, the second student tried negative slope and y-
intercept to match 2x+4.  Both students were able to recognize the effects of changes in the graphical 
representation as they make changes to the algebraic representation. How they used the feedback 
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from previous changes in subsequent rounds of changes differed. Then the question becomes: how 
can we structure the task accompanying this artifact or the artifact itself to benefit (these) different 
students? 

Discussion and Implications 
We hear of more and more schools adapting technologies (with multiple linked dynamic 

representations) to their mathematics curriculum daily. Making changes in one representation and 
observing the results in another representation is complex work. Via more structured tasks we can 
ask users to record the effects of their changes in one representation on all other visible 
representations. We can also direct users’ attention to the specific representation(s) by arranging 
what representations are visible.  Another instructional move would be asking users to write down 
their next entry and explain why in order to help them use the feedback from previous changes to 
guide the next round of change. As Trouche and Drijvers (2010) state no tool is “‘ready to do’ 
computing, graphing, investigation, problem solving, learning or teaching. Doing requires 
appropriating a given tool” (p. 680).  The accompanying task is a crucial part of the process of 
appropriating the tool for effective use and to foster the instrumentation and instrumentalization 
processes. Therefore, the task itself (e.g. sequence of the sub-tasks and available representations in 
each sub-task) is one of the important constructs that influences and completes the whole experience 
and the interaction between the user and the tool.   
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Research suggests that it is not simply time spent on task, independently completing mathematics 
homework, but rather purposefully designed, engaging homework activities, completed in specific 
social contexts, that helps students to achieve academic gains. In this study, two urban teachers 
share their use of blogs and discussion forums to communicate with parents and to help facilitate 
mathematics discourse with their students.  The teachers highlight challenges with the age group ten 
to twelve and their access or use of technology in the home, or with the support of their parents. 

Keywords: Middle School Education 

Introduction 
Homework is utilized by many professionals to communicate with parents, to increase student 

time on task and is believed to improve student achievement (Trautwein, 2007); despite a lack of 
consistent empirical evidence (Rønning, 2011).  The National Council of Teachers of Mathematics 
(NCTM, 1980) suggests the sole purpose of mathematics homework is to productively extend student 
engagement (Landers, 2013); therefore, educators and administrators must plan homework tasks 
carefully to ensure students are actively engaged. Although the completion of homework has been 
shown to increase understanding and retention of academic material (Zimmerman, & Kitsantas, 
2005) and a relationship exists between time on task and academic achievement (Trautwein, Köller, 
Schmitz, & Baumert, 2002), there is still a lack of strong empirical support. Considerations regarding 
instructional design (Epstein & Van Voorhis, 2001; Marzano, & Pickering, 2007; Van Voorhis, 
2010), in addition to the social context in which students complete their homework (Landers, 2013), 
provide insight towards a homework-achievement relation and provide a rationale for contradictory 
results in homework gains. If research can suggest that it is not simply time spent on task, 
independently completely mathematics homework, but rather purposefully designed, engaging 
homework activities, completed in specific social contexts, results may prove to be more consistent.   

The purpose of this study is to investigate the potential impact computer- supported collaborative 
learning (CSCL) environments have in developing mathematical discourse.  The present study is 
guided by the following questions: (1) How do teachers’ of students (aged 10-12 years) use online 
asynchronous communication tools in mathematics to facilitate discourse?  (2) What evidence exists 
to support the argument online asynchronous communication tools in mathematics increase students’ 
(aged 10-12 years) engagement in mathematical processes? 

Theoretical Framework 
Research on homework interventions in mathematics have considered multiple variables 

regarding the homework achievement equation such as: using selected homework strategies (i.e. real 
life contexts, homework planners) (Bryan, & Burstein, 1998); frequency of homework assignments 
(Trautwein, Köller, Schmitz, & Baumert, 2002); student perception of the purpose of homework (i.e. 
practice, preparation and extension) (Rosário, Núñez, Vallejo, Cunha, Nunes, Mourão, & Pinto, 
2015); mother’s level of self-efficacy in mathematics (Hyde, Else-Quest, Alibali, Knuth, & Romberg, 
2006); student self-regulation (Zimmerman, & Kitsantas, 2005); family involvement (Van Voorhis, 
2010) and parental monitoring (Sirvani, 2007).  
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School-family partnership programs are one approach for educators to address inequalities 
amongst their mathematics students (Hyde, Else-Quest, Alibali, Knuth, & Romberg, 2006; Patall, 
Cooper, & Robinson, 2008; Sirvani, 2007; Van Voorhis, 2010).  Based on earlier beliefs regarding 
the utility of homework, homework frequency and time on task, it is generally accepted that 
homework begins in elementary school and grows in difficulty, based on a student’s ability to work 
independently and regulate their time (Zimmerman & Kitsantas, 2005).  Younger students are less 
likely to be efficient or successful when working independently (Rønning, 2011). Whereas middle 
school students perform better on homework tasks when they perceive a sense of control and 
autonomy, away from the scrutiny of their parents (Núñez, Suárez, Rosário, Vallejo, Valle, & 
Epstein, 2015).  Therefore, a small window of opportunity exists in the elementary grades for a 
school-family partnership to yield positive results related to homework and academic gains. 

When students perceive a purpose for their homework they are more inclined to become engaged.  
Research suggests, a purposeful design of engaging homework is more effective than simply 
increasing time on task (Van Voorhis, 2010; Epstein & Van Voorhis, 2001).  In a recent study of 638 
grade 6 students, Rosário et. al., (2015) examined the effect of homework purposes on mathematics 
achievement.  Of the three homework purposes, extension was found to have a positive impact on 
achievement, while practice and preparation did not.  Purposeful design of homework, that ensures 
student engagement and extension in mathematics, is of great importance for teachers and school 
administrators (Rosário et. al., 2015). 

It is of the utmost importance that schools approach families in a targeted attempt to improve 
“children’s exposure to math-relevant experiences” (Galindo & Sonnenschein, 2015, p. 25).  Without 
this intervention, children from low SES families are unlikely to “develop sufficient math skills to be 
competitive in today’s technological world” (Galindo & Sonnenschein, 2015, p. 25).  Furthermore, 
Jorgensen, Gates, & Roper, (2014) strenuously point out that it is important to understand the “wider 
set of social practices” (p. 221) in mathematics education by considering cultural backgrounds, 
dispositions of learners and learning environments.  In many aspects, a child’s ability in mathematics, 
sometimes evident as early as kindergarten, is not under the control of the teacher or the school 
(Jorgensen, Gates, & Roper, 2014), but rather, is shaped by their social background (Jorgensen, 
Gates, & Roper, 2014).  

Background Information 
As the primary investigator, and in my role as a Grade 7 teacher, I had daily contact with 75 

grade 7 students for a period of 4 months between March 2016-June 2016.  The students participated 
in a daily math journaling activity over the course of 8 weeks between April 2016- June 2016, along 
with 6 other teachers in the school who were also engaged in a math journaling activity with their 
respective classes.  The purpose of the journaling activity was to increase mathematics discourse and 
time devoted to developing the mathematical processes.  At the start of the 8-week period, the 
students were invited to participate in a goal setting activity related to mathematics and academic 
gains.  Of the 75 participants, 26 completed the goal setting activity (0.347) and together submitted 
66 goals for the 8-week period. Content analysis of the goals identified by the participants provided 
evidence that 14 of the 26 students (0.538) specifically referenced the word “homework” in their goal 
setting and perceived mathematics achievement gains to the timely completion and utilization of 
mathematics homework.  Although other goals were cited (staying on task and asking more questions 
during class), homework is identified as the only activity related to academic gains in mathematics 
outside of the classroom.   
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Discussion 
The idea to consider the relevance of homework within the parameters of the study, using online 

asynchronous communication tools to communicate with parents and students regarding homework 
(problems of the week, discussion topics) emerged as a promising focal point for the second year.  At 
the close of the first year of study, and after analyzing the results of the previous mathematics 
journaling activity, five discoveries were made that impacted the direction of the study:  

• Grade 7 students believed utilization of homework was related to academic gains in 
mathematics  

• Grade 7 students believed improving their homework habits would produce academic 
gains in mathematics 

• Grade 7 students believed they were in control of their academic gains in mathematics 
• Grade 7 students believed academic gains in mathematics were directly related to their 

ability to self-regulate their time and attention 
• Grade 7 students believed their home environment was not a barrier to their academic 

gains in mathematics 

In the fall semester of 2016, semi-structured interviews were used to investigate six urban 
mathematics teachers who used technology to engage their mathematics students in discourse. The 
initial interviews lasted 60 minutes in length and provided a baseline to understand the teacher’s 
background, familiarity with the technology and the teacher’s motivation and intent for using CSCL 
to communicate with parents in the home and facilitate mathematics discourse with their students 
outside of the classroom.  Of those six interviewed, two were selected based on their use of 
technology with their students, the age of their students and their motivation for participating in the 
study.   

Veronica was chosen to participate in the second year of the study because she teaches 
mathematics to grades 3 and 4 with a heavy emphasis on asynchronous technology to communicate 
with parents and uses parent involvement to productively extend and engage her students in 
homework.  Although Veronica is still struggling to think outside of the box for questions about 
mathematics and how to generate discussions about concepts students are learning, her 
acknowledgement and willingness to develop literacy or understanding in in Mathematics makes her 
an ideal candidate.  Veronica has pre-established routines and a solid parent-school relationship that 
was developed before her participation in the study.  The addition of a mathematics focus will be 
challenging for her but beneficial.  Jeff is an ideal candidate because he teaches grade 6 students, 
who are preparing for a provincial assessment test in June.  The additional pressure of performing 
well on an achievement test will increase his students’ motivation and the motivation of their parents 
to be involved in additional practice and homework in mathematics.  At my suggestion, Jeff has 
included a discussion focus for the PATs where students share concerns about the upcoming test, 
questions they have, and as a general resource for websites or materials other students have found 
helpful.    

Follow up interviews are ongoing throughout the current school year to discuss challenges faced 
this year.  It is hoped in the second year of the doctoral study, specific findings will be made related 
to the use of online asynchronous communication tools for engaging both parents and students in 
mathematics discourse, by identifying challenges related to: 

• Engaging students in mathematics 
• Communicating with parents about mathematics learning 
• Assigning mathematics homework at the elementary level 
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EXTENSION OF INTERACTIONS BASED ON TECHNOLOGY: BRIDGING 
ELEMENTARY MATHEMATICS CLASSROOMS IN KOREA 

 Sheunghyun Yeo Corey Webel 
 University of Missouri University of Missouri 
 syhw6@mail.missouri.edu webelcm@missouri.edu 

This paper describes how communicative technology between two Korean classrooms located in 
different sociocultural contexts was used to support mathematics instruction. We analyzed what 
interactions emerged using the technology, how sociocultural differences were leveraged to 
construct mathematical knowledge, and how students built this knowledge together across urban and 
rural area classrooms. The results show that reciprocal interactions emerged. Teachers co-designed 
lesson plans and tasks with consideration of the different classrooms’ social contexts. Through 
teacher’s interaction, students justified their ideas and prepared answers before the connected 
discussions, and various ideas were synthesized as collaborative knowledge. These findings suggest 
that communicative technology has the potential to enhance learning opportunities for students 
across different social contexts. 

Keywords: Technology, Elementary School Education, Equity and Diversity 

According to the theory of social constructivism, learning can be seen as taking place in the 
social interactions between different contexts (Vygotsky, 1978). The interactions are mutual 
adjustments among teachers, students and content in environments (Cohen, Raudenbush, & Ball, 
2003; Herbst & Chazan, 2012; Lampert, 2001). Interactive relationships can be used to support what 
has been called knowledge building (Scardamalia & Bereiter, 2006), a process that involves creative 
and sustained work with ideas. In knowledge building, students work collaboratively to improve 
shared ideas and to extend the frontiers of public knowledge. Network technology can play a 
significant role in providing an environment for students to engage in knowledge creation and 
collaborative idea improvement (Moss & Beatty, 2006).  

The goal of the present study is to explore the interaction in mathematical instruction made 
possible when knowledge-building strategies are supported by Bridging Mathematics Classrooms via 
Skype [BMCS], a widely used computer-mediated communication technology. In particular, this 
study sought to examine the following questions: (a) What interactions emerged by using 
communication technology in mathematics classrooms? (b) How might sociocultural differences 
between schools be leveraged in BMCS to enhance learning opportunities?; (c) How do students 
build knowledge across classrooms through communication technology? Through this paper, we 
bring attention to a process in which students draw on their different social contexts to build 
mathematical knowledge via communication technology. 

Theoretical Framework 
Lampert (2001) described a teacher, students, and content as three key components in the 

mathematics classroom, and analyzed the complexity of teaching mathematics by characterizing the 
relationship between these elements. She defined teaching as an interactive process of managing the 
connections between students and content. Cohen et al. (2003) modified this model to include the 
situated environments in which teaching occurs, proposing a new view of mathematics instructional 
effects and resources. The instructional triangle diagram (see Figure 1. left) conceives instruction as a 
stream affected by environments such as teachers, students, and a local district. One question we 
sought to address in this study is how this framing of instruction might look different with the 
inclusion of multiple classes connected through networking technologies. 
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In particular, connected classes might have potential to impact the nature of student-student 
interactions, by supporting opportunities for students to engage in “knowledge building. Knowledge 
building, introduced and studied primarily in the domain of science education, is a process by which 
people not only create knowledge through social interactions, but also utilize knowledge 
collaboratively (Scardamalia & Bereiter, 2006). A key principle of knowledge building is ‘epistemic 
agency,’ which describes the power students have to set forth ideas and negotiate a fit between their 
ideas and the ideas of their peers. In mathematics classroom, this agency is related to students’ own 
ideas and strategies of problem-solving. Students and groups need to justify their own mathematical 
conclusions with evidence, and, finally, a classroom negotiates its own generalized and consented 
conclusion through discussion (Moss & Beatty, 2006). Knowledge building discourse - refined and 
transformed knowledge through the discursive practices of communities - includes constructive and 
collaborative argument (Bereiter, 2002). Another core principle in knowledge building is 
“improvable ideas” (Scardamalia, 2002). Individuals’ ideas are refined through collaborative 
interactions, which could employ network technology, which can lead to sustained improvement of 
these ideas (Scardamalia, 2002).  

Methodology 
In this exploratory case study, we used a methodological approach called netnography, a form of 

participant-observational research situated in online fieldwork (Kozinets, 2010). The case in this 
study was a cooperation between Mr. YH and Mr. KJ (pseudonyms), who are both 6th-grade teachers 
in Korea. In particular, Mr. YH worked in an urban area (CS school) and Mr. KJ did in a rural area 
(YG school). To conduct the netnography, we collected three types of data: elicited, archival, and 
field notes (Kozinets, 2010). As a first step, eight lesson episodes, already recorded and preserved on 
Mr. YH’s YouTube channel, were selected and documented through field notes. Second, elicited 
data, co-created through personal and communal interactions, included three interviews with Mr. YH 
(overall, pre and post about Episode 3). Third, archival data, directly copied from pre-existing online 
material, consisted of students’ activity results, lesson plans, and Mr. YH’s reflection reports.  

The procedures of data analysis are consistent with Charmaz’s (2014) grounded theory approach. 
Based on literature review, we gained three framing codes: instructional triangle, knowledge-
building, and context. We created line-by-line initial codes from the oldest episode, and added 
additional codes as needed in subsequent episodes. Then, we converged focused codes from initial 
codes. To confirm the categories, the teacher’s reflection reports were compared and contrasted after 
implementing the lesson plans. We utilized the focused codes between interview data and filed notes 
back and forth and compared the teacher’s planning with implementing. 

Findings 
To explore the interactions and knowledge building in Mr. YH’s classroom, we concentrated on 

emerging patterns and how interactions were constituted through the incorporation of the 
communication technology. On account of the limitation of length in this paper, we are only 
reporting on the analysis of Episode 3. The episode was the last day of the 9-day project in which 
students planned, promoted and surveyed about which sport was appropriate to be selected for an 
after school sports club shared between CS and YG schools. In the episode, students were tasked 
with using survey data from different population sizes (CS: 327 students, YG: 73 students). They 
transformed the raw data into percentage graphs, such as pie chart or bar chart with proportions for 
each item, and then discussed their findings with the other classroom via Skype to make a final 
decision regarding the selection of common sports club. The following section presents the findings 
related to co-planning lessons and tasks to show how the interaction was adapted by applying 
communication technology and related to how social agreements worked to support knowledge 
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building practices across classrooms. 

Teacher-Teacher Interaction within Environments 
Mathematical task. To make an interactive task suited to the context of each classroom, the two 

teachers co-designed the mathematics task. First, they justified why different populations were 
necessary. Mr. YH described how the teachers devised the mathematical task to consider the 
different sociocultural contexts with such instance in pre-interview:  

For example, students could compare the proportion between who like spring (50%) and summer 
(25%). In one class, this comparison could be not much different from using the bar graph. On 
the other hand, the comparison of the same favorite season, such as spring, should utilize the 
concept of proportion in the context of two different classes. In other words, the reason why the 
proportion of students who like spring in A school is different from the proportion in B school is 
connected to the relationship between the part and the whole, and I do want to teach this kind of 
lesson to my students on that day. 

The two teachers devised the task for students to experience comparing and analyzing percentage 
graphs with the different populations by using actual survey data. When students dealt with the small 
population (rural school) and big population (urban school) simultaneously, the teachers reasoned 
that it would be possible to develop more sophisticated proportional thinking, because the total 
number of students was different. For example, a variation in the small sample can change the 
proportion more significantly than the same variation in the larger sample, and the teachers wanted a 
task that would make this apparent to students. They believed the sports club task would accomplish 
this because the different population sizes could provide an opportunity to deal with the discrepancy 
mathematically.  

Students-Students Interaction within Environments 
Social agreement. Part of the rationale behind BMCS is that when students in one classroom 

reach consensus with another demographic group, their ideas could be more meaningful to a greater 
number of people. In the field note, the following example emerged from the final connection via 
Skype: 

To share the comprehensive conclusion, Sujin (CS school) says, “We have the conclusion to 
choose dodgeball. Dodgeball is the largest in school YG and second largest in our school. The 
gap is only 7%. Therefore, we will select dodgeball.” Dongju (YG school) also answers, “The 
sum of each percentage is highest in dodgeball. Therefore, we want to choose dodgeball, too.” 
Finally, teacher YH comments, “Our conclusion is same. As a result, dodgeball is tentatively 
selected as the sports club.” 

In the first connection, they exchanged information between the two schools. After the activities 
and discussions about the percentage graph, they debated with each other using the data and 
providing a rationale for their ideas. This provided opportunities to learn not only the application of a 
percentage graph, but also how to solve an everyday-life problem using mathematic knowledge of 
statistical surveys and graphs. Each class’ students approached the task using a percentage operation, 
not the raw numerical values. CS School used subtraction (“the gap is only 7%”) and YG used 
addition (“the sum of each percentage”) to make a reasonable decision. Both schools’ students 
consistently had the opportunity to think about how the students in the other schools’ idea beyond 
their classroom were related to their own idea. Consequently, individual students’ ideas created a 
foundation for group discussion, and this discussion extended across both classrooms involved in 
BCMS. This example suggests that mathematical knowledge could be collaboratively synthesized 
through the same learning content with communicative technology. 
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Discussion 
The findings of this study demonstrate that what interactions among teacher, students, and 

content in environments could be arisen and how communicative technology could support 
knowledge building in mathematics instruction. Based on our analysis, we propose a revised 
interaction framework for BMCS (see Figure 1. right). In the case reported here, utilizing Skype 
provided opportunities to result in the emergence of extended interactions among components and to 
connect student’s interactions with teaching practices. Such opportunities included preparing a 
discussion that bridged classrooms and helped students consider the sociocultural context of another 
school that had different opinions. In addition, BMCS provided opportunities for students to focus on 
social contexts, particularly those that differed across schools, as well as mathematical meaning. For 
knowledge building, students engaged in mathematical tasks to construct and improve collaborative 
knowledge with networking technology rather than to transmit unchangeable mathematical truth. 
Consequently, the result of this exploratory study suggests that the efficiency of technology can 
support bridges between classrooms for extended mathematics learning experiences. BMCS is still in 
the beginning phase and needs further development with following studies. 

  

                                                                                       
Figure 1. Revised interactional framework for BMCS environments (left: Cohen et al., 2003 

(p. 124), right: revised). 
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FRACTIONS, MENTAL OPERATIONS, AND A UNIQUE DIGITAL CONTEXT 

Caro Williams-Pierce 
University at Albany, SUNY 
cwilliamspierce@albany.edu  

Following the PME-NA 2017 metaphor of crossroads, and acting with(in) the intersection point 
between digital media and mathematics education, I present the mental operations that middle 
school students engaged in while playing my fractions console game, Rolly’s Adventure. I found that 
participants engaged in iterating, partitioning, and re-unitizing quantitative representations of 
fractions with varying levels of units, and that these individual mental actions composed six distinct 
complex mental operations: splitting; iterating with units; iterating with pre-partitions; iterating with 
mental partitions (that is, not pre-partitioned by the game); reverse iterating with pre-partitions; and 
reverse iterating with mental partitions.  

Keywords: Technology, Cognition, Informal Education, Instructional Activities and Practices 

Digital media such as videogames provide the opportunity to investigate how new 
representations and interactions can contribute to and push back against current research on learning 
mathematics (Williams-Pierce, 2016a), and provide a useful and intriguing platform for engaging 
people in mathematical learning and play (e.g., Gresalfi & Barnes, 2016; Steffe & Wiegel, 1994; 
Williams-Pierce, 2016c). Following the PME-NA 2017 metaphor of crossroads, and acting with(in) 
this intersection point between digital media and mathematics education, I designed Rolly’s 
Adventure (RA; Williams, 2015; Williams-Pierce, 2016a, 2016b) to take full advantage of the 
learning affordances of videogames (e.g., Salen & Zimmerman, 2004) and the ways that students 
best learn particular mathematics concepts (in this case, fractions), as identified by education 
researchers (e.g., Brousseau, 1997; Hackenberg 2007; Steffe & Olive, 2010).  

In the following manuscript, I examine how players of RA engage in fractions reasoning with a 
particular focus on how individual mental operations (such as partitioning) compose more complex 
mental operations (such as iterating with partitions). In particular, structures within the game 
supported certain mental operations, and participants experienced and used those game structures 
differently within their mathematical activity. I found that participants engaged in iterating, 
partitioning, and re-unitizing quantitative representations of fractions with varying levels of units, 
and that these individual mental actions composed six distinct complex mental operations: splitting; 
iterating with units; iterating with pre-partitions; iterating with mental partitions (that is, not pre-
partitioned by the game); reverse iterating with pre-partitions; and reverse iterating with mental 
partitions.  

Theoretical Framework 
I subscribe to the constructivist view of learning (von Glasersfeld, 1995), developed in detail 

within the field of fractions by scholars such as Steffe and Olive (2010) and Hackenberg (2007). I 
follow Thompson’s (1995) view of quantity as a person’s conception of measurable attributes of 
objects prior to any actual measuring, and rely upon my intentional design of RA to present fractions 
as quantities that support players in constructing their own understanding of the game and the 
underlying mathematical patterns directing the game’s behavior. Although I generally follow Steffe 
and Olive’s (2010) and Hackenberg’s (2007) definitions of iterating, partitioning, and disembedding, 
I split from them (pun intended) with Confrey’s (1994) characterization of splitting as an 
instantaneous and intuitive act of duplication. 

Important notes: First, the game provides puzzles that each have a hole that the player must fill 
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perfectly by operating upon blocks that have been preset in the hole (see Figure 1; see also Williams-
Pierce, 2016a). Second, since I have insufficient evidence to hypothesize about interiorization with 
this data, I focus on coordinating levels of units, and my levels of units codes universally refer to 
coordinating and not interiorization.  

 

  
          (a)                          (b) 
 

Figure 7: (a) Puzzle 7, which introduces the countability textures; and (b) Puzzle 4. 

In Figure 1a above, the provided block in gold is exactly the height of the square texturing on the 
left of the hole. Since this texturing supports counting the numbers of squares, and concluding that is 
how many blocks fit in the hole, I termed this countability textures. In Figure 1b above, there are no 
countability textures provided, and unlike the gold block in 1a, duplication of the brown block will 
not perfectly fill the hole. Rather, the brown block and one-half of itself is the quantity that will fill 
the hole, so participants must compare the empty space to the brown block, and determine that one-
half of the block will fill it. When participants disembedded one half of the brown block and iterated 
it to fill the hole, I termed that mentally partitioning and iterating, despite the fact that all iterating 
and partitioning is inherently mental (Steffe & Olive, 2010; Hackenberg, 2007). In short, when I use 
the word mentally in front of a word or phrase that already refers to a mental operation, it indicates 
my way of operationalizing the distinction between that mental operation with game supports, and 
that mental operation without.  

Data Collection Methodology 
Sixteen middle school students were recruited in dyads and solos, resulting in 11 males and 5 

females from eleven to fourteen years who lived in a small Midwestern city. Each session included a 
playthrough of RA. The playthroughs were captured through video upon the participants’ bodies and 
screen capture of their gameplay. Participants were asked to play the game as they would play any 
game at home, and told that I would likely not answer any questions they had while playing. 
Participants were asked to talk to me or each other as they played, and stopped them occasionally and 
ask questions. It is important to note that I never indicated that the game was about fractions – or 
indeed, mathematics of any sort – and during gameplay, never gave mathematical advice.  

I used MaxQDA, a qualitative data analysis software, and iteratively open-coded gameplay 
transcripts. I then re-organized and finalized the coding scheme through the process of constant-
comparison. The final coding scheme included two umbrella codes that will be examined in this 
paper: Individual Mental Operations, and Complex Mental Operations.  
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Results  
The subcodes of Individual Mental Operations (Table 1) served to identify what mental 

operations were occurring. The goal to provide a reasonably smooth and natural game playing 
experience precluded me from asking the types of questions that can lead to more rigorous second-
order models of thinking.  The subcodes of Complex Mental Operations are presented in Table 2 
with brief definitions. 

Table 1: Individual Mental Operations Subcodes and Definitions  
Subcode Nested Subcode Definition 

Levels of Units Two Levels of 
Units 

When participants perceive the preset block(s) and the hole 
as units. 

Three Levels of 
Units 

When participants perceive the preset block(s), a partition 
of those preset block(s) (mental or pre-partitioned), and the 
hole as units. 

Four Levels of 
Units 

When participants perceive the preset block(s), a partitions 
of those preset block(s) (mental or pre-partitioned), a 
mental grouping of those preset blocks, and the hole as 
units. 

Re-Unitizing  When participants re-unitize from perceiving one unit as 
the primary unit that all other units stand in reference to, to 
another unit as the primary unit. 

Partitioning Mentally 
Partitioning Blocks 

When participants mentally create a partitioned block that 
is not offered by the game. The new partitioned block must 
be considered as maintaining a relationship to the original 
block or the hole. 

Mentally 
Partitioning Hole: 
Instant 

When participants mentally partition the hole into block-
sized partitions instantly, without counting or using 
countability textures provided by the game. 

Mentally Iterating 
(Countability or 
Perfect Presets) 

 When participants are iterating the block in the hole, but 
the game is overtly supporting that mental operation, such 
as through countability textures. 

Table 2: Complex Mental Operations Subcodes and Definitions 
Subcode Definition 

Splitting When participants instantaneously visually perceive the preset block(s) as a 
unit that can be duplicated to fill the hole, and manipulates their mental 
images of the block(s) to do so. 

Iterating with Units When participants mentally iterate preset block(s) as a unit to fill the hole. 
This mental iteration is not instantaneous, as with Splitting. 

Iterating with Pre-
Partitions 

When participants disembed and iterate a single partition of preset pre-
partitioned blocks to fill the hole. May be co-coded with Iterating with 
Units, if the participants view the disembedded partition as a unit. 

Iterating with Mental 
Partitions 

When participants mentally partition the preset block(s), then disembed and 
iterate that mental partition to fill the hole. 

Reverse Iterating with 
Pre-Partitions 

When participants disembed and reverse iterate a single partition of preset 
pre-partitioned blocks to fill the hole.  

Reverse Iterating with 
Mental Partitions 

When participants mentally partition the preset block(s), then disembed and 
reverse iterate that mental partition to fill the hole. 
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I considered the individual mental operations to compose the complex mental operations based 

upon co-occurrence rates, which also depended upon the game structures available for each puzzle. 
Due to space constraints, I cannot present those composition relationships here. 

Discussion and Conclusion 
The goal of this paper was to illustrate the mathematical reasoning that emerged when 

participants played RA, and to situate those findings within the field of fractions learning. Different 
patterns of Individual Mental Operations codes appear to compose different Complex Mental 
Operations, depending in large part upon which game structures were available for each puzzle. 
During my presentation, I will share more detailed accounts of the individual and complex mental 
operations described above, and how RA provokes fractions learning and reasoning differently from 
other digital contexts. 
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INVESTIGATING SECONDARY MATHEMATICS PRE-SERVICE TEACHERS’ 
TECHNOLOGY INTEGRATED LESSON PLANS 

Erol Uzan 
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The purpose of the study is to investigate secondary mathematics PSTs’ technology selection and the 
intended way of utilizing technology in their lesson plans. In this multi-case study, six PSTs in their 
senior year were interviewed and their lesson plans were collected. What types of technology PSTs 
select and in what purposes the selected technologies have been used to support students’ 
mathematical thinking were explored. The findings show that some PSTs selected cognitive 
technologies due to their dynamic features, ease of use, and providing different visual 
representations. On the other hand, some of them did not integrate these types of technologies 
because of their lack of technology knowledge, availability of technology in context, students’ 
familiarity with technology and time considerations. Their way of integrating technologies vary and 
while some PSTs integrated as reorganizer, others planned to use technologies as amplifier.  

Keywords: Technology, Teacher Education-Preservice 

In the last decade, teacher education programs have more emphasized preparing teachers with the 
necessary knowledge and skills to teach with technologies to meet the needs of 21st century learners. 
Researchers argued that courses in teacher education programs and schools in which pre-service 
teachers (PSTs) complete field experiences and student teaching, significantly impact their learning 
(Peressini, Borko, Romagnano, Knuth, & Willis-Yorker, 2004). Therefore, teacher education 
programs offer technology-specific content and methods courses for PSTs to learn about available 
technologies and experience integrating these into mathematics teaching and learning. For instance, 
Niess (2005) required PSTs not only to integrate technologies into their mathematics teaching but 
also to think deeply about how they would use it and why they considered it critical in teaching the 
target mathematics concept.  

Developing technology-integrated lesson plans help PSTs not only to demonstrate their 
competencies in technology integration but also to reflect on the process of selecting appropriate 
technologies to enhance teaching and learning. Although PSTs are required to develop technology-
integrated lesson plans during their teacher education programs, little is yet known about their 
practice. Therefore, the purpose of this study is to investigate secondary mathematics PSTs’ 
technology selection and the intended way of utilizing technology to support students’ mathematical 
thinking in their lesson plans. 

Conceptual Framework 
In the literature, there are many categorizations of technology used in mathematics teaching and 

learning. However, this study employs Dick and Hollebrands’s (2011) categorization of technologies, 
“conveyance technologies” and “mathematical action tools” and Pea’s (1985, 1987) earlier 
categorization of cognitive uses of technologies as amplifiers or reorganizers (see Figure 1). This 
framework was considered as a useful one for discussing the uses of digital technologies in 
instruction to support and promote students’ learning and mathematical thinking. 

Digital Technologies as Conveyance Tools 
Conveyance technologies are used to convey information and include tools for presentation, 

communication, sharing/collaboration, and assessment/monitoring/ distribution (Dick & Hollebrands, 
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2011). This type of technology has been the most commonly used in classrooms. For instance, 
presentation tools enable the display of documents, videos, or computer screens on a board for group 
viewing of the same information. Jonassen (1995) emphasized that such technologies as “conveyors 
of information… [are used] to ‘teach’ students by presenting prescribed information to them which 
they are obligated to ‘learn’ (p. 1). When conveyance technology is in use, the role of learners is to 
perceive the information as presented by the tool rather than interact with the tool to construct their 
own knowledge. 

  

 
Figure 1. The categorization of digital technologies. 

Digital Technologies as Cognitive Tools 
Pea (1987) defined “cognitive technologies” as those which help users “transcend the limitations 

of the mind…in thinking, learning, and problem-solving activities" (p. 91). In this environment, the 
role of users is not passive receivers but active agents. Cognitive technologies can stimulate or 
amplify cognitive processes (Kozma, 1987). Learners actively interact with cognitive tools, which 
activate their strategic and critical thinking (Jonassen, 1995). Under this broad categorization, Pea 
(1985) stated that cognitive technologies in mathematics could be any tool to make students’ thinking 
visible in order to promote analyzing, reflecting and discussing. The interest in this study is limited to 
digital cognitive technologies that may create environments for mathematical activity to support 
students’ mathematical thinking.   

Researchers have used the terms “cognitive technologies” and “cognitive tools” are used 
interchangeably. Peressini and Knuth (2005) identified technology as a cognitive tool that allows 
students “to represent and explore a variety of mathematics procedures and concepts so that they can 
be examined from a conceptual perspective” (p. 280). A cognitive tool allows students to investigate 
many cases of similar situations in a short time while directing their attention to their own actions 
and enabling them to make and test their own conjectures. Using cognitive technologies in 
mathematics education facilitates “technical or conceptual dimensions of mathematical activity” 
(Zbiek, Heid, Blume, & Dick, 2007, p. 1171). In terms of technical dimensions of mathematical 
activity, a cognitive tool must allow the user the means to act on mathematical objects or 
representations of those objects. To facilitate the conceptual dimension of mathematical activity, a 
cognitive tool must react in response to the user’s actions by providing clearly observable evidence 
of their consequences. Similarly, Dick and Hollebrands (2011) defined mathematical action tools as 
those that enable users to interact and receive feedback during the performance of mathematical 
tasks. Thus, the term of “mathematical action tools” can be considered synonymous with cognitive 
tools that allow students to perform actions, receive immediate feedback, and so investigate 
mathematical ideas.  

 

Cognitive Technologies as Amplifiers or Reorganizers 
Pea (1985) explained cognitive technologies with the metaphors of amplifier and reorganizer of 

mental activity. Many researchers have adopted his notion to describe technology use in mathematics 
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teaching and learning (Ben-Zvi, 2000; Goos, Galbraith, Renshaw, & Geiger, 2003; Lee & 
Hollebrands, 2008; Zbiek, Heid, Blume, & Dick, 2007). In this study, his metaphors of using 
technology as amplifier and reorganizer is employed when exploring PSTs intended way of using 
technology in their lesson plans. 

When technology is served as an amplifier, it enables users to accomplish a task more efficiently 
and accurately with significantly less time. As Lee and Hollebrands (2008) stated, as an amplifier, a 
tool “expedites a process that could be completed without its use” (p. 329). Use of technologies as an 
amplifier increase what students can do without converting their actions but does not change the 
nature of what they think (Barrera-Mora & Reyers-Rodriguez, 2013; Sherman, 2014). For instance, 
performing arithmetic computations with a calculator can be considered using technology as an 
amplifier. With that, students can complete the task more efficiently and more accurately without any 
arithmetic errors. Their cognitive focus is on performing computations, and it does not change their 
actions and thinking (Sherman, 2014). 

When technology is served as a reorganizer, technology transforms users’ actions and enables 
changes in their thinking that otherwise would be difficult or impossible (Sherman & Cayton, 2015). 
For instance, with the use of dynamic geometry software, students can construct a triangle and its 
medians in order to make and test conjectures about the relationships between the medians of a 
triangle. Through their actions in this environment, students’ mathematical thinking and behaviors 
might change. While the technology performs calculations, stores, and retrieve information, students 
are responsible for recognizing and judging patterns of information, and organizing it accordingly. 
This environment provides opportunities for students to interact with tool and so they may develop 
their own understanding as a result of their interactions.  

Method 
The following research questions are addressed in this study; (1) What types of technologies do 

secondary mathematics PSTs select in their lesson plans? and (2) In what ways do secondary 
mathematics PSTs plan to use technology in their lessons? 

In this study, a qualitative multi-case study (Merriam, 2009) approach is employed. The 
participants of the study are six secondary mathematics PSTs who were enrolled in a method course 
in the Mathematics Education department in a large Midwestern state university and have completed 
all required content and methods courses. The site is selected intentionally because the objectives of 
the course is for students to develop knowledge of appropriate uses of technology and gain 
experience of using technology for mathematics learning and teaching. These PSTs created 
technology-integrated lesson plans during a semester.  

The data sources of the study include these PSTs’ lesson plans and semi-structured interviews. 
Their lesson plans provide what technologies these PSTs selected and how they plan to integrate 
those to support students’ mathematical thinking. On the other hand, one-to-one interviews with each 
PST helps to clarify in what purposes they intended to use selected technologies. Interview 
transcriptions and lesson plans were analyzed by coding based on the conceptual framework to 
identify and categorize the technologies. Then, two researchers performed check-coding on each 
lesson plan by independently coding and then comparing the codes. Then, they discussed their 
analysis and came to consensus. Finally, these PSTs’ intended way of technology use were identified 
based on Pea’s metaphor of amplifier and reorganizer. 

Preliminary Findings 
The results of analyzing lesson plans of these PSTs revealed that each lesson plan consists of at 

least a task with utilizing a technology. These PSTs mostly intended to use cognitive technologies 
including dynamic geometry software (GSP and GeoGebra), and online or hand-held graphing 
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calculator (Desmos and TI-Nspire). Their reasons of selecting cognitive technologies include 
dynamic features of the tool, ease of use, and providing different visual representations. The most 
frequently selected cognitive technology used in these lesson plans is GSP. In addition to cognitive 
technologies, some of PSTs preferred to use conveyance technologies including iPad and interactive 
whiteboard in their lesson plans. It was recognized that their lack of technology knowledge, 
availability of technology in context, students’ familiarity with technology and time considerations 
were their main reasons to not use cognitive technologies. The intended way of technology use 
varied. While some PSTs integrated as reorganizer, others planned to use technologies as amplifier. 
In the presentation, detailed description for each case will be provided and evidence will be shared 
with the audience. 
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ONE TEACHER’S IMPLEMENTATION OF PROFESSIONAL DEVELOPMENT AROUND 
THE USE OF TECHNOLOGY 
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There is an opportunity at the crossroads of research, policy, and practice to translate calls for 
the use of technology into professional development (PD) that is relevant to teachers. In this 
study, I examine how one teacher translated a sequence of PD meetings into the design and 
implementation of two lessons using GeoGebra. Three overarching themes emerged from the 
teacher’s work: bidirectional decision making in the selection of technology and mathematics 
content; adapting existing lessons to accommodate a new technology; and allowing “productive 
struggle” among students with the technology. This study suggests that the use of technology 
tools may help teachers conceive of new ways in which students may experience mathematics, 
but this new perspective can sometimes be at odds with efforts to adapt existing resources.  

Keywords: Technology, Middle School Education, Teacher Education-Inservice/Professional 

Discrepancies between policy recommendations for the purposeful use of technology in 
mathematics classes (NCTM, 2000; NGAC, 2010) and rates of implementation among teachers 
(Banilower et al., 2013), there is an opportunity at the crossroads of research, policy, and practice 
to support teachers to implement calls for the use of technology in mathematics teaching. This 
study addresses the issue of how professional development (PD) that is conceptually framed 
around the use of technology to support students’ reasoning and sense making translated into 
practice for one eighth-grade mathematics teacher. I pose the question: How does a mathematics 
teacher apply professional development in the use of mathematics technologies to design and 
implement technology-based lessons? Through a six-month partnership in which I introduced the 
teacher to two technology tools and collaborated with her in planning two lessons, I investigated 
how the theoretical components of the PD translated into instructional decisions that supported 
the teacher’s goals for her students and her content. 

Conceptual Framework 
The PD discussed in this study was framed through the intersection of teacher learning and 

student use of technology for mathematical reasoning. This paper addresses specifically the 
component of teacher learning, with regards to how a teacher applied PD in the design and 
implementation of technology-based lessons. The PURIA (play, use, recommend, incorporate, 
assess) model has been introduced by Beaudin and Bowers (1997), and elaborated by Zbiek and 
Hollebrands (2008), to describe different modes of technology integration by teachers. In the 
first two modes, teachers become familiar with the use of a technology, first in a non-directed 
way and then to engage with some specific mathematics problem or idea. In the recommend 
mode, teachers begin to work within small groups to suggest uses of a technology. In the 
incorporate mode, teachers integrate the technology into their classroom instruction; and in the 
assess mode they examine students’ use of the technology in terms of their mathematical 
learning. The PURIA model provides an outline for the implementation and analysis of PD 
around the use of a mathematics technology. 
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Data and Methods 
The PD program was implemented in a large suburban middle school in the Midwest with a 

strong technology initiative and a 1:1 ratio of students to laptop computers. I proposed the PD 
opportunity to a teacher whom I refer to as Ms. S as an opportunity to learn about new 
mathematics technologies, and then to select the technology she saw as most relevant to her 
content and to design two lessons incorporating it. Ms. S had three full years of middle school 
mathematics teaching experience at the start of the project. Upon agreeing to participate in the 
project, she chose to use her 8th-grade honors-track mathematics class as the focal class for 
which she would design and plan two lessons. 

Our work began in the fall, during which time Ms. S and I met approximately on a weekly 
basis for 1.5 hours after school. I first introduced her to two technologies that were new to her. 
The first, SageMath, is an open-source computing software that allows users to program through 
a Python-based language. The second, GeoGebra, is an open-source dynamic geometry 
environment that is more typically used in middle and secondary mathematics classrooms for 
representing geometric figures and relationships. The purpose of introducing two different 
technologies was for Ms. S to have the opportunity to play and use (Beaudin & Bowers, 1997) 
the technologies and to compare which may be more relevant to the content she would teach in 
the following quarters. For each technology, I designed two prototype lessons that Ms. S 
completed before she ultimately selected GeoGebra as the environment she would incorporate 
with her students. In collaboration, we designed one lesson on the topic of geometric 
transformations, and one on the properties of the perpendicular and angle bisectors of a triangle. 

Data for this study come from video recordings of the PD sessions, as well as video 
recordings of the classroom implementation of the two lessons. The purpose of the study was to 
characterize some of the ways that Ms. S translated her work during the PD sessions into the 
design and implementation of lessons for her students. As such, I used a constant comparative 
method (Strauss & Corbin, 1998) to identify categories of phenomena that emerged from passes 
through transcripts from both the PD sessions and in-class implementation. Specifically, I looked 
for evidence in the transcripts of our after-school meetings of how Ms. S implemented the ideas 
that surfaced during her use of the technology, which could be corroborated or disputed by Ms. 
S’s actions in the classroom. 

Findings 
Three overarching themes emerged that characterize Ms. S’s work of designing technology-

based lessons: bidirectional decision-making, adapting new lessons, and productive struggle. 

Bidirectional Decision Making in the Selection of Technology and Content 
In conceptualizing the PD program, the purpose of introducing two alternative technology 

tools was so that Ms. S could determine which technology would be most relevant to her content. 
In practice, however, the process of alignment between the technology tool and the content to be 
taught was bi-directional. Ms. S’s comments about her goals for the project, which I asked her 
about during our initial meeting together, encapsulate this tension: 

Ms S: My goal would be to learn something new and to see if I can integrate it…There’s five 
of us that teach 8th-grade math, and we work very closely together and plan together, and feel 
like over the years we’ve developed some really good things and I’m now kind of like, I want 
to get to keep using this I like it. So I don’t do as much as I did in my first two years just 
looking around and seeing what other tools or activities are out there. 
With her comments above, Ms. S indicated two sentiments. First, she saw her participation in 
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the project as an opportunity to learn something new that she could integrate into her 
mathematics teaching. Throughout her experience with the two new technology tools, Ms. S 
often noted discoveries of novel mathematical ideas that she proposed as interesting areas of 
exploration for her students. For example, working on a lesson about triangle constructions using 
GeoGebra, Ms. S recognized that the intersection of angle bisectors of a triangle is the center of 
that triangle’s inscribed circle. This was not a topic that was currently embedded within the 
course she taught, but Ms. S was inspired by the ways in which the use of GeoGebra might open 
up new a new area of discovery during students’ study of triangles. 

In contrast to the excitement over identifying new mathematical ideas that could be explored 
through the use of technology, Ms. S also expressed a desire to find a tool that would align with 
her current curriculum. As she noted, the group of 8th-grade mathematics teachers had been 
working together for multiple years to develop a stable set of lessons and resources that were 
aligned with the state and district learning standards for the course. Ultimately, Ms. S selected 
the use of GeoGebra to incorporate into her class because she felt it better aligned with the 
existing content of the course. 
Adapting Existing Lessons to Accommodate New Technology 

A common theme during the “play” and “use” segments of the PD sessions was for Ms. S to 
recall a lesson she had taught in the past and to consider how it might be adapted or modified 
through the use of GeoGebra:  

Ms. S: Just last year we started doing constructions with them…And we, we did it by hand; 
we agreed that they could do it by hand. But, doing it on something like this would be pretty 
nice. Because it, then, because the measurements are already there, so it takes out that sort of 
error. Just measuring lines for them, sometimes, you know? 
When Ms. S worked on the prototype lessons, she recalled materials she had used in the past 

and how they could be improved or adapted with the technology tool. In these cases, the use of 
technology did not open doors to novel mathematical ideas as much as it served to streamline 
existing activities.  
Allowing “Productive Struggle” Among Students with the Technology 

The use of the term “productive struggle” in Ms. S’s conversations was of note especially 
because of how her use of the term in relation to technology compared to the way it is typically 
used in mathematics education research. Productive struggle in mathematics education most 
typically refers to extending “effort to make sense of mathematics, to figure something out that is 
not immediately apparent” (Hiebert & Grouws, 2007, p. 387). Ms. S indicated that the concept of 
productive struggle had surfaced frequently during the math department meetings at her school, 
as a goal for the type of activity students would engage in. When working on an early lesson 
using GeoGebra, Ms. S was struggling with the menu options to construct an angle of a given 
measure. When I noted that the software could sometimes be fickle, Ms. S noted with regards to 
her students, “I guess it’s okay to allow that productive struggle.” Although the struggle Ms. S 
was having would more typically be considered troubleshooting with the technology, she 
identified it as an opportunity for productive struggle for her students. 

Following Ms. S’s introduction of the term productive struggle, we regularly discussed the 
lessons and students’ use of GeoGebra with respect to this idea. Towards the end of our lesson 
planning, I asked Ms. S to describe how she defined productive struggle for her students. In her 
response, she specifically addressed the role of technology: 

Ms. S: That’s where I think GeoGebra is, again, I think it will be more straightforward for 
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them, um, a productive mathematical struggle rather than a logistical, you know, ‘what did I 
type in that’s wrong?’ type of struggle. 
Ms. S’s ideas of productive struggle with regards to technology evolved throughout our time 

working together. Initially, she seemed to use this phrase interchangeably to discuss students’ 
mathematical work and the learning curve associated with a new technology tool. Throughout 
the planning and implementation process, Ms. S developed a more nuanced way of discussing 
struggle, making a clear distinction about how the technology could promote “productive 
mathematical struggle” without creating undue burden for students trying to learn the tool. 

Discussion and Conclusion 
When experiencing two new technology tools, and then deciding about how to incorporate 

one of these tools into her teaching, Ms. S articulated a clear tension: There was opportunity to 
use new technology to foster mathematical discoveries that had not previously been part of the 
curriculum. At the same time, Ms. S saw opportunity to modify, and marginally improve, 
existing lessons by using GeoGebra in place of other materials. There is support from research to 
justify either position, and ultimately a teacher must determine which is the most appropriate for 
a given class. In the context of this study, Ms. S. aligned her use of GeoGebra to the content of 
existing lessons, but she leveraged the tools of GeoGebra to create more opportunities for 
reasoning and proof than had previously been a part of students’ work. 

This study also suggests how the discourse of mathematics teaching and learning translates to 
the introduction of a technology tool. Ms. S, although she spoke fluently about productive 
struggle in the context of her students’ mathematical learning, initially applied this term to the 
use of GeoGebra in ways that referenced fairly superficial challenges with the tool. Throughout 
her work on the project, Ms. S became increasingly sophisticated in how she distinguished 
between different types of struggle, and this was reflected through the types of support she gave 
students during their work on the lessons. In sum, Ms. S’s practical experience using and 
teaching with GeoGebra informed her understanding of the theory and research around struggle 
in mathematics, which in turn helped her to refine her practice of teaching with GeoGebra. 
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RESOLUCIÓN DE PROBLEMAS Y USO DE TECNOLOGÍAS DIGITALES EN UNA 
PLATAFORMA EN LÍNEA 

MATHEMATICAL PROBLEM SOLVING AND DIGITAL TECHNOLOGIES IN A 
MASSIVE ONLINE COURSE 
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 CINVESTAV-IPN CINVESTAV-IPN 
 wpoveda@cinvestav.mx daguilar@cinvestav.mx 

La conectividad y potencial que ofrece la tecnología digital está generando nuevas oportunidades 
para aprender y compartir conocimiento matemático. ¿Cómo diseñar e implementar un ambiente de 
resolución de problemas y uso de tecnologías digitales en un escenario de aprendizaje masivo 
(MOOC) que promueva en los participantes una discusión matemática hacia el entendimiento de 
conceptos y resolución de problemas?	Los resultados del estudio indican que el diseño de las 
actividades y el uso coordinado de GeoGebra, Wikipedia, KhanAcademy, WolframAlpha, Open edX 
y foros virtuales, permiten y favorecen la creación de un ambiente de colaboración en la resolución 
de problemas. Los participantes trabajaron colaborativamente y transitaron desde soluciones 
visuales y empíricas hasta la presentación de argumentos geométricos y algebraicos en la validación 
de las conjeturas formuladas. 

Palabras clave: Resolución de Problemas, Tecnología, Actividades y Prácticas de Enseñanza  

Introducción 
Las tecnologías digitales abren nuevas rutas en el proceso de aprendizaje, no solo para obtener o 

compartir información, sino también son un medio para que los estudiantes compartan ideas, 
discutan, critiquen y se involucren en actividades matemáticas (Santos-Trigo, Moreno-Armella & 
Camacho-Machín, 2016). La disponibilidad de diversas tecnologías digitales abre nuevas 
interrogantes sobre qué transformaciones son necesarias en el sistema educativo y cómo 
incorporarlas en los ambientes de aprendizaje. Los cambios tecnológicos demandan una 
transformación en la práctica educacional, se requieren cambios en el proceso de enseñanza donde 
los estudiantes sean el centro de toda actividad y el profesor un apoyo para el desarrollo de 
habilidades y destrezas en la resolución de problemas (Churchill, King, & Fox, 2016).  

Un MOOC (por sus siglas en inglés), es un Curso Masivo Abierto en Línea diseñado e 
implementado por una institución educativa a través de un equipo de expertos en el tema. En éste, se 
puede inscribir un gran número de participantes sin importar su nivel de estudios, edad o lugar 
geográfico en que encuentren. En este estudio interesa analizar y documentar el diseño y los 
resultados de implementar un MOOC basado en el modelo de diseño de ambientes aprendizaje de 
Churchill et al. (2016); donde las tareas matemáticas, basadas en resolución de problemas, 
promuevan la exploración de atributos y relaciones entre los objetos matemáticos dentro de una 
representación dinámica del problema creada en el Sistema de Geometría Dinámica (SGD) 
GeoGebra. El movimiento de objetos, la medición y los lugares geométricos son estrategias que 
fomentan la formulación de conjeturas y promueven la búsqueda de argumentos que las sustenten.  

Marco Conceptual 
Churchill et al. (2016) proponen un marco para el diseño de ambientes de aprendizaje en línea 

llamado RASE (Resources-Activities-Support-Evaluation), basado en la premisa de que todo 
ambiente de aprendizaje debe incluir e integrar esos cuatro componentes. Los Recursos, se refieren a 
los materiales disponibles a los estudiantes: videos, imágenes, documentos digitales, calculadoras, 
software, etc. Las Actividades tienen como objetivo involucrar a los estudiantes en el proceso de 
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aprendizaje a través del uso de Recursos en tareas tales como experimentos y resolución de 
problemas. El Soporte indica que es necesario contemplar medios para proporcionar ayuda a los 
estudiantes en el momento en se presente alguna interrogante relacionada con la tarea que están 
realizando. La Evaluación enfatiza que los estudiantes deben recibir retroalimentación que les 
permita reflexionar sobre su aprendizaje. 

Santos-Trigo (2014) afirma que la resolución de problemas es una actividad esencial en el 
aprendizaje de las matemáticas ya que es un medio que permite identificar, explorar, probar y 
comunicar los procesos de solución. Cuando se incorpora el uso coordinado de tecnologías digitales 
en los procesos que intervienen en la resolución de problemas, se ofrece a los estudiantes 
oportunidades para representar, explorar, compartir y discutir los conceptos y la resolución de 
problemas. GeoGebra favorece la exploración de situaciones matemáticas desde distintas 
perspectivas permitiendo a los estudiantes tener nuevas formas de visualización de los conceptos y 
objetos de estudio y analizar, de una forma más precisa, los elementos matemáticos que cuando se 
utiliza solo papel y lápiz (Santos-Trigo & Camacho-Machín, 2016; Aguilar-Magallón & Reyes-
Martínez, 2015).  

Metodología 
El curso se diseñó como parte de la plataforma digital MéxicoX que utiliza Open edX. Se enfocó 

en la construcción del conocimiento matemático a partir de la resolución de problemas y el uso de 
tecnologías digitales, es decir, no se abordó de manera puntual una serie de contenidos específicos 
como generalmente se presentan en un ambiente tradicional de enseñanza.   

Las tareas o problemas matemáticos incluyen diversos Recursos: representaciones dinámicas del 
problema elaboradas en GeoGebra, videos de KhanAcademy y vínculos a fuentes de información: 
Wikipedia, KhanAcademy y WolframAlpha.  

Un aspecto fundamental en el diseño de las Actividades fue la idea de darle movimiento a figuras 
simples como triángulos, rectángulos, etc., por medio de representaciones dinámicas. Las tareas o 
problemas matemáticos guiaron al participante en su trabajo y fomentaron sus procesos de 
construcción o desarrollo del pensamiento matemático, mediante un método inquisitivo. El objetivo 
fue que los participantes al observar el comportamiento o variación de algunos objetos o atributos 
(medida de ángulos, áreas, perímetros, etc.) propusieran algunas conjeturas que den cuenta de su 
comportamiento y las sustentaran con argumentos. Este proceso les permitió explorar y buscar varios 
caminos de solución y extender y generalizar los resultados.  

Se utilizaron diversas herramientas digitales para dar Soporte a los participantes: Wikipedia, 
KhanAcademy y WolframAlpha permitieron a los participantes consultar en línea conceptos o 
relaciones matemáticas y, los foros fueron un medio de comunicación para que los integrantes del 
curso exhibieran sus ideas, formularan interrogantes, conocieran otros puntos de vista y recibieran 
retroalimentación como una ruta para comprender ideas matemáticas. 

La Evaluación estuvo presente durante todo el curso. A través del Foro de cada Actividad, los 
participantes desarrollaron y produjeron evidencias de su aprendizaje mediante la exploración de las 
propiedades de los objetos representados en un modelo dinámico y reflexionaron sobre éstas como 
producto de la retroalimentación que recibieron por parte de otros integrantes del curso. 

La investigación es de carácter cualitativo. La unidad de análisis fueron las conversaciones 
desarrolladas por los participantes en cada Actividad. Estas permitieron obtener información sobre 
los comportamientos de los participantes, formas de razonamiento que exhiben durante el proceso de 
resolución de un problema y cómo éstas pueden ser modificadas a partir de la interacción con otros 
participantes. En el MOOC se inscribieron 2491 personas. Debido a los contenidos abordados en las 
tareas matemáticas, el único requisito solicitado a los interesados fue poseer estudios 
correspondientes al grado 12. Los datos se recolectaron a través de las conversaciones que se 
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desarrollaron en el Foro de cada Actividad. En total hubo 35 foros que incluyeron 7573 comentarios 
de los participantes. 

Presentación y Discusión de Resultados  

Se discute una de las Actividades del MOOC referente al uso de lugar geométrico como 
estrategia en la resolución de problemas. En la primera sesión de trabajo se presentó a los 
participantes un modelo dinámico que incluía un segmento 𝐴𝐵, su recta mediatriz 𝑛 y un punto 
móvil 𝐶 sobre 𝑛, esto fue la base para que ellos construyeran triángulos isósceles y encontraran 
alguna posición de 𝐶 donde también el triángulo fuera equilátero. En la segunda sesión, se 
proporcionó a los participantes una familia de triángulos isósceles 𝐹𝐺𝐶, cuyo lado 𝐹𝐺 estaba sobre 
𝐴𝐵 y sus lados congruentes tenían una longitud dada 𝑟. También se incluyó, la gráfica que modela la 
variación del área de la familia de triángulos isósceles como resultado de mover el punto 𝐶. El punto 
𝑅, relaciona la longitud de la altura con el área del triángulo (Figura 1).  

En las conversaciones, un participante mencionó que el lugar geométrico que describe el punto R 
cuando C se mueve correspondía a una parábola, otros le indicaron que tal afirmación era falsa 
argumentando que su ecuación era 𝐴 ℎ = ℎ 𝑟! − ℎ!. Los participantes aseguraron que al mover el 
punto 𝐶, el valor aproximado del ángulo 𝛽 debía ser 90°. Ante esto, algunos preguntaron en el Foro: 
“¿Cómo justificar que el área máxima se obtiene cuando 𝛽 = 90°?”. Los participantes 
argumentaron la existencia de un triángulo de área máxima a partir de la observación de la gráfica, ya 
que el valor del área aumentaba desde cero y después disminuía para volver a ser cero. También, 
indicaron la existencia de dos posiciones, una sobre y la otra bajo el eje 𝑋, para el punto 𝐶 donde era 
posible obtener un triángulo de área máxima. Posteriormente, se proporcionó a los participantes un 
nuevo modelo dinámico en donde el triángulo 𝐹𝐺𝐶 fue colocado de tal manera que el punto 𝐶 
coincidiera con el origen del plano cartesiano y el lado 𝐶𝐺 estuviera sobre el eje 𝑋; además, se 
construyó la altura ℎ! sobre 𝐶𝐺 (Figura 2).  

 

 
 

Figura 1. Representación dinámica de una 
familia de triángulos isósceles. 

Figura 2. Otra vista del Triángulo 𝑭𝑮𝑪.  

 En las conversaciones los participantes coincidieron en que la nueva representación del triángulo 
𝐹𝐺𝐶 les permitió observar la relación que existe entre el punto máximo del lugar geométrico que 
describe el punto R cuando C y el ángulo 𝛽 y, así, concluir que de todos los triángulos isósceles de 
lados congruentes 𝑟, el de área máxima es también triángulo rectángulo. Observaron que ℎ! 
maximiza el área del triángulo 𝐹𝐺𝐶, pues la base 𝐶𝐺 permanece constante, y ℎ! es máxima cuando 
mide lo mismo que el radio de la circunferencia, es decir, cuando está sobre el eje 𝑌. Después de la 
solución geométrica, dos participantes plantearon dos justificaciones adicionales utilizando 
desigualdades y trigonometría.  



Technology 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1364 

Las diversas representaciones que ofrece GeoGebra para visualizar de manera instantánea la 
variación en los atributos (longitudes, ángulos, áreas, etc.) de objetos geométricos ayudaron a los 
participantes a establecer conjeturas que posteriormente justificaron. Una estrategia visual y empírica 
importante fue el uso de un lugar geométrico para modelar la variación del área de una familia de 
triángulos como un recurso adicional para resolver el problema. 

El diseño de las actividades permitió a los participantes, mediante el uso de los foros de 
discusión, comunicar y contrastar sus ideas en una comunidad virtual, lo cual favoreció la 
construcción o refinamiento de conceptos e ideas matemáticas ampliando sus recursos matemáticos y 
estrategias en la resolución de problemas. En los foros, la moderación que realizó el equipo de diseño 
del MOOC en las conversaciones, orientó la discusión de los participantes en la resolución del 
problema y, en conjunto con el rol que asumieron varios participantes de proporcionar 
retroalimentación a otros, promovieron la comprensión de conceptos e ideas matemáticas.  

Conclusiones 
El uso coordinado de diversas herramientas digitales ofreció los medios para crear un ambiente 

de aprendizaje MOOC en una plataforma en línea. En este escenario, los participantes trabajaron en 
un ambiente de colaboración que les permitió compartir sus ideas, a través del Foro de discusión, 
durante el proceso de resolución de problemas. Todos los participantes tuvieron la oportunidad de 
explorar representaciones dinámicas que les permitieron identificar conceptos, buscar conjeturas y 
diversas maneras o argumentos para sustentarlas. En este proceso, los participantes mostraron 
heurísticas asociadas con el uso de las herramientas como movimiento ordenado de objetos dentro de 
la configuración dinámica, la cuantificación de atributos (longitudes, ángulos, áreas) y la generación 
de lugares geométricos. 

En el Foro de la Actividad varios participantes respondían dudas y daban seguimiento puntual a 
sus propios comentarios, lo cual favoreció el refinamiento de las ideas matemáticas propuestas 
inicialmente. Es importante reconocer que el diseño e implementación del MOOC representa un gran 
reto relacionado con los niveles de compromiso y responsabilidad de los participantes para que ellos 
mismos monitoreen sus avances en la comprensión y uso de las ideas matemáticas en la resolución 
de problemas. 
 
 
The connectivity and potential offered by the use of digital technologies opens up novel opportunities 
for learners to construct and share mathematical knowledge. How could we design and implement an 
online learning scenario (MOOC) that fosters the use of digital technologies to engage the 
participants in a continuous mathematical discussion to understand concepts and to solve problems? 
The results showed that the design of interactive activities and the coordinated use of digital 
technologies (GeoGebra, Wikipedia, KhanAcademy, WolframAlpha, Open edx and virtual forums) 
became important for the participants to formulate conjectures, to look for different ways to validate 
them and to communicate results. To this end, the participants work collaboratively and transited 
from the use of visual and empirical arguments to the presentation of geometric and algebraic 
validation. 

Keywords: Problem Solving, Technology, Instructional Activities and Practices 

Introduction 
Digital technologies are opening new pathways in learning processes, not only in terms of 

obtaining or sharing information, but also as means for students to share, discuss and criticize ideas 
while becoming more involved in mathematics activities (Santos-Trigo, Moreno-Armella & 
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Camacho-Machín, 2016). The availability of diverse digital technologies raises new questions as to 
what transformations of educational systems are necessary, and how to incorporate them into 
learning environments. Technological changes demand a transformation of educational practices and 
require modifying teaching processes to make students the center of all activity while teachers act as 
supports for developing abilities and skills related to problem-solving (Churchill, King & Fox, 2016).  

A Massive Open On-line Course (MOOC) is designed and implemented by educational 
institutions through the efforts of a team of experts in the field. Large numbers of participants can be 
enrolled, regardless of their level of schooling, age, or place of residence. The present study is 
concerned with analyzing and documenting the design and results of the implementation of a MOOC 
based on the design model of learning environments presented by Churchill et al. (2016), in which 
mathematics tasks, based in problem-solving, promote exploring the attributes of, and relations 
among, mathematics objects in a dynamic representation of a problem created in the GeoGebra 
Dynamic Geometry System (DGS). Object movement, measuring, and locus are three strategies that 
foster the formulation of conjectures while also promoting the search for arguments to sustain them.  

Conceptual Framework 
Churchill et al. (2016) proposed a framework for designing on-line learning environments called 

RASE (Resources-Activities-Support-Evaluation). Their system is based on the premise that all 
learning environments should include and integrate these four components. Resources refer to the 
materials available to students, including videos, images, digital documents, calculators and software, 
etc. The objective of the Activities is to involve students in the learning process by applying 
Resources to tasks like experiments and problem-solving. Support indicates the need to contemplate 
the means that will provide students with the help they require when a question or doubt arises in 
relation to the task they are asked to perform. Evaluation, finally, emphasizes that students need to 
receive feedback that will allow them to reflect on their learning. 

Santos-Trigo (2014) sustains that problem-solving is an essential activity in learning math 
because it is a medium that leads students to identify, explore, test and communicate solution 
processes. When the coordinated use of digital technologies is incorporated into the processes that 
intervene in problem-solving, students are provided with opportunities to represent, explore, share 
and discuss both concepts and the process of problem-solving itself. GeoGebra fosters the 
exploration of math situations from distinct perspectives and offers students new ways of visualizing 
concepts and objects of study while also analyzing elements of mathematics with greater precision 
than is possible using only pencil and paper (Santos-Trigo & Camacho-Machín, 2016; Aguilar-
Magallón & Reyes-Martínez, 2015).  

Methodology 
This course was designed as part of the MéxicoXi digital platform that utilizes Open edXii. It 

does not address a series of specific contents as is usually the case in traditional learning 
environments. Instead, it focuses on constructing mathematical knowledge through the process of 
problem-solving supported by using digital technologies. The math tasks or problems presented 
include diverse resources: dynamic representations of the problem elaborated in GeoGebra, videos 
from KhanAcademy and links to sources of information such as Wikipedia, KhanAcademy and 
WolframAlpha.  

One fundamental aspect in the design of the Activities was the idea of endowing simple figures –
such as triangles and rectangles, among others– with movement using dynamic models. The math 
tasks or problems guided participants in their work and fostered their processes of constructing or 
developing mathematical thinking through an inquisitive method. The objective was for participants 
to observe the behavior or variation of certain objects or attributes (measuring angles, areas, 
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perimeters, etc.), propose conjectures that might account for their behavior, and then sustain or refute 
those conjectures through argumentation. This process allowed students to explore and search for 
various means of solution while extending and generalizing results.  

Several digital tools were used to provide Support to participants: Wikipedia, KhanAcademy and 
WolframAlpha allowed them to consult mathematics concepts or relations on-line; while forums 
provided a means of communication where they could present their ideas, formulate questions, and 
give or receive feedback to improve their understanding of mathematics ideas. 

Evaluation was conducted throughout the course in the Forums associated with each Activity. 
Participants developed and produced evidence of their learning by exploring the properties of the 
objects represented in a dynamic model and reflecting on them as products of the feedback they 
received from other students enrolled in the course. 

A total of 2,491 people registered in this MOOC. Given the contents of the math tasks involved, 
the only requirement for registration was that interested individuals had a minimum schooling level 
equivalent to grade 12.  

The research involved was qualitative in nature. The units of analysis were the conversations 
developed by the participants themselves in each Activity, which allowed researchers to gather 
information on participants’ behaviors, the forms of reasoning they exhibited during the problem-
solving process, and how these could be modified through interaction with other participants. Data 
were collected from the conversations held in the Forum for each Activity, and included a total of 
7,573 comments by participants in 35 forums. 

Presentation and Discussion of Results 
Only one of this MOOC’s Activities is discussed. It refers to the use of locus as a problem-

solving strategy. In the first work session, participants were presented with a dynamic model that 
included a segment, 𝐴𝐵, its straight perpendicular, 𝑛, and a movable point, 𝐶, on 𝑛. From this base, 
they were told to construct isosceles and equilateral triangles. The next Activity involved a family of 
isosceles triangles, 𝐹𝐺𝐶, whose side 𝐹𝐺 was on 𝐴𝐵 and whose congruent sides had a given length of 
𝑟. This task included a graph that modeled variations in the area of this family of isosceles triangles 
that resulted from moving point 𝐶. Point 𝑅 related the length of the height to the area of the triangle 
(Figure 1).  

In the conversations, one participant mentioned that the locus of point R when point C moves 
along the 𝑛, corresponded to a parabola, but another replied that this was false, arguing that the 
corresponding equation was 𝐴 ℎ = ℎ 𝑟! − ℎ!. The participants affirmed that upon moving point 𝐶, 
the approximate value of angle 𝛽 should be 90°. At that moment, some students in the Forum asked: 
“How can we justify that the maximum area is obtained when 𝛽 = 90°?”. Participants argued for the 
existence of a triangle with maximum area based on observing the graph, since the value of the area 
increased from zero and then decreased to return to zero. Moreover, they sustained that there were 
two positions for point 𝐶 –one on, the other under, the 𝑋-axis– that indicated where it was possible to 
obtain a triangle with maximum area.  

Later, students were given a new dynamic model in which the triangle 𝐹𝐺𝐶 was positioned in 
such a way that point 𝐶 coincided with the origin of the Cartesian plane, side 𝐶𝐺 was on the 𝑋-axis, 
and the height, ℎ!, was constructed on 𝐶𝐺 (Figure 2).  
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Figure 1. A family of isosceles triangles 
Dynamic representation. 

Figure 2. Another view of triangle 𝑭𝑮𝑪.  

In their forums, participants coincided in that the new representation of triangle 𝐹𝐺𝐶 allowed 
them to observe the relation that existed between the maximum point of the locus of point C when 
point E moves along 𝑛, and angle 𝛽 and, therefore, reach the conclusion that of all the isosceles 
triangles with congruent sides, 𝑟, the one with the maximum area is also a right-angle triangle. They 
observed that ℎ! maximizes the area of triangle 𝐹𝐺𝐶, since the base, 𝐶𝐺, remains constant, and ℎ! is 
maximal when it measures the same as the radius of the circumference; that is, when it is on the 𝑌-
axis. After arriving at this geometric solution, two participants presented two additional justifications 
utilizing inequalities and trigonometry.  

The diverse representations that GeoGebra offers for instantaneously visualizing variations in the 
attributes (lengths, angles, areas, etc.) of geometric objects helped participants establish conjectures 
that were justified later in the problem. One important visual and empirical strategy was the use of 
locus to model variations in the area of a family of isosceles triangles as an additional resource for 
resolving the problem. 

The design of the activities allowed the participants, through the use of discussion forums, to 
communicate and contrast their ideas in a virtual community. This fostered the construction or 
refinement of mathematics concepts and ideas by broadening access to mathematical resources and 
strategies for resolving problems. The moderating of the forums performed by the team that designed 
the MOOC oriented participants’ discussions towards a search for responses. Various participants 
took on the role of providing feedback to others through comments offered in the forums. 

Conclusions 
The coordinated use of several digital tools provided the means for creating a MOOC learning 

scenario in an on-line platform. In this scenario, participants worked in a collaborative environment 
that allowed them to share their ideas through discussion forums during the problem-solving process. 
All participants had the opportunity to explore the dynamic models and conceptualize them as a 
starting point for identifying concepts and looking for relations, and then devising diverse means or 
arguments to sustain them. During this process, participants showed heuristics associated with the 
use of such tools as the ordered movement of objects inside the configuration, the quantification of 
attributes (lengths, angles, areas), and loci. 

Through the Activities of this MOOC, a participative environment was generated in the forums 
as participants adopted different roles, including some who responded to questions, others who 
resolved doubts, and individuals who offered timely follow-up to comments. All of this propitiated 
the refinement of the mathematics ideas proposed initially. It is important to recognize that the design 
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and implementation of MOOC represents a great challenge in terms of the levels of commitment and 
responsibility required of participants so that they can monitor their advances in the understanding 
and use of mathematics ideas in problem-solving.

Endnotes 
i More information at http://mx.mexicox.gob.mx/about  
ii More information at https://open.edx.org/about-open-edx 
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VARIATIONS IN TEACHING PRESENCE: FACTORS CONTRIBUTING TO SOCIAL 
PRESENCE AND EFFECTIVE ONLINE DISCUSSION 

 Erica L. Demler Deborah Moore-Russo 
 University at Buffalo University at Buffalo 
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The purpose of this study is to identify factors that impact discussion in asynchronous online learning 
environments. Various facets of teaching presence related to the design and facilitation of online 
discussion activities are considered in conjunction with common indices from social network 
analysis. Levels of in-degree and out-degree centrality and betweenness speak to the social presence 
within a given forum while average degree, density, and connectedness are representative of the 
volume and diversity of connections comprised within that forum. Findings indicate that having 
students initiate their own thread within a forum leads to a more balanced discussion, while required 
forums tend to have both a higher volume of communication and a greater diversity of connections 
than optional forums.  The information gained from this study will inform practices of online, 
discussion-based courses offered at the post-secondary level. 

Keywords: Technology, Post-Secondary Education, Instructional Activities and Practices 

Introduction 
Programs in higher education across the country are at a crossroads as traditionally seated 

courses are being transitioned to online alternatives. A common feature of most online courses is the 
use of asynchronous discussion forums as a means for students to interact with the instructor, each 
other, and the course content. Indeed, research has shown that online discussion forums have the 
potential to promote skills like knowledge construction, critical thinking, and problem solving in 
students (An, Shin, & Lim, 2009) but only do so when the activities are properly designed and 
facilitated by the instructor in such a way as to incite high student engagement (Jo, Park, & Lee, 
2017). While general consideration has been given to the role of the instructor in online settings, An 
et al. (2009) recognized that little attention is often devoted to specific strategies that can increase the 
effectiveness of online discussion. Therefore, our research focuses on those facets of design and 
facilitation that impact student interaction in online discussion. 

According to Garrison, Anderson, and Archer (1999), students and teachers in online courses 
must form a community of inquiry (COI) in order to generate worthwhile educational experiences. 
Teaching presence, social presence, and cognitive presence are the three core elements in a COI, and 
learning is said to occur as a result of the interaction between these three elements. We focus 
specifically on the interaction between teaching presence and social presence and its impact on 
asynchronous online discussion. 

Teaching presence is “the design, facilitation, and direction of cognitive and social processes for 
the purpose of realizing personally meaningful and educationally worthwhile learning outcomes” 
(Anderson, Rourke, Garrison, & Archer, 2001, p. 5). Akyol and Garrison (2008) identify three 
categories of teaching presence in a COI: (a) design and organization; (b) facilitating discourse; and 
(c) direct instruction. We consider the first two categories. For an online discussion forum, design 
and organization refers to the structure of the forum, the topic of discussion, and the nature of the 
prompt used to generate discussion. Facilitation of discourse is related to the instructor’s level of 
involvement in the forum, which should decrease over time as students become able to sustain 
discussion on their own (An, Shin, & Lim, 2009). 

Social presence, the second element in a COI, refers to “the ability of participants to identify with 
the group or course of study, communicate purposefully in a trusting environment, and develop 
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personal and affective relationships progressively by way of projecting their individual personalities” 
(Garrison & Akyol, 2013). The categories of social presence as listed by Joksimović et al. (2015) 
include interpersonal communication, open communication, and cohesive communication. Social 
presence is fostered through teaching presence (Joksimović et al., 2015; Rogers & Lea, 2005); so, the 
choices an instructor makes regarding the design and facilitation of online discussion can directly 
influence the levels of interpersonal, open, and cohesive communication that are evident in a 
discussion forum. 

The purpose of this study is to explore variations in teaching presence within and across two 
virtual COIs to determine if and how those variations influence the students’ social presence and 
quality of generated discussion. The following research questions guided the study: (1) How does 
teaching presence (as evidenced by the design and facilitation of discussion board activities) impact 
students’ social presence (as measured by interpersonal, open, and cohesive communication) in 
online discussion forums? (2) How does teaching presence impact the quality of asynchronous online 
discussions? 

Methodology 
The data were collected from two sections (Section 1 and Section 2) of an online, asynchronous 

course that served as an introduction to doctoral studies in a department focused on preK-16 
education at a public research university in the northeast U.S. Students’ grades in the course were 
determined by the number of points they compiled on required and optional assignments. 
Assignments required posting to discussion forums that related to the weekly reading assignments. 
At the beginning of the course, students were given a general directive to contemplate, extend, 
explore and/or push back on ideas raised by peers or in the readings to mimic a conversation that 
would occur in a face-to-face learning environment. Each reading also had a specific prompt. 
Readings from the textbook tended to have short instructional prompts for discussion, since this was 
already built into the text’s readings. Other readings tended to have slightly more explicit directions 
on how to start the discussion but were rather vague. 

The course instructors for the two sections had co-planned the course and implemented almost 
identical instructional interaction on the forums. Each section instructor responded to every 
participant and on every thread at least once in the first discussion forum, to about a third of the 
threads for the second forum, about a fourth of the threads for the third forum, and then only to a few 
(zero to three) posts on all subsequent forums. For each forum, both instructors would summarize the 
discussion and provide additional resources via an email sent to the students after the discussion 
forum closed. The instructors purposefully refrained from always responding to posts and would 
share information as needed via a separate e-mail communication. To conclude, by design each 
instructor was a heavy poster at the beginning of the course as students introduced themselves but 
quickly weaned away from participating in the discussion forums intentionally to ensure that student-
student relationships were being built. 

Social network analysis (Borgatti, Everett, & Johnson, 2013; Scott, 2000) via UCINET was used 
to examine person-to-person interactions in each forum at both the individual and group levels. The 
following common indices from social network analysis were used to measure social presence at the 
individual level: in-degree centrality or IDC (the number of responses a participant receives), out-
degree centrality or ODC (the number of responses a participant sends), and betweeness or BTW (a 
measure of the degree to which a participant serves as a bridge connecting others in discussion). Each 
index correlates to one of the three categories of social presence identified above. IDC relates to 
interpersonal communication and is an indicator of a participant’s prominence in the forum. ODC 
represents open communication and speaks to the influence a participant has on the discussion. BTW 
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is indicative of cohesive communication and signifies the control a participant holds over others and 
their connections (Scott, 2000). 

 Three additional indices were used to explore interactions at the group level: average degree 
(mean number of connections, both IDC and ODC, per participant per forum), density (extent to 
which all possible connections between each participant are present), and connectedness (percentage 
of pairs of participants who were linked in some way across the network of possible connections). 
These help to assess the quality of online discussions (Jo, Park, & He, 2017), as they speak to the 
volume of communication and the diversity of connections within a forum. 

Results & Discussion 
Teaching presence is evident in the structure of discussion board activities, which varied across 

the 13 forums. First, some forums were required and some were optional. Next, for many of the 
forums (six optional and two required) it was not mandated that each participant initiate a thread. On 
those forums, a student could opt to forgo drafting an initial post and instead make all posts as 
responses to others. On other forums students were expected to initiate a thread as well as craft 
varying amounts of response posts to their peers.  

The distribution of prominence (IDC), influence (ODC), and control (BTW) within a forum tends 
to be determined by whether or not initiating a thread is required for that forum.  In Figures 1a and 1b 
below, the sociograms for two forums from section one are shown.  Forum 11 was a forum in which 
students did not have to initiate a thread. The discussion centered on a single student participant, as 
was the trend for forums in this category; one or two participants held most of the power. In contrast, 
the sociogram of Forum 10 depicts a discussion in which power was dispersed across four 
participants. The distribution of power in Forum 10 is representative of others where initiating a 
thread was mandatory. This implies that discussions are more balanced in forums in which all 
participants devote at least one of their posts to initiating a thread; otherwise, the discussion tends to 
be dominated by one or two participants. 

 
 

 
 
 
 
 
 
 
 
 

Figure 1a: Sociogram of Forum 11.   Figure 1b: Sociogram of Forum 10. 

Average degree, density, and connectedness are indices concerned with a network as a whole (Jo, 
Park, & He, 2017). Values for these indices were calculated for each forum and compared based on 
variations in teaching presence. Whether participation in a forum was required or optional was the 
first consideration. Independent t-tests found that the mean for the 14 required forums was 
significantly higher than the mean for the 12 optional forums across all three indices (average degree: 
𝑡!".! = 2.338, 𝑝 = 0.035; density: 𝑡!".! = 2.510, 𝑝 = 0.026; connectedness: 𝑡!".! = 2.161, 𝑝 =
0.046). Therefore, required forums generated more posts and were more complete than optional 
forums and participants in required forums were more connected to each other than in optional 
forums. This is not surprising. 



Technology 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1372 

Variations in the minimum number of posts required for a forum did not impact social presence 
or the quality of discussion. The forums depicted in Figures 1a and 1b above each required 
participants to make at least four posts, but the distribution of prominence, influence, and control 
varied greatly. There were forums with fewer required posts that matched both types of distributions. 
Consider two forums from section 2: Forum 8 had a higher volume of communication and a greater 
diversity of connections than Forum 9 (average degree: 4.45 vs. 2.25; density: 0.234 vs. 0.118; 
connectedness: 0.671 vs. 0.289), although Forum 8 only required three posts per participant as 
opposed to the four required for Forum 9.  This shows that, in terms of teaching presence, factors 
beyond a required minimum amount of posts lend to the development of social presence and quality 
of discussion. 

Conclusions and Future Research 
Our work has revealed that variations in teaching presence can impact both social presence and 

the overall effectiveness of asynchronous online discussions within a COI.  When the design of a 
discussion forum requires participants to initiate their own thread, the discussion tends to be more 
balanced and is not dominated by one particular student. This helps create a more collaborative 
environment in which social presence can develop. In settings in which both required and optional 
forums are present, required forums have both higher volumes of communication and a greater 
diversity of connections. Requiring a minimum number of posts per participant, another facet of 
teaching presence, did not have an impact on social presence. 

 Moving forward, it will be useful to examine the impact other facets of teaching presence (i.e., 
topic and timing of posts) have on asynchronous online discussion. An examination of individual 
participants’ habits in online discussion forums could also help to explain variations in social 
presence.  This information will be crucial for practitioners in every field of higher education who 
want to ensure knowledge construction, critical thinking, and problem solving in their students as 
they transition into online learning spaces. 
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VISUAL-SPATIAL REASONING, DESIGN ENGINEERING, AND 3D PRINTING  
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Design engineering is potentially a very useful way of developing visual-spatial reasoning. In this 
research, seventh grade students designed and constructed cube puzzles and then printed these 
models using a 3D printer. The task provided for many opportunities for students to both develop and 
use their visual-spatial reasoning. Most challenging for the students was using the technology to 
visualize mental rotations and, in this respect, the physical model was essential to the task. Also 
essential to the task was the inclusion of the 3D printer which inspired significant engagement and 
also further learning. Recommendations for future directions for research are provided. 

Keywords: Geometry and Geometrical and Spatial Thinking, Elementary School Education 

Introduction 
Visual-spatial reasoning has been identified as being essential to many STEM-careers (Wai, 

Lubinski, & Benbow, 2009). Moreover, there are numerous studies that report both a link between 
visual-spatial reasoning to overall mathematical performance and the predictive capacity of it to 
future mathematical achievement (Frick, Möhring, & Newcombe, 2015). In this paper, we explore 
pedagogy aimed at providing opportunities to support the development of visual-spatial reasoning 
through a design engineering task that involved 3D printing.  

Design engineering, as used in this context, refers to “any engagement in a systematic practice of 
design to achieve solutions” (National Research Council, 2012, p. 11). Design engineering tasks that 
make use of 3D printing have been found to increase STEM engagement (Buehler, Comrie, 
Hofmann, McDonald, & Hurst, 2016; Wendt & Wendt, 2015). In this research, students were 
challenged to design a three-dimensional interlocking cube puzzle (see Figure 1). The cube puzzle 
was to include at least five different interlocking puzzle segments. Students first produced a physical 
model and then developed the renderings (digital plans) using Tinkercad 
(https://www.tinkercad.com/) to execute the 3D print (see Figure 2). The mathematical strands 
explored were geometry and spatial sense and measurement. 
 

   
 Figure 1.  Cube puzzle. Figure 2. Tinkercad. 

The overarching aim of integrating 3D printing in this classroom stems from a commitment to 
provide design-based opportunities for students to develop their visual-spatial reasoning whilst 
exploring the pedagogical affordances of virtual 3D learning environments. This approach 
encourages “a more visual endeavour and connects with what ‘real’ mathematicians do when they 
are exploring patterns in the world and making discoveries”(Ontario Ministry of Education, 2014, p. 
3). We sought to answer the following question: What are the challenges and benefits associated with 
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attempting to develop visual-spatial reasoning through a design engineering task which also uses 3D 
printing? There is a dearth of research on the affordances of 3D printing in mathematics learning; this 
is a contribution of this research. 

Theoretical Framework 
This research draws on the framework for visual-spatial reasoning proposed by (Uttal et al., 

2013). According to Uttal and colleagues, there are four dimensions to visual-spatial reasoning and 
these are intrinsic (object specific), extrinsic (relation of an object to a frame of reference), static 
(object is stationary), and dynamic (object is moving). Building 3D models involves both mental 
rotations and the relation of objects to a frame of reference (or other aspects of the model). The 
interlocking 3D puzzle inspiring this project is an example of both intrinsic-dynamic and both 
extrinsic-static visual-spatial reasoning. Mental rotation is involved in the construction but then to 
rebuild the puzzle, pieces are rotated in reference to one stationary component of the puzzle. Mental 
rotation is proposed to be an important indicator of visual-spatial ability, with males tending to 
outperform females (Jordan, Wüstenberg, Heinze, Peters, & Jäncke, 2002; Thompson, Nuerk, 
Moeller, & Cohen Kadosh, 2013). 

 Block and puzzle play are good examples of both intrinsic-dynamic and extrinsic-static visual-
spatial reasoning. The majority of the available research on block and puzzle play considers young 
children. Block play and talk about blocks, particularly in young children, have been identified as an 
important visual-spatial activity leading to more advanced visual-spatial ability (Dearing et al., 2012; 
Kersh, Casey, & Young, 2008). Puzzle play has also been found to be very important in building 
visual-spatial ability (Cannon, Levine, & Huttenlocher, 2007; Levine, Ratliff, Huttenlocher, & 
Cannon, 2012).  

Methods 

Participants 
This research took place in an interdisciplinary seventh grade class in a large urban setting. 

Participants included the classroom teacher (lead author) and 22 students (14 females, 8 males). The 
3D printer was purchased for the classroom (by the second author) and was present in the classroom 
from the onset of the school year. The students and the classroom teacher did not have any direct 
prior exposure to 3D printing. The research was part of a broader study exploring the development of 
visual-spatial reasoning in children.   

Data Sources and Procedures 
The first six weeks of school centered on learning how to use the 3D printer and the related 

software. To construct the cube puzzle, first students individually created a physical model using 
interlocking 2 cm by 2 cm by 2 cm linking cubes (see Figure 2). Then, working in small groups, 
students selected one of the models created by one of the group members to print a scaled down 
version of that model. To increase the cognitive challenge of the task, the side lengths of the 
individual cubes in the scaled version could either be 1 cm or 1.5 cm. In pairs, students within the 
group developed the renderings to build their segment of the model. The final step involved joining 
all the segments to recreate a scaled version of the physical cube model. Data sources included 
teacher generated reflections as well as reflections captured in student blogs.  

Results and Discussion 
All the groups were successful in printing their scaled model although some of the models did 

not fit perfectly together. There were four main findings. First, developing the renderings proved to 
be the most challenging for students, particularly engaging in visual rotations to make the pieces fit 
correctly. An understanding of geometry was central to the process, as also reported by others using 
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3D printing (Buehler et al., 2016). This is reflected in this student blog: 

Our piece we had to design was one that had 5 cubes on the bottom and 1 cube on top. It was 
very easy to construct the bottom but it took a little more trial and error to do the one piece on the 
top because we had to figure out how to put the cube in the air and make sure it wasn't floating. 

Students had challenges visualizing how cubes could be stacked and then in the stacking of the 
cubes recognized the need for precision. Students problem-solved by duplicating cubes and by 
making better use of the visualization capabilities of the software which occurred as a result of 
questions emerging from manipulations with the physical model. For example, students would rotate 
their cube segments 90° in their hands and explore the tools necessary to make the same rotation on 
the screen so that the image and the model matched (see Figure 2).  

Consequently, and second, the physical model played a very important role in developing the 
renderings and assisting with the visualization. Building models has been found to be helpful in 
supporting learning (Lazarowitz & Naim, 2013), and this was true in our study too. The model was a 
true partner to the software and allowed the students to calibrate the rotations that were occurring 
with the models in their hands with the software. Knowledge of transformational geometry also 
proved to be very instrumental in that students relied on concepts such as flips, rotations, and 
translations to position the virtual blocks of their cube segments.  

Third, the affordances of the 3D printer posed additional visual-spatial challenges in that mental 
rotations were again required by students from those used in the renderings and in the model for a 
more efficient print (e.g., laying the piece flat rather than standing as it may have been in the actual 
puzzle). Finally, scaling proved to be equally challenging. Measurements needed to be precise and 
this was made abundantly evident through the rendering process – particularly for those students that 
opted to maximize the volume of their object versus those that chose a more efficient unit of 
measurement (i.e., side lengths of 1 cm in length). We see in this quote from a student’s blogs that 
the tensions associated with choosing the best measurements was present but the optimal options 
were not perhaps initially: 

Decided on creating a rather small puzzle cube (10 mm by 10 mm by 10 mm) unlike some other 
groups who did 15 mm by 15 mm by 15 mm and I am excited to see if it works and if not then to 
see what went wrong. Also I wonder which measurement is more appropriate and whether the 
larger one will be much easier to use. 

Conclusions 
This design engineering task provided students with opportunities to develop visual-spatial 

reasoning – particularly around mental rotations. The need for physical models was an important 
component of the task as was the 3D printing. The geometry and the measurement required for the 
task was a challenge in that a fair amount of geometric knowledge was necessary to do the task but 
this can be learned while engaged in the design process. The possible affordances associated with the 
use of 3D printers and visual-spatial learning cannot be under estimated. This field of inquiry is truly 
at its infancy – particularly studies where students are responsible for the printing rather than teachers 
(cf. Wendt & Wendt, 2015). In our own jurisdiction and likely across others, teachers can be found 
who are using 3D printers in their classes to inspire learning and numerous blogs are available from 
teachers using this technology; however, very little systematic research exists and more 
understanding about effective pedagogy is needed to expand use to the potentially more reluctant or 
novice teacher. The 3D printing component and the required rendering was crucial for the design 
engineering process in this project. It allowed for a robust exploration of different types of visual-
spatial reasoning, as defined by Uttal et al. (2013). Like others have reported, the entire design 
engineering process was made more impactful because of the 3D printing (Murray, 2013). Our view 
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is that this project would not have inspired as many opportunities for visual-spatial reasoning if the 
end-game did not include 3D printing. Knowing how teachers can include design engineering with 
3D printing in their classrooms will be an important future direction for research. Understanding the 
cognitive affordances of this approach for visual spatial reasoning is also a necessary future direction 
for research. 
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CAN I MEASURE THAT WITH MY PHONE? MOBILE MEASUREMENT APPS FOR 
LONG LENGTHS 
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This study investigates how three 4th-grade children apply their prior knowledge of measurement 
when using mobile measurement apps to measure real objects that are difficult to estimate. We show 
mobile measurement apps as a potential learning tool to explore concepts of length and measurement 
and further improve children’s estimation of length measurement. 

Traditional mathematics instruction in measurement usually emphasizes “the procedures of 
measuring rather than the concepts underlying them” (Stephan & Clement, p.3, 2003). This 
procedural focus does little to help children conceptualize length and measurement, since numerous 
studies have found that focusing on concepts rather than procedure connects much better with the 
way children think about measurement (e.g., Clements & Sarama, 2009). Yet, despite this research, 
the teaching and learning of length measurement and estimation continues to be problematic and 
procedural (Joram, Subrahmanyam, and Gelman, 1998). Therefore, we explored innovative ways for 
children to conceptualize length measurement and estimation beyond learning measurement 
procedures, utilizing mobile app technology as a tool for interacting with and measuring the real 
world. 

The four sessions in this study involved three 4th-graders exploring mobile apps in a teaching 
experiment facilitated by the first author, a 10-year veteran elementary mathematics and science 
teacher. The three participants were enrolled in a gifted program in their elementary school and 
historically performed well in mathematics. This mathematical background meant they had prior 
knowledge or at least exposure to concepts involving length and measurement. In the first two 
sessions, the children explored length and measurement without the use of mobile technology. In the 
last two sessions, the children explored more challenging length and measurement tasks with access 
to three mobile measurement apps. While the first three sessions lasted 30 minutes, the fourth session 
which focused heavily on children’s individual exploration, lasted an hour. 

Our results show that the mobile apps allowed children to measure objects they previously had 
difficulty estimating. The children also exhibited their conceptual knowledge and misunderstandings 
of length and measurement during the tasks. This exploratory study leads us towards larger research 
investigating the specific use of mobile apps in teaching and learning  measurement. 
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In the most recent National Educational Technology Plan, the U.S. Department of Education 
(2017) encourages incorporating games in education and more educational research with digital 
games. In this preliminary study, I investigated how graduate students with different views of math 
and school math learning experiences interacted with Rolly’s Adventure, a videogame designed to 
support fractional knowledge and reversible multiplicative reasoning (Williams-Pierce, 2016). The 
study adopts von Glaserfeld’s (1995) constructivist view that learning is the process of constructing 
and adapting one’s mental models or schemes while interacting with one’s environment. Thus, 
knowledge is situated in the activity and the context in which learning takes place (Brown, Collins & 
Duguid, 1989). Meanwhile, learning involves grasping specific subject matter as well as developing 
attitudes, dispositions and understanding of cultural practices (Greeno, 2006).  

As a multiple-case study, there were three graduate student participants. Data sources included 
pre- and post-game interviews and game playing (audio and screen recordings). First I open-coded 
data with content analysis (Hsieh & Shannon, 2005). After organizing these codes based on 
constructs from previous literature, I coordinated and refined codes across three cases to make clearer 
comparisons.  

This study’s main findings are as follows. First, each participant’s view of math and school math 
experiences corresponded to his/her gameplay patterns (e.g., performance- vs. understanding-
oriented). Second, participants with advanced fractional understanding and adequate reversible 
multiplicative reasoning (RMR, Hackenberg, 2010) developed more sophisticated ideas about the 
fractional problems in Rolly’s Adventure. More interestingly, Jamie, a low math performer at school, 
demonstrated insufficient RMR when solving a word problem but successfully made sense of and 
solved the problems in the videogame. The findings imply that Rolly’s Adventure has potential in 
supporting learners to reason about reversible multiplicative relationships and to demonstrate RMR 
in action.  
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Introduction 
The proposed poster presentation is situated within a larger project, a four-year NSF/DRK-12 

research grant focused on developing middle-school mathematics teachers’ formative assessment 
strategies. A central component of the project involves design and delivery of a multi-year 
professional development (PD) program for participating teachers. In Year 3 of the project, an online 
platform was developed to provide a flexible, accessible environment for delivery of synchronous PD 
and formative assessment resources. Improvement Science was adopted as a framework to guide 
implementation, testing, and revision of the platform to address the emerging needs of participating 
teachers as well as the broader research goals of the project. This poster presents a summary key 
design and implementation issues addressed. 

Design Framework 
Improvement Science (IS) produces knowledge that informs the use of practice in real, practical, 

and varied settings (Bryk et. al., 2016). It utilizes tools of disciplined inquiry that are user- and 
implementation- focused. Most importantly, it provides a nimble cycle of design-implement-test-
revise that privileges the realities of education settings. Several main principles drive IS: the first set 
focuses on problem definition, analysis, and specification; the next set focuses on iterative 
prototyping and testing; the last principle focuses on organizing networks to drive sustainability. 

Results 
Challenges associated with implementation of the platform design included teacher 

responsiveness and attrition, logistical issues, and interface interactions in the online environment. 
Specifically, Table 1 presents a few of the curricular, pedagogical, and technological problems we 
will unpack along with the specific prototypes developed, evidence collected, and revisions 
implemented to address them. We also discuss lessons learned using an IS approach to design and the 
overall impact of the approach on outcomes related to teachers’ formative assessment practices. 

 
Table 1: Problems, Data, and Adjustments of the Online PD 

Issue Evidence Revision 

Reflection fatigue Contribution patterns Reduce session length 
Reflection takes longer than anticipated Unable to complete full cycle 

in time allotted 
Assign as homework; re-tool as multi-
year cycles of PD 

Responsive and concurrent display of 
teacher comments 

Teacher feedback; Facilitator 
feedback 

Streamlining the submission and 
display process 

Inequitable participation and 
communication 

Teacher feedback Scaffold online interactions with in-
person opportunities 
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LEARNING: DEVELOPING A DIGITAL MATHEMATICS GAME 

 Soojung Kim Qingli Lee 
 Purdue University Purdue University 
 kim2358@purdue.edu qlei@purdue.edu 
 
 Sue Ellen Richardson Shuang Wei 
 Purdue University Purdue University 
 richa114@purdue.edu wei93@purdue.edu 

Keywords: Learning Theory, Technology, Instructional Activities and Practices, Elementary School 
Education 

Theoretical Perspective 
While existing research has identified different approaches to the development of digital 

educational games for mathematics teaching and learning, still unexplored are the ways in which 
design teams’ priorities and views of learning influence the design process.  As with the development 
of curricula, digital games involve constructing opportunities to learn based on the views of 
mathematics learning of the designers.  Biddlecomb (1994) described the central importance of views 
of mathematics learning and game operations as influenced by existing models of children’s 
mathematics. In our research, we draw from Biddlecomb’s view that children’s ways of operating 
must inform the operations allowed in the game environment to argue that design teams should begin 
by identifying views of learning and development. 

 
Research Questions and Design 

Using grounded theory (Strauss & Corbin, 1994) to investigate archived data from the project, 
we asked: How does a multidisciplinary research team with different epistemologies work together to 
design a digital educational game/program to support children’s mathematics learning?   Specifically, 
how do team-members’ ways of knowing and views of mathematics emerge in their work and affect 
the final product? 

 
Data Collection Techniques and Analysis 

 We used constant comparative analysis (Strauss & Corbin, 1994) to analyze team meeting 
notes with initial categories of aesthetic, children’s mathematical thinking, and technology. Our 
disciplines included technology, programming, graphic design, special education, mathematics 
education, early childhood education, and English education.     
 

Summary of Findings 
 Preliminary findings indicate that, although members of the team seldom made their models 
of how children learn mathematics explicit, team members did operate with explicit models 
(Biddlecomb, 1994).  As we complete further analysis, we will generate theory on how these explicit 
models influenced the development of the digital educational game/program. 
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Students with or at risk for learning disabilities in mathematics (LDM) experience considerable 
difficulties learning mathematics. According to Author et al. (2016), the gap between students with 
disabilities and their same-age peers in mathematics seems becoming wider, rather than closing. To 
close this gap, computer-assisted instruction (CAI) has been widely used in practice providing 
additional supports for students with LDM. However, the latest meta-study of Seo and Bryant (2009) 
demonstrated that CAI did not show conclusive effectiveness on improving the mathematic 
achievement of students with LDM. Therefore, further investigation into the effects on CAI is 
necessary. The purpose of this study is to conduct a systemic review and analysis of empirical 
research where CAI is used to facilitate mathematics learning of elementary and secondary students 
with LDM.  

Method 
Research articles published between 2008 and 2016 were identified from electronic databases, 

major journals, and ancestral searches. We set the inclusion criteria as follows: 1) studies involved 
students with LDM in elementary or secondary schools, 2) studies focused on CAI as their 
independent variable, 3) studies considered the mathematics achievement as their dependent variable, 
4) studies applied group comparison or single-case design, 5) peer-reviewed studies conducted in the 
US. Giving above selection criteria, we identified 13 articles. Following variables were coded: 1) 
participants, 2) research design, 3) setting and duration, 4) intervention agent, 5) the nature of the 
CAI program, 6) the nature of tasks, 7) instructional strategies, 8) software developer, 9) targeted 
math concept/skills, 9) dependent measure used, 10) social validity.  

Results and Discussion 
In the 12 studies, CAIs were implemented for an average 16.9 sessions with a total of 698 of 

students. The majority (67%) of the participants were at risk for learning disability. Five studies 
implemented the researcher-developed CAI and seven studies used commercial software. Six of the 
CAIs were designed on the basis of learning theories. The majority of the studies targeted basic 
operation and problem-solving skill. The results of these studies indicated that CAI was effective 
with varying degree in promoting mathematics performance for students with LDM. In addition, the 
results from group comparison studies indicate that there was no statistically significant difference 
between outcomes of CAI and teacher-delivered instruction. Overall findings from this systemic 
review suggest that CAI is promising in improving the mathematics performance of students with 
LDM. For future research and practice, it is important to design and implement CAI programs that 
taking into consideration of the characteristics of students with LDM. 
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Representations often refer to the information in material form on paper or the computer screen 
such as written text, graphical displays, tables, equations, diagrams, maps, and charts. Representation 
can also refer to a learner’s internal thought. In our work, we use the term inscription as “a potential 
change in route” where meanings of external representations of thinking are developed in social 
settings. Research shows that student capacities to represent knowledge and make sense of their 
thinking is efficiently developed in social settings where meanings are publicly shared and negotiated 
among students (e.g. Medina & Suthers, 2013). 

As part of a four-year project we are developing and studying digital inscriptional resources that 
will allow students new ways to work collaboratively to develop mathematical thinking.  Building on 
the intersection of the literature in mathematics educational technology (e.g. calculators, dynamic 
geometry software, computer algebra systems) and information communication technology (e.g. 
collaborative whiteboards, real-time editing and sharing), the digital inscriptional resources support 
students to collaboratively create representations of their mathematics thinking, incorporate ideas 
from other students, and share their work with the class. 

Our research is guided by the following questions: (1) What features of the digital learning 
environment help students to produce and refine inscriptions of their thinking as they explore 
mathematics problems? and (2) How does the construction, manipulation, and interpretation of 
inscriptions change over time? An iterative design research process incorporates multiple phases of 
development, testing and revision, to study student use of the digital learning space and related 
inscriptional resources. Data includes classroom observations and artifacts, student and teacher 
interviews and surveys, student assessment data, and analytics from the digital resources. The project 
team embraces a goal of working at the crossroads of research and practice, progressively testing and 
refining theories over multiple phases of design and enactment.   

Our findings will inform the work in collaborative mathematics education technology by 
connecting design principles, classroom enactment of the developed resources, and student 
outcomes. The project will report on how evidence of student thinking is made visible through the 
use of digital inscriptional resources and the ways student inscriptions are documented, discussed, 
and manipulated in collaborative settings. 
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The benefits of using journal writing to both teachers and students in mathematics class are 
numerous. For teachers, they can use journals to assess their students’ progress in a course. They can 
also allow teachers to reflect upon and improve their teaching as well as provide better individualized 
instruction for their students (Borasi & Rose, 1989). However, providing feedback on journals can be 
a very time consuming process for teachers (Baxter et al., 2005). Thus, teachers need to carefully 
determine how often to collect the journals and how quickly they can feasibly provide helpful 
feedback. New technology is emerging that has the potential to address these issues with journal 
writing in mathematics. In particular, electronic journals where students can write by hand and 
upload their journal pages to the cloud (e.g. Google Drive) are making their way to the marketplace.  

Purpose and Methods 
While there have been many studies on the impact of journal writing in mathematics classrooms, 

there are few, if any, studies that explore the use of electronic journals with preservice teachers. The 
goal of this exploratory project is to determine the impact on a mathematics teacher educator’s ability 
to adjust her instruction to fit the needs of her students as a result of better and more consistent access 
to her students’ journals. Each student enrolled in a mathematical problem solving course for 
elementary preservice teachers received an electronic journal. They were required to use this journal 
every class day throughout one semester to record their mathematical thinking as they worked on 
high-level mathematics tasks. At the end of the semester, the preservice teachers also completed an 
open-ended survey regarding their experience using these journals in the course. Additionally, the 
instructor of the course kept a journal to reflect on the benefits and challenges of using these journals. 
Qualitative study methodology was employed for this study. Data from all data sources were 
analyzed using open coding to look for patterns and themes in the responses. 

Results and Discussion 
The results of this study suggest that although it was initially a struggle to find a productive 

method of providing feedback to the preservice teachers on their electronic journals, there were 
benefits to having students use them. For instance, the instructor was able to easily access the 
students’ journal entries when planning for whole class discussions on the in-progress problems they 
were trying to solve. The results also suggest that there may need to be more accountability measures 
to ensure students read the instructor feedback. More research needs to be done regarding how 
electronic journals can be used to the benefit of teachers’ instructional decisions. 
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The training courses for math teachers have the purpose of providing them with knowledge that 
translates into changes in the classroom to improve the learning of their students. However, changes 
in how teachers organize their students' learning do not occur immediately. The complexity of how 
the diverse types of teacher knowledge are interconnected (Pena-Morales & Pelton, 2016) explains 
why a new knowledge requires time and intentionality to insert it into the educational system. To the 
extent that the knowledge required by the teacher involves several elements there are more 
adaptations in the organization of the learning activities that the teacher should perform. In this 
report, we describe the transformations that teachers introduce in a kind of mathematical tasks that 
involve the work of modeling with technology. Training courses for mathematics teachers should 
involve a more active participation, courses with technology should not include mainly technical 
questions of the use of hardware, software or applications, but in relation to the potential of 
mathematical learning that can be get. For the purposes of this research, a teacher training workshop 
was designed with the knowledge of modeling integration, graphing and technology (Suárez, 2014), 
consisting of four elements: 1) reflection, 2) mathematical work, 3) use of technology and 4) creating 
new learning situations. The question of research is: Which of these four elements the teacher adopts 
better? The workshop was designed with the purpose of working mathematical situations of the 
movement, analyzed with graphics and technological tools to generate a teacher reflection on the 
nature of school modeling in high school. 

The workshop had four moments: (1) teachers reflected on the modeling and use of technology; 
(2) in a second moment they were presented with a mathematical modeling activity that required a 
graphical (pencil and paper) response, 3) the third time integrated modeling, plotting and technology, 
a tutorial Tracker was presented as an aid to generate and analyze graphs of motion and 4) were 
asked that they propose a new mathematical task capable of integrating learning experience, with the 
second and third moments. Among the main conclusions is seen that teachers have an open, reasoned 
and immediate attitude to reflect about the integration, however, in the sections of real integration in 
the resolution of tasks with technology and implementation of new learning situations, participation 
is lower and longer response times. 
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With the growing number of jobs within STEM fields that require technology and abstract 
thinking, it is beneficial for mathematics and CS education to consider computational thinking as a 
basic and necessary skill. Computational thinking, a concept typically reserved for undergraduates in 
CS, involves an iterative design and problem solving process that engages learners in multiple levels 
of abstraction (Guzdial, 2008; Wing, 2006). Finite-State-Machines (FSM) are a relatively simple 
model that can be used to represent and specify technology programs by breaking down computer 
behavior into a series of states, namely actions and reactions. Our prior research in embodied 
cognition and mathematics education has shown that using games that use FSM and wearable 
technology in the classroom can improve performance and motivation for math (Arroyo et. al, 2011; 
Arroyo et. al, 2016). Teaching students about FSM within a game-based mathematics activity may 
encourage students to move past surface-level features of technology, engage in a higher level of 
abstraction, and be a pedagogically-sound method to promote computational thinking and higher-
level mathematics.  

In this study, we explore whether the act of playing and creating games, explained through a 
FSM framework, could serve as a vehicle to teach computational and mathematical thinking. In the 
play activity, students played Estimate It!, an active math game that uses cell phones to set up a 
scavenger hunt for students to practice estimating the size of objects. In the create activity, students 
created multi-player math games for 4th-6th grade-level students that involved physical activity. In 
the adapt activity, students received an introductory lesson on the state-based technology behind 
Estimate It!, and then were asked to redesign their games to fit a FSM framework and to draw a 
state-based diagram. We were interested in the ordering effects of whether students played or created 
the games first. In this poster, we will present examples of the students’ games, describe how order 
affected the nature of discourse and representations of the students’ games, and explain how this 
FSM and games method provides insight into methods for teaching computational thinking in the 
mathematics classroom. 
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U.S. mathematics teachers face pressures to keep up with pacing guides and prepare students for 
standardized tests (Roach, 2014). At the same time, they are called upon to engage students in 
innovative exploratory activities that incorporate new technologies (National Governors Association 
Center for Best Practices & Council of Chief State School Officers, 2010; National Council of 
Teachers of Mathematics, 2014). Amidst these competing priorities, we investigated how 
mathematics teachers facilitated play in lessons with interactive simulations (sims). 

We worked with 4 middle-school mathematics teachers at a public school in the Southeastern 
United States. Each teacher had at least 7 years of experience but was new to using PhET sims 
(phet.colorado.edu). Previous research found advantages to including an initial play period in sim-
based lessons, during which students explore a sim prior to more structured activities (Podolefsky, 
Rehn, & Perkins, 2013; Moore, Herzog, & Perkins, 2013). Play offers students time to freely explore 
the sim, manipulate controls, ask questions, discover relationships, and generate interest in the topic 
(Podolefsky et al., 2013). Given this recommendation, the teachers planned and taught lessons that 
included play prior to more structured activities.  

We conceptualize play in sim lessons in terms of Sicart’s (2014) ecological theory of play—as 
contextual, carnivalesque, appropriative, disruptive, creative, personal, and autotelic. Some of these 
characteristics are conducive to learning in a classroom environment, whereas others may not be. Our 
analysis of 15 mathematics lessons involving play led to the identification of 4 characteristics that 
distinguish the play phases of these lessons. Based on combinations of these characteristics, we 
identified 3 profiles of play, which lie at different points along a continuum of priorities from 
foregrounding students’ ideas to keeping pace. In the profile A Disciplined March, play serves the 
purpose of familiarizing students with the sim. In the profile Wandering Exploration, play serves the 
additional purpose that students make and share discoveries. In Hiking with a Guide, students make 
and share relevant discoveries. We discuss the implications associated with each profile of the play 
phase, and we begin to develop a theory that frames teaching with play as a matter of balancing 
divergent and convergent modes of activity. 
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Research has shown that teachers and students struggle to conceive of covariational relationships 
in continuous ways (e.g., Thompson & Carlson, 2017). That is, many people conceive of the 
relationship in chunks, wherein a relationship is conceived of as a set of instances in time that can be, 
for example, plotted on a coordinate plane then connected together by drawing a line between them. 
While this is certainly a practical way to construct graphs, it becomes problematic when trying to 
understand continuous variation and other concepts relevant in higher-level mathematics.  

In our own prior work on proportional reasoning, we tried to address this “chunky” thinking 
(Thompson & Carlson, 2017) through the use of sketches made in Geometers’ SketchPad that 
allowed the user to perceive the dilation of sketches of animals as continuous movement. In this 
environment, we asked practicing middle grades teachers whether the relationship between two 
sketches is always there or whether it is only there when the slider stops and the images are a fixed 
size. We noted that some teachers believed that two images could only be similar when they were 
both frozen in time and space whereas other teachers understood the continuous nature of the 
relationship. 

Building from these foundations, we are now developing a virtual “toy box” that is intended to 
engage middle school teachers in examining the continuity of proportional relationships by engaging 
them with toys that allow them to play (Bruner, 1972) with the ideas of continuity in proportional 
situations. For example, one of our toys examines the growth patterns of an alien plant designed to 
collect and hold water while another toy is a picture dragger that allows resizing of images in both 
similar and nonsimilar ways. These tools move participants toward continuous thinking when 
combined with tasks that challenge teachers to think about whether situations stay 
similar/proportional as they change or only at particular points.  

In this poster, we will bring examples of our toys (both images and an iPad with the toys actively 
running) and the ways in which they promote continuous reasoning in proportional situations. We 
will explain our goals for this research and projected outcomes from our pilot work to date. 
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Affecting 1 in every 323 children, cerebral palsy (CP) is the most common motor disability in the 
world (Christensen et al, 2014). Few studies have regarded the mathematical learning of children 
with CP. These studies have uncovered severe disparities in students’ problem-solving skills when 
compared to typically developing children (Jenks et al, 2012). Measurement is a special challenge for 
children with CP due to the traditional use of manipulatives for tactile reasoning. This study 
investigates: What effects do immersive virtual reality have on mathematical learning, physiological 
health, and psychosocial well-being for children with CP? What kinds of unit schemes and reasoning 
do children exhibit as they encounter measuring tasks in an immersive virtual reality setting? How do 
children’s strategies compare to paper/pencil tasks and known unit measurement trajectories?  

Nickels and Cullen’s (2017) analytical model of Brousseau’s (1997) Theory of Didactical 
Situations of Mathematics and Sarama & Clement’s measurement trajectories (2009) are used as 
theoretical frames for the design and analysis of the study. We report on a single case study 
participating in six weeks of task based interviews utilizing previously validated unit measurement 
tasks (e.g., Barrett et al., 2011). Data collected included: (1) baseline measurement knowledge; (2) 
VR use and measurement knowledge; and (3) socio-emotional and physiological well-being. As this 
is an ongoing study, results are preliminary at this time. A positive correlation was found with the use 
of VR with the child’s socio-emotional and physiological well-being. Data regarding the student’s 
measurement content knowledge after using the VR system is still being analyzed.  
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ANALYZING CLAIMS ABOUT COGNITIVE DEMAND AND STUDENT LEARNING 

 Samuel Otten Zandra de Araujo Corey Webel 
 University of Missouri University of Missouri University of Missouri 
 ottensa@missouri.edu dearaujoz@missouri.edu webelcm@missouri.edu 

A commonly accepted claim in mathematics education is that there is a relationship between the 
cognitive demand of mathematical task enactments and students’ subsequent learning. One study 
often cited to support this claim is Stein and Lane (1996), and in 44% of those citations, Stein and 
Lane (1996) is the sole reference provided. Citation analysis reveals that many of these claims go 
beyond the warrants provided by the Stein and Lane study, either by granting more confidence in the 
relationship than the study design allows or by phrasing the claim causally. A few other studies are 
occasionally cited in conjunction with Stein and Lane (1996), but there remains a need for 
replication studies to provide better empirical support for claims about cognitive demand and 
student learning and to refine our shared understanding. 

Keywords: Cognition, Instructional Activities and Practices, Research Methods 

Replication studies are rarer in education research than in other fields, leading Makel and Plucker 
(2014) to call for more replications because such studies can both identify and remedy 
methodological biases and can be instrumental in buttressing robust findings or clarifying 
inconsistent findings. In these ways, replications can play a role in the field’s systematic 
accumulation of knowledge (National Research Council, 2002). An area ripe for replication would be 
a testable, widely-held belief that is resting on a relatively inadequate empirical foundation. One 
belief seemingly shared by most scholars in mathematics education is that the cognitive demand of 
mathematical tasks and task enactments (Stein, Grover, & Henningsen, 1996) is important with 
respect to student learning outcomes. It may be that experiences with cognitively demanding tasks 
lead to positive learning outcomes or it may be that having students experience cognitively 
demanding tasks is an end itself. The latter is a philosophical position based on values, whereas the 
former is a testable position that currently rests on some supporting evidence, but what is the extent 
of that evidence? In our own past work related to cognitive demand (e.g., de Araujo, 2012; Otten & 
Soria, 2014), we noticed an extensive literature base on the nature of cognitive demand (Doyle, 1983; 
Stein, Smith, Henningsen, & Silver, 2009) and factors influencing cognitive demand throughout 
mathematical task implementations (Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013; Wilhelm, 
2014), but a weaker empirical foundation for the direct link between cognitive demand and student 
learning. 

The hypothesis motivating this study was that a single reference—Stein and Lane (1996)—
constituted a large portion of the warrants for claims in the mathematics education literature about 
the link between cognitive demand and learning. If this hypothesis were true, then it would become 
imperative to critically analyze the research design, evidence, and claims made in Stein and Lane 
(1996) and to consider possibilities of replication. We examined the claims for which Stein and Lane 
(1996) was included as a citation and we identified other references, if they existed, that were also 
cited for those same claims. In the following sections, we briefly summarize the Stein and Lane 
(1996) study, describe our method for compiling and analyzing citations to Stein and Lane (1996), 
and then share our key results. 

Summary of Stein and Lane (1996) 
Stein and Lane (1996) stems from a project well known in mathematics education—Quantitative 

Understanding: Amplifying Student Achievement and Reasoning (QUASAR). QUASAR involved a 
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university partnership with six urban middle schools with the overall goals of promoting reform-
oriented mathematics instruction and investigating the feasibility of such instruction in schools with a 
history of poor mathematics performance (see Silver & Stein, 1996, for an overview). Within that 
context, Stein and Lane (1996) sought to “present evidence regarding the degree to which the 
presence of reform features of instruction are linked to increases in student understanding of 
mathematics” (p. 51). Their study focused on 4 of the 6 middle schools from the QUASAR project 
over a three-year period. Data consisted of narrative summary field notes and video recordings of 
three three-day observation cycles in three teachers’ classrooms in each school each year, a 
classroom observation instrument completed based on the field notes and video recordings, and Fall 
and Spring administrations of a project-developed assessment instrument (Lane, 1993). Mathematical 
tasks were identified and of the 620 main tasks, a stratified random sample of 144 was drawn and the 
task set-up and task implementation of these 144 tasks were coded for cognitive demand. Levels of 
cognitive demand were collapsed to 2 (high and low). A 25% sample of the 144 tasks was double 
coded with 79% agreement. 

The assessment instrument consisted of 36 open-ended tasks distributed into four forms (9 
questions per form) and a 5-point scoring rubric (0–4) for each task. Analysis focused on 11 of the 
tasks and used not the scores themselves but “the average percentage of student responses across 
tasks that were scored at the two most proficient score levels (3 or 4)” (p. 68) and how this average 
percentage shifted between Fall Year 1 and Spring Year 3. 

To generate their findings, Stein and Lane rank ordered the four schools based on their gains in 
percentage of students at the top two levels of proficiency and then focused on Site A, which had 
gained the most (36%), and Site D, which had gained the least (17%). They compared these learning 
gain rankings with the school profile for task enactments and noted the following: 

Site D’s profile can be seen as embodying a more conventional mathematics program in which 
many or most tasks lent themselves to being solved with a single strategy, using only one 
representation (usually symbolic), and without much explanation and/or discussion. Site A’s 
profile, on the other hand, suggests a well-functioning reform program that is successfully 
utilizing tasks that invite and support students’ use of multiple solution strategies and multiple 
representations, along with student discussion of their work. (p. 71) 

In other words, the tasks in Site D classrooms were often set-up and implemented at low levels of 
cognitive demand whereas tasks in Site A classrooms were often set-up and implemented at high 
levels, and Site D had the lowest proficiency gains whereas Site A had the highest. 

The fact that the sites conformed to a positive relationship between cognitive demand and gain 
scores seems, on the surface, to be compelling. The number of sites, however, is quite low for 
making even correlational claims about the relationship between task features and student 
achievement. Moreover, the use of only 11 items to measure learning over a three-year period gives 
pause. In addition, sites were only compared in relation to each other, not to a standardized score, 
raising questions about the size of the differences between the outcomes of the different sites. The 
study also did not account for differences among teachers within the same site. The authors 
acknowledged “the possibility that the findings of this study may partially reflect differences in 
school-level variables in addition to the documented differences in instructional practices” (p. 75), 
but in other instances the authors shifted from discussing the results in terms of correlations to 
suggesting causation. For example, the authors drew the following conclusions: 

[S]tudents appear to benefit more from inconsistently implemented tasks that began with the 
encouragement to use multiple solution strategies, multiple connected representations, and 
explanations, than they do from tasks that—from the start—required only single solution 
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strategies, single representations, and little or no mathematical communication (p. 74, emphasis 
added) 

The authors appropriately hedged this statement with the word “appear” but the language in bold 
suggests not just that Site A used more high demand tasks and performed better, but that the use of 
high demand tasks was a primary reason for higher student achievement. This claim seems to extend 
beyond the actual warrants of the study given its limitations. Yet, as we show below, the hedged 
claims appear to have been accepted widely by several researchers and national organizations alike, 
frequently in an unhedged fashion. Although Stein and Lane recommended that a replication of their 
study be carried out, to our knowledge this has not occurred except a substantially modified 
replication (Otten, 2012) involving 12 middle school classrooms in which cognitive demand was 
decidedly not correlated with measured student learning. 

We wish to emphasize that by pointing out some of the limitations of the study, we do not mean 
to criticize the study itself but rather to raise caution about the claims that can be made—by Stein, 
Lane, or others—based on this single study’s evidence. These cautions led us to investigate the 
claims that have been made based on Stein and Lane’s (1996) work. 

Method 

Compiling Citations of Stein and Lane (1996) 
Similar to Leatham and Winiecke (2014), we used the “cited by” tool on Google Scholar to 

obtain a list of articles in which Stein and Lane (1996) was cited. This initial search yielded 298 
sources. Because we were interested in how the field of mathematics education specifically draws 
upon this reference, we retained only those articles that were published in mathematics education 
journals that received an A-grade in Toerner and Arzarello (2012, December) and also appeared as a 
top-five journal in the rankings compiled by Nivens and Otten (in press). These journals were 
Educational Studies in Mathematics, Journal for Research in Mathematics Education, Mathematical 
Thinking and Learning, Journal of Mathematical Behavior, Journal of Mathematics Teacher 
Education, and ZDM – The International Journal of Mathematics Education. This constraint yielded 
26 articles. We then expanded our search beyond the Google Scholar results to include other forms of 
codified mathematics education literature—namely, the Second Handbook of Research on 
Mathematics Teaching and Learning (Lester, 2007) and two major policy documents from NCTM 
(2000, 2014). This additional search led to the identification of 4 handbook chapters and one policy 
document (NCTM, 2014) that cited Stein and Lane (1996). The 31 analyzed resources are marked 
with * in the reference list. 

Analyzing Citations of Stein and Lane (1996) 
The goal of our analysis was to understand the claims for which authors cited the Stein and Lane 

(1996) study. Within the 31 sources, we located the Stein and Lane (1996) citations in text, yielding 
60 excerpts. We then used analytic memos to briefly describe the claim that was being supported by 
the Stein and Lane citation and met to identify the recurring themes and further refine them into 
codes. We came to a consensus on four codes (see Table 1), which we used to code all but one of the 
excerpts. 

To gain a more nuanced understanding of the ways in which authors used the Stein and Lane 
reference, we subdivided the learning claim excerpts into two groups based on whether the claim was 
causal or non-causal. For example, the following excerpt was coded causal because the authors’ state 
that tasks result in an increase in student understanding: 

As the research conducted by the QUASAR project indicates, when teachers choose tasks that 
require a high-level of cognitive demand, set them up and implement them in ways that maintain 
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a high-level of cognitive demand, the result is an increase in student understanding and 
reasoning (Stein & Lane, 1996). (Arbaugh & Brown, 2005, p. 527, emphasis added)  

In the same article, we coded an earlier reference as non-causal: 

The relationship between the types of tasks students engage in when learning mathematics and 
the mathematics they learn has been a subject of research for many years (see, for example, 
Hiebert & Wearne, 1993; Marx & Walsh, 1988; Stein & Lane, 1996). These research studies 
indicate that a relationship exists between the level of student thinking required by a 
mathematical task and the nature of students’ understanding of mathematics. (Arbaugh & Brown, 
2005, p. 505, emphasis added) 

Table 1: Coding Scheme for Citations of Stein and Lane (1996) 
Code Descriptions Examples 

Claim about a relationship between 
tasks and student learning [learning 
claim] 

“There is evidence that solving a task of high cognitive 
demand or a cognitively demanding task (CDT) has a 
positive impact on students’ conceptual understanding 
(Stein & Lane, 1996).” (Wilhelm, 2014, p. 637) 

Claim that tasks (or task 
implementations) and learning have 
been studied [study claim] 

“Research has focused on instructor questions across the 
K–16 spectrum and examined … the value of questions to 
student learning (Silver, 1996; Stein & Lane, 1996).” 
(Fukawa-Connelly, 2012, p. 332) 

Claim about the levels of cognitive 
demand (but no connection to student 
learning) [cognitive demand claim] 

“[Stein and Lane] use four categories: Memorization, 
Procedures without Connections, Procedures with 
Connections, and Doing Mathematics.” (White & Mesa, 
2014, p. 678) 

Claim about a research method used 
[method claim] 

“Of particular note are the procedures developed by Stein 
and Lane (1996) and Stein et al. (1996) for sampling and 
coding mathematical tasks and linking those findings to 
student outcomes.” (Gearhart et al., 1999, p. 309) 

 
We also distinguished four levels of attribution within the learning claims, from weak to strong—

(1) the author(s) state that others have made claims about the relationship but the authors do not 
necessarily endorse the claims themselves, (2) the authors state the relationship with an explicit 
hedge (e.g., it is “suggested” or there is “possibly” a relationship) or as being found specifically in 
the context of the cited study, (3) the relationship is stated as something found in past studies and the 
authors explicitly or implicitly endorse the findings beyond the cited study’s context, and (4) the 
relationship is stated as a generalized fact. We independently assigned each of the learning claim 
excerpts a level of attribution and met to discuss any differences until we came to a consensus. 

Results 
Table 2 contains frequencies for the codes described in Table 1. The most common claim for 

which Stein and Lane (1996) was used as support was the notion that the cognitive demand of 
mathematical tasks or task implementations is somehow related to student learning. More than three-
quarters (77.4%) of the resources made claims of this sort, encompassing 60% of the total Stein and 
Lane citations analyzed. Of the 36 learning-claim citations of Stein and Lane (1996), 16 (44.4%) 
cited only Stein and Lane. This supports our hypothesis that Stein and Lane (1996) often stands alone 
as the empirical basis for such claims. A substantial minority (25%) of the claims (spanning 41.9% of 
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the resources) did not involve student learning but instead focused solely on the construct of 
cognitive demand or task implementation. Six claims (10%) simply acknowledged that studies such 
as Stein and Lane (1996) existed and two (3.3%) referenced the type of study design that Stein and 
Lane employed. Overall, the citations of Stein and Lane (1996) predominantly involved the 
relationship between cognitive demand and student learning. 

Table 2: Frequencies of Claims for which Stein and Lane (1996) was Cited 
Code Number of Excerpts Number of Sources 

Learning claims 36 (60.0%) 24 (77.4%) 
Study claims 6 (10.0%) 6 (19.4%) 
Cognitive demand claims 15 (25.0%) 13 (41.9%) 
Method claims 2 (3.3%) 1 (3.2%) 
Other 1 (1.7%) 1 (3.2%) 

 
Of the 36 learning claims, 25 (69.4%) were correlational claims and 11 (30.6%) were causal. 

Although correlational claims are more justified than causal claims, few alluded to limitations of the 
Stein and Lane (1996) study. Furthermore, we found 11 citations that made causal claims. For 
example, Wilhelm (2014) stated, “There is evidence that solving a task of high cognitive demand or a 
cognitively demanding task (CDT) has a positive impact on students’ conceptual understanding 
(Stein & Lane, 1996)” (p. 639, emphasis added). 

Returning to the 36 learning claims overall, Table 3 summarizes their attribution level. More than 
half (58.3%) of the claims were Level 2—that is, rephrasings of Stein and Lane (1996) or hedged 
claims that stated what Stein and Lane (and possibly others) had found, without implying that it was 
a generalized result. For example, Otten and Soria (2014) wrote that “Stein and Lane (1996) argued 
that maintaining high cognitive demand has positive benefits with respect to student learning” (p. 
816, emphasis added). Such instances are defensible because it is true that Stein and Lane argued for 
the benefits of high cognitive demand tasks. 

Table 3: Attribution Levels for Learning Claims Supported by Stein and Lane (1996) 
Attribution Level Number of Excerpts Number of Sources 

1 (non-endorsed) 4 (11.1%) 4 (12.9%) 
2 (hedged or context-specific) 17 (47.2%) 10 (32.3%) 
3 (study-supported) 9 (25.0%) 8 (25.8%) 
4 (general fact) 6 (16.7%) 5 (16.1%) 

 
Yet, 41.7% of the learning claims went further by referring in some sense to a general 

relationship (level 3 or 4 attribution). For example, NCTM (2014) wrote about the relationship in a 
general fashion, as a matter of fact: 

Learning is greatest in classrooms where the tasks consistently encourage high-level student 
thinking and reasoning and least in classrooms where the tasks are routinely procedural in nature 
(Boaler & Staples, 2008; Hiebert & Wearne, 1993; Stein & Lane, 1996). (p. 17) 

In this case, NCTM did not mention cognitive demand specifically but instead mentioned key 
features related to cognitive demand. They also cited studies in addition to Stein and Lane (1996) as 
support for their claim, but due to space limitations, we will not describe those studies here. 
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Discussion 
Our citation analysis revealed that, across primary journals in our field, Stein and Lane (1996) 

was used to support a substantial number of claims about the link between cognitive demand of 
mathematical tasks and students’ mathematical learning. Of those claims, 55.6% also involved 
additional references beyond Stein and Lane, but these were often policy or practitioner works rather 
than empirical research, perhaps aligning with a philosophical stance on cognitive demand but not an 
empirical one. The U.S. Department of Education and the National Science Foundation (2013) 
described six types of education research: foundational, exploratory, design and development, 
efficacy, effectiveness, and scale-up. Exploratory research “examines relationships among important 
constructs in education and learning to establish logical connections that may form the basis for 
future interventions or strategies to improve education outcomes” (p. 9). They indicate that 
exploratory “connections are usually correlational rather than causal” (p. 9). Certainly, the work of 
Stein and Lane (1996) and others (e.g., Hiebert and Wearne, 1993; Tarr et al., 2008) provides 
valuable information about a potential relationship between cognitive demand and student learning, 
but based on the evidence, we judge this work to be at no higher than the exploratory level. 
Replications are needed to test whether this relationship holds under various conditions (design and 
development research), and a significant amount of work would need to be done in order to make 
causal claims that could estimate the average impact of using high cognitive demand tasks. As Stein 
and Lane said in 1996, “the analyses discussed herein should be replicated” (p. 75), but rather than 
answering this call, the field has instead justified the belief that cognitively demanding tasks relate 
with (or cause) higher student learning outcomes by drawing on studies in the initial stages of the 
research progression. 

Though we argue for the need of later-stage research studies to examine the link between 
cognitively demanding tasks and student learning, we do not dismiss the value of smaller-scale 
studies. We recognize the importance of a wide array of research; however, certain types of claims 
(e.g., factors that generally relate to measureable student outcomes) are best supported empirically by 
larger-scale study designs. If we include such claims in our work, we should be cognizant of the 
nature of the empirical support, and modify claims accordingly. And if claims are value-based rather 
than empirical, that is appropriate, but they should be written as such. 

At the center of this article is a deep question about the relationship between cognitively 
demanding mathematical tasks and students’ mathematical learning, broadly construed. Although we 
have critiqued some of the sources of evidence for claims made about this relationship, it is not our 
intention to cast doubt on the relationship itself. In fact, we believe it is highly likely that a positive 
relationship does exist. Yet, as a field, we should not be satisfied with shared beliefs based on 
insufficient evidence. Instead, we should strive for a body of evidence that would convince not only 
someone who is already predisposed to value cognitively demanding experiences but that would 
convince a skeptic. Therefore, we join Makel and Plucker (2014) and Warne (2014) in encouraging 
editors and agencies to open the door to replications, even—or perhaps especially—if it investigates 
claims that many already take to be true. 
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DETECTING MATH ANXIETY WITH A MIXTURE PARTIAL CREDIT MODEL  
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The purpose of this study was to investigate a new methodology for detection of differences in middle 
grades students’ math anxiety. A mixture partial credit model analysis revealed two distinct latent 
classes based on homogeneities in response patterns within each latent class. Students in Class 1 had 
less anxiety about apprehension of math lessons and use of mathematics in daily life, and more self-
efficacy for mathematics than students in Class 2. Moreover, students in Class 1 were found to be 
more successful in mathematics, mostly like mathematics and mathematics teachers, and have better 
educated mothers in comparison to students in Class 2. However, gender, attending private or public 
schools, and education levels of fathers did not appear to differ between the classes. Capturing such 
fine-grained information extends recent advances in measuring math anxiety.      

Keywords: Affect, Emotion, Beliefs, and Attitudes; Middle School Education, Research Methods 

Identifying affective characteristics, such as anxiety and depression, that students experience in 
school settings and dealing with these characteristics are significant challenges for educators. Math 
anxiety, as one such characteristic, can be defined as “feelings of tension and anxiety that interfere 
with the manipulation of numbers and the solving of mathematical problems in a wide variety of 
ordinary life and academic situations” (Richardson & Suinn, 1972, p. 551). 

Math anxiety has been shown to cause low academic performance (Ashcraft, 2002), reduced 
cognitive information-processing (Young, Wu, & Menon, 2012), and low perceptions of one’s own 
mathematics abilities (Hembree, 1990). Low math abilities and low working memory, as well as non-
supportive teachers can also be considered as important risk factors for the existence of math anxiety 
(Ashcraft, Krause, & Hopko, 2007). As a result, math anxiety can lead to avoidance of selecting 
career paths involving mathematics (Ashcraft & Moore, 2009). Previous research on mixture item 
response theory (IRT) models (e.g., Mislevy & Verhelst, 1990; Rost, 1990) has suggested that these 
models may be useful in detecting latent classes of individuals that differ along one or more 
cognitive or affective characteristics. Latent classes are statistically determined groupings of 
individuals who are homogeneous on such characteristics. Latent classes are latent because they are 
not directly observable as gender or ethnic groups. Previous research has demonstrated that latent 
classes in a population may differ on multiple kinds of characteristics including problem solving 
(Bolt, Cohen, & Wollack, 2001), test speededness (Cohen & Bolt, 2005), mathematical knowledge 
(Izsák, Jacobson, de Araujo, & Orrill, 2012), reading comprehension (Baghaei & Carstensen, 2013) 
and on personality traits such as depression (Hong & Min, 2007). In view of the negative, long-term 
impacts of math anxiety, it would be useful to distinguish latent classes of students who differ in their 
math anxiety. Such an identification of the latent classes would potentially help teachers improve the 
affective environment in school settings by applying specific interventions based on the needs of 
students in each latent class.    

The purpose of this study was to investigate the utility of a mixture IRT methodology for 
detection of latent classes of middle grades students’ math anxiety. The following research questions 
were addressed in this study: 

1. Are there distinct latent classes of middle grades students that differ in their math anxiety? 
2. What does the existence of these latent classes imply about the different response patterns of 

math anxiety that exist in this population? 
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3. What are the effects of manifest variables such as mathematics achievement, gender, liking 
mathematics, liking mathematics teachers, attending to private or public schools, education 
levels of mothers and fathers on latent class membership?  

The present study makes at least two contributions. First, past research has attempted to identify 
students’ math anxiety levels based on their total scores on a math anxiety scale. Results from the 
present study suggest that relying on use of total scores may miss important qualitative and 
quantitative differences in students’ math anxiety and for understanding the structure of math 
anxiety. Second, past research has traditionally focused on explaining math anxiety by measuring its 
dimensions through exploratory and confirmatory factor analysis (e.g., Baloğlu & Zelhart, 2007; 
Kazelskis, 1998) and on the structural equation modeling of the relationship between math anxiety 
and variables such as mathematics achievement (e.g., Harari, Vukovic, & Bailey, 2013; Meece, 
Wigfield, & Eccles, 1990). However, to our knowledge, there has been no study yet reported in the 
literature on the detection of different latent classes of the math anxiety population by using 
relatively new psychometric models, such as mixture IRT models. Therefore, the present study 
demonstrates that a mixture IRT model can be useful for identifying characteristics of latent classes 
and for obtaining fine-grained information about particular strengths and weaknesses of middle 
grades students’ math anxiety. Results of this study suggest one potentially useful route for 
mathematics education research in the future by providing a unique approach on identifying math 
anxious students in school settings. 

Theoretical Framework 
The theoretical framework for this study is based on the mixture Rasch model (MRM; Rost, 

1990), which is a combination of a latent class model and a Rasch model. Unlike the standard Rasch 
model, which assumes that the same Rasch model applies to all examinees in the population, the 
MRM assumes that distinct latent classes exist in the population and that a different Rasch model 
applies to each. In the MRM, the relative difficulty of ordering the items is determined by a class 
membership parameter, and the number of items which the examinee is expected to answer or 
endorse is influenced by a continuous latent ability variable specific to the latent class. For each item, 
the MRM specifies a separate item difficulty for each latent class and for each examinee, a 
probability of being a member of a particular latent class.  

In contrast to the dichotomous form of the MRM with scoring of an item in two categories such 
as agree or disagree, the polytomous form of the model can be used when items are scored with more 
than two categories such as strongly agree, agree, disagree, or strongly disagree, and this form is 
called a partial credit model (PCM; Masters, 1982). The probability of an answer for the mixture 
form of this model, the mixture partial credit model (MixPCM), can be written as 

 

P(𝑥!"=k|θjg) = 
!"#[ !!"!!!"#!

!!! ]

[!"# !!"!!!"#!
!!! ]!!

!!!
              (1) 

 
where P is the probability that examinee j gives a response in category k of item i, θjg is a latent trait 
of examinee j, and 𝛿!"# is a threshold parameter indicating the intersection of adjacent category 
response curves. 

The MixPCM enables one to detect homogeneities in the ways examinees in different latent 
classes respond to items on a scale. As in equation (1), the relationship between the probability of 
selecting a response category and the latent trait varies across latent classes. The differences in 
response patterns to each item of a scale reflect homogeneities in characteristics of members of each 
latent class. In the MixPCM, the relative difficulty of the ordering of a particular response category 
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among the ordered categories is determined by a class membership parameter, and the number of 
items answered. In this way, the MixPCM could assign two examinees with similar scores on a scale 
to different latent classes as a result of the differences in their response patterns.  

Methods 

Participants 
The sample consisted of 244 Turkish 6th and 7th grade students attending public and private 

schools in Turkey. While the number of male and female students is similar (N=128 and N=116 for 
males and females, respectively), their range of age was around 13-14 years. A written consent form 
was obtained from one of the parents of each student before the study.  

Instruments 
The Math Anxiety Scale (MANX; Erol, 1989), is a four-point Likert type scale written in Turkish 

with options for each item ranging from “never” to “always.” There were 45 items yielding minimum 
and maximum scores of 45 and 180, respectively. Higher scores demonstrate a higher math anxiety 
level. An internal consistency reliability estimate of .90 was obtained in this study. This was 
consistent with previous results of .92 on a sample of 754 middle school and high school students 
(Erktin, Dönmez, & Özel, 2006). Erktin et al. detected four factors, which were test and evaluation 
anxiety, apprehension of math lessons, use of mathematics in daily life, and self-efficacy for 
mathematics.   

Demographic information was also obtained regarding students’ mathematics grade at the end of 
the previous semester, their gender, whether or not they liked mathematics and mathematics teacher, 
the type of school they attended, and parents’ education levels. 

Data Analysis 
The data were analyzed using the MixPCM as implemented in the computer program WINMIRA 

(von Davier, 2001). First, different numbers of latent classes were estimated in separate models to 
determine the relative fit of each model. That is, the MixPCM was estimated with one class, two 
classes, three classes, and four classes. Second, three indices for each model were compared to select 
the best fitting model: the Akaike’s information criterion (AIC; Akaike, 1974), the Bayesian 
information criterion (BIC; Schwarz, 1978), and the consistent AIC (CAIC; Bozdogan, 1987). These 
indices are defined as AIC = -2 log L + 2 p; BIC = -2 log L + p (log N), and CAIC = -2 log L + p (log 
N + 1) where L is the maximum likelihood value, p is the number of estimated parameters, and N is 
the sample size. AIC, BIC, and CAIC all include penalty functions to modify the -2 log likelihood for 
either the number of parameters or the sample size or both. BIC has been found to more accurately 
select the best fitting model for dichotomous mixture IRT models (Li, Cohen, Kim, & Cho, 2009). In 
this study, the model with the smallest BIC value was selected as the best fitting model. Next, we 
analyzed the characteristics of each latent class by focusing on places where item locations differed 
significantly by latent class and places where members of one latent class considered items to be 
easier or harder to endorse than other latent classes. In addition, independent sample t-tests and chi-
square tests were conducted to examine the relationships between manifest variables and latent class 
membership. 

Results 

Unidimensionality for the Scale  
An exploratory factor analysis using maximum likelihood estimation as implemented in the SPSS 

16.0 software (SPSS Inc., 2007) indicated eigenvalues of the first three factors as 14.1, 2.6, and 2.5. 
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The total variance explained by the first factor was 31.4%. Reckase (1979) reports that if the amount 
of variance explained by the first factor is 20% or more, then the scale can be considered as 
essentially unidimensional. Based on these results, the MANX was considered to be essentially 
unidimensional.  

Number of Latent Classes  
The information indices for model selection are given in Table 1. Minimum values for AIC, BIC, 

and CAIC of 12883.82, 13705.72, and 13978.72, respectively, all suggested a two-class solution in 
the data. Class 1 had 126 students (51.5%) and Class 2 had 118 students (48.5%).  

Table 1: Model Fit Indices of the Mixture Rasch Model 
Model            AIC                       BIC                        CAIC  
One class        13757.02                  14166.47                      14302.47  
Two classes        12883.82                  13705.72                      13978.72  
Three classes        13091.45                  14325.81                      14735.81  
Four classes        13335.07                  14981.88                      15528.88  
Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC =  
Consistent Akaike information criterion; the smallest information criterion index is bold.  
 

Item thresholds indicate the point on the trait scale between each adjacent score category and 
indicate the relative ease of endorsing each item in each latent class. Item thresholds for each class 
are plotted in Figure 1 and Figure 2. Thresholds lower on the scale (e.g., -3, -2) indicate that 
examinees had a greater propensity to endorse that response category. Similarly, thresholds higher on 
the scale (e.g., 2, 3) indicate that examinees had a greater propensity to endorse a higher response 
category. Thresholds may differ by latent class, meaning that relative propensity for endorsing a 
category of an item is specific to each latent class. Because the MANX has four response categories 
ranging from “never” to “always,” there are three possible thresholds that can be used to interpret the 
math anxiety level for each item as follows: 
 
Categories: “never”            “sometimes”           “usually”              “always” 
Scores:                (1)                        (2)                        (3)                        (4) 
Thresholds:          │--------T1--------│--------T2--------│--------T3--------│ 
 
For example, if an examinee’s trait level is smaller than T1 (i.e., the first threshold), then the 
response is expected to be “never.” If an examinee’s trait level is smaller than T2 (i.e., the second 
threshold) but larger than T1, then the response is expected to be “sometimes.” 

Figure 1 and Figure 2 present plots of the item thresholds for Class 1 and Class 2. It is clear that 
students in Class 1 were more variable in endorsing or agreeing than students in Class 2, with 
thresholds ranging from -7.41 to 9.00. Students in Class 1 also had lower tendency to endorse items 
above threshold 1, and greater tendency to endorse items above threshold 3 than students in Class 2. 
On the other hand, students in Class 2 were more constrained in endorsing items with the range of 
thresholds from -2.186 to 2.249. 
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Figure 1. Item thresholds for class 1. 
 

 

Figure 2. Item thresholds for class 2. 

Analyses of Item Locations and Item Response Distributions  
The item location is the mean of all item thresholds for an item. Higher mean thresholds indicate 

lower propensities of endorsement (Masters, 1982). Thus, item locations suggest which items cause 
differences in response patterns between latent classes.  

In addition to the analysis of item locations, item response distributions between the two latent 
classes were compared to examine similarities and differences in item responses for each latent class. 
Analyses of item locations and item response distributions led to three main results: (1) Students in 
Class 1 were less anxious than students in Class 2 in terms of having anxiety about apprehension of 
math lessons and use of mathematics in daily life, (2) students in Class 1 had more self-efficacy for 
mathematics, and (3) students in both latent classes had similar levels of test and evaluation anxiety.  

Figure 3 presents item locations for each latent class. Based on the figure, it can clearly be said 
that Class 1 had different and more variable item locations than Class 2.  

 

 

Figure 3. Item locations for class 1 and class 2. 
 

-4	

-2	

0	

2	

4	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	

Class_1	
item_location	
Class_2	
item_location	



Theory and Research Methods 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1404 

Items with a difference on the scale of 1 logit or more were considered as indicating differences 
between the two latent classes. Based on the item locations for the two latent classes (see Figure 3), 
items 4, 6, 7, 9, 10, 13, 16, 20, 25, 27, 29, 32, 35, 37, 38, 40, and 43 appeared to have different 
response propensities for Class 1 and Class 2.  

Items reflecting anxiety about apprehension of math lessons (i.e., Items 6, 7, 16, and 37) were 
more difficult to endorse for Class 1 than Class 2 (see Figure 3). For example, for Item 16, “Math 
book bothers me,” the item location for Class 1 was 3 but for Class 2, it was .25. The proportions 
selecting the options of “never” and “always” in Class 1 were 98.7% and 0% respectively, in contrast 
to 53.3% and 15.1% in Class 2, respectively. On items such as Item 6 and Item 7, which asked 
students to identify how much they panic when a lot of mathematics problems are given as 
homework and how uncomfortable they feel when studying a hard mathematics topic (For Item 6 and 
Item 7, Class 1 item locations were 1.78 and 2; Class 2 item locations were .14 and .58), students in 
Class 1 mostly agreed with the option “never” (80.2% for Item 6 and 87.1% for Item 7) than students 
in Class 2 (38.6% for Item 6 and 64.2% for Item 7).  

On the other hand, students in Class 1 endorsed more easily items with positive statements such 
as enjoying numbers (i.e., Items 4, 10, 13, 20, 32, 35, and 40). For example, for Item 40, “Opening 
any book on math and looking at one of its pages full of mathematics problems makes me happy,” 
(Class 1 and Class 2 item locations were -2.21 and .25, respectively), the proportion selecting 
“always” was 70.3% in Class 1 as opposed to 7.8% in Class 2.  

Items focusing on anxiety about use of mathematics in daily life (i.e., Items 9, 29, and 38) were 
harder for students in Class 1 to endorse than for students in Class 2 (see Figure 3). For Item 29, 
“When I am asked to help a primary school student with his/her homework, I may refuse to help 
because I feel afraid that there may be some problems that I could not solve” (Class 1 item location 
was 2.46; Class 2 item location was .35), almost all students in Class 1 (93.5%) and half of the 
students in Class 2 (50.5%) selected the option “never.” On items that asked students to rate their 
ideas about test and evaluation anxiety (i.e., Items 2, 3, 8, 11, 14, 18, 19, 21, 22, 24, 25, 28, 30, 33, 
41, 42, and 44), item locations as well as the distributions of responses were similar across choices 
for both classes.  

Finally, on items involving self-efficacy for mathematics (i.e., Items 27, and 43), item locations 
and the distribution of responses were different for the two classes. For Item 43, “When I think I 
succeeded at a math exam, I feel relaxed and peaceful while waiting for the announcement of the 
results” (Class 1 item location was -2.84; Class 2 item location was -.73), the proportion selecting 
“always” in Class 1 was 72.8% as opposed to 39.5% in Class 2.  

The Relationships Between Manifest Variables and Latent Class Membership  
To obtain detailed information about the characteristics of each latent class, we examined the 

relationships between manifest variables and latent class membership using independent sample t-
tests and chi-square tests. Regarding mathematics achievement, students in Class 1 were significantly 
more successful than students in Class 2 (t (df = 111) = 3.71, p < .01). In terms of gender, there was 
no significant association between the two classes (𝜒!(1) = .98, p = .32). The associations between 
students’ liking mathematics and liking their mathematics teachers, and latent class membership were 
significant (𝜒!(1) = 11.83, p < .01 and 𝜒!(1) = 6.30, p < .01, respectively). However, there was no 
significant association between the type of school attended and latent class membership (𝜒!(1) = .57, 
p = .45). Finally, education level of mothers was higher for students in Class 1 than Class 2 (t (df = 
136) = 2.36, p < .02), but there was no significant difference in terms of education levels of fathers (t 
(df= 136) = 1.07, p = .29).  
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Discussion 
In this study, we examined the utility of a mixture IRT methodology, named MixPCM, for 

detecting latent classes of middle grades students’ math anxiety. With respect to the first research 
question, two latent classes were detected with distinct patterns of math anxiety. With respect to the 
second research question, Class 1 consisted of students who were reported being less anxious about 
apprehension of math lessons and use of mathematics in daily life, and as having more self-efficacy 
for mathematics than students in Class 2. However, there did not exist any difference between Class 
1 and Class 2 in terms of test and evaluation anxiety. With respect to the third research question, 
students in Class 1 were found to be more successful in mathematics, mostly like mathematics and 
mathematics teachers, and have better educated mothers in comparison to students in Class 2. 
Moreover, there was no significant association between the two classes in terms of gender, attending 
private or public schools, or education levels of fathers.  

The results reported here on the relationships between math anxiety and the manifest variables 
were consistent with the findings in the literature. Similar to the previous findings indicating that 
math anxiety was negatively related to mathematics achievement (e.g., Hembree, 1990), students in 
Class 1, in the present study, were reported being less anxious and more successful in mathematics. 
Previous research on the effects of positive attitudes and education levels of mothers on math anxiety 
has led to a consensus that positive attitudes towards mathematics and education levels of mothers 
were negatively associated with math anxiety (e.g., Engelhard, 1990; Meece, Wigfield, & Eccles, 
1990). In this study, students in Class 1 were found to be less anxious but be more likely to have 
positive attitudes such as enjoying mathematics and liking their mathematics teachers, and to have 
mothers with higher education levels than students in Class 2. Including the analysis of manifest 
variables along with results from the MixPCM and obtaining consistent results with previous 
research strengthen the validity of the interpretations about the characteristics of each latent class 
reported in this study.  

The results of this study have important implications for teachers and researchers. First, it may be 
misleading to compare all students based on their total scores on a scale of math anxiety. Rather, 
within a population of students, there exist latent classes that differ in their math anxiety. Relying on 
only single total score, therefore, might hinder gaining insight about particular characteristics of 
students. In this regard, the MixPCM was found to be a useful tool for identifying those students with 
different patterns of math anxiety in classroom settings. This, in turn, could help teachers make 
interventions specific to the needs of each student. For example, they can focus on reducing some 
particular students’ anxiety levels towards mathematics lessons by not calling on these students to 
solve a problem at the board; engage some students with more mathematics related activities in daily 
life by presenting simulated real-life situations and asking word problems in a real-life context; and 
help some students build self-confidence for mathematics through asking mathematical problems 
from simple to more complex.  

In conclusion, the present study was the first study that examined the utility of the MixPCM for 
detection of distinct latent classes based on different patterns of math anxiety. The results reported 
here provide initial evidence that the MixPCM, when applied to a scale like the MANX, can provide 
fine-grained information about latent classes of middle grades students population and their 
characteristics of math anxiety. Future studies should continue on conducting similar studies with 
other popular math anxiety scales in different populations.  
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In this essay, traveling through the past half-century, the authors illustrate how mathematics 
education research shifted, theoretical, beyond its psychological and mathematical roots. Mapping 
four historical moments of mathematics education research onto broader paradigms of inquiry, the 
authors make a case for the field to take up a theoretical “identity” that refutes closure and keeps the 
possibilities of mathematics teaching and learning open to multiple and uncertain interpretations 
and analyses. 

Keywords: Equity and Diversity, Research Methods 

 Introduction 
Over the past half-century, mathematics education research could be characterized as shifting 

from searches for certainty to acknowledgments of doubt (cf. Skovsmose, 2009). Discussions about 
theory during this time have grown from being nearly nonexistent in the 1960s to filling a visible and 
frequently contested space for productive scholarly debate in more recent times. For instance, in the 
mid-to-late 1990s, Steffe, Kieren, Thompson, and Lerman debated the often-dichotomized theoretical 
traditions of radical constructivism and social constructivism (Lerman, 1996, 2000a; Steffe & Kieren, 
1994; Steffe & Thompson, 2000). In the late 2000s, Gutiérrez and Lubienski debated the uses (or 
not) of broad socio-cultural and -political theories (and methods) when reporting on the mathematics 
“achievement gap” (Gutiérrez, 2008; Lubienski, 2008; Lubienski & Gutiérrez, 2008). And Confrey 
and Battista (Battista, 2010; Confrey, 2010), individually, in the early 2010s, responded to Martin, 
Gholson, and Leonard’s (2010) rejoinder to the assumptive question: “Where’s the math (in 
mathematics education research)?” (Heid, 2010, p. 102) These debates hinged largely on the 
theoretical traditions taken up by the researchers, which, in turn, determined what questions might be 
asked and how data might be collected, analyzed, and represented (see Lester & Wiliam, 2000; 
Valero, 2004).  

The productive theoretical debates that have engaged mathematics education researchers since 
the 1990s are in stark contrast to the debates (or lack thereof) from the 1960s and 1970s. In those 
early developmental years of mathematics education research, the chief method of establishing 
legitimacy for the field was for researchers to align themselves with the existing epistemologies of 
mathematics and the developing theories of psychology (Kilpatrick, 1992). This allegiance was 
formally instituted in 1976 when the International Group for the Psychology of Mathematics 
Education was founded during the 3rd International Congress for Mathematical Education (ICME-3). 
Overall, in research reporting during these early developmental years, theoretical considerations were 
merely implicit. When researchers discussed theory, it was most often in the context of developing a 
single theory or theoretical network specific to research on mathematics teaching and learning (e.g., 
Becker, 1970). 

The Emergence of Theoretical Discussions 
The allegiance to “traditional” psychology waned in the late 1970s and early 1980s, as theories 

(and methodologies) began to be adapted from the disciplines of anthropology, cultural and social 
psychology, history, philosophy, and sociology (Lester & Lambdin, 2003). Over three decades ago, 
Higginson (1980) proposed that mathematics education be informed not simply by mathematics and 
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psychology, but also by sociology and philosophy. He noted that allegiance to mathematics is self-
evident and that the “battle for the recognition of a psychological dimension in mathematics 
education has been won, for almost all purposes, for some time now” (p. 4). Higginson then made a 
two-pronged argument for the recognition of a sociological dimension: (a) the need to more fully 
understand the social role of schooling and the interpersonal and intrapersonal dynamics among 
teachers, students, and the mathematics being taught and learned; and (b) the need to more fully 
understand the influences of cultural values, economic conditions, social structures, and emerging 
technologies on schools generally and on teaching and learning specifically. 

In arguing for the inclusion of philosophy, Higginson (1980) cautiously noted that with the 
inclusion of sociology, “it might appear [to some] that the gates have been open too far already” (p. 
4). But for Higginson, the inclusion of philosophical considerations in mathematics education 
(research or otherwise) was important because all human “intellectual activity is based on a set of 
assumptions of a philosophical type” (p. 4). These assumptions, he argued— 

will vary from discipline to discipline and between individuals and groups within a discipline. 
They may be explicitly acknowledged or only tacitly so, but they will always exist. Reduced to their 
essence these assumptions deal with concerns such as the nature of “knowledge”, “being”, “good”, 
“beauty”, “purpose” and “value”. More formally we have, respectively, the fields of epistemology, 
ontology, ethics, aesthetics, teleology and axiology. More generally we have the issues of truth, 
certainty and logical consistency. (p. 4) 

Higginson’s (1980) point was soon taken up. For example, in 1984 a new Topic Study Group on 
Theory in Mathematics Education [TME] was formed at ICME-5. The purpose of the group, as 
Steiner (1985) summarized, was “to give mathematics education a higher degree of self-reflectedness 
and self-assertiveness, to promote another way of thinking and of looking at the problems and their 
interrelations” (p. 16; emphasis in original). Steiner also provided a list of 10 topics that the TME 
Group might explore in the future; these topics included (among others): definitions of mathematics 
education as a discipline; use of models, paradigms, theories in mathematics education research; 
relationships between theory and practice; and explorations of ethical, societal, and political aspects 
of mathematics education. 

Mathematics education research of the 1990s and beyond certainly reflects this list of topics, 
broadening not only possible theoretical traditions that might be taken up but also expanding the very 
identity of mathematics education as a research domain (see Sierpinska & Kilpatrick, 1998). By way 
of example, conferences held since the mid-1980s include Political Dimensions of Mathematics 
Education (1990, 1993, 1995); Critical Mathematics Education: Toward a Plan for Cultural Power 
and Social Change (1990); Mathematics Education and Society (1998, 2000, 2002, 2004, 2008, 2010, 
2013, 2015, 2017); and Mathematics Education and Contemporary Theory (2011, 2013, 2016). 
Furthermore, edited books published since that time include Equity in Mathematics Education: 
Influences of Feminism and Culture (Rogers & Kaiser, 1995); Ethnomathematics: Challenging 
Eurocentrism in Mathematics Education (Powell & Frankenstein, 1997); Sociocultural Research on 
Mathematics Education (Atweh, Forgasz, & Nebres, 2001); Which Way Social Justice in 
Mathematics Education (Burton, 2003); Mathematics Education within the Postmodern (Walshaw, 
2004); and Culturally Responsive Mathematics Education (Greer, Mukhopadhyay, Powell, & 
Nelson-Barber, 2009). These listings are by no means exhaustive but merely illustrative of the 
conferences and books that have assisted in shifting mathematics education research beyond its 
psychological and mathematical roots. 

Theory Defined 
Conferences and books like those mentioned have indeed contributed to the broadening of 

theoretical (and methodological) traditions within mathematics education research. However, we 
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have not yet defined or described what we mean by theoretical tradition or theory here. This is an 
intentional omission. In our view, theory often conveys different meanings and assumes different 
purposes. For instance, Sriraman and English (2010) have drawn attention to the notion of a “grand” 
theory sought by some researchers (e.g., Becker, 1970; Silver & Herbst, 2007), while Lester (2005) 
has suggested that mathematics education researchers adapt theoretical concepts and ideas from a 
range of perspectives. Brown and Walshaw (2012) have argued that mathematics education 
researchers use “theory as a vehicle for new productive possibilities in mathematics education” (p. 
3). 

These different purposes signal that theory is being conceptualized at different levels. To that 
end, E. A. St. Pierre (personal communication, June 2000) has proposed a three-tier structure for 
discussing theory: high-level, mid-level, and ground-level theories. High-level theories are the larger 
philosophical traditions in which a researcher might position her or his science (e.g., analytic 
philosophy or continental philosophy). These traditions rest on a set of assumptions about 
epistemology, ontology, ethics, aesthetics, teleology, and axiology or, more simply stated, about 
truth, certainty, and logical consistency (Higginson, 1980). Mid-level theories are the various 
theoretical traditions and ideas that might be derived from one or more broader philosophical 
traditions (e.g., activity theory, cognitive theory, constructivist theory, critical theory, poststructural 
theory, sociocultural theory). Ground-level theories, not to be confused with grounded theory (Glaser 
& Strauss, 1967), are the theories or models developed or used to make sense of the data collected 
during data analysis; that is, the theory that is on the ground, closest to the data (e.g., cognitively 
guided instruction; see, e.g., Fennema et al., 1996). It is important to note, however, that a specific 
ground-level theory is only possible through the set of philosophical and theoretical assumptions, 
beliefs, values, and perspectives operating in the context of the high- and mid-level theories taken up 
by the researcher (E. A. St. Pierre, personal communication, June 2014). The danger in too much of 
the existing mathematics education research, however, is that researchers often do not acknowledge 
the philosophical assumptions present in the high- and mid-level theories that make the ground-level 
theories they develop or use possible. 

For our purposes here, our focus is on high- and mid-level theories or what taken together could 
be called the paradigm of inquiry in which the researcher resides. That is, when using the word 
theory or the phrase theoretical tradition we are concerned about the epistemological stance of the 
researcher as she or he conducts research within a set of assumptions about truth, certainty, and 
logical consistency, being mindful that science, social or otherwise, is always already entangled with 
and in these broader concerns of philosophy (St. Pierre, 2011).  

The Paradigm Wars and Education Research 
Generally speaking, the broadening of theoretical traditions in mathematics education has been 

played out in the larger paradigm wars of education social science (see Gage, 1989; Guba & Lincoln, 
1994; Lather, 2006; St. Pierre, 2006). The use of Kuhn’s (1962/1996) concept paradigm is meant to 
describe shifts in the traditions of “normal science” (i.e., firmly based historical traditions of science) 
that are differentiated not by failure of one method to another but rather by the “incommensurable 
ways of seeing the world differently and of practicing science in it” (p. 4). Although the use of the 
term paradigm in social science research has been contested (see Donmoyer, 2006), Guba and 
Lincoln (1994) have pointed out that inquiry paradigms highlight for researchers “what it is they are 
about, and what falls within and outside the limits of legitimate inquiry” (p. 108). Inquiry paradigms, 
they have argued, are defined by responses to three fundamental and interconnected questions—the 
ontological question, the epistemological question, and the methodological question. The three 
questions are interconnected “because the answer given to any one question, taken in any order, 
[more times than not] constrains how the others may be answered” (p. 108). 
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Much has been written in the past 50 years or so about the beginning (early 1960s), the aftermath 
(late 1980s), and the resurgence (early 2000s) of the paradigm wars (see Lather, 2006; St. Pierre, 
2006). Writing in 1989, in a futuristic account of education research at the turn of the 21st century, 
Gage proposed (and hoped for) an armistice of sorts as “researchers came to a new realization that 
paradigm differences do not require paradigm conflict” (p. 7). But rather than an armistice, paradigm 
conflicts have seen a resurgence as both experimental and quasi-experimental research have been 
hailed as the “gold” standard in educational research (see, e.g., National Research Council, 2002). St. 
Pierre (2006), underscoring the gravity of the resurgence, has argued— 

The stakes are high because the very nature of science and scientific evidence and therefore the 
nature of knowledge itself is being contested by scholars and researchers who think and work 
from different epistemological, ontological, and methodological positions as well as by those 
postmodernists who challenge the metaphysical project altogether. If one believes that different 
theoretical frameworks are grounded in and structured by different and, perhaps, 
incommensurable assumptions about the nature of knowledge, truth, reality, reason, power, 
science, evidence, and so forth, then one can see why educators are taking sides in this debate 
that is already organizing the limits and possibilities of what we can think and know and, thus, 
how we can live in the complex and tangled world of educational theory, research, policy, and 
practice. (pp. 239–240) 

Within the complex and tangled world of U.S. mathematics education research, this resurgence of 
paradigm conflicts is visible within the pages of Foundations of Success: The Final Report of the 
National Mathematics Advisory Panel (NMAP; 2008) and in a special issue of the Educational 
Researcher (Kelly, 2008) published in response. Throughout the pages of both the final report and 
the response special issue it is often noted, explicitly and implicitly, that supporting certain 
theoretical and methodological traditions does not mean complete abandonment of others. The 
authoring committee of the NMAP final report, however, included only experimental and quasi-
experimental research to make evidential knowledge claims about mathematics teaching and 
learning. So as politics took the place of scientific inquiry (Boaler, 2008), the authoring committee 
took direct aim at some epistemological possibilities, and thus theoretical and methodological 
possibilities. For instance, they erased “race” from the conversation on mathematics teaching and 
learning altogether (Martin, 2008). In the end, as a proliferation of paradigms to think about and do 
science became possible within the decades of the 1980s and 1990s (Lather, 2006), both education 
research in general and mathematics education research in particular experienced a backlash in the 
early 2000s and beyond. The war rages on as the battles over the nature of knowledge, truth, reality, 
reason, power, science, evidence, and so forth, continue. 

Mapping Moments to Paradigms of Inquiry 
In an attempt to make sense of the proliferation of theoretical traditions used in mathematics 

education research since the 1970s, Stinson and Bullock (2012) have identified four distinct yet 
overlapping and simultaneously operating shifts or historical moments: (a) the process–product 
moment (beginning in the 1970s); (b) the interpretivist–constructivist moment (beginning in the 
1980s); (c) the social-turn moment (beginning in the mid-1980s); and (d) the sociopolitical-turn 
moment (beginning in the 2000s). These moments of mathematics education research are not 
intended to suggest that movement among the moments occurs in some linear fashion, arriving at a 
“best” or “better” place across a continuum. Rather, the moments are merely arranged in loose 
historical chronological order. As a case in point, Frankenstein (1983) and Skovsmose (1985) began 
exploring the sociopolitical implications of critical mathematics education several years before the 
sociopolitical-turn moment identified as beginning in the 2000s. Table 1 maps the four moments of 
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mathematics education research onto one and, in some cases, two paradigms of inquiry. Representing 
an adaptation of a conceptualization offered by Lather and St. Pierre (see Lather, 2006), four broad 
paradigms are singularly worded by their general intentions: prediction, understanding, 
emancipation, and deconstruction (see Stinson & Bullock, 2015). 

Table 1: Mapping Moments of Mathematics Education Research to Paradigms of Inquiry 
 

§ Process–Product Moment (1970s–)→Predict 
§ Interpretivist–Constructivist Moment (1980s–)→Understand 
§ Social-turn Moment (mid 1980s–)→Understand (albeit, contextualized understanding) or Emancipate (or 

oscillate between the two) 
§ Sociopolitical-turn Moment (2000s–)→Emancipate or Deconstruct (or oscillate between the two) 

 

 

Paradigms of Inquiry 
 

Predict Understand Emancipate  Deconstruct 
*Positivist 
Experimental 
Quasi-experimental 
Mixed Methods> 
 

*Interpretivist 
Social Constructivist 
Radical Constructivist 
Sociocultural> 
Phenomenological 
Ethnographic 
Symbolic Interaction 
 

*Critical 
<Feminist> 
Critical Race Theory> 
Latino/a Critical Race 
Theory> 
Critical Theories of Race> 
<Participatory Action 
Research 
Critical Ethnography 
 

   
   

BR
EA

K 

*Poststructural/ 
Postmodern 
Postcritical 
Postcolonial 
Posthumanist 
Post-Freudian 
<Discourse Analysis 
 

 

*Indicates the term most commonly used                                                                                                                      < or > Indicates cross-paradigm movement  
 

The Break in the original Lather and St. Pierre table indicated a shift from the Enlightenment humanist paradigms on the left to the post-Enlightenment, 
posthumanist paradigm on the right. Here it indicates a hybrid, in-between space where the researcher might adopt a critical postmodern theoretical 
tradition (see Stinson & Bullock, 2012, 2015). 
 

Paradigms of Inquiry adapted from Lather and St. Pierre in Lather, 2006, p. 37. 
 

 
The purpose in mapping the moments to larger inquiry paradigms is to illustrate the different 

theoretical and methodological possibilities within each moment. Although the table does not exhaust 
all possibilities, it does provide an expansive list of the kinds of research that might be undertaken 
within mathematics education. For instance, Table 1 illustrates that research in the process–product 
moment (beginning in the 1970s) is marked by attempts to predict “good” mathematics teaching by 
linking mathematics teachers’ classroom practices (process) to student outcomes (product). 
Grounded both theoretically and methodologically in positivist inferential statistics, cognitive and 
behavioral theories derived from experimental psychology and behaviorism are the primary 
theoretical traditions (e.g., Good & Grouws, 1979). The interpretivist–constructivist moment 
(beginning in the 1980s) attempts to understand mathematics teaching and learning rather than to 
predict it; interpretivist and constructivist theories derived principally out of sociology and 
developmental psychology are the primary theoretical traditions (e.g., Steffe & Tzur, 1994; 
Thompson, 1984). The acknowledgement that meaning, thinking, and reasoning are products of 
social activity in contexts marks the social-turn moment (beginning in the mid-1980s; see Lerman, 
2000b); theories drawn from disciplines such as cultural and social psychology, anthropology, and 
cultural sociology are the primary theoretical traditions (e.g., Boaler, 1999; Zevenbergen, 2000). And 
a shift toward recognizing knowledge, power, and identity as interwoven and arising from and 
constituted with and in sociocultural and sociopolitical discourses distinguishes the sociopolitical-
turn moment (beginning in the 2000s; see Gutiérrez, 2013); here critical and poststructural theories 
are the primary traditions (e.g., Gutstein, 2003; Walshaw, 2001).  
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Closing Thoughts 
In the foreword to Mathematics Education as a Research Domain: A Search for Identity, 

Sierpinska and Kilpatrick (1998) wrote— 

The theme of the ICMI Study reported in this book was formulated as a question: ‘What Is 
Research in Mathematics Education and What Are Its Results?’ No single agreed-upon and 
definite answer to the question, however, is to be found in these pages. What the reader will find 
instead is a multitude of answers, various analyses of the actual directions of research in 
mathematics education in different countries, and a number of visions for the future of that 
research. (p. x) 

These multiple answers and various analyses are clearly visible within the moments of 
mathematics education research as depicted in Table 1. Indeed, similar to researchers in education 
generally, researchers in mathematics education have experienced a proliferation of paradigms to 
think with when conducting research on the teaching and learning of mathematics. Similar to Lather 
(2006), we believe that this proliferation of paradigms is a good thing. Is it possible, then, to 
characterize mathematics education research? What can we say about its identity? In our view, an 
identity for mathematics education research is one that is fragmented, incomplete, and continually 
reconstituted within sociopolitical relations of power. Such a perspective refutes closure and keeps 
the possibilities for mathematics teaching and learning open to multiple and uncertain interpretations 
and analyses. 

Endnotes 
1. The text in this essay was extracted and revised from Stinson and Walshaw (in press).  
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ANALYTICAL FRAMEWORK FOR STUDYING INDUCTIVE REASONING IN 
MATHEMATICS TEACHERS WHEN SOLVING TASKS 
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An analytical framework is presented in order to characterize and analyze the evolution of inductive 
reasoning in mathematics teachers in relation to mathematical conceptualization. It is made up of 
four components: heuristic strategies, mathematical content, representations and stages of 
reasoning. It was constructed in order to analyze the written productions of secondary school 
teachers when solving generalization tasks by means of induction, implemented in a professional 
teaching development program focusing on the development of inductive reasoning. The use and 
scope of this analytical framework is discussed herein. 

Keywords: Reasoning and Proof, Teacher Education-Inservice/Professional Development, Middle 
School Education 

Introduction 
In general, it is accepted that the development of inductive reasoning maximizes mathematical 

learning processes, for example, in the recognition of patterns and regularities in the solution of non-
routine problems, by establishing conjectures, carrying out generalizations, developing arguments 
and mathematical tests (NCTM, 2000; Common Core State Standards Initiative, 2010). Empirical 
research supports the idea that argumentation based on inductive reasoning contributes to and 
supports the justification of conjectures and the construction of deductive tests (Papageorgiou, 2009; 
Conner, Singletary, Smith, Wagner & Francisco, 2014; Martinez & Pedemonte, 2014).  

Various studies have examined inductive reasoning from a cognitive point of view in relation to 
the understanding of mathematical knowledge in elemental education students, with some adhering 
to the definition of Klauer, Willmes and Phye (2002), who conceive this type of reasoning as an 
analytical skill focused on the detection of regularities and irregularities between the attributes and 
relationships of objects (e.g. Barkl, Porter & Ginns, 2012; Csapó, 1997). Other studies also in a 
cognitive framework have been based on Peirce’s notion of reasoning (e.g. Christou & Papageorgiou, 
2007; Papageorgiou, 2009). Some research (Cañadas & Castro, 2007: Cañadas, Castro & Castro, 
2008; Castro, Cañadas & Molina, 2010) has transcended to a wider, more complex vision of that 
which is inductive as a process inherent to the construction of mathematical knowledge and has 
placed emphasis on the formulation of a theoretical model of inductive reasoning by means of the 
identification of stages in its development in secondary school students. This paper is based on that 
vision. 

Within the framework of the professional development of teachers, on which the paper reported 
herein focuses, some have questioned the relationship between mathematical reasoning (inductive 
and deductive) and learning styles (Arslan, Ilkörücü and Seden, 2009), identifying types of reasoning 
in a mathematics class for trainee teachers (Soler-Álvarez and Manrique, 2014), as well as 
recognizing the connection between abductive – inductive reasoning in the generalization of patterns 
(Rivera & Becker, 2007). Very few studies have examined how to incorporate the inductive nature of 
reasoning associated with the construction of mathematical knowledge in experiences of the 
professional development of mathematics teachers. As a first step, in order to advance in this 
direction, we sought to characterize the inductive reasoning of working mathematics teachers in 
relation to their mathematical conceptualization. Bearing this in mind, the following analytical 
framework is proposed. 
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Analytical Framework of Inductive Reasoning in Their Solution of Tasks 
The analytical framework is based on a conceptual positioning of inductive reasoning or 

induction based on the epistemology of mathematics and science. Historically, the construction of 
mathematical knowledge has been socioculturally located in empirical inductive practices, as a way 
to move from the observation of concrete or individual realities to general abstract realities. Induction 
has been inherent in social and cognitive processes of construction of knowledge, which primarily 
begin with the study of specific cases and local patterns, which are rationalized in order to carry out a 
generalization. In this respect, the vision of inductive reasoning discussed in Castro et al. (2010) is 
shared. 

The framework is an adaptation of the model proposed by Cañadas y Castro (2007), in so far as it 
incorporates components that allow us to not only understand the reasoning, but also recognize the 
epistemic nature of mathematical concepts by the teacher. This is made up of four components. The 
first consists of the seven Stages of inductive reasoning of the aforementioned model, in which three 
components are incorporated as analysis tools: the heuristic resolution strategies, the mathematical 
content that is mobilized and the semiotic representations that allow us to recognize cognitive 
processes of reasoning and elements of mathematical conceptualization. The unit of analysis is 
comprised of each solution of tasks that involve inductive generalization processes for their solution. 
As far as methodical matters are concerned, the analysis components are: 

A. Stages of Inductive Reasoning. These do not necessarily occur in a linear form and some 
may not be necessary or may not appear in the solution. The stages of the model are (Cañadas 
y Castro, 2007, p. 69): Work with specific cases, organization of specific cases, identification 
of patterns, formulation of conjectures, justification of the conjectures, generalization and 
demonstration. 

B. Heuristic Strategies. According to Guzman (2007), the resolution of mathematical problems 
includes a heuristic component in relation to thinking processes and another component 
relating to the specific content of mathematical thinking. The analysis of heuristics is not 
only useful for elucidating the extent to which both concepts are linked, but also allows us to 
recognize the specific inductive strategies used by teachers and thus situate their level of 
reasoning. Cañadas, Castro and Castro (2008) define them as “the type of strategies that can 
be described in problems where induction can be used as heuristic” (p. 139). 

C. Mathematical Content. It is assumed that the mathematical conceptualization in teachers 
consists of signification and resignification processes based on the recognition of the 
epistemic nature of the concepts in a triadic relationship: procedural, conceptual and 
structural (Aparicio, Gómez & Sosa, 2017). All mathematical concept has a double 
complexity, the first is its dual nature: process – object (Gray & Tall, 1994). The idea of 
process refers to the “operational” or procedural quality that any mathematical object must 
have in order to act as an instrument, to be able to manipulate reality and express it in 
mathematical terms (signs, symbols and operations). The idea of object refers to the cognitive 
part (the notion, the idea, the thought, in general, that which is conceptual), which allows us 
to conceptualize a reality and look at it systemically. Such aspects need to be viewed as a 
more complex mathematical structures up to grade of using, explaining, and connecting 
relationships between objects in an aware way. Mason, Stephen and Watson (2009) call it 
structural thinking. 

D. External Representations. The cognitive processes of reasoning can be expressed and 
described using representations (e.g. Cañadas et al. 2008). Likewise, they are means of 
objectification for generalization (e.g. Radford, 2010).  
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Design of the Tasks 
Inductive reasoning involves the process of generalization oriented to the perception of the 

general in the particular (Kodnik y Manfreda, 2015). For the analysis, three tasks (T) were designed 
and structured so that the solution would lead to a process of generalization by induction. The 
epistemic elements of mathematics in designed tasks are associated with quadratic behavior between 
quantities and/or variables and imply notions such as: quadratic functions for modeling the area of a 
family of rectangles (T1), successions with quadratic behavior presented using geometric dot 
configurations (T2), and squared binomials as expressions of algebraic generalization of numerical 
relationships (T3). They focus on the establishing and justification of a conjecture, explicitly 
requested only in the third. 

Two examples of these tasks are shown in Figure 1, which were solved individually using a 
pencil and paper by two groups of secondary school mathematics teachers in Mexico. 
 
T1. With regards a family of rectangles, information 
has been provided in relation to the measurements of 
the base and area of three rectangles in graph form, as 
shown in the following illustration. 
. 

 
Generate an algebraic expression permitting the 
calculation of the value of the area of any rectangle in 
that family. Provide a detailed argument of the solution 
process. 

T2. Establish an algebraic expression in 
order to calculate the amount of dots 
needed for the i-th figure of the 
following sequence: 

 
 
Provide a detailed argument of the 
solution process.  

Figure 1. Examples of tasks for generalization by induction. 
 
In T1, for example, the identification of the quality or regularity between the lengths of the base 

and the height of a family of rectangles is established. The conjecture relates to the detection of a 
regularity on the semi-perimeter of the rectangles. The generalization of the conjecture may be 
established using the algebraic expression of a quadratic function. Said generalization allows for 
empirical justifications or analytical procedures for their demonstration. 

Discussion and Reflections 
In experiences of teacher professionalization in Mexico, it has been detected that the inductive 

reasoning prevails absent in the middle school mathematics teachers’ reflections when they propose 
school treatment of mathematical content and also when they interpret and solve problems. The 
analytical framework presented is a methodological tool of a study regarding the role of induction as 
a way to encourage processes of professional development of mathematics teachers. 

It has been formulated in order to carry out cognitive analyses (individual and group), which 
permit the description of inductive reasoning in teachers in relation to mathematical 
conceptualization based on the external representations used in the solution of generalization tasks by 
induction. If you are interested in a social analysis in order to identify the variables of the context that 
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influence or optimize the reasoning, then an analysis of the associated arguments would be 
appropriate. The integration of mathematical reasoning-content within the framework is important in 
order to recognize the aspects of the mathematical thinking of teachers that need to be enhanced, as 
well as to understand the epistemic nature of mathematics. 
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This study uses data from 434 students to explore how they think about vectors, and cross products in 
particular, by analyzing student responses to open-ended questions from an online, conceptually-
oriented, multivariable calculus cross product activity. We identify several categories that could 
outline a conceptual framework of student understanding of vectors and cross product. The analysis 
also identifies common transitional conceptualizations evidenced in student responses. 

Keywords: Technology, Post-Secondary Education, Advanced Mathematical Thinking  

Vectors play a foundational role in advanced mathematics; as a topic, they are firmly situated at 
the crossroads from secondary to post-secondary mathematics. Yet, most research regarding 
students’ understanding of vectors has been related to topics in the physics and engineering 
curriculum (e.g., Barniol & Zavala, 2014; Flores, Kanim, & Kautz, 2003; Nguyen & Metzler, 2003). 
There is little research on student understanding of vectors in post-secondary mathematics and what 
does exist tends to focus on linear algebra or geometry. Stewart and Thomas (2009) considered 
vectors in linear algebra by combining Dubinsky’s (1991) APOS (action-process-object) theory with 
Tall’s (2004) categorization of mathematical ways of thinking. Kwon (2013) worked in college 
geometry to identify three representations of a vector: vector as a translation, vector as a point and 
point as a vector, and geometrical vector sum. While basic vector concepts and vector arithmetic are 
often presented in secondary mathematics, students often do not experience vector dot and cross 
products until their post-secondary calculus courses.  

Previous research, some of which is cited above, suggests that students’ concept images of 
vectors develop in a rather fragmented manner, and students do not develop the rich conceptual 
knowledge required to relate alternate representations of vectors (Van Deventer & Wittmann, 2007). 
Despite the regular occurrence throughout the curriculum, students continue to have significant 
conceptual difficulties with vector concepts and manipulations. For instance, Knight (1995) found ~ 
40% of students in a college, calculus-based physics course had no idea what a vector was and not 
one was able to evaluate a vector cross product. 

The purpose of this study is to investigate students’ understanding of the cross product of vectors 
as they work through an online exploration activity with embedded questions.   

Theoretical Framing 
Conceptual understanding has been reported as “what is known (knowledge of concepts)...[and] 

the way that concepts can be known” (Star, 2005, p. 408). Many studies work from a deficit model 
concentrating on what is not known and highlighting misconceptions. However, a more productive 
way to study student understanding is to focus on how it develops. Transitional conceptions relate to 
students’ current notions of a concept that are cued by the task at hand and that may include what 
some would call misconceptions. Transitional conceptions are often not fully integrated in a coherent 
manner and tend to be in flux. They represent developing understanding and result from a sense-
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making activity. They may only address some (but not all) aspects of a concept and may be 
productive in some (but not all) contexts. The study of transitional conceptions in post-secondary 
mathematics is gaining traction (Chiu, Kessel, Moschkovich, & Muñoz-Nuñez, 2001; Cho & Moore-
Russo, 2014; Wolbert, Moore-Russo, & Son, 2016) and stands to provide a more nuanced view of 
student understanding (Moschkovich, 1999). To understand meaning-making processes, it is 
imperative that mathematics educators consider the transitional conceptions that occur when students 
are learning new concepts.  

Past research has considered the many “notions” or “components” associated with a single, 
particular concept in mathematics (e.g., work on slope by Moore-Russo, Conner, & Rugg, 2011; 
Nagle & Moore-Russo, 2013). Because there is scant research on transitional conceptions specific to 
vectors in multivariable calculus classes, this study aims to add to the existing body of knowledge, 
focusing, in particular, on students’ transitional conceptual understanding of the vector cross product. 
More specifically, this study looks to use student responses to: 

1. Identify key notions of vector cross product 
2. Determine common transitional conceptions for each key notion identified 

Data Collection and Analysis 
CalcPlot3D (Seeburger, 2016) is an online, freely available 3D-graphing applet that allows 

students to visualize and manipulate concepts, including vectors. It also offers discovery-learning 
activities for students to explore concepts. The data analyzed were the electronic responses of 434 
college-level multivariable calculus students to a sequence of four open-ended questions listed in 
Table 1 from an online activity related to vector cross products. In this activity, students were 
directed to a visual applet that contained two vectors (one red and one blue) along with their cross 
product. The two vectors were graphed with initial points situated at the origin in the xy-plane. 
Students could manipulate the length and direction of the two vectors on the xy-plane, and based on 
the students’ input, the applet automatically redrew the cross product, computed the magnitude of the 
cross product, and indicated the angle between the two given vectors. The data were collected over 
four years from students from a variety of U.S. post-secondary institutions including community 
colleges, four-year private colleges, and four-year public colleges.  

Table 1: Sequence of Open-Ended Data Collection Questions  
Question Description 

1 What is the geometric relationship between the cross product vector and the two vectors that form it?  

2 How is the cross product vector geometrically related to the two vectors that form it? 

3 For vectors of fixed length, but varying the direction of one of the vectors, when is the magnitude of the 
cross product at a maximum?  

4 For vectors of fixed length, but varying the direction of one of the vectors, when is the magnitude of the 
cross product at a minimum? 

 
A general inductive analysis was used for the data. The research team examined the data with no 

preconceptions allowing categories to emerge naturally after multiple passes through the data set 
based on their observations (Thomas, 2006). The first two authors read through the data set at least 
five times and then created categories for the different notions associated with vector cross product. 
They consulted with the other two authors to confirm the notion categories that were developed and 
to refine the category descriptions. The first and second authors coded all responses. With the 
exception of the miscellaneous category, all codes resulted in Krippendorff’s alpha above 0.80. The 
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first and second authors then came to a consensus on the few instances in which they were in 
disagreement and then further refined the category descriptions with input from the other two 
authors. Once the notions were identified, the research team then followed a similar process to 
identify transitional conceptions associated with each identified notion.  

Results and Discussion 
Table 2 displays the identified categories for seven notions that outline a conceptual framework 

for student understanding of vector cross product. The analysis also identified common transitional 
conceptualizations evidenced in student responses associated with these notions. Students also made 
other statements not directly related to the identified notions that were irrelevant or incoherent and 
involved x and y coordinates, quadrants, and vector addition. Student responses to the different 
questions often provided evidence of them having more than one notion about cross product. This 
would not have been apparent if only one or two open-ended questions had been used for data 
collection.  

Table 2: Notions Associated with Vector Cross Product 
Notion Common Transitional Conceptions 

The angle between two vectors 
must be between 0° and 180°. 

Students reported angles between the two vectors that were: 
• negative 
• greater than 180° (often a multiple of 180° or π) 

The cross product vector is 
orthogonal (perpendicular or 90°) 
from the two vectors that form it. 

Students made statements that while incorrect, lacking precision, or vague 
hinted at a consideration of orthogonality, such as the cross product is: 

• vertical to the two vectors that form it 
• perpendicular to the intersection of the initial two vectors 
• also in the plane that the vectors do not lie in 

The right hand rule or a statement 
that correctly addresses the need to 
attend to orientation of one vector 
relative to another. 

Students made statements that were either not precise or incorrect but 
suggested some consideration of the right hand rule, such as you curl your 
fingers in and the vector goes down. 

The magnitude (length) of cross 
product is equal to the area of 
parallelogram formed by the two 
vectors. 

Students wrote statements like the notion description but missing reference to: 
• the “area” of the parallelogram 
• the “length” or “magnitude” of the cross product. 

The frequency of the above cases suggests that this is more than just careless 
wording. Other students wrote less coherent statements that included the word 
parallelogram, such as the cross product forms a parallelogram or that 
referenced triangles rather than parallelograms. 

The magnitude of cross product 
equals ||axb||=|a||b| sinθ, or some 
related statement that involves a 
relation between the sine and the 
two vectors. 

Student responded with incorrect statements: 
• involving multiplication (often related to dot product) 
• that confused sine and cosine in the formula 

The angle between the vectors 
influences the magnitude of the 
cross product. 

Students made vague statements about how changing the angle between two 
vectors will affect the length of the cross product, such as the cross product 
depends on the angle between the two vectors.  

The length of the two vectors 
influences the magnitude of the 
cross product. 

Students made statements about the length of the cross product that were 
dependent on the specific vectors that they had been working with in the 
online learning activity, such as the maximum a cross product can be is 4. 

 
It is hoped that the students develop a more sophisticated conceptualization beyond the transitional 
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understanding evidenced in the data through further instructional intervention, but that was not the 
focus of this study. 

Limitation and Suggestions for Future Work 
Future work is needed to continue exploring student understanding of vectors. This should 

consist of further investigation of student’s transitional conceptions. More study is also needed to 
determine if and how students make connections between the various notions of vector cross product. 
Continued experimentation should include the study of instructional methods that have been 
successfully leveraged, either within the classroom or in an online platform, to help students develop 
a better understanding of vector cross product.  
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LEARNING TO BECOME A RESEARCHER IN AN ONGOING RESEARCH PROJECT: A 
COMMUNITIES OF PRACTICE PERSPECTIVE 
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We apply Wenger’s (1998) communities of practice ideas to the process of incorporating new 
researchers into an ongoing mathematics education research project. We illustrate this application 
by describing how the Leveraging MOSTs research project coding team can be viewed as a 
community of practice. We describe how we have used this particular community of practice to bring 
new researchers into the project, and new researchers reflect on their experiences with the coding 
team. Mutual engagement in project work with experienced researchers and having a rich shared 
repertoire to draw on led to the new researchers developing a shared understanding of the project 
and being successfully incorporated into the MOST community. This work speaks to the importance 
of deliberately creating communities of practice for new mathematics researchers to participate 
within.  

Keywords: Research Methods, Informal Education 

Researchers have found that participating in well-designed and effectively-implemented 
communities of practice (Wenger, 1998) supports preservice and in-service mathematics teachers’ 
professional learning (e.g., Goos & Bennison, 2008; Hodges & Cady, 2012). Applying Wenger’s 
ideas to research projects holds promise for increasing both the functionality of the project—by 
improving ways project staff work in community together—and the learning of new researchers. In 
this paper, we use Wenger’s ideas to make sense of how to develop synergy at the crossroads that 
occur when new researchers become part of an ongoing research community. 

Theoretical Framework: Applying Wenger’s Social Theory of Learning 
Wenger’s (1998) social theory of learning identifies three essential dimensions of a community of 

practice (CoP): mutual engagement, joint enterprise, and shared repertoire. Mutual engagement 
refers to participants’ regular interactions with others in a community; joint enterprise refers to 
participants’ common understanding of, and desires to, achieve the purposes of that community; and 
shared repertoire refers to the shared ways of doing things developed during mutual engagements for 
the joint enterprise of that community (e.g., routines, tools, artifacts, stories). Participating in a CoP 
enables individuals to interact with the others in that CoP, which in turn enables them to acquire 
meanings from these interactions. Negotiating these meanings with others in the CoP contributes to 
their learning (Wenger, 1998). Therefore, participation, negotiation of meaning, CoP and learning are 
all interpreted as interrelated and essential dynamics of Wenger’s social theory of learning.  

The National Science Foundation Collaborative Research Project Leveraging MOSTs 
(LeveragingMOSTs.org) is an example of a CoP. Researchers from Brigham Young University, 
Michigan Technological University, and Western Michigan University came together to work on the 
joint enterprise of investigating secondary school mathematics teachers’ productive use of student 
mathematical thinking during instruction. In line with this joint enterprise, researchers mutually 
engaged in practices (e.g., online and face-to-face meetings, data collection, data analysis), and these 
engagements produced tools, artifacts and shared ways of doing things (e.g., research reports, further 
research ideas, codebooks, meeting notes). As more researchers became involved and the scope of 
the work broadened, the MOST research project became a constellation. Constellation is a term used 
by Wenger (1998) to describe individual, but interacting CoPs in a system. For example, in the 
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MOST research project, teams work on analyzing the same data to answer different research 
questions; that is, they work on different but related parts of the joint enterprise. The interaction 
among these CoPs in the MOST constellation is primarily carried out by the principal investigators 
(PIs) of the project. Wenger (1998) defines such people—those who mutually engage in different 
CoPs in a constellation—as brokers. These brokers enable the joint enterprise and shared repertoire 
of the constellation as a whole. 

Wenger has also likened CoPs to “black boxes.” From the outside, it can be seen that there is a 
box, but since the box is opaque it is not possible to see what is inside it (Wenger, 1990). As 
newcomers’ understanding of a CoP increases, the box becomes more transparent until eventually 
they can see through it to the workings of the CoP. When the box finally becomes invisible, as if 
there is no box, the newcomer has been fully integrated into the CoP (Wenger, 1990). The difficult 
process of making the box transparent may explain why Wenger (1998) claimed that becoming a part 
of a CoP is a challenging process for newcomers. 

In longitudinal research projects, such as MOST, it is highly likely that new researchers will join 
the research team. Integrating these new researchers into a project CoP is essential for them to fully 
participate in pursuing the joint enterprise of the research team. Since this integration is a challenging 
process, there is a need to better understand productive ways for new researchers to join ongoing 
research projects. Toward this end, we explain our process for integrating new researchers into the 
MOST project and provide insights into how the opaque box of our CoP gradually became 
transparent for a recent group of researchers who joined the project. 

The MOST Coding Team as a Community of Practice 
Coding based on the MOST Analytic Framework (see Leatham, Peterson, Stockero, & 

Van Zoest, 2015) serves as the foundation for the vast majority of the CoPs in the MOST 
constellation. Thus, the joint enterprise of the coding CoP is to label and organize the data to enable 
further analysis by the other CoPs of the MOST constellation. As a result, the coding CoP is a logical 
place for new researchers to begin their participation in the MOST constellation. In the current 
coding CoP, there are five researchers who are new to the project and two PIs. Initially, all seven 
researchers met twice a week in online video meetings to work on the shared repertoire of the MOST 
constellation in general and of the coding CoP specifically. The main reifications in the shared 
repertoire of the MOST constellation for the coding CoP are publications related to the MOST 
Analytic Framework, the MOST codebook, and meeting notes. During the initial meetings, the PIs 
and the new researchers began coding a set of training data using the MOST Analytic Framework. 
After coding individually, the group met to reconcile their coding and discuss any discrepancies, 
connecting those discrepancies to the shared repertoire of the MOST project. Once the new 
researchers had established a basic working knowledge of the coding framework and its applications, 
the new researchers continued these online coding meetings on their own. The PIs occasionally 
rejoined the coding meetings to discuss issues that arose during the new researchers’ discussions and 
to serve as brokers of knowledge for the CoPs in the MOST constellation. These different types of 
meetings were the main source of mutual engagement for the coding CoP, which enabled the new 
researchers to negotiate meanings about the coding process. 

The Voices of New Researchers: Reflections on How the Opaque Box of the Coding CoP 
Became Transparent 

The first step to participating in the MOST constellation and the coding CoP was to understand 
the constellation itself. In order to do this, we were given access to artifacts such as published 
articles, the NSF grant proposal, previous meeting notes, and the MOST codebook. Having this rich 
shared repertoire helped us to develop a general understanding of the constellation of the MOST 
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project: why this research is being done, how this research is being done, and outcomes of the 
research. After this process, we had a general sense of the joint enterprise of the MOST research 
team and the coding CoP, so we tried coding the training data using the MOST codebook—what 
would become our most important artifact. 

At this point, the black box of the coding CoP had only become slightly less opaque for us as 
new researchers, and we needed mutual engagement with brokers regularly to help make the box 
more transparent. During our initial coding CoP meetings, the PIs helped us to make sense of an 
important aspect of the joint enterprise of the CoP through the application and understanding of the 
coding framework. At first, we asked a lot of questions to help us determine what was in the opaque 
box, but after the box became a little more transparent, our questions changed to discussions with the 
brokers about how things should be coded. In other words, we could see into the box enough to 
discuss its inner workings. Through these mutual engagements, we gained a better understanding of 
the joint enterprise of the coding CoP. 

The next step to becoming full participants in the coding CoP was for us to continue our 
discussions and try to reach agreements on coding the training data without the direct help of the 
brokers. At this point, the box had become transparent enough that we could discuss it using the 
codebook as our main resource. During this period, we felt that we were increasing the transparency 
of the box. However, our developing understanding did not mean that we had fully internalized the 
joint enterprise of the coding CoP and were using the shared repertoire in an authentic way. 
Therefore, occasional mutual engagement with the brokers was still crucial to maintain alignment 
with the MOST project’s joint enterprise and shared repertoire. For example, as new researchers, we 
thought that it was always important to focus on very small details of what we were coding, but as 
the brokers explained, we could not do this at the expense of looking at the bigger picture. 
Eventually, we got to a point where we felt that the box had become transparent and the 
understanding of the CoP that had been captured by the codebook had been transformed back into 
understanding for us as new researchers. The brokers agreed that we were well on our way to 
becoming full participants in the coding CoP. This does not mean that the box was invisible—there 
were still aspects of the joint enterprise that we did not fully understand—but the box had become 
transparent enough that we were able to move to more central participation in the coding CoP by 
engaging with coding not-yet-coded data from the project. 

Discussion & Conclusion 
The reflections of new researchers in the MOST coding CoP revealed the process they went 

through during their integration into the MOST project. After developing a general understanding of 
the project through engaging with reifications of project work, the new researchers improved their 
understanding of the joint enterprise of the coding CoP through mutual engagements with each other 
and experienced researchers from the project. As a result of this process, these new researchers 
moved from being peripheral participants towards being central participants in the MOST research 
project. There were two significant contributors to their learning to become full participants in the 
MOST constellation: (1) having a rich shared repertoire, and (2) mutually engaging with the other 
new researchers and brokers. The rich shared repertoire in the MOST constellation helped the new 
researchers to gain a general understanding of the joint enterprise of the MOST constellation and the 
coding CoP. Their mutual engagement with the other new researchers in the coding CoP allowed 
them to develop their own thinking about the shared repertoire, while the mutual engagement with 
the brokers of the MOST constellation calibrated their shared repertoire with that of the larger 
project. Thus, our experiences integrating new researchers into the MOST project support Wenger’s 
(1998) claim that participation and reification work as complementary pieces of learning. It appears 
that neither rich reifications nor mutual engagements of researchers are sufficient on their own to 
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make the box completely transparent. Rather, making the box completely transparent for new 
researchers requires blending the shared repertoire of the research team with the mutual engagements 
of both new and experienced researchers.  

Our experience is an example of how Wenger’s (1998) communities of practice ideas can be used 
to make sense of how to develop synergy at the crossroads that occur when new researchers become 
part of an ongoing research community. Applying Wenger’s ideas to the MOST research project 
helped to integrate new researchers into our project and prepared them to be central participants in 
the work. We encourage other research projects to carefully design and effectively implement CoPs. 
Specifically, we emphasize the importance of research projects both intentionally developing rich 
reifications of their shared repertoire to serve as the foundation for new researchers’ participation in 
their projects and deliberately creating opportunities for new researchers to mutually engage with 
each other and experienced researchers.  
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The purpose of this study was to investigate the effects of student-level and school-level factors on 
mathematics achievement in four countries including Finland, South Korea, Taiwan, and Turkey. 
Based on 8th grade students’ responses to a student questionnaire and a mathematics test, and 
school principals’ responses to a school questionnaire, the data of the Trends in International 
Mathematics and Science Study (TIMSS) 2011 were analyzed using Hierarchical Linear Modeling. 
The results revealed that students’ having educational resources at home, their self-confidence in 
mathematics, and schools’ emphasis on academic achievement were the common factors that 
influenced mathematics achievement in all four countries. However, no significant effects of 
education levels of fathers, fights or physical injuries to other students, and lack of resources for 
mathematics instruction on students’ mathematics achievement were found. 

Keywords: Research Methods, Middle School Education, Data Analysis and Statistics 

Purpose and Background 
Large-scale assessment programs such as the Trends in International Mathematics and Science 

Study (TIMSS) and the Program for International Student Assessment (PISA) are two main programs 
that provide countries opportunities to monitor their relative rankings and to shape their educational 
policies for the sake of improving their education systems. Because countries need citizens with high 
competence in mathematics and science for surviving in the global economy, it is important to 
analyze such data sets by detecting similarities and differences across the countries in terms of their 
students’ mathematics and science achievement.  

In the analyses of TIMSS and PISA to date, many statistical techniques have been used to explain 
mathematics and science achievement including analysis of variance (e.g., Pahlke, Hyde, & Mertz, 
2013), multiple regression (e.g., Sulku & Abdioglu, 2015), structural equation modeling (SEM; e.g., 
Kalender & Berberoğlu, 2009), and hierarchical linear modeling (HLM; e.g., Wang, Osterlind, & 
Bergin, 2012). In this study, HLM was preferred as a statistical technique over other techniques 
because TIMSS and PISA data are nested in nature (i.e., students are nested within schools) and 
HLM is an appropriate technique to account for the nesting of students within schools.  

Due to the complexity of mathematics achievement, past research has provided contradictory 
results about the effects of student, home-family background, and school related factors on students’ 
mathematics achievement. For example, while some studies (e.g., Chiu, 2010) pointed out that school 
related factors have little role in contributing to students’ mathematics achievement, some other 
studies (e.g., Edmonds, 1979) reported that school makes a difference on achievement. Similarly, 
while some studies (e.g., Papanastasiou, 2002) suggested that students’ attitudes towards 
mathematics and their beliefs about success in mathematics did not influence their mathematics 
achievement, several other studies (e.g., Berberoğlu, Çelebi, Özdemir, Uysal, and Yayan, 2003) 
documented that factors such as students’ perception of failure or success in mathematics greatly 
influenced students’ mathematics achievement. 

The purpose of this study was to compare the effects of student- and school-level factors on 8th 
grade students’ mathematics achievement in Finland, South Korea, Taiwan, and Turkey using 
TIMSS 2011 data. The results of this study contribute to the literature by helping reconcile the 
contradictory findings reported so far on the effects of student- and school-level factors, and this will 
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enable policy-makers to distinguish similarities and differences in the four countries and to shape 
their education systems. In this study, the following research questions were addressed: 

1. Which student-level factors contribute to mathematics achievement of 8th grade students in 
Finland, South Korea, Taiwan, and Turkey?  

2. Which school-level factors contribute to mathematics achievement of 8th grade students in 
Finland, South Korea, Taiwan, and Turkey?  

The student-level factors of this study were MotherEducation (i.e., Education levels of mothers), 
FatherEducation (i.e., Education levels of fathers), HomeResources (i.e., Educational home 
resources), Bullying (i.e., Bullying at school), LikeMath (i.e., Like learning mathematics), ValueMath 
(i.e., Value learning mathematics), and ConfidenceMath (i.e., Self-confidence in mathematics). In 
addition, the school-level factors were IncomeArea (i.e., Schools’ immediate area), JobSatisfaction 
(i.e., Teachers’ job satisfaction), Intimidation (i.e., Intimidation or verbal abuse among students), 
Fights (i.e., Fights or physical injuries to other students), LackofResources (i.e., Lack of resources 
affecting instruction), SchoolEmphasis (i.e., Schools’ emphasis on academic achievement), and 
SchoolDiscipline (i.e., School discipline and safety).  

Methods 

Participants and Instruments 
A two-stage sampling design, with the selection of a sample of schools, and then the selection of 

randomly sampled one or two classes in each school was used in this study. 
 

Table 1: Descriptive Statistics by Country 
Country     number of schools   number of students       Rank Mean Score 
Finland            131          3626          8 514 

South Korea            147          5015          1 613 
Taiwan            149          4958          3 609 
Turkey            236          6502          24            452 

 
The data for this study consisted of 8th grade students’ responses to the TIMSS 2011 Student 

Questionnaire about their home and school lives, and the Mathematics Test, and school principals’ 
responses to the TIMSS 2011 School Questionnaire about school environment such as school 
resources, and roles of the principals (Mullis, Martin, Foy, & Arora, 2012). 

Data Analysis 
Model building approach using HLM (Raudenbush & Bryk, 2002) was followed in this study to 

study the incremental contribution of student-level and school-level factors in explaining 
mathematics achievement. As the first step, unconditional models, which do not contain any student- 
or school-level factors were estimated for each country. The second step estimated was the random 
coefficients models containing only student-level factors. Finally, the third step estimated was the 
full contextual models with both student- and school-level factors.  

In each step, model building approach was pursued through model comparisons using Likelihood 
Ratio Test used to compare deviance values of two nested models. Deviance represents the badness 
of fit of a given model, and subtracting the deviance of the simpler model from the deviance of the 
more complex model demonstrates the change in the deviance values. HLM 7.00 software 
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(Raudenbush, Bryk, & Congdon, 2011) was used to build a two-level HLM model. To handle 
missing data, listwise deletion was performed before starting the analysis.   

Results 

HLM models 
Unconditional models were found to be same for each country. Regarding intra-class correlation 

(ICC) values, the largest variance between schools was in Turkey (31%), and the smallest variance 
was in South Korea (9%), indicating another evidence for the use of HLM in this study. Fixed effects 
of final mathematics achievement models for each country are given in Table 2.  
 

Table 2: Fixed Effects of Student- and School-Level Factors in the Final HLM Models 
        Finland     South Korea     Taiwan           Turkey  

Grand mean, 𝛾!! 
          Student Level 

  701.17**(10.62)    948.56**(7.38)  975.83**(17.03)   807.34**(17.50)  

MotherEducation, 𝛾!" —    — —     5.21**(0.79)  
FatherEducation, 𝛾!" 
HomeResources, 𝛾!" 
Bullying, 𝛾!" 
LikeMath, 𝛾!" 
ValueMath, 𝛾!" 
ConfidenceMath, 𝛾!"  
         School Level 
IncomeArea, 𝛾!" 
JobSatisfaction, 𝛾!" 
Intimidation, 𝛾!" 
Fights, 𝛾!" 
LackofResources, 𝛾!" 
SchoolEmphasis, 𝛾!" 
SchoolDiscipline, 𝛾!" 

   — 
   20.13**(2.07) 
    -4.81**(1.41) 

— 
 2.54*(1.24)   

 47.47**(1.19)   
 

— 
— 

   -6.66(3.57) 
— 
— 

   7.98*(3.45)    
   13.75**(4.03) 

 —     
40.05**(1.93) 

 — 
    13.46**(1.96)              
   17.95**(1.66)         
   57.77**(2.25) 

     
      12.30**(2.28) 

      -1.69(2.22) 
  — 
  — 
  —             

6.67*(2.71) 
 — 

— 
35.55**(2.34) 

— 
 22.30**(2.26) 
 10.60**(1.87) 
 44.87**(2.42) 

 
  29.63**(6.92) 

 — 
  — 
  — 
  — 

  20.14**(5.82) 
  — 

            — 
   30.27**(2.10) 
    -3.72*(1.58) 
           — 
           — 
   63.72**(1.60) 
 
           — 
           — 
           — 
           — 
           — 
  33.09**(5.48) 
  12.51*(3.93) 

 

— not statistically significant, and significantly worse model, therefore removed from the model 
* p < 0.01 ; ** p < 0.001 ; otherwise, not significant; Round brackets indicate standard errors 
 

Based on Table 2, FatherEducation, Fights and LackofResources had no effects on students’ 
mathematics achievement in any of the four countries. While MotherEducation had an effect only in 
Turkey, HomeResources, ConfidenceMath and SchoolEmphasis were found to influence students’ 
mathematics achievement in all four countries. Moreover, there was a significant negative 
relationship between Bullying and mathematics achievement in Finland and Turkey, but not in South 
Korea and Taiwan. Similarly, LikeMath and IncomeArea did not contribute to students’ mathematics 
achievement in Finland and Turkey, but they did in South Korea and Taiwan. Finally, 
SchoolDiscipline was related to students’ mathematics achievement in Finland and Turkey, but not in 
South Korea and Taiwan.  

Conclusion and Discussion  
Based on the results, in Finland, the final mathematics achievement model consisted of 

HomeResources, Bullying, ValueMath, and ConfidenceMath at the student level; Intimidation, 
SchoolEmphasis, and SchoolDiscipline at the school-level. Bullying at school and intimidation or 
verbal abuse among students such as texting might prevent Finnish students from spending less time 
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with mathematics. In South Korea, the student-level factors were HomeResources, LikeMath, 
ValueMath, and Confidence-Math; and the school-level factors were IncomeArea, JobSatisfaction, 
and SchoolEmphasis. The results suggest that affective characteristics such as enjoyment of learning 
mathematics, value of learning mathematics, and self-confidence in mathematics are important 
factors for South Korean students to perform better in mathematics. In Taiwan, the student- and 
school level factors were found to be exactly the same as those of South Korea except 
JobSatisfaction. In Turkey, the final mathematics achievement model included MotherEducation, 
HomeResources, Bullying, and ConfidenceMath at the student-level; SchoolEmphasis and 
SchoolDiscipline at the school level. While the strongest predictors of mathematics achievement for 
Turkish students were ConfidenceMath and SchoolEmphasis, the weakest predictors were Bullying 
and SchoolDiscipline. Hence, more focus, in Turkey, should be given on placing high academic 
standards at schools and increasing students’ confidence levels. 

In conclusion, HomeResources, ConfidenceMath, and SchoolEmphasis were the common factors 
reported here regarding their contributions to students’ mathematics achievement in all four 
countries. The more educational resources are available at home, the more self-confidence students 
have and the more emphasis on academic achievement at schools is, the better students’ mathematics 
performances will be. Although there was no causal evidence in this study about the relationships 
among mathematics achievement and these factors, the consistent positive relationship among them 
in each country suggests that HomeResources, ConfidenceMath, and SchoolEmphasis are critical and 
necessary characteristics of mathematics achievement. 
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In this paper, we present a set of principles used to co-design a statewide professional development 
initiative to support the implementation of new high school mathematics standards. We describe the 
focus of our research-practice partnership, use of design-based implementation research to organize 
a collaborative work, theoretical perspective on learning, and design principles for learning 
environments and infrastructures to support learning at scale. 

Keywords: Standards, Research Methods, Design Experiments  

As mathematics educators, we believe that research in our field can improve mathematics 
teaching and lead to more equitable learning opportunities and outcomes for children in schools. Yet, 
the disconnect between evidence from the research community and its use in practice and policy 
remains a significant challenge to educational improvement (Battista, 2007). In recent years, there 
has been increased interest in collaborative research and development where researchers and 
practitioners work together on persistent problems of practice. For researchers, research-practice 
partnerships provide opportunities to design and research innovations that are both timely and useful 
in practice, thus promoting the development of theories of implementation (Penuel & Farrell, in 
press). For practitioners, partnerships provide opportunities to work closely with researchers to 
generate solutions to problems of practice that are timely and relevant. Evidence from 
implementation research suggests research-practice partnerships are a promising approach for 
improving practice (Coburn et al., 2013). 

The goal of this paper is to present a set of principles that guided the initial design of a multi-
year, statewide professional development initiative to implement new mathematics standards and 
promote more equitable learning opportunities and outcomes for each and every student in schools. 
As part of a design-based implementation research (DBIR) (Fishman et al., 2013) study to identify 
and create mechanisms to promote the use of research in practice, this paper describes our initial 
claims about organizing respectful and productive professional learning opportunities for 
mathematics teachers and leaders at scale. We begin by describing the background and context of our 
research-practice partnership. Next, we outline our theoretical perspectives on learning and 
implementation. We then offer a set of design principles that translate our theoretical perspective into 
an initial design and provide an example to illustrate the ways the principles reflect our overarching 
conjecture about learning. 

Background 
The partnership began when our state initiated a process of reviewing and revising the Common 

Core State Standards. A group of mathematics teachers, district and state leaders, mathematicians, 
and education researchers were convened to review data collected from multiple stakeholder groups, 
a set of recommendations from a legislatively appointed committee, and research on student learning 
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to inform a new set of high school mathematics standards for three integrated and sequenced high 
school mathematics courses. During the process, the group voiced concerns over previous efforts to 
implement standards and shared their commitments to better supporting teachers, schools, and 
districts with timely instructional resources and quality professional learning opportunities. In June of 
2016, the new standards were adopted and scheduled to be implemented the next academic year 
(August, 2016). After the official adoption, the state agency initiated a formal partnership with our 
institutions to co-design and study a statewide professional development initiative to support efforts 
to implement the new standards. 

We elected to use DBIR to organize our work. As an approach to collaborative research and 
development, DBIR focuses not only on developing tools and environments for learning but also on 
creating structures and supports to scale and sustain them (Fishman et al., 2013). Partners agree to 
focus on a problem of practice and commit resources to co-design tools and learning environments to 
address the problem with attention to scale. During implementation, they seek to both improve the 
design and generate theories of learning and implementation through research. They also create 
supporting infrastructures to develop capacity and sustainability. 

Through negotiation, we agreed to focus on designing professional learning opportunities to 
share research on mathematics learning and teaching as a means of supporting the standards 
implementation. To this shared problem of practice, partners brought a broad range of resources. 
Teachers, researchers, and leaders collectively brought expertise in mathematics content, research on 
teacher learning, mathematics education, educational leadership, state and district policy, and the 
contexts of classrooms. Some brought experience in establishing systems for communication, others 
brought knowledge of research underlying revised standards and skills at conducting research. In 
what follows, we provide an overview of our efforts at co-designing by first describing our 
theoretical perspective and overarching conjecture about learning. 

Theoretical Perspectives 
Our initial design follows from a theoretical perspective of learning as a transformation of 

participation in practice (Lave & Wenger, 1991; Wenger, 1998). Wenger (1998) outlines learning as 
social participation in the practices of communities and forming identities. He defines practice as 
representing social, contextual, and historical ways of belonging that reside within and among 
members of communities. He outlines three dimensions of practice that bring coherence to a 
community – mutual engagement, joint enterprise, and shared repertoire. Because practice is a 
defining characteristics of a community, communities are formed by collaboratively engaging with 
common resources (e.g. routines, tools, language) toward a common goal. As members participate in 
the practices of the community, they negotiate new meanings and refine their practice.  From this 
perspective, learning occurs as an ongoing negotiation of meaning within the community. 

Though boundaries of practice distinguish communities across the social landscape, they are also 
a source of new learning. In boundary encounters, members of distinct communities come together 
and negotiate meaning around boundary objects - artifacts that carry meaning in multiple 
communities and support knowledge exchange. In boundary encounters, as engagement around 
boundary objects occur, members from these distinct communities introduce, negotiate, and integrate 
elements of other practices with their own and over time form boundary practices that are distinct to 
the boundary community. Thus, learning also occurs through ongoing negotiations of meaning in 
boundary encounters which may result in the incorporation of new elements of practice in their 
respective communities.  

Large enterprises, which may be too diverse to consider a single community or a small set of 
boundary communities, still share a number of related yet distinct practices with a similar goal. These 
“constellations of practices” (Wenger, 1998, p. 127), while distinct in some ways, are aligned toward 
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some common focus and share commonalities (e.g. history, shared artifacts, geography).  To enable 
connections of practice among the communities in the constellation, Wenger suggests infrastructures 
that enable coherence and alignment across the constellation as key components of any design for 
learning.  

Wenger (1998) uses the idea of a “learning architecture” to describe necessary elements and 
decisions one makes when designing for learning. Central to a learning architecture are 
infrastructures that enable alignment and meaningful engagement across the design. Given this 
perspective, we view teachers, school districts, state leaders, and researchers as members of distinct 
communities of practice within a constellation of mathematics educators within the state focused on 
implementing new mathematics standards and promoting more equitable learning opportunities and 
outcomes for each and every student.  

Principles for Designing Architecture for Learning  
To translate this theoretical perspective into a learning architecture, we began by reviewing 

literature on learning, professional development, mathematics teacher learning, implementation, and 
infrastructures to identify key ideas about learning in boundaries. Based on this review and the 
shared experiences in professional development within the partnership, we articulated a set of design 
principles to connect our theoretical perspective on learning to the specific learning environments – 
including the tasks, tools, participation structures, and discursive practices – and the infrastructures 
we aimed to design. The principles that guide our efforts to co-design a learning architecture to 
promote and sustain learning across boundaries of practice are described below. Principles related to 
learning environments that promote professional learning: 

1. Build from the consensus view of effective professional development (Desimone, 2009) by 
providing access to safe and respectful opportunities to learn, fostering professional 
relationships (Darling-Hammond et al., 2009), and eliciting and using teachers’ and leaders’ 
expertise, contexts, and histories as resources for learning (Bransford et al., 2000; Goldsmith 
et al., 2014).  

2. Focus on the social, cultural, and mathematical resources students bring to instruction (Civil, 
2002). 

3. Balance immediate support with participation structures that foster engagement by 
elucidating limitations of previous practice (Spillane et al., 2002; Stein & Coburn, 2008). 

4. Utilize tools designed to introduce findings from research on student learning in mathematics 
and mathematics instruction (Bell & Rhinehart, 2016). 

Principles related to infrastructures that build capacity for sustained change: 

5. Coordinate resources and tools across the architecture to increase coherence (Hopkins et al., 
2013; Wenger, 1998). 

6. Make tools available for teachers and leaders to enlist parents, families, and community 
members as partners in students’ mathematics education (Dantec & Disalvo, 2013). 

To illustrate our use of the principles, we share the design of a closed webspace created for 
teachers and leaders as part of the implementation efforts. The list below outlines key features of the 
webspace that follow from one or more of the principles. For example, design feature 3 follows from 
principles 2, 4, and 5.  

1. Use space to focus on discussions of student work and a forthcoming research brief series on 
equity in mathematics education 
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2. Use space as a repository for resources and means for discussion 
3. Use space to promote the use of research on student and teacher learning through attention to 

designed content and pedagogy briefs 
4. Use space to maintain access to recordings of prior webinars and regional meetings 
5. Use space to promote the use of resources to support parents and community in 

understanding the new standards. 

Conclusion 
The principles outlined in this paper guided the translation of our theoretical perspective on 

learning into our initial design. Currently, we are conducting ongoing analyses of teachers’ and 
leaders’ participation to refine aspects of the learning architecture, investigate ways of improving 
infrastructures, and identifying additional elements to promote learning at scale. As we consider the 
conference theme, “Synergy at the Crossroads”, we see partnerships with practitioners, not only 
sitting at the intersection of theory and practice, but doing so in a way that has the potential of 
significantly affect change at scale.  
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Preparing beginning teachers to use instructional representations remains a significant challenge, in 
part because both knowledge and motivation are required. In this conceptual paper, the author uses 
the distinction between the Piagetian constructs of reflecting versus reflected abstraction as a lens to 
examine the central problem of teachers’ intertwined knowledge and motivation for using 
instructional representations. Learning to use instructional representations of mathematical concepts 
may require a different kind of cognitive process than does learning the concepts themselves. The 
author argues that conceptual knowledge decreases teachers’ intellectual need for representing 
foundational ideas. Pedagogical need is introduced as an alternative source of motivation. 

Keywords: Teacher Knowledge, Teacher Beliefs, Teacher Education-Preservice 

Instructional representations such as base ten blocks and number lines are an essential component 
of effective mathematics instruction in the elementary grades. Unfortunately, preparing beginning 
teachers to use instructional representations remains a significant challenge (Inoue, 2009; Kinach, 
2002). Effective use requires knowledge (Izsák, 2008; Mitchell, Charalambos, & Hill, 2014), but 
knowledge is not enough. In a national sample of middle grade teachers—many with elementary 
certification—Jacobson and Izsák (2015) found knowledge was correlated with representation use in 
the classroom only to the extent that teachers were also motivated to use instructional 
representations. Without understanding how teachers’ knowledge and motivation are intertwined, the 
problem of preparing effective elementary teachers remains.  

I describe an initial theoretical account of both (1) why it is hard for teachers to develop 
knowledge and motivation to use instructional representations and (2) how such development might 
occur. I contrast an example of a student who is using a representation to develop new understanding 
with a preservice teacher (PST) who is using a representation to explain a concept they already 
understand. The examples emphasize a key difference between students who are learning 
mathematical concepts and PSTs who already understand them, a difference that I explicate using the 
Piagetian construct of reflecting abstraction. Finally, I extend the examples to contrast motivation for 
understanding new concepts with motivation for explaining concepts that are already understood. I 
conclude with implications for teacher education and research. 

Teachers’ Conceptual Understanding of Instructional Representations 
Instructional representations feature prominently in characterizations of teachers’ professional 

knowledge. Introducing the seminal notion of pedagogical content knowledge (PCK), Shulman, 
(1986, p. 9) described two categories of teacher work: appraising students’ conceptions and 
reasoning and selecting and using instructional representations. Because students often use 
representations to communicate their reasoning, both categories rely on teachers’ knowledge of 
instructional representations.  

Distinguishing PCK from disciplinary knowledge reveals a central problem of teacher 
knowledge: Disciplinary knowledge—the ultimate goal of instruction—is compressed and highly 
structured and thus insufficient to do the work of teaching; instead, teachers need knowledge that is 
“unpacked” (Ball & Bass, 2000). The challenge for teacher education is that PSTs often lack both 
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disciplinary knowledge as well as PCK. PSTs who develop disciplinary knowledge in teacher 
preparation content courses may find that what they know is ‘packed’ and thus less useful for the 
work of teaching. In methods classes, PSTs may struggle to apply what they understand about 
mathematics to the problems of teaching and learning. 

I draw on a Piagetian distinction to contrast representation to learn and representation of what has 
been learned. Learners who coordinate simple concepts to achieve a goal can—often 
unconsciously—encapsulate their coordinated activity as a new concept. This process is driven by 
reflecting abstraction in which knowledge is reorganized to a higher level of cognition (e.g., from 
physical actions to mental operations; Piaget, 2001). The new resulting concept can then be used to 
achieve similar goals as previously were achieved through the coordination, but without need of the 
previously coordinated concepts. Piaget (2001) distinguished reflecting abstraction from reflected 
abstraction which involves consciously reflecting on a complex concept to become aware of ways it 
might arise from reorganizing simpler concepts (Tillema & Hackenberg, 2011). Using the distinction 
as a lens to examine instructional representations has promise for untangling the central problem of 
teachers’ disciplinary knowledge. 

The work of Kylie, a 4th grade student discussed by Simon, Placa, and Avitzur (2016), illustrates 
how representations support reflecting abstraction. Figure 1a shows how she solved a fraction task. 
Asked to find 1/6 given a region named 1/3, she first iterated the region to recreate the whole (Step 
2), then partitioned 1/3 (Step 3) to find a part such that 6 parts would make the whole. On the third 
such task, Kylie found the required part without iterating to the whole or partitioning it; she went 
directly from Step 1 to Step 4 in Figure 1 by using whole number division to appropriately partition 
the initial part. This change evidenced reflecting abstraction because she learned a new concept that 
went beyond the simple concepts she had previously coordinated. Now “she could produce 1/mn 
from 1/n by partitioning 1/n into m parts” (p. 78), but she no longer needed to think explicitly about 
the common whole, even less to draw it out.  

 

 
 

Figure 1. Sequences of instructional representation (a) from Kylie, a student, using drawings to find 
1/6 given 1/3 by iterating to find the whole and then partitioning, and (b) from Alan, a PST, using 

base ten blocks to illustrate how he solved 120 + 96 by adding 100 and subtracting 4. 
 
Reflecting abstraction undergirds mathematics learning but simultaneously it makes teaching 

difficult. Once a new, more powerful concept is constructed, the simple concepts from which it 
came—and from which someone else might be able learn—no longer seem relevant because the new 
concept changes how a problem is perceived. To illustrate this point, consider the instructional 
explanation offered by Alan, a PST who was asked to use base ten blocks to explain the solution of 
120 + 96 to a student (Figure 1b). His said he would add 100 and subtract 4, and he illustrated this by 

1 2 3 4

(a)

(b)

2a

2b

3a

3b
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moving in a 100-flat (Step 2a) and four 1-cubes (Step 2b). Then he said the answer was 216 without 
further explanation.  He represented 216 by moving out two 10-longs (Step 3a) and moving in one 
10-long and two 1-cubes (Step 3b). From an observer’s perspective, the quantitative meaning of the 4 
cubes changed dramatically; in Step 2 they represented 4 to be subtracted from 220 but in Step 3 they 
were part of the remaining 216. Alan gave no indication he was attending to quantitative meaning as 
he transformed the materials. 

One possible explanation for these data is that Alan had already constructed a powerful concept 
for multi-digit addition; his knowledge was “packed.” Because the answer was obvious to him, Step 
3 was only a convenient way to show the answer, not an attempt to justify it. It was like a scene 
change between acts in a play—on stage but not meant to be seen. Alan’s representational activity 
with base ten blocks was different in kind than Kylie’s work on the first problem. Unlike Kylie’s 
reasoning before the reflecting abstraction, Alan’s reasoning did not depend on the instructional 
representation because of prior reflecting abstraction.  

PSTs’ explanations sometimes involve quantitatively incoherent use of instructional 
representations because after reflecting abstraction solutions do not depend on representation use. 
This observation clarifies the goals for teacher education: we must help PSTs value representations 
for showing how simple concepts underlie complex ones. Indeed, prior work has described how 
instructional representations can be an important catalyst for teacher learning (e.g., Kinach, 2002). 
Here is the novel insight: Teacher learning from representations can be characterized by reflected 
abstraction (Piaget, 2001). Just as instructional representations can help students learn concepts by 
providing a context for reflecting abstraction, I conjecture that representations can help teachers by 
providing a resource for reflected abstraction.  

Teachers Motivation to Use Instructional Representations 
In this section I start with the premise that motivation is critical to learning, and contribute a 

novel argument. In sum, the motivation to teach mathematics has a fundamentally different nature 
than motivation to learn mathematics because the need that drives each activity is different. This 
difference in motivation parallels the previous difference in representation. 

I begin with the concept of intellectual need, and I paraphrase of a recent definition provided by 
Harel (2013). Suppose an individual encounters a mathematical problem that cannot be solved with 
their current state of knowledge. After some time working on the problem, suppose further that she is 
able to solve it. We would attribute new knowledge to her, and the intellectual need for that new 
knowledge is simply the problem that was at first unsolvable. She has an intellectual need for the 
new knowledge precisely because it enabled her to solve the problem. 

To understand how the problem of teacher motivation is related to mathematical knowledge, it is 
helpful to return to the example of Kylie (Simon et. al, 2016). At first, Kylie said she had no idea 
how to solve the fraction tasks and had to draw out the whole; yet by the third task, her new concept 
made drawing unnecessary. Suppose that when Kylie grows up she becomes an elementary teacher. 
Responsible for teaching the same problem, what would motivate her to represent the whole by 
iterating 1/3 (Figure 1a, Step 2) since, because of her conceptual knowledge, partitioning 1/3 directly 
(Step 4) is now obvious? Even after reflected abstraction to gain conscious awareness of the 
fundamental role of the whole in her partitioning concept, the extra drawing is more work, takes 
more time, and no longer fulfills an intellectual need. Instead of being necessary for Kylie, drawing 
the whole is inefficient and laborious. 

It follows from this thought experiment that representing simple component concepts once one 
knows the higher-level concept does not satisfy personal intellectual need. Instead of motivating 
PSTs by focusing on their own personal intellectual need, teacher educators might be more 
successful at motivating PSTs to use instructional representations if they can clarify and make 
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explicit the pedagogical need that is part of their putative role as teachers.  
I define pedagogical need as analogous to intellectual need. In view of specific knowledge in the 

curriculum, a teacher’s pedagogical problem is engendering students’ intellectual need for this 
knowledge and the knowledge itself.  A teacher has a pedagogical need for the PCK that enables her 
to solve this pedagogical problem. 

In the case of Kylie, the higher-order knowledge that made drawing the whole unnecessary came 
about in relation to an intellectual need engendered by the sequence of problems she encountered and 
her concurrent representational activity. The pedagogical problem in this case was how to help Kylie 
develop this knowledge, and the corresponding PCK includes understanding the sequence of tasks 
and the importance of drawn representations that lead Kylie to realize her intellectual need and the 
corresponding knowledge. Therefore, in order to gain motivation for using instructional 
representations, PSTs must understand how instructional representations can function as a bridge 
between students’ initially simple ideas and the more complex ideas that are the goal of instruction. 
That is, they must come to understand how instructional representations solve pedagogical problems 
they may encounter.  

Conclusion 
I have argued that learning to use instructional representations of mathematical concepts may 

require a different kind of cognitive process—namely, reflected abstraction—than the cognitive 
process used to learn concepts themselves. In addition, I have proposed a link between teachers’ 
knowledge and their motivation for using instructional representations by arguing that conceptual 
knowledge decreases teachers’ intellectual need for representing foundational ideas. I propose 
pedagogical need as an alternative source of motivation for instructional representation. 
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TAKING MEASURES TO COORDINATE MOVEMENTS: UNITIZING EMERGES AS A 
MEANS OF BUILDING EVENT STRUCTURES FOR ENACTING PROPORTION 

 Alik Palatnik Dor Abrahamson 
 Shaanan Academic Religious Teachers' College UC Berkeley 
 umapalatnik@gmail.com dor@berkeley.edu 

Rhythm is a means of production—a scheme for coordinating the enactment of real or imagined 
physical movements over time, space, material resources, and concerting participants. In activities 
requiring the coordination of two or more continuous motor actions, rhythmic re-assembly of the 
actions creates a goal event structure mediating the enactment. Yet building that structure requires 
first unitizing continuity. Unitizing could thus be conceptualized as a cultural–historical strategy for 
supporting mundane routines by parsing, distributing, and codifying activity as a sequence of 
iterated actions of equivalent magnitude. Ipso facto, unitizing shifts us from naive to disciplinary 
activity: articulated rhythm is an ontogenetic achievement driving cognitive growth. We present 
empirical data of a student spontaneously measuring continuous actions as her means of organizing 
the enactment of a bimanual task designed for proportions. 

Keywords: Cognition, Measurement 

Introduction 
Mathematics learning activities designed in accordance with embodiment theories of cognition 

create opportunities for students to engage in the solution of sensorimotor problems prior to 
interpreting and representing their solutions formally in normative symbolic register (Lee, 2015). 
This heuristic design principle is grounded in a constructivist (Boom, 2009) and enactivist (Reid, 
2014) consensus that concepts emerge through noticing repeated patterns in perceptual dynamics 
guiding motor action. Empirical work has corroborated this historical conjecture through combining 
eye-tracking and clinical data analysis (Abrahamson et al., 2016). 

The objective of this paper is to contribute to scholarship on students’ passage from sensorimotor 
action to mathematical reasoning. Our study’s empirical context is an action-based embodied design, 
the Mathematical Imagery Trainer (Abrahamson, 2014), wherein participant students enact a 
challenging bimanual motor action related to the development of proportional reasoning. By micro-
analyzing students’ behaviors, we demonstrate spontaneous utilization of measurement units. We 
argue that emergent rhythmic enactment facilitated discretization that led to evoking measurement 
units and in turn building an event structure mediating the enactment. 

Theoretical Background 
Cultural–historical positions view the practice of measuring, along with its artifacts, routines, and 

discourse, as evolved to serve an essential means of mathematizing human action and thought 
(Malafouris, 2013). In particular, measure units enhance one’s ability to estimate, compare, and 
calculate continuous quantities (Stavy & Babai, 2016). Cognitive-developmental psychology defines 
measuring as follows: “To measure is to take out of a whole one element, taken as a unit, and to 
transpose this unit on the remainder of a whole: measurement is therefore a synthesis of sub-division 
and change of position” (Piaget, Inhelder, & Szerninska, 1960, p. 3). Measuring competently thus 
requires: (a) conserving the size of the unit; (b) iterating the unit; and (c) transitively, inferring the 
relative length of two objects by comparing them to a unit. When we imbue these measurement 
routines with the temporal dimension, we can discern the enactment of rhythmic actions. Indeed 
Radford (2015) found structured temporal qualities in analyzing students’ performance in algebraic 
pattern-generating activity: meter, rhythmic grouping, prolongation, and theme. Sinclair, Chorney, 
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and Rodney (2016) used rhythm as their focal analytic construct in investigating the mathematical 
activity of children interacting with a tablet application designed for learning number. They implicate 
rhythmic actions as the embodied origin of cognitive structure, preceding planning and reflection. In 
like vein, Bautista and Roth (2012) documented the role of rhythmical hand movements in students’ 
haptic engagement with geometrical regularities in material solids (cf. Bamberger & diSessa, 2003). 

In summary, embodiment perspectives on mathematical cognition conceptualize dynamical 
sensorimotor problem solving as constitutive of conceptual growth. Positioned within the 
embodiment paradigm, we present a case of a student who spontaneously evoked measurement 
operations as her means of regulating the enactment of a challenging bimanual motor task designed 
to support the development of proportional reasoning. Our objective is to enrich scholarship on the 
rhythmic qualities of mathematics learning by way of interpreting the circumstances and process 
leading to her rhythmic mathematization of continuous quantities.  

Methods 
The empirical context for this study was the Mathematics Imagery Trainer for Proportion (MIT-

P; see Figure 1). Unlike earlier studies in this empirical context (Abrahamson & Trninic, 2011), in 
the current study no mathematical tools were offered, such as a grid or numerals. 

    
Figure 1. The Mathematical Imagery Trainer for Proportion (MIT-P). The student manipulates 

two cursors along vertical axes, one by each hand. The task is to make the screen green and then keep 
it green while moving your hands. The screen will be green only when the heights of the two cursors 

above the screen base relate by a particular ratio unknown to the user (e.g., here 1:2). Otherwise it 
will be red. Cursors may be either “stark” (e.g., generic targets; see on left) or “iconic” (e.g., hot air 

balloons; see on right). 

K was an 11-year-old female student, one of 25 students participating voluntarily in a task-based 
semi-structured clinical interview (for details, see Rosen, Palatnik, & Abrahamson, 2016). The 
interview lasted in total 19 minutes: a general introduction (1 min.); and the problem-solving phase 
(18 min.), where she manipulated: (a) hot-air balloons (7 min.); (b) cars (4 min.); and (c) crosshair 
targets (7 min.). The interview took place in our lab and was audio–video recorded. 

We located all the events where the student expressed new insight pertaining to her manipulation 
strategy. The interview was then parsed into episodes, running from each insight to the next. 
Episodes were further coded as: (a) either researcher- or self-initiated; and (b) discrete (“finding 
green” static co-locations) or continuous (“keeping green” while sliding the cursors). 

Applying grounded micro-genetic analysis, we focused on the students’ range of physical actions 
and multimodal utterance pertaining to the available media (Ferrara, 2014) as well as on the task-
effectiveness of their actions. First, we attended to student actions that preceded their articulation of a 
new rule for “making green,” searching in particular for patterns in the timing and sequencing of 
student hand movements through space (Sinclair et al., 2016). A notation system emerged for the 
most frequently used movements. For example, vertical bimanual movement with the right hand 
going up and the left going down was denoted as “↓,↑ ,” and placing both fingers statically on the 
screen as “●,●.” Second, we analyzed K’s responses to our recurring question, “How would you 
explain your strategy for finding green to another person?” 
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Results: Spontaneous Evocation of Units of Measurement 
In our analysis we will attempt to implicate the specific event of K evoking measure units as a 

formative moment in her progress from unreflective continuous movement to unit-based discrete 
movement and, through this, in her learning of proportion. 

Before evoking measuring units, K had developed two different rhythmical patterns as her task 
solutions: continuous movement, where the right hand moves twice faster than left (↑ ↑x2): and 
discrete, where she placed her fingers together (●,●) then vertically apart (↑,↓), traversing along 
recurring screen locations: bottom, middle, top. In articulating each of her strategies, K implicitly 
evoked particular qualities of the situation, such as the distance between her hands, as things she 
noticed and aimed to control even as she was moving her hands. For instance: “Down here my hands 
were really close, and then up here they were a little apart, and then up here they were really apart.” 
Hoping for greater specificity of her movement rules, the interviewer asked K, “Ok, do you have any 
sense of… kind of…how this [the distance between her hands] is changing? How much it is 
changing, how much faster it is moving?” Beginning at 05:29, where she was working with hot-air 
balloon cursors, K responded by performing a particular action pattern repeatedly, at a constant pace, 
at three screen locations: bottom, middle, and top, stating that the balloons were: (bottom) “touching 
each other”; (middle) “There’s about a balloon between them….the length of the balloon”; and (top) 
“Two balloons [apart], maybe.” At 6:45 K repeated: “Ammm… [Quick succession of 
demonstrations: bottom ●,●, ↓,↑; middle ●,●, ↓,↑; top ●,●, ↓,↑] kind of at the bottom, there… it 
goes zero balloons between them, in the middle there is one balloon between them, and at the top, 
two balloons between them. So it grows by one at a time.” K thus spontaneously utilized an available 
virtual object as a measure unit. 

When the interviewer asked her to show “how to keep the screen green,” K first gestured and 
then moved her hands continuously, with one hand moving twice as fast [↑,↑x2]. It is of note that 
she tried to use her insights from the previous enactment as landmarks, that is, to connect the bottom, 
middle, and top discrete solutions into a single continuous enactment, as follows: 

(7:15) K: I would say, like, start at the bottom, and put them close together. And then, move one 
hand up faster… Wait, actually, [inaudible] …and as I said, in the middle, they are separated 
like one balloon [inaudible], and at the top two balloons. 

Thus, a qualitative scheme for finding and keeping green, “one hand moves faster than the other 
as it goes up,” assimilated a quantitative scheme, “it grows by one at a time,” to better serve K’s 
goals. Our claim is that the rhythmic qualities of K’s actions—iteration, grouping, stability—as well 
as the interviewer’s prompt to quantify (“how much”) catalyzed this process. We observed feedback 
loops, where movements were coordinated into action patterns, and those patterns in turn were 
iteratively repeated, both spatially (bottom, middle, and top of the screen) and temporally. The linear 
extents of the hands’ respective displacements came to attention as a result of experiencing/enacting 
the emergent rhythm. Namely, the rapid, cyclic repetition of implicitly measured actions gave rise to 
rhythmic enactment. The unit of measure emerged as a spontaneous combination of a stable pattern 
of movements and relatively stable perceptual elements, driven by a task demand to reflect on her 
own actions. Later in the interview, K quickly reenacted the new quantitative scheme in the case of 
car icons as well as the stark icons. 

Conclusion 
Rhythm is a means for coordinating physical operations over time, space, and material (or 

virtual) resources into new sensorimotor schemes. In the absence of any explicit frame of reference, 
rhythmic enactment bootstraps discretization, thus leading to further evocation of measurement units, 
which in turn improve performance and are thus adopted and codified. K’s actions evolved from 
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independent, explorative, seemingly uncoordinated movements into a stable temporal–spatial 
choreography comprising a succession of coordinated, measured clusters of movements preserving a 
relational invariant (see also Sinclair, Chorney, & Rodney, 2016). 

K succeeded in coordinating her actions to produce green effectively well before she was able to 
articulate quantitative properties or her actions. When she first constructed a quantitative scheme for 
these actions, K was conscious not of a static structure. Rather, she responded to epiphenomenal 
features in the rhythmic cadence of enacting these coordinated actions. As such, rhythmic enactment 
mediated a transitioning from naïve to scientific reasoning. The temporal qualities of K’s rhythmic 
enactment across the continuous display assimilated spatial qualities of available objects (hot-air 
balloons) to deploy motor-action execution over imaginary discrete units of measure. K thus 
extracted a measure unit from the situation as her means of extending insights from discrete to 
continuous actions. Unitizing is thus an evolved strategy for enhancing the coordination of 
continuous action by distributing it over regulated cycles of iterated enactment over projected spatial 
extensions. Further research is needed to understand the interplay of rhythm, action, and discourse in 
the elicitation of unitizing operations. 
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This poster, inspired by last year’s working group on Rethinking Mathematics Intervention 
(Sheldon et al., 2016), offers a review of the literature into recent critical perspectives on 
mathematics disability. Mathematics disability is not a topic normally covered in mathematics 
education journals; it is mostly relegated to special education journals. (Sheldon, 2013; Lambert & 
Tan, 2016). We seek to create to bridge the divide between special education and math education by 
creating intersections between these areas of study. 

The purpose of this literature review poster is to explore emerging critical perspectives on 
mathematics disability, with a particular focus on perspectives grounded in critical theories. In order 
to conduct the review, we consulted two recent exhaustive literature reviews (Lambert & Tan, 2016a; 
Lewis & Fisher, 2016), drew upon a database of 107 articles, conducted keyword searches, and 
contacted scholars interested in mathematics disability. 

The review revealed three main themes. First, research related to mathematics disability has 
reflected methodological conservatism. Second, there is a significant literature calling for 
mathematics reform within Special Education (e.g. Woodward & Montague, 2002). Third, we found 
an emerging literature involving critical perspectives. In this emerging literature, mathematics 
education researchers view disability as a difference rather than as a deficit and propose looking at 
intersectional notions of disability and the ways in which they affect perceived ability (Lambert, 
2016a). 
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Using (post) qualitative methodology located within a critical postmodern theoretical frame, I 
will examine the intersection(s) and borders of the field of mathematics education and the posts 
(post-structural, new materialist, post-humanist, post-qualitative). The “field” in this research will be 
considered a fluid space that shifts and responds as “new” research is brought into it. The research 
questions that guide this study are: 

1. What are the taken for granted, expectations and norms of these spaces? 
2. How are post theories being used/taken up within mathematics education? 
3. How are the borders and boundaries of the field of mathematics education shifting in 

response to these theories and methodologies? 

Mapping the Machine 
The poster will consider how research is counted or excluded from the body of mathematics 

education research recognizing that “counting practices are bound up with the production of natural 
and social orders” (Martin & Lynch, 2009, p. 245). I will map the intersections, "lines of flight" 
(Deleuze & Guatarri, 1980/1987), and ruptures in the research body and consider how these matter. 
Drawing on new materialist theories, (Barad, 2007), I will consider the measuring and counting 
apparatus (math education journals, citations, and conference proceedings) which are always already 
entangled with the object of measurement (Barad, 2007). I will consider, following Dolphijn and 
Turin (2013), how “measurements are the entanglement of matter and meaning” (p. 16) and how they 
are, therefore, “calling data into being” (St Pierre, 2013, p. 223). 

The intra-action (Barad, 2007) of theory with mathematics education research will be tentatively 
mapped giving attention to the complications created in the intra-action that allow (re)configurations 
of school mathematics (de Freitas & Sinclair, 2014). I will consider places where the intra-action 
allows for gathering speed and attention and places where intra-action disrupts normative practices in 
mathematics education research.  
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Due to sequential organization of university level mathematics curricula, non-math majors often 
do not get to experience abstract, higher level mathematics.  We present preliminary results from 
working with students enrolled in an Elementary Statistics course to explore patterns in results 
related to the accessible, but still unproven, Collatz Conjecture from number theory.  Not only does 
this work provide an account of where a conjecture from advanced mathematics is engaged by 
students in early, university-level mathematic courses but by analyzing the results from the recursive 
implementation of Collatz Conjecture (using the agent—based NetLogo programming language) 
using statistical methods from what they are studying, the work may illustrate how explorations in 
one area of mathematics can, at a more advanced level, be seen to  interact in significant ways with 
other areas of mathematics.     

Paul Erdös said “mathematics is not ready” to analyze the Collatz Conjecture.  For our study 
students were able to generate, using a NetLogo program that we developed for this purpose, results 
from implementing this conjecture over a large number of user-specified values (e.g., all even 
numbers between 1 and 10,000).  The students’ results are displayed and analyzed using techniques 
from introductory statistics (e.g., linear regression).  We present our results from applying a 
grounded theory methodology to analyze a series of semi-structured interviews conducted with 
students as they engaged with cycles of NetLogo-based exploration followed by the application of 
statistical methods to the results (Charmaz, 2008).  The longer-term goal of this line of research is to 
find ways to understand how it might be possible and what it might mean to have students in 
introductory courses be able to explore topics from advanced mathematics.  
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ADDRESSING EQUITY AND DIVERSITY ISSUES IN MATHEMATICS EDUCATION: 
RESETTING AT THE CROSSROADS 

 Gregory V. Larnell Jennifer M. Langer-Osuna Joel Amidon 
University of Illinois at Chicago Stanford University University of Mississippi 
 glarnell@uic.edu jmlo@stanford.edu jcamidon@olemiss.edu 

As the title suggests, this Working Group has a dual focus on issues of mathematics teaching and 
learning and issues of equity and diversity. Following on the topics discussed at the Working Group 
between 2009-2016, this year the focus is resetting and reestablishing the purpose of this group and 
supporting the development of new directions for equity-oriented research working groups. The 
sessions will focus on regrouping attendees interested in equity, generating and brainstorming new 
subtopics and potential projects, and working to establish standalone working groups dedicated to 
furthering research on equity. The purpose of this resetting is to encourage a move away from “big-
tent” equity thinking and toward more productive working collectives. 

Keywords: Equity and Diversity 

Brief History 
This Working Group originates from the Diversity in Mathematics Education (DiME) Group, 

one of the Centers for Learning and Teaching (CLT) funded by the National Science Foundation 
(NSF). DiME scholars graduated from one of three major universities (University of Wisconsin-
Madison, University of California-Berkeley, and UCLA) that comprised the DiME Center. The 
Center was dedicated to creating a community of scholars poised to address critical problems facing 
mathematics education, specifically with respect to issues of equity (or, more accurately, issues of 
inequity).The DiME Group (as well as subsets of that group) has engaged in important scholarly 
activities, including the publication of a chapter in the Handbook of Research on Mathematics 
Teaching and Learning which examined issues of culture, race, and power in mathematics education 
(DiME Group, 2007), a one-day AERA Professional Development session examining equity and 
diversity issues in mathematics education (2008), a book on research of professional development 
that attends to both equity and mathematics issues with chapters by many DiME members and other 
scholars (Foote, 2010), and a book on teaching mathematics for social justice (Wager & Stinson, 
2012) that also included contributions from several DiME members. In addition, several DiME 
members have published manuscripts in a myriad of leading mathematics education journals on 
equity in mathematics education. This working group provides a space for continued collaboration 
among DiME members and other colleagues interested in addressing the critical problems facing 
mathematics education. 

It is important to acknowledge some of the people whose work in the field of diversity and equity 
in mathematics education has been important to our work. Over time, the Working Group has 
encouraged building on and featuring senior scholars’ work, including  Marta Civil (Civil, 2007; 
Civil & Bernier, 2006; González, Andrade, Civil, & Moll, 2001), Eric Gutstein (Gutstein, 2003, 
2006; Gutstein & Peterson, 2013), Jacqueline Leonard (Leonard, 2007; Leonard & Martin, 2013), 
Danny Martin (Martin, 2000, 2009, 2013), Judit Moschkovitch (Moschkovich, 2002), Rochelle 
Gutiérrez (2002, 2003, 2008, 2012, 2013) and Na'ilah Nasir (Nasir, 2002, 2011, 2013; Nasir, Hand & 
Taylor, 2008; Nasir & Shah, 2011). We have as well been building on the work of our advisors, Tom 
Carpenter (Carpenter, Fennema, & Franke, 1996), Geoff Saxe (Saxe, 2002), Alan Schoenfeld 
(Schoenfeld, 2002), and Megan Franke (Kazemi & Franke, 2004), as well as many others outside of 
the field of mathematics education.  
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Previous iterations of this Working Group at PMENA 2009 – 2013, and 2015-2016 have 
provided opportunities for participants to continue working together as well as to expand the group to 
include other interested scholars with similar research interests. Experience has shown that 
collaboration is a critical component to this work. These efforts to expand participation and 
collaboration were well received; more than 40 scholars from a wide variety of universities and other 
educational organizations took part in the Working Group each of the past five years. Moving 
forward, we hope to “reset” the group toward providing opportunities for a new generation of 
scholars whose work intersects with issues of equity/inequity, diversity/inclusion, 
privilege/oppression, and justice in mathematics education research, practice, and development. 

Focal Issues 
Under the umbrella of attending to equity and diversity issues in mathematics education, 

researchers are currently focusing on such issues as teaching and classroom interactions, professional 
development, prospective teacher education (primarily in mathematics methods classes), factors 
impacting student learning (including the learning of particular sub-groups of students such as 
African American students or English learners), and parent perspectives. Much of the work attempts 
to contextualize the teaching and learning of mathematics within the local contexts in which it 
happens, as well as to examine the structures within which this teaching and learning occurs (e.g. 
large urban, suburban, or rural districts; under-resourced or well-resourced schools; and high-stakes 
testing environments). How the greater contexts and policies at the national, state, and district level 
impact the teaching and learning of mathematics at specific local sites is an important issue, as is 
how issues of culture, race, and power intersect with issues of student achievement and learning in 
mathematics. There continues to be too great a divide between research on mathematics teaching and 
learning and concerns for equity. 

The Working Group has begun and will continue to focus on analyzing what counts as 
mathematics learning, in whose eyes (and for whose benefit), and how these culturally bound 
distinctions afford and constrain opportunities for traditionally marginalized students to have access 
to mathematical trajectories in school and beyond. Further, asking questions about systematic 
inequities leads to methodologies that allow the researcher to look at multiple levels simultaneously. 
This research begins to take a multifaceted approach, aimed at multiple levels from the classroom to 
broader social structures, within a variety of contexts both in and out of school, and at a broad span 
of relationships including researcher to study participants, teachers to schools, schools to districts, 
and districts to national policy.  

Some of the research questions the Working Group will continue to consider are: 
• What are the characteristics, dispositions, etc. of successful mathematics teachers for all 

students across a variety of local contexts and schools? How do they convey a sense of 
purpose for learning mathematical content through their instruction? 

• How do beginning mathematics teachers perceive and negotiate the multiple challenges 
of the school context?  How do they talk about the challenges and supports for their work 
in achieving equitable mathematics pedagogy? 

• What impediments do teachers face in teaching mathematics for understanding? 
• How can mathematics teachers learn to teach mathematics with a culturally relevant 

approach? 
• What does teaching mathematics for social justice look like in a variety of local contexts? 
• What are the complexities inherent in teacher learning about equity pedagogy when 

students come from a variety of cultural and/or linguistic backgrounds all of which may 
differ from the teacher’s background? 
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• What are dominant discourses of mathematics teachers? 
• What ways do we have (or can we develop) of measuring equitable mathematics 

instruction? 
• How do students’ out-of-school experiences influence their learning of school 

mathematics? 
• What is the role of perceived/historical opportunity on student participation in 

mathematics?  

Specific to the intent of this year’s Working Group, we will organize around questions like the 
ones above in order to create specific, targeted working groups that are charged to address and act 
around such questions.   

Plan for Working Group 
Based on feedback from the previous year and the emergence of new working groups related 

broadly to "equity," this working group should shift toward a renewed focus on facilitating 
"collaboration within the growing community of scholars and practitioners concerned with 
understanding and addressing the challenges of attending to issues of equity and diversity in 
mathematics education." However, we propose to reconfigure the working group toward being a 
catalyst for new spaces instead of a "destination" for the inclusion of equity discourse within the 
PME-NA organization. To put it differently, our vision for the working group should be to bring 
together attendees toward developing their own agendas and specific working groups related to 
equity-oriented themes--or toward themes that push the field beyond traditional equity discourses yet 
adhere to the needs and challenges of inequity within mathematics education.  

Our plans for PMENA 2017 will proceed as follows. Each session will build on previous 
sessions, beginning with a facilitated conversation around resetting of the working group. The format 
for the sessions will include: 

• DAY 1: Resetting, Norm-setting, and Brainstorming: On first day, we we lead attendees 
through introductory activities, collective norm-setting, and a series of small- and whole-
group brainstorming activities that will generate new ideas and directions for the working 
group more broadly. 

• DAY 2: Agenda-setting: On the second day, the major focus will be the development and 
support of new smaller sub-specializing groups based on the reported interests of 
attendees. We will work with and encourage these subgroups to establish possible 
common topics of interests, potential products, and planning for the next year to support 
the growth of their group and topic.  

• DAY 3: Working working groups: On the third day, the newly established subgroups will 
“take flight” and initiate their yearly plan to support their chosen topics. 

 

Previous Work of the Group  
The Working Group met for productive sections since 2009. In 2009, participants identified areas 

of interest within the broad area of equity and diversity issues in mathematics education. Much 
fruitful discussion was had as areas were identified and examined. Over the past five years subgroups 
met to consider potential collaborative efforts and provide support. Within these sub-groups, rich 
conversations ensued regarding theoretical and practical considerations of the topics. In addition, 
graduate students had the opportunity to share research plans and get feedback. The following were 
topics covered in the subgroups: 
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• Teacher Education that Frames Mathematics Education as a Social and Political Activity 
• Culturally Relevant and Responsive Mathematics Education 
• Creating Observation Protocols around Instructional Practices 
• Language and Discourse Group: Issues around Supporting Mathematical Discourse in 

Linguistically Diverse Classrooms 
• A Critical Examination of Student Experiences 

As part of the work of these subgroups, scholars have been able to develop networks of 
colleagues with whom they have been able to collaborate on research, manuscripts and conference 
presentations.  

As a result of the growing understanding of the interests of participants (with regard both to the 
time spent in the working group and to intersections with their research), we began to include focus 
topics for whole group discussion and consideration and continued to provide space for people to 
share their own questions, concerns, and struggles. With respect to the latter, participants have 
continually expressed their need for a space to talk about these issues with others facing similar 
dilemmas, often because they do not have colleagues at their institutions doing such work or, worse 
yet, because they are oppressed or marginalized for the work they are doing. These concerns, in part, 
informed the focus topics for whole group discussion and consideration. For example, in 2009 
research protocols (e.g., protocols for classroom observation, video analysis and interviewing) were 
shared to foster discussions of possible cross-site collaboration. In 2012, the Working Group 
explicitly took up marginalization in the field of mathematics education with a discussion about the 
negotiation of equity language often necessary for getting published; this was done in the context of 
the ‘Where’s the mathematics in mathematics education’ debate (see Heid, 2010; Martin, Gholson, & 
Leonard, 2010). Dr. Amy Parks was invited to join Working Group organizers to share reflections on 
their experiences. In 2013 the Working Group hosted its first panel in which scholars (Dr. Beatriz 
D’Ambrosio, Dr. Corey Drake, Dr. Danny Martin) shared their perspectives on the state of and new 
directions for mathematics education research with an equity focus. The success of prior panel 
discussions have encouraged us to use that format as a launching point for deepening conversations 
on lingering tensions in the field. We see this working group as questioning critical borders that 
persist within mathematics education.  

Pre-Conference and Follow-up Activities 
 In order to best plan for working group facilitation and prepare attendees for working group 

participation, we plan to send out pre-conference communication, including a Qualtrics survey, to 
former and potential participants in order to gauge the topics and kinds of work being done or sought, 
as well as the resources and forms of support desired by participants.  
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ADVANCING PEDAGOGIES OF ENACTMENT IN MATHEMATICS PROFESSIONAL 
EDUCATION: IMPLICATIONS FOR RESEARCH AND PRACTICE 
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This working investigates the design and use of pedagogies of enactment in mathematics teacher 
education and professional development. These pedagogies, which feature coached rehearsals and 
enactments, provide a promising way to support preservice and practicing teachers in developing 
skill with core instructional practices, aligned with ambitious and equitable goals for instruction. 
Building on existing research and our discussions at PME-NA 38, we will engage in collective 
investigation around three central issues: articulating theories of and perspectives on teacher 
learning to frame research and practice, foregrounding issues of equity in this work, and conceiving 
partnerships to support and scale these efforts. These discussions will lead to immediate takeaways 
as well as plans for future collective efforts around research and practice. 

Keywords: Instructional Activities and Practices, Teacher Education-Preservice, Teacher Education-
Inservice/Professional Development 

Brief History of the Group 
This working group is a continuation of a group that initiated at PME-NA 38 in Tucson, Arizona 

in 2016. The group is focused on advancing the use and study of “pedagogies of enactment” 
(Grossman, Hammerness, & McDonald, 2009), specifically the use of coached rehearsals of 
instructional activities (Kazemi, Ghousseini, Cunard, & Turrou, 2016; Lampert et al., 2013) toward 
the development of core or high-leverage practices (Ball & Forzani, 2009; McDonald, Kazemi, & 
Kavanagh, 2013). We, as a group, focus on this work in the context of secondary mathematics 
teacher preparation and professional development (PD). 

Prior to the first meeting at PME-NA 38, a group of secondary mathematics teacher educators 
(TEs) and researchers (represented, in part, by the leaders of this working group) collaborated 
informally for five years to consider the work of secondary teacher preparation in relation to 
recommendations from Grossman and her colleagues for teacher education and the work of Lampert, 
Kazemi, Franke and their colleagues in the area of elementary mathematics education. As a result of 
this collaboration, small groups of teacher educators have developed tools for supporting the 
development of ambitious mathematics teaching that leverages students’ work with the Standards for 
Mathematical Practice (NGA & CCSSO, 2010). These tools included a collection of “instructional 
activities” (IAs; Lampert & Graziani, 2009) focused on secondary mathematics topics that have been 
shared across institutions, resulting in focused data collection and inquiry. At PME-NA 38, working 
group participants were able to discuss and glean insights from current efforts in development and 
research. 

In this proposal, we first outline some background information related to pedagogies of 
enactment. We then detail the outcomes of our group’s initial work at PME-NA 38 and the efforts 
that have followed. From this, we propose a new set of focal issues that continue to press efforts to 
design, use, and research pedagogies of enactment moving forward: (1) articulating theories of and 
perspectives on teacher learning; (2) focusing on issues of equity; and (3) conceiving partnerships. 
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Finally, we outline how the sessions of the working group will be organized to promote participant 
engagement around these three focal issues.  

Background Information 
In this section we frame the efforts of this working group by specifying what we mean by 

“ambitious and equitable mathematics instruction” and providing an overview of practice-based and 
practice-focused approaches to teacher education and PD, specifically the use of coached rehearsals 
as a pedagogy of enactment for teacher development.  

Ambitious and Equitable Mathematics Instruction  
Teachers must ensure that each student has access to rigorous academic work to develop 

mathematical proficiency and meet the demands of an increasing mathematically, statistically, and 
technologically complex society (Kilpatrick, Swafford, & Findell, 2001; National Council of 
Teachers of Mathematics [NCTM], 2014). These expectations are summed up, in part, by the way in 
which students must engage with and develop a set of mathematical practices (NGA & CCSSO, 
2010). These practices represent the skills individuals in mathematics-related fields utilize in their 
work and the way in which all individuals make sense of, reason about, and make decisions 
regarding mathematical and quantitative situations. These opportunities must deliberately be made 
available to all students, drawing upon students’ diverse cultural and linguistic resources in the 
mathematics classroom and positioning mathematics as a human practice and a tool for social change 
(Gutiérrez, 2011).  

To support these “ambitious and equitable” goals (Jackson & Cobb, 2010), mathematics teachers 
must enact “skilled practice” (Grossman & McDonald, 2008) to carry out the work in classrooms. 
Specifically, teachers need skill with a set of core practices (e.g., Grossman et al., 2009; Forzani, 
2014) that represent integral aspects of ambitious and equitable mathematics teaching. In our 
collective work we argue that participation in pedagogies of enactment need not be preceded by 
changes in teachers’ beliefs. Teachers learn to take up ambitious and equitable practices through 
engagement in pedagogies of enactment. 

In our collective work, we focus on core practices that include: leading whole class discussions 
(Boerst, Sleep, Ball, & Bass, 2011; Chapin, O’Connor, & Anderson, 2009), eliciting and responding 
to students’ reasoning through tasks and questioning (Lampert et al., 2013; Stein, Engle, Smith, & 
Hughes, 2008), building on student thinking (Leatham, Peterson, Stockero, & Van Zoest, 2015; Van 
Zoest, Leatham, Peterson, & Stockero, 2016), representing students’ reasoning verbally and visually 
(NCTM, 2014), and steering instruction toward a clear and worthwhile mathematical point 
(Baldinger, Selling, & Virmani, 2016; Sleep, 2012). Teachers’ capacities with these instructional 
practices have the potential to engage students in key practices of the discipline of mathematics. 
Efforts have been made to capture a set of core practices for teaching, such as the “high leverage 
practices” from TeachingWorks (2016) or the eight essential Mathematics Teaching Practices from 
NCTM’s (2014) Principles to Actions. This working group focuses on a set of tools and approaches 
of teacher education and PD experiences that support teachers’ development of these skills. 

Pedagogies of Practice and Coached Rehearsals 
There has been an increased focus on practice-based approaches to supporting teachers’ 

professional learning. A practice-based approach uses “practice as a site of inquiry in order to center 
professional learning in practice” (Ball & Cohen, 1999, p. 19), and creates opportunities for teachers 
to examine the everyday aspects of teaching. Grossman, Compton, and colleagues (2009) have called 
for the need to organize practice-based approaches to professional education around what they call 
representations, decompositions, and approximations of practice, with the latter referring, “to 
opportunities for novices to engage in practices that are more or less proximal to the practices of a 
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profession” (p. 2058), though we also consider how to approximate practice to support the 
development of practicing teachers in our work.  

IAs serve as one form of an approximation of practice, containing core practices, pedagogical 
tools, and principles of high-quality teaching (Kazemi et al., 2009; Lampert & Graziani, 2009). IAs 
are designed to structure the relationship between the teacher, students, and content in order to put a 
teacher in position to engage in and develop skill with interactive practices around facilitating rich 
discussions about mathematics. IAs and the practices they contain serve as a focus of a set of 
activities that provide teachers the opportunity to both investigate and enact the work of teaching 
(Lampert et al., 2013; McDonald et al., 2013), often referred to as a “cycle of investigation and 
enactment.” This consists of observing, decomposing, and planning the IA; rehearsing the IA in the 
teacher education setting with in-the-moment coaching from a TE; enacting the IA in a K-12 
classroom setting; and using artifacts of practice such as video and student work to analyze 
instruction and make connections between teaching practices, student learning, and a broader vision 
of ambitious and equitable mathematics teaching.  

In this working group, we focus on the “enactment” elements of this cycle of activities—both the 
coached rehearsals of IAs in a teacher education or PD setting and the enactments done in classrooms 
with students. In a rehearsal, the teacher (or teacher candidate) leads an IA with a particular problem 
or prompt and aligned goal with their peers serving as the students. The peers may be encouraged to 
“act like themselves” or may be assigned some standardized role to play, perhaps to put forward a 
common error. In-the-moment coaching, often by the TE or PD facilitator, is an important and 
distinguishing part of a rehearsal. The coach may pause the rehearsal to highlight a particular 
teacher-student or student-student interaction or teaching move that is worthy of discussion 
(Grossman et al., 2009; Kazemi et al., 2016). The rehearsing teacher is also permitted to pause the 
rehearsal to ask questions of the coach. The coach may also play the role of student, offering a 
strategic contribution as part of the rehearsal experience. The immediate feedback offered through 
coaching allows for a novel development process for all teachers, not just the individual rehearsing. 
Despite its potential benefits, coaching is complex work and requires the teacher educator to decide 
how to interrupt (e.g., by asking a question, suggesting a teaching move, highlight a successful 
move), how often to interrupt, and when to interrupt (Baldinger et al., 2016; Kazemi et al., 2016; 
Lampert et al., 2013).  

Overview of Prior Work at PME-NA 
The working group meetings at PME-NA 38 served as an important catalyst to the discussions 

and action of this group around the design, use, and research of pedagogies of enactment 
(specifically, coached rehearsals) in mathematics teacher education. The group originally focused on 
three focal issues: (1) issues of language around instruction and mathematics used in the work, (2) 
theoretical and methodological choices, and (3) considering multiple settings and boundaries. Over 
the three meeting sessions, more than 25 conference attendees participated in the discussions—
raising questions, offering ideas and experiences, presenting emerging research ideas and efforts, and 
contributing to the conceptualization of next steps. The three meeting sessions were each organized 
around a different focal issue listed above. 

The framing topic for the first day was, “Enactments of what? Examining choices about 
instructional practice and content,” which provided an opportunity for participants to share and 
discuss the decisions TEs make regarding what gets focused on and worked on in rehearsals and 
enactments (both mathematically and instructionally) and what is informing those decisions. We 
organized a panel with individuals from three active lines of work in this area to prompt the 
discussion. One takeaway from this discussion was some clarification about the language used in this 
work, such as what is meant by “coached rehearsal” and how people are using “IA” and “practices” 
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in different ways that shape the nature of their work with teachers (e.g., Arbaugh, Freeburn, Graysay, 
& Konuk, 2016; Baldinger et al., 2016; Campbell & Elliott, 2015; Campbell, Selling, & Baldinger, 
2017). While language continues to be a challenge for researchers, TEs, and other stakeholders, we 
made some progress on identifying necessary agreement and other areas where reasoned differences 
were appropriate given one’s context or focus. For example, we identified coached rehearsal as the 
pedagogy of practice we were focused on (though not the only one someone might be interested in). 
We also identified an IA as a necessary component of that work (e.g., the routine that gets rehearsed), 
though IAs have different scopes and forms. 

The second day focused on the question, “What constitutes evidence of ‘skilled practice’ and its 
development?” This session featured a structured poster session in which eight individuals or groups 
presented ideas about their research or practice around the design, use, and impact of coached 
rehearsals and enactments. This session served as an important step to move beyond a broad, 
conceptual discussion of this area of work toward a more specific discussion about tools for practice 
and research. For example, presenters shared specific IAs they use in their setting, ways they 
structure their coaching, data collection tools they use (e.g., video, written performance tasks, 
interviews), and analytic frameworks. 

The final session was organized around a discussion focused on “moving forward with an 
agenda.” Participants reflected on ideas from the previous sessions and considered next steps—for 
themselves or in collaboration with others. Some takeaways from this session included:  

• a clarification of “coached rehearsals” as one type of approximation of practice and 
enactment pedagogy, all embedded in a broader landscape of pedagogies of practice;  

• acknowledgement of different approaches taken by individuals in the group and the need 
to clarify language; 

• ambiguity around how teacher learning or development is being theorized to inform both 
practice and research in this area;  

• interest from newcomers in incorporating coached rehearsals into elementary and 
secondary mathematics methods courses, and the value of speaking and working across 
elementary and secondary contexts; 

• considering a distinction between individuals interested in doing the work in their teacher 
education practice and individuals interested in research and development efforts; 

• a call for sharing resources for supporting activities around coached rehearsal, and; 
• structural constraints (e.g., programmatic, school-university partnerships, logistical) that 

makes incorporating pedagogies of enactment difficult.  

These takeaways shaped some of the early follow-up efforts and continue to frame the need for more 
engagement and collaboration. In part, this discussion highlighted the issue of “considering multiple 
settings and boundaries,” which included the perceived divides between the university and school 
classrooms or between work with practicing teachers versus teacher candidates. We continue to 
explore those boundaries and look to reframe them in productive ways. 

Focal Issues 
In the time since PME-NA 38, working group participants continued the work in various ways. 

Some new connections supported the incorporation of coached rehearsals into more mathematics 
methods courses across institutions. Research efforts have continued, evident in a set of sessions at 
the 2017 Annual Meeting of the Association of Mathematics Teacher Educators (Campbell, 
Baldinger, & Selling, 2017; Jones & Campbell, 2017; Webb, Wilson, Duggan, & Bryant, 2017). This 
ongoing work has represented a range of scale—methods courses at a single institution; efforts to 
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bridge the work across methods courses and field placements; designing PD for practicing teachers 
centered on pedagogies of enactment; efforts to collaborate among TEs, teacher candidates, and 
practicing teachers; and collaboration efforts across institutions.  

From these efforts and takeaways from the previous working group, additional questions have 
emerged. We propose to address these emergent questions in three focal areas: 

1. Articulating theories of and perspectives on teacher learning, development, and practice 
within the context of rehearsals and enactments; 

2. More deliberately focusing on equity, both in thinking about equitable mathematics teaching 
as well as equitable and responsive mathematics teacher education and PD; and, 

3. Conceiving partnerships (e.g., research-practice partnerships) that support and can be 
supported by efforts around pedagogies of enactment. 

We look at all of these foci through two lenses: (1) advancing the work of TEs, and (2) enhancing 
research on improving teaching. Given the increasing interest in the field in the use of pedagogies of 
enactment to develop core practices, we see it as a crucial time to make strategic contributions, 
answer foundational questions, and plan for future collaborations and products.  

Theories of and Perspectives on Teacher Learning, Development, and Practice 
Much of the existing research around pedagogies of enactment has tended to focus on the 

rehearsals themselves. Challenges arise when thinking about how to conceptualize and track 
teachers’ development within enactment cycles, across cycles, and across settings. In particular, 
researchers must make explicit the theories of teacher learning that guide the use of pedagogies of 
enactment. Past research has advanced that learning skilled professional practices entails developing 
deliberate practice (Ericsson, 2002), adaptive performance (Hatano & Inagaki, 1986), or disciplined 
perception (Grossman, Compton, et al., 2009). These ways of noticing and acting involve developing 
teaching identities for practice (Lampert et al., 2013). For examining the activity system in which 
learning professional practice takes place, researchers have made use of theoretical lenses such as 
activity theory (Campbell, 2014; Campbell & Elliott, 2015) and theories of knowing in practice 
(Cook & Brown, 1999; Lampert et al., 2013).  

A compelling question to advance research on pedagogies of enactment is what are the linkages 
between underlying perspectives on learning and the tools and pedagogies employed within cycles, 
across cycles, and across settings? Thinking about these issues helps us consider how constellations 
of teacher learning tools and pedagogies support teachers’ capacity to judge what instructional 
practices are called for and how to deploy them. Attention must also be paid to other outcomes of 
teacher development that are important to the various stakeholders invested in this work. Without 
explicit discussion of the theoretical constructs we employ we run the risk of leaving our goals 
unspecified, of designing instruments misaligned to our goals, and of making claims that are 
unwarranted given our research designs. A related challenge is identifying methodological tools that 
build on different theoretical framings that could allow us to systematically document evidence of 
learning, change, or growth in a range of data sources. As we and others look to make claims about 
the impact of pedagogies of enactment on teachers’ practice, there needs to be more explicit 
discussion about the theoretical and methodological choices that contribute to research and 
development.  

Focusing on Issues of Equity 
A number of important questions have emerged around the relationship between pedagogies of 

enactment and efforts to help teachers develop more equitable instructional practices (Jackson & 
Cobb, 2010). Bartell and colleagues’ (2017) framework linking equitable teaching and the Standards 
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for Mathematical Practice begins to address this issue. In their research commentary, the authors 
advance a set of teaching practices that they have found to address inequalities within classrooms and 
invite researchers to investigate how this set of teaching practices leverages students’ learning of 
mathematical practices. We consider how this framework might influence the use of pedagogies of 
enactment. We also draw Gutiérrez’s (2011) work, framing our thinking about pedagogies of 
enactment using four dimensions of equity organized into a dominant axis of access and achievement 
and a critical axis of identity and power. The dominant axis identifies access as necessary, but not 
sufficient, to ensure achievement in the discipline of mathematics (meaning that which has been seen 
to ensure economic well-being and is of high value within policy and school mathematics). The 
critical axis of identity and power highlights the role of agency to meaningfully participate both 
within mathematics learning and in a democratic society. This axis brings into view that mathematics 
learning can be a lens for making sense of the world and seeing what and who is marginalized and 
valorized. Gutiérrez’s work calls for us to consider equity in terms of social transformation across 
spaces and timescales. 

In addition to focusing on the role pedagogies of enactment play in supporting the development 
of equitable instructional practices, we also ask questions about how these pedagogies provide 
equitable opportunities for learning in the context of mathematics teacher education. How can 
pedagogical tools such as coached rehearsals of IAs support all those who are working to improve 
their teaching practice? How can theories of equity and social justice that focus on the mathematics 
classroom be extended to apply to the teacher education setting? 

Developing and Supporting Partnerships Around Practice and Research 
To fully consider the implications of pedagogies of enactment, careful consideration must be 

given to the role of partnerships across contexts in the practice and research of these pedagogies. In 
particular, we must examine the systems in which these pedagogies are used. Recent efforts to 
improve educational systems focused on central problems of practice have gained traction in 
collaborative researcher and practitioner communities. These efforts form a family of models: 
Research Practice Partnerships (Coburn & Penuel, 2016; Coburn, Penuel, & Geil, 2013; Rosenquist, 
Henrick, & Smith, 2015), Design Based Implementation Research (DBIR), and Improvement 
Science, including Networked Improvement Communities. These approaches share common values 
and strategies that connect to problems of practice, such as bi--directional educational improvement 
activity (Kazemi & Hubbard, 2008), iterative collaborative design, development of learning and 
implementation theory, and system-level sustained improvement (Penuel, Fishman, Cheng, Sabelli, 
2011). DBIR, for example, has four dimensions: (1) work on problems of practice – those that 
improve practice, (2) engage in iterative cycles of improvement, (3) authentic partnerships among 
practitioners and researchers, and (4) attention to system improvement (cohesiveness). This work 
requires cross institutional learning and attention to individuals, interactions, and organizations to 
build and coordinate knowledge, practice, and theory. These models help address key questions 
about the role of partnerships in this work. 

Relevance to PME-NA 39 
The focus of this working group also provides a contribution in the context of the theme of this 

year’s conference: “Synergy at the Crossroads: Future Directions for Theory, Research, and 
Practice.” We see the focus of this group as fitting with a number of the conceptions of “crossroads.” 
For example, we see this working group as an intersection point, considering the intersections 
between theory, practice, and research around pedagogies of enactment. Based on the attendance at 
our past working group, we recognize that mathematics TEs are motivated to attend for a variety of 
reasons. Some TEs pursue questions to advance theory about teacher development, others pursue 
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learning more about tools to improve teacher education practice, and finally, other TEs are interested 
in researching teaching and teacher development through the design and use of pedagogies of 
enactment. Some individuals are motivated to pursue multiple areas of interest, often negotiating how 
to manage multiple demands or make decisions about what to foreground or background. Because 
the working group’s efforts sit at the intersection of design of innovation and research on innovation 
to improve practice, the group is positioned to advance and integrate conversations of theory, 
research and practice across settings and with multiple stakeholder groups—crossroads that are often 
viewed as a barrier. These interests and needs also serve in representing a crossroads as a potential 
change in route—reflecting on our past experiences as practitioners, researchers, and collaborators to 
think about next steps. As such, we will frame each session of the working group to attend to theory, 
research, and practice.  

Plan for Engagement of the Working Group 
The three working group sessions are structured around the focal issues outlined above.  

Session 1. Examining Theoretical and Methodological Choices 
The first session will open with introductions and then briefly frame the purposes and the 

structure of the working group. The remainder of this session will include a structured poster session 
that will provide participants with an opportunity to present the theoretical and methodological tools 
they use to frame their work around pedagogies of enactment, whether in practice or for research. 
Participants will then debrief and summarize these ideas in a whole group discussion, identifying 
similarities and differences and discussing implications.  

Session 2. Connecting to Visions of Equity in Mathematics Teaching and Teacher Education 
The second session will build on the previous day’s work to consider how conceptions of teacher 

learning build on and contribute to visions of equity in mathematics teaching and teacher education. 
The session will focus on two main questions connected to our dual foci of research and practice. 
The first question informing practice is: How might recent visions of equity inform pedagogies of 
enactment? This question will help us think about and identify the tools and practices we employ as 
TEs to take up equity in authentic ways within pedagogies of enactment. Drawing on Gutiérrez’s 
(2011) four equity dimensions, we will examine Bartell and colleagues’ (2017) research framework 
for linking equitable teaching with the Standards for Mathematical Practice as well as our shared 
sense of “ambitious mathematics teaching.” The second question framing the session, which 
foregrounds our research lens, is: What are the implications of these visions of equity on research 
questions, methodologies, and settings related to pedagogies of enactment? To prepare for this 
discussion, we will provide participants a short synopsis of Bartell et al. (2017) and Gutiérrez (2011) 
as well as access to the full text. We will take up these questions through initial small group 
discussions, where participants will be able to engage in careful investigation of these questions as 
they apply to each unique context. We will then have a broader discussion as a whole group to 
develop a shared understanding of the ways visions of equity play out in our work with pedagogies of 
enactment. This discussion with conclude with a summary of next steps, particularly as they relate to 
theoretical considerations and research.  

Session 3. Supporting the Development of Research-Practice Partnerships 
The final working group session will provide an opportunity to discuss next steps, with a focus 

on the initiation and support of research-practice partnerships in local contexts centered on the use of 
pedagogies of enactment across contexts. From our previous work, we recognize that an important 
next step in this work is to consider how efforts can be scaled, how work is done across contexts with 
multiple stakeholders, and how systemic change can be fostered. We will consider frameworks such 
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as DBIR or research practice partnerships to guide our discussion, leveraging experiences and 
expertise from within the group shared through existing work and  

This final working group session will also serve as an opportunity to consider and discuss follow-
up activities that could build on the work begun during the working group. Participants will have the 
opportunity to connect with others about common interests to initiate plans for collaboration about 
practice or research. We will also discuss a proposed set of follow-up activities (see below) and 
invite recommendations on other next steps. We will identify participants who can take the lead in 
facilitating follow-up work.  

Anticipated Follow-Up Activities 
There are a number of potential follow-up activities to build on the work that will begin during 

the proposed sessions. We are hopeful that this working group would continue to serve as a catalyst 
for collaborative activities around designing and studying pedagogies of rehearsals and enactments. 
For some, this can entail beginning to incorporate rehearsals into a methods course or a PD effort. 
Others may ask more substantive practice-oriented questions of their use of rehearsals and 
enactments. Both of these efforts would benefit from opportunities for sharing resources and 
materials, such as a website, blog, or shared folder. Others will continue to engage in more 
substantial data collection and analysis to research teacher development, which may serve as pilot 
projects, eventually leading to proposals to fund collaborative research projects. This is particularly 
salient in the context of considering the development and support of research-practice partnerships. 
We are also currently conceptualizing a proposal for funding a focused conference to bring together 
scholars for focused work around pedagogies of enactment, and the working group will be an 
opportunity to further pursue or advertise those plans. 

Another target activity is the collective dissemination of the ideas that are shared and created 
through the working group itself. For example, submitting a paper to a journal like Mathematics 
Teacher Educator that outlines similar or contrasting ideas around rehearsals and enactments could 
provide an appropriate forum and audience for these ideas. Alternatively, collectively writing a 
research commentary would allow us to focus on theoretical or methodological challenges in 
researching teacher development in practice-based activities. This could be submitted to a venue such 
as the Journal for Research in Mathematics Education that publishes commentaries. We will also 
continue to disseminate ideas at national conferences such as those of the Association of 
Mathematics Teacher Educators, the National Council of Teachers of Mathematics, and the National 
Council of Supervisors of Mathematics.  
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CONCEPTIONS AND CONSEQUENCES OF WHAT WE CALL ARGUMENTATION, 
JUSTIFICATION, AND PROOF 

 AnnaMarie Conner Karl W. Kosko Megan Staples 
 University of Georgia Kent State University University of Connecticut 
 aconner@uga.edu kkosko1@kent.edu megan.staples@uconn.edu 
 
 Michelle Cirillo Kristen Bieda Jill Newton 
 University of Delaware Michigan State University Purdue University 
 mcirillo@udel.edu kbieda@msu.edu janewton@purdue.edu  

Argumentation, justification, and proof are conceptualized in many ways in extant mathematics 
education literature. At times, the descriptions of these objects and processes are compatible or 
complementary; at other times, they are inconsistent and even contradictory. The inconsistencies in 
definitions and usages of the terms argumentation, justification, and proof highlight the need for 
scholarly conversations addressing these (and other related) constructs. Collaboration is needed to 
move toward, not one-size-fits-all definitions, but rather a framework that highlights connections 
among them and exploits ways in which they may be used in tandem to address overarching research 
questions. Working group leaders aim to facilitate discussions and collaborations among 
researchers and to advance our collective understanding and conveyed use of argumentation, 
justification and proof, particularly the relationships among these important mathematical 
constructs. The 2017 working group sessions will provide continued opportunities for participants to 
discuss existing definitions and descriptions, with increased focus on how these definitions and 
descriptions are used by researchers and practitioners within particular contexts and applications. 
Participants will examine data through a variety of lenses to investigate the use of particular 
conceptualizations and discuss implications of such use.   

Keywords: Reasoning and Proof, Advanced Mathematical Thinking 

Brief History of the Working Group 
The Conceptions and Consequences of What We Call Argumentation, Justification, and Proof 

Working Group (AJP-WG) met for the first time in 2015 at Michigan State University in East 
Lansing, Michigan during the 37th Annual Meeting of the North American Chapter of the Psychology 
of Mathematics Education (PME-NA), and again the following year for the 38th Annual Meeting of 
PME-NA in Tucson, Arizona. The working group’s primary focus is on the field’s conceptualization 
of the interrelated objects and processes of argumentation, justification, and proof. Previous working 
groups at PME and PME-NA had focused on either proof or argumentation, but the present working 
group is the first to attend specifically to the connections among these three constructs.  

During the working group’s initial meeting (2015), attendees made progress on considering the 
interrelationships among argumentation, justification and proof, and we deepened our understandings 
of our own perspectives and the range of perspectives held by others in the group. The goal during 
this meeting was not consensus or deciding a best approach. Rather, we sought to better understand 
the complexity and diversity of individuals’ perspectives with respect to their research agendas and 
professional practice. We were encouraged that our efforts were well received, with 46 scholars, 
including at least 10 graduate students, participating in the working group the first year.  

The second gathering of the AJP-WG was held in 2016 at the annual meeting for PME-NA in 
Tuscon, AZ. Thirty-six scholars attended the sessions, which continued the group’s focus on the 
interrelationship between and among the concepts and terms related to argumentation, justification, 
and proof. Specifically, participants considered their definitions for these concepts and how such 
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definitions may change given different contexts and foci. Additional information about the first two 
meetings of the AJP-WG is included later in the proposal.  

Summary of Focal Issues 
There is a large and growing body of research in mathematics education focused on 

argumentation, justification, and proof. The research on proof, for example, includes studies on the 
role of proof in the discipline; proof in school mathematics and at the undergraduate level; what 
counts as a proof; proof schemes and categories; teachers’ conceptions of proof; students’ abilities to 
write valid proofs; and what teaching proof looks like in classrooms at various levels (e.g., Boero, 
2007; Harel & Sowder, 2007; Reid & Knipping, 2010; Stylianou, Blanton, & Knuth, 2009). At the 
same time, researchers and policy documents have issued calls to engage K-12 students with 
disciplinary practices such as constructing viable arguments, justifying conclusions, critiquing the 
reasoning of others, and constructing proofs for mathematical assertions (National Council of 
Teachers of Mathematics [NCTM], 2000; National Governors Association Center for Best Practices 
[NGA] & Council of Chief State School Officers [CCSSO], 2010).   

Yet, as the field moves forward to maximize students’ learning opportunities for engaging in 
these disciplinary practices, mathematics educators need to refine their notions of these terms in 
scholarly activities and in policy documents (Cai & Cirillo, 2014). How, when, and why decisions 
related to word choices are made (e.g., ‘argument’ versus ‘proof’) in curriculum materials, policy 
documents, and research is an open question. In fact, some researchers have hinted that these choices 
are not always purposeful. For example, Lynn Steen, a member of the 1989 NCTM Standards 
Committee, claimed that uncertainty about the role of proof in school mathematics caused NCTM in 
its 1989 Standards document to resort to, what he called, “euphemisms” such as “‘justify,’ ‘validate,’ 
‘test conjectures,’ [and] ‘follow logical arguments’” (Steen, 1999, p. 274). Rarely, he stated, did the 
document use the term ‘proof.’ Although Steen’s comments were published more than 15 years ago, 
we argue that his proposition, that the role of proof (as well as argumentation and justification) in 
school mathematics is uncertain, continues to be true today.  

One additional challenge of reading extant research or developing a research agenda related to 
these disciplinary practices is that the classifications offered differ according to the perspective of the 
researcher, the focus of the research, and the particular data being analyzed (Reid & Knipping, 2010). 
Only recently have we begun to see mathematics educators offering explicit definitions of these 
constructs in their work; this is ironic given the importance of definitions in the field of mathematics 
itself and particularly in the activity of proving.  

Although proof has received more attention in extant research, argumentation as a concept seems 
to be garnering new prominence with increasing attention in the mathematics education literature 
(Conner, Singletary, Smith, Francisco, & Wagner, 2014; Staples & Newton, 2016; Stylianides, Bieda 
& Morselli, 2016) and as a process that is playing an important role in policy and curricular 
documents across many disciplinary fields. The notion of constructing and analyzing arguments 
appears in the most recent standards of four core K-12 disciplines – English, mathematics, social 
studies and science. For example, the Common Core State Standards for Mathematics (CCSSM) 
includes as one of its standards for mathematical practice, “Construct viable arguments and critique 
the reasoning of others” (NGA & CCSSO, 2010a) Similarly, CCSS for English Language Arts 
devotes a portion of an appendix to “The Special Place of Argument in the Standards,” emphasizing 
argumentation as critical for success in college and careers (NGA & CCSSO, 2010b, Appendix A, 
pp. 24-25). The National Council of the Social Studies (NCSS) highlights argumentation as an aspect 
of historical thinking, with a focus on causation and argumentation (NCSS, 2013). A summary table 
of where and how references to arguments or argumentation appear in the policy documents is 
included in Table 1.  



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1466 

On a related note, although not an explicit Standard for Mathematical Practice, we find evidence 
in past and current mathematics standards documents that justification is considered an important 
mathematical practice. For example, in the 1989 Standards, it was noted by the authors that 
throughout the document, “verbs such as explore, justify,…describe, develop, and predict are used to 
convey this active physical and mental involvement of children in learning the content of the 
curriculum” (NCTM, 1989, p. 17). In particular, students are asked to “justify their answers and 
solution processes” (p. 29) as part of the Mathematics as Reasoning Standard. In Principles and 
Standards for School Mathematics (PSSM) (NCTM, 2000), geometry is positioned as a natural site 
for the development of students’ “reasoning and justification skills” (p. 41). Justifying is also 
explicitly linked to the Reasoning and Proof, Communication, and Problem Solving Process 
Standards in PSSM. Finally, the authors of CCSSM (NGA & CCSSO, 2010a) consider “the ability to 
justify, in a way appropriate to the student’s mathematical maturity, why a particular mathematical 
statement is true or where a mathematical rule comes from” (p. 4) to be a hallmark of mathematical 
understanding. Looking across time, analyses of standards adopted prior to that of CCSSM suggest a 
relatively infrequent inclusion of the terms justify/justification in content standards language (Larnell 
& Smith, 2011), with a significant increase in such usage in CCSSM (Kosko & Gao, in press). 
Furthermore, and along the same lines as argumentation, justification as a topic of study has seen 
increased recent attention in the research literature (Lesseig, 2016; Lin & Tsai, 2016). Together, 
these examples demonstrate that justification has been considered to be important in school 
mathematics, with increased focus in recent years.  

Table 1: Summary of References to Argument(ation) in Policy Documents  
 

Standards 
 

Role in Standards 
 

Specific Reference for Practice 
or Recommendation 

 
Common Core State 
Standards for 
Mathematics  

One of eight Standards for 
Mathematical Practice that should 
be developed in students  

3. Construct viable arguments and 
critique the reasoning of others. 
(p. 6) 

Common Core State 
Standards for English 
Language Arts & 
Literacy 

Argumentation identified as the 
first of the Standards’ “Three Text 
Types”  

The Special Place of Argument in 
the Standards in Appendix A: 
Research Supporting Key 
Elements of the Standards (p. 24) 

Next Generation 
Science Standards  

One of eight Science and 
Engineering Practices in the 
NGSS identified as essential for 
all students to learn 

7. Engaging in argument from 
evidence (Appendix F, p. 13) 

National Curriculum 
Standards for Social 
Studies 

One of three factors related to 
“powerful” social studies teaching 
and learning 

Teachers show interest in and 
respect for students’ thinking and 
demand well-reasoned arguments 
rather than opinions voiced 
without adequate thought or 
commitment. (p. 13) 

 

Highlights from the Year 1 Working Group Discussions 
A focal activity during the initial working group sessions in 2015 was the development of 

Diagrams/Concept Maps in which each participant generated a representation of the relationships 
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among argumentation, justification, and proof from his or her perspective. Discussion surrounding 
the relationships between constructs was supported by an initial presentation by Keith Weber on Day 
1, followed by a panel presentation, moderated by Samuel Otten, with  Kristen Bieda, AnnaMarie 
Conner, and Pablo Mejía -Ramos serving as our expert panelists (i.e., Bieda - justification; Conner - 
argumentation; and Mejía-Ramos – proof). The panelists shared how they conceptualized the 
interrelationships among argumentation, justification and proof; they explicated how they came to 
use the central construct they use in their research and why they felt that choice was productive for 
their work; and they offered their thoughts on the current state of the field and what we might need to 
tackle next in relation to these constructs. The final day of the 2015 working group sessions offered 
the opportunity to revisit participants’ Diagrams/Concept Maps, though now potentially informed by 
additional perspectives and questions gained from the prior two sessions.  

Three products were generated from the 2015 meeting. First, a pair of podcasts generated by 
Samuel Otten are available worldwide: The first podcast is of Weber’s talk 
(http://mathed.podomatic.com/entry/2015-11-16T07_01_19-08_00), and the second podcast is the 
moderated panel discussion (http://mathed.podomatic.com/entry/2015-11-19T07_19_37-08_00). The 
second product was a white paper that was developed by the working group organizers, the panelists, 
and several other participants from the working group who volunteered to participate in the online 
publication (Cirillo et al., 2016). The white paper summarized the working group activities and 
discussions and also includes the set of 44 Diagrams/Concept Maps that were generated as well as 
annotations and analyses. At the time of this writing, the white paper has garnered over 230 reads 
since its online publication six months ago. The final product was a poster presentation for PME-NA 
2016 that was based on the analyses of the Diagrams/Concept Maps (Strachota et al., 2016).  

Weber’s presentation highlighted different traditions and points of disagreement, for example, 
citing Reid’s (2001) observation that research simultaneously suggests that secondary students 
struggle to construct proofs, while at the same time suggesting that primary children are capable of 
engaging in proof. Weber prompted the group to consider how different traditions may inform each 
other in order to advance the field collectively. In particular, he outlined three broad traditions in 
proving: proving as problem solving, proving as convincing, and proving as socially embedded 
activity. Each corresponds to a different focus for research and/or instruction. Weber offered two 
thought-provoking suggestions, both of which may help us understand the lack of convergence in 
results and definitions. One suggestion was that proof may not be a singular, easily defined concept, 
but rather a cluster concept, as used by Lakoff (1987). In this sense, there is no list or decision 
procedure to identify a proof, but rather there is a set of features associated with the concept, and 
many - but not all - apply in any one instance.  

The second suggestion was that the features or properties associated with proof may be closely 
interrelated for mathematicians, but not for students. In particular, for mathematicians, a convincing 
argument and socially sanctioned argument are often one-in-the-same. For students, however, those 
are not tightly connected and may describe very different types of arguments. He suggested, 
“Perhaps much of the disagreement amongst mathematics educators is that they are using proof as a 
shorthand to denote things that are different to students but similar for mathematicians” (Cirillo et al., 
2016, p. 7). 

The panel discussion on our second day further raised awareness of how crucial it is to not only 
define one’s terms, but also to specify the context of one’s work. For example, Bieda and Conner 
both work closely with students and teachers in secondary settings, and in that context, they have 
found proof and proving to be terms that distance or invoke conceptions of end product and 
formality. Consequently in their work, they have chosen different focal constructs. Both Bieda and 
Conner articulated an explicit link of their work to students’ proof-producing capacities at the tertiary 
levels, but they do not centralize that term in their research in school mathematics. 
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Our discussions and subsequent analyses of the Concept Diagrams/Maps offered additional 
information about the variety of ways these three important constructs are understood in relation to 
one another. During the gallery walk and subsequent analyses across the Concept Diagrams/Maps, 
we could discern little to no agreement about the relationship between justification and 
argumentation. It seemed that participants held these two constructs (justification and argumentation) 
either fully distinct from the set of things we call proof, or that proof was a very specific version of 
each of these. Some considered justification a subset of arguments; others positioned arguments as a 
subset of justifications; and still others had them as overlapping, but not concurrent, sets.  

Proof (and proving) seemed to be of a different nature than argumentation and justification for 
our participants, and proof participants either positioned it at the far end of a continuum of the 
constructs, a plane above, or as a separate entity. Alternately, however, others considered proof to be 
a specific subset of arguments and justifications. Additional details can be found in the White Paper 
(Cirillo et al., 2016). A question raised in the discussion on Day 3 was whether proof was so 
valorized that we position it as the “desired end product” for all arguments, even when that might not 
be a productive or educative goal. This lack of not only convergence but general clarity provides an 
important opportunity for further exploration and raises questions about the consequences of these 
different concepts. It implores us to continue to work to develop a framework to connect these 
constructs and clarify not only our commitments and definitions but the interrelationships among 
these important ideas.  

Highlights from the Year 2 Working Group Discussions 
During the first session of the second meeting of the AJP-WG, Samuel Otten moderated panel 

presentations on differing applications of definitions provided by Eric Knuth, David Yopp, and Orit 
Zaslavsky. On the second day, participants examined data artifacts from different grade levels and 
were asked to consider whether and in what ways they would define features in the data with respect 
to argumentation, justification, and proof. All participants were provided two common artifacts (a 
transcript of a high school math class discussion & five samples of grades K-3 writing samples) as 
well as one additional artifact of choice (middle school, high school, or tertiary level artifact). 
Discussion surrounding the artifacts provided an opportunity for participants to consider how their 
definitions were affected by application to the differing data. It provided an arena in which to see 
how each definition served as a lens for viewing the artifacts and how these different lenses might 
lead one to position a work sample in different ways, depending on the type of mathematical activity 
represent in the work sample based on the definition. This discussion continued through to the final 
session. Further, the discussion surrounding the artifacts facilitated initial organization of three 
networking groups–one focused on reading and sharing journal articles and two focused on 
producing written products. One product available from this second AJP-WG meeting is a podcast of 
the panel discussion produced by Samuel Otten 
(https://www.podomatic.com/podcasts/mathed/episodes/2016-11-14T07_10_36-08_00). A second 
product is a white paper (available at https://www.researchgate.net/publication/317267228) 
summarizing the working group activities and discussions of the artifacts from year two (Staples et 
al., 2017). The final product is the organization of networking groups for continued collaboration 
related to, but independent from, the working group. Thus, activity across both years of the working 
group has facilitated the continued development of a community of mathematics education 
researchers who we anticipate will continue these discussions over several years.  

During the panel discussion, our panelists shared how they used and defined justification, 
argumentation, and proof and how their definitions and applications of these constructs influenced, 
and were influenced by, their research questions or contexts. A key point arose from David Yopp’s 
juxtaposition of his definition of proof with Stylianides’ (2007) definition of proof in relation to a 
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particular 8th-grade work sample. Yopp argued that by Stylianides’ definition, the student’s work was 
not a proof (violating two of three conditions). By Yopp’s definition, however, the student’s work 
was a proof. Yopp stated that a proof eliminates the possibility of counterexamples. Thus, from the 
student’s perspective—and perhaps class’s perspective—he had eliminated the possibility of 
counterexamples, thus providing proof of the claim (see Figure 1). 

 

 
Figure 1. Student work samples shared by David Yopp. 

We then turned our attention to reviewing artifacts of K-16 classrooms, to provide a concrete 
opportunity to see how definitions might interact with context. Participants were offered two artifacts 
in common, from elementary grades work samples and a high school transcript, and then could 
choose a third artefact to review, from middle school, high school or tertiary level. Although it 
became apparent was that we offered too much in too short a time frame, our discussion was 
productive, and we recap a few of the key ideas offered here. 

One question raised was how much context we needed to know in order to engage the question, 
is this a proof? Or is this an argument? This question was posed based on recognizing that both Yopp 
and Stylianides offered definitions of proof that dependent to a degree on a child’s/class’s conceptual 
sphere. In Stylianides’ definition, this context element comes through with the criteria that all must 
be “known by” or “within the conceptual reach” of the community. In Yopp’s, this context element 
comes through with the idea that one must eliminate all possible counterexamples, so if a student is 
not aware of, say, complex numbers, s/he does not have to offer a proof that accounts for all complex 
numbers. The student can only attend to and eliminate the possibility of counterexamples (actively) 
from his or her realm of possibility. Continuing with the general idea of context, questions were 
raised about how grade-level dependent a proof was, and whether one needed to know more about 
what was taken-as-shared in a class to evaluate whether an argument did or did not comprise a proof.  
One of the final points raised was that a proof is not a stand-alone entity; we need to know what the 
norms and assumptions are in order to understand if something is operating as a proof in that context.  

In our final session, we sought to continue the discussion from the previous session and also 
organize toward “networking groups” for those interested in sustaining or advancing conversations 
with respect to argumentation, justification and proof during the year. Participants each wrote brief 
questions they were interested in pursuing and indicated a level of commitment they might have for 
the pursuit (e.g., discussion groups, reading groups, research group). Our time then was devoted to 
participants having conversations to connect with one another around shared areas of interest and 
similar levels of desired future commitment. 

The networking time yielded three distinct follow-up groups. Each group also identified some 
goals for the upcoming year and shared these with the larger group. Please note that all participants 
in the working group were welcome to join these groups.  
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AJP Journal Club. This group aims to read and discuss two articles per quarter related to issues 
of interest to its members. One goal is to investigate how authors attempt to make explicit their 
definitions of argumentation, justification, and proof relevant to their work.  

Argumentation Research Commentary. This group aspires to write a research commentary 
that (a) describes research on argumentation in our field, and (b) explores reasonable guidelines for 
productive research on mathematical argumentation.  

Op Ed piece. This group intends to pursue an op-ed piece making the case that the mathematics 
education community needs to take concerted efforts to eliminate two-column proof from geometry 
courses in the United States.  

Focus for Year 3 
Our focus for Year 3 is to generate interest and commentary for a book proposal that will engage 

members of the community in a more structured analysis of data using different perspectives and 
definitions of argumentation, proof, and justification. In doing so, we intend to continue to facilitate 
communication and collaboration among members of the mathematics education community with 
interests in the areas of argumentation, justification, and proof.  

As we learned in Years 1 and 2, members of our community have widely differing perspectives 
on the definitions of and relationships among argumentation, justification, and proof (see Cirillo et 
al., 2015; Staples et al., 2016). Likewise, the consequences of these definitions and the contexts in 
which they are applied are varied, leading to a diverse set of conclusions and implications about the 
teaching and learning of argumentation, justification, and proof. This was illustrated in Year 2 of our 
working group, particularly by the conversations about David Yopp’s artifact (see Figure 1). 

In Year 2, we began to investigate how context, interpreted primarily as grade band, when 
combined with particular definitions, impacted our interpretation of data. We found that, to some 
extent, the written or verbal nature of the data also impacts our interpretations. Thus in Year 3 we 
will continue to dig into the interactions between context and definition in our examination of 
relevant data. We plan to build upon what we learned in Years 1 and 2 about different perspectives 
on argumentation (arguments), proving (proofs), and justifying (justifications). We intend to leverage 
ideas and relationships from our first two years into a book proposal in which chapters will highlight 
analyses of particular sets of data (artifacts) from different perspectives/definitions. This book will 
address how definitions, commitments, and contexts interact to produce different insights into the 
teaching and learning of mathematics. In particular, the book will highlight the importance of 
defining, distinguishing, and integrating argumentation, justification, and proof in mathematics 
education research and its applications. We will continue to facilitate communication and 
collaboration among members of the mathematics education community who are involved in 
research and scholarship using constructs that include argumentation, proof, and justification. As we 
explore the roles of definitions and the contexts in which we work in determining our definitions and 
how we use them, we will continue to facilitate connections among people with similar interests in 
hope of facilitating lasting collaborations to further knowledge related to argumentation, proof, and 
justification in the field.  

Plan for the Working Group 

Session 1: Looking at the Past and Toward the Future 
In Session 1, we will begin with introductions, review our progress from Years 1 and 2, and hear 

reports from the three networking groups established in Year 2. We will then present our current idea 
for the book proposal and solicit feedback, input, and advice from participants.  

In Year 2, we established the aforementioned networking groups with different purposes. During 
this session, we will invite the leaders and members of these groups to report on the progress and 
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products accomplished during the past year. As appropriate, we will invite session attendees to join 
established groups or to create new ones. 

During this session, we will present the rationale and structure of our proposed book, asking 
attendees to critique the ideas presented, make suggestions, and consider contributing to the book.  

Session 2: Examining Data from One Context 
Prior to the conference, working group leaders will analyze data and write an initial draft of two 

chapters for the book, analyzing data from a single context from at least two perspectives. In Session 
2, we will focus on the data from this context, including transcript and written work. We will ask 
participants to examine the data (in small groups), encouraging them to make their assumptions about 
and definitions of argumentation, justification, and proof explicit. We will share snippets of these 
conversations with the whole group. We will then hear a short presentation from one group of 
researchers who previously analyzed the data. This group will describe the definitions of 
argumentation, justification, and proof used to analyze the data and present conclusions and 
implications from the analysis. Working group participants will be invited to critique the 
interpretations and offer alternative ways to examine or interpret the data.  

Session 3: A Second Perspective on the Data 
In Session 3, we will again focus on the data presented in Session 2. We will hear a short 

presentation from the second group of researchers with different commitments to argumentation, 
justification, and proof detailing their analyses and interpretations of the artifacts. Working group 
participants will be invited to critique the interpretations and offer alternative ways to examine or 
interpret the artifact. Participants will then compare and contrast the different conclusions together 
with their definitions and commitments, and we will facilitate a discussion about the differing 
affordances of the different ways to analyze the data, as well as any questions prompted by this 
examination.  

During Session 3, we will revisit the plan for the book, soliciting feedback from participants on 
the structure and outline presented in the first session. We will finish Session 3 with an invitation to 
continue to participate in the work of the working group by proposing chapters with different analytic 
frames, writing commentaries on the analyses presented or on future chapters, or by participating in 
one of the networking groups discussed in Session 1. 

Anticipated Follow-Up Activities 
We anticipate that the products and follow-up activities from Year 3 will build on the activities 

and products from our two previous years. A major follow-up activity for the following year will be 
the development of a book proposal accompanied by drafts of several chapters for the book. A table 
of contents, introductory chapter and at least one chapter with accompanying commentary will be 
developed and revised for the submission of the book prospectus.  

      We will continue to encourage networking groups, which will likely shift and expand from 
Year 2. New working groups interested in collaborating on chapters for the book will be invited and 
encouraged. Additional networking groups with other related interests will also be encouraged.  

References 
Boero, P. (Ed.). (2007). Theorems in school: From history, epistemology and cognition to classroom practice. 

Rotterdam: Sense Publishers. 
Cai, J., & Cirillo, M. (2014). What do we know about reasoning and proving? Opportunities and missed 

opportunities from curriculum analyses. International Journal of Educational Research, 64, 132-140. 
Cirillo, M., Kosko, C., Newton, J., Staples, M. & Weber, K. (2015). Conceptions and consequences of what we call 

argumentation, justification and proof. In Bartell, T. G., Bieda, K. N., Putnam, R. T., Bradfield, K., & 
Dominguez, H. (Eds.). Proceedings of the 37th annual meeting of the North American Chapter of the 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1472 

International Group for the Psychology of Mathematics Education (pp 1343-1350). East Lansing, MI: Michigan 
State University. 

Cirillo, M., Kosko, K. W., Newton, J., Staples, M., Weber, K., Bieda, K., Conner, A. M., Mejía -Ramos, P., Otten, 
S., Hummer, J., & Strachota, S. (2016). Conceptions and consequences of what we call argumentation, 
justification, and proof (white paper). PME-NA Working Group for Argumentation, Justification, and Proof. 

Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Teacher support for 
collective argumentation: A framework for examining how teachers support students’ engagement in 
mathematical activities. Educational Studies in Mathematics, 86(3), 401-429. doi: 10.1007/s10649-014-9532-8 

Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. 
Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805-842). Charlotte, 
NC: Information Age Publishing. 

Kosko, K. W., & Gao, Y. (in press). Mathematical communication in state standards before the common core. 
Educational Policy. 

Lakoff, G. (1987). Women, fire, and dangerous things. Chicago: University of Chicago Press. 
Larnell, G. V., & Smith, J. P. (2011). Verbs and cognitive demand in K-8 geometry and measurement grade level 

expectations. In J. P. Smith (Ed.), A companion analysis of K-8 state mathematics standards (pp. 95-118). 
Charlotte, NC: Information Age. 

Lesseig, K. (2016). Fostering teacher learning of conjecturing, generalizing, and justifying through Mathematics 
Studio. Mathematics Teacher Education and Development, 18(1), 100-119. 

Lin, P. J., & Tsai, W. H. (2016). Enhancing students’ mathematical conjecturing and justification in third-grade 
classrooms: The sum of even/odd numbers. Journal of Mathematics Education, 9(1), 1-15. 

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school 
mathematics. Reston, VA: Author. 

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, 
VA: Author. 

National Council of the Social Studies. (2013). College, career & civic life C# framework for social studies state 
standards. Silver Spring, MD: Author. 

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010a). 
Common Core State Standards for Mathematics. Washington, DC: Authors.  

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010b). 
Common Core State Standards for English language arts and literacy in history/social studies, science, and 
technical subjects. Washington, DC: Authors. 

NGSS Lead States. (2013). Next Generation Science Standards: For States, by States. Washington, DC: the 
National Academies Press.  

Reid, D. (2001). Proof, proofs, proving and probing: Research related to proof.  In M. van den Heuvel-Panhuizen 
(Ed.), Proceedings of the Twentieth-Fifth Annual Conference of the International Group for the Psychology of 
Mathematics Education, (Vol. I, p. 360). Utrecht, Netherlands. Retrieved from 
http://files.eric.ed.gov/fulltext/ED466950.pdf 

Reid, D. A., & Knipping, C. (2010). Proof in mathematics education: Research, learning, and teaching. The 
Netherlands: Sense Publishers. 

Strachota, S., Hummer, J., Cirillo, M., Newton, J., Kosko, K. W., Staples, M., & Weber, K. (2016). Conceptions of 
proof, argumentation, and justification. In M. B. Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings 
of the 38th annual meeting of the North American Chapter for the Psychology of Mathematics Education (p. 
712). Tucson, AZ: The University of Arizona. 

Staples, M., & Newton, J. (2016). Teachers’ contextualization of argumentation in the mathematics classroom. 
Theory Into Practice, 55, 294-301. 

Staples, M., Newton, J., Kosko, K. W., Conner, A., Cirillo, M., Bieda, K. (2016). Conceptions and consequences of 
what we call argumentation, justification, and proof. In M. B. Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.). 
Proceedings of the 38th Annual Conference of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (pp. 1704-1712). Tucson, AZ: The University of Arizona. 

Staples, M., Newton, J., Kosko, K. W., Conner, A., Cirillo, M., Bieda, K., Yopp, D., Hummer, J., Strachota, S. 
Singh, R., An, T., Going, T., & Zhuang, Y. (2017). Using Artifacts to Explore Conceptions and Consequences 
of Argumentation, Justification, and Proof (white paper) PME-NA Working Group for Argumentation, 
Justification, and Proof. (https://www.researchgate.net/publication/317267228) 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1473 

Steen, L. A. (1999). Twenty questions about mathematical reasoning. In L. Stiff (Ed.), Developing mathematical 
reasoning in grades K-12 (pp. 270-285). Reston, VA: National Council of Teachers of Mathematics. 

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 
38(3), 289-321. 

Stylianides, A. J., Bieda, K. N., & Morselli, F. (2016). Proof and argumentation in mathematics education research. 
In A. Guitierrez, G. C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of 
mathematics education (pp. 315-351). Rotterdam: SensePublishers. 

Stylianou, D. A., Blanton, M. L., & Knuth, E. (Eds.). (2009). Teaching and learning proof across the grades: A K-
16 perspective. New York: Routledge. 
 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1474 

CRITICAL PERSPECTIVES ON DISABILITY AND MATHEMATICS EDUCATION 

 Katherine E. Lewis James Sheldon Kai Rands  
 University of Washington University of Arizona Independent Scholar  
 kelewis2@uw.edu jsheldon@email.arizona.edu randske@gmail.com  
  
 Jessica H. Hunt Paulo Tan Rachel Lambert  
North Carolina State University University of Tulsa Chapman University  
 Jhunt5@ncsu.edu paulo-tan@utulsa.edu lambertr@chapman.edu  
 

 Beth Macdonald 
 Utah State University 

 beth.macdonald@usu.edu  

Research on mathematics and disabilities traditionally has been conducted within a special 
education paradigm, which often implicitly or explicitly adopts a deficit model of the learner.  The 
deficit model locates the “problem” within the individual student rather than in the social, 
discursive, political, or structural context. Instruction for these students tend to focus primarily on 
rote algorithms and calculation skills rather than the solving of rigorous, high cognitive demand 
problems.  As mathematics education researchers and practitioners we are poised at the crossroads, 
ready to reclaim work traditionally relegated to special education.  Our working group is composed 
of researchers and educators who draw upon critical theories, such as Disability Studies in 
Education, Critical Race Theory, and DisCrit, in order to offer an alternative vision of mathematics 
education based around a different conceptualization of disability and learning differences.  We 
consider both the framing of these students as well as how to reframe classroom practice utilizing 
models like Complex Instruction (CI) and Universal Design for Learning (UDL) to create classrooms 
in which all students are able to access the curriculum in meaningful and rigorous ways. 

Keywords: Equity and Diversity, Instructional Activities and Practices, Classroom Discourse 

Overview of the Working Group 
The purpose of this working group is to assemble researchers and practitioners who bring a 

critical lens to issues of mathematics education and disability.  Historically, the consideration of 
disability in mathematics education has been examined from a special education lens, which 
pathologizes student difference and aims to “remediate” these perceived defects.  There is a well-
known epistemological difference between special education and mathematics education. We have 
come to a crossroads, where we must decide how to address this theoretical divide between special 
education and mathematics education.  As mathematics educators we believe a critical perspective on 
disability, drawing upon disability studies, critical race theory, and discrit, can address this divide 
and offer an alternative vision of mathematics education and disability. Our working group is 
designed to create sustainable opportunities for researchers and practitioners interested in bringing a 
critical lens to understanding disability and difference in mathematics education. In this proposal we 
briefly present the history of this working group, the theoretical perspectives that this group draws 
upon, and our plans for collaboration. 

History of the Working Group 
Our PME-NA working group met for the first time last year.  Fifteen researchers (faculty and 

graduate students) and 2 educators met during PME-NA 2016 in Tucson, AZ.  In this first series of 
working group meetings, participating group members shared theoretical perspectives of disability 
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they employed within their work in mathematics education, current projects they were engaged in 
related to disability and mathematics education, and critical issues members often found themselves 
confronting in taking up this complex work. Conversations that took place during this time were 
exciting. Many common interests were uncovered and shared among group members. At the 
conclusion of our time together at the conference, many of the group members were hopeful that the 
working group in subsequent years could serve as a foundation for continued work and conversation.  
This group has the potential to serve as a main platform and organizing structure as we embark upon 
this paradigm-shifting work.  

The impact and work of this group continued through the year.  We established an email list-serv 
which members have used regularly to share and solicit feedback on work and to organize our 
collective efforts.  We are in the process of submitting an AERA conference grant to provide a multi-
day venue for members of this working group to meet and work on an edited book project.  We are 
also planning to submit a book proposal. 

In this coming year we plan to continue and expand collaborations between members of this 
working group.  We hope to provide time to learn with and from each other and to establish the 
foundation for collaborative work throughout the year.  Although we are actively pursuing 
opportunities to bring this group together for a more extended period of time (through 
AERA/National Science Foundation (NSF) conference grants), maintaining our PME-NA working 
group is essential.  It not only provides an opportunity to connect with others, engage in ongoing 
projects, but also to invite new researchers and educators to join our community.  As we have 
experienced in other working groups, each year brings new members, and provides a synergistic 
place for an ever-growing number of researchers to come together to begin collaborations around 
these challenging issues.  We hope this working group can provide a space for scholars who are 
taking a critical lens to explore disability related to mathematics education. Our efforts to recruit new 
members have been ongoing since our first meeting.  We have promoted and advertised this group at 
national mathematics education conferences (AMTE & RCML), made announcements in Review of 
Disability Studies, promoted it on the Disability Studies in the Humanities listserv, and posted on 
various facebook groups (e.g., Teaching Disability Studies and Mathematics Education Researchers 
and STaR).  In addition, many of the original members have reached out to their informal networks 
to invite others who have expressed an interest in joining this group. 

Paradigm Shifts for Disabilities in Mathematics 
Gathering together a group of researchers, graduate students, undergraduate students, and 

classroom teachers interested in developing an alternate paradigm around disability, we have begun 
to explore the different theoretical frameworks that we can use to analyze and change this situation 
within mathematics education.  Heeding Lather’s (1986) call for researchers to utilize multiple 
theoretical schemes in their work, our working group believes that this work requires the 
participation of multiple paradigms of critique.  Our working group draws upon critical theories such 
as disability studies, critical race theory, and other poststructural theories (including queer studies 
and trans studies) in this analysis.  A commonality among these perspectives is that each 
problematizes normativity.  We welcome the participation of those with other perspectives as well.  
In the following sections, we describe a sampling of these perspectives in order to frame the work of 
the group.   

Critical Theories 
Although the notion of critique dates back to antiquity, the phrase critical theory originally 

referred to a body of work coming out of the Frankfurt School and Institute for Social Research in 
the late 1920s through the early 1940s.  Critical theory seeks to reshape reality, not merely explaining 
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things.  As Karl Marx (1845) wrote almost a century earlier, “The philosophers have only interpreted 
the world, in various ways; the point is to change it.”   Critical theory has come to mean not just the 
work of the original critical theorists, but any theory that seeks to transform rather than merely 
explain society.  The Stanford Encyclopedia of Philosophy gives three main criteria for a critical 
theory, that “it must explain what is wrong with current social reality, identify the actors to change it, 
and provide both clear norms for criticism and achievable practical goals for social transformation.” 
All of the theoretical perspectives that our working group draws upon are in some ways “critical 
theories.” 

Disability Studies and Disability Studies in Education 
Many of the members of our working group utilize disability studies (DS) and disability studies 

in education (DSE) as a mode of inquiry in order to questioning the taken-for-granted assumptions 
and practices in mathematics education and the intervention paradigm.  DS and DSE provides a 
framework for exploring questions such as: who is labeling, who is being labeled, whose voices we 
value, and how do we advance more equitable practices for all students.  Disability studies calls into 
question the medical/individual model of disability in which disability is seen as a deficit within an 
individual that requires “curing.”   

In contrast to the medical model, many disability studies scholars and activists have adopted a 
social model of dis/ability, which locates dis/ability in an inaccessible environment.  Those who 
adopt the social model of dis/ability make a distinction between impairment, as any physical or 
mental limitation, and disability, as the “social exclusions based on, and social meanings attributed 
to, that impairment” (Kafer, 2013, p. 7).  Kafer (2013), however, argues that such a sharp distinction 
between impairment and dis/ability is unhelpful because it “fails to recognize that both impairment 
and disability are social” (p. 7).  In the book Feminist Queer Crip, Kafer suggests the term 
“political/relational model” to refer to perspectives recognizing that both impairment and dis/ability 
are socially constructed.  Within this social framing of disability is the acknowledgement that 
individuals with disabilities should be included within the research process itself.  Traditional 
approaches to researching disabilities are oppressive to individuals with disabilities, as the 
researchers determine the questions asked, the methods of data collection, and the meaning made of 
the data, with no input from the individuals with disabilities. The social model of disability 
acknowledges that these individuals have unique insights into their lived experiences and empowers 
them to engage directly in the research process.  

In educational settings, this construction of dis/ability manifests in the double education system 
that splits general education and special education. Scholars have traced the ways in which special 
education “serves as a vehicle for preserving general education in the midst of ever increasing 
diversity” (Reid & Valle, 2004, p. 468, paraphrasing Dudley-Marling, 2001; also see Skrtic, 1991, 
2005).  Rather than using research-validated frameworks like Universal Design for Learning (UDL) 
and Complex Instruction (CI) to deliver rigorous, high-cognitive demand instruction to all 
mathematics students, the system of special education shunts certain students (especially students of 
color) into an inferior, segregated mathematics education, thus providing a band-aid to a broken 
general education system and preventing larger, more systematic changes. One line of research 
pursued by working group members involves developing understanding and theorizing the research 
divide between special education and mathematics.   

Institutional schooling practices such as writing Individual Education Plans (IEPs) construct 
certain students as having disabilities; however, from a disability studies perspective, “the label of 
students with IEPs [can be viewed] not as an inherent and static determinant of individual ability, but 
as a school-based designation which reflects and recreates differential ability within the classroom” 
(Foote & Lambert, 2011, p. 250; also see Dudley-Marling, 2004; McDermott, Goldman & Varenne, 
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2006; Skrtic, 2005).  Certain students are chosen for this assessment and intervention, and this 
selection process is not objective and often singles out those students who are not from a dominant 
cultural background. 

Returning to the assumptions inherent in the concept of intervention, a disability studies 
perspective problematizes the taken-for-granted assumption that what is “wrong” with the situation 
requiring intervention is a pathology or deficit within students.  Instead, the problem is located in the 
inaccessibility of the environment; in other words, what needs to be changed is not the student, but 
rather the environment to allow access for students who differ from one another.  As Reid and Valle 
(2004) assert, “the responsibility for ‘fitting in’ has more to do with changing public attitudes and the 
development of welcoming classroom communities and with compensatory and differentiated 
instructional approaches than with individual learners (Shapiro, 1999).  In other words, our focus is 
on redesigning the context, not on ‘curing’ or ‘remediating’ individuals’ impairments” (p. 
468).  Different working group members have been addressing this in their current work in different 
ways.  One scholar, draws upon a Vygotskian framing of disability and identifies the ways in which 
standard mediational tools (e.g., mathematical representations or symbols) are inaccessible to some 
learners.  She reframes the word “remediation” as “re-mediation” to make an explicit move away 
from the deficit framing and toward a framing of disability in terms of access to mediational tools 
(Lewis, 2017).  A second scholar, conceptualizes interventions as increasing participation rather than 
specific skills (Lambert & Sugita, 2016).  That is, what interventions might contribute to more 
equitable participation and deeper engagement across students in mathematics classrooms?  This has 
been explored through empirical research focused on equitable participation in a Cognitively Guided 
Instruction algebra routine (Foote & Lambert, 2011).  Moreover, a political/relational model suggests 
that inaccessibility is embedded in the context of power relations.  Finding ways to “intervene” to 
make the environment accessible, then, also requires analyzing the power relations involved in 
maintaining inaccessibility. A third scholar uses her work in learning trajectories to critique notions 
of “fixing” students and viewing difference as something that is “wrong” as opposed to a natural 
strength that can be leveraged in instruction (Robertson & Ne’eman, 2008).  Specifically, she 
critiques a static interpretation of trajectory as an instructional directive to move children across 
levels or stages of a progression at the expense of paying attention to the reasoning children employ 
and working to support children to explore, revise, and advance that reasoning (Hunt, Westenskow, 
Silva, &Welch-Ptak, 2016). Such a use of trajectories could be viewed as an example of the social 
effects of difference that disable rather than natural biological variation (Siebers, 2008).  

Critical Race Theory and DisCrit 
Critical race theory (CRT) is another theoretical framework that informs the work of the 

group.  According to CRT, racism is ‘normal’ rather than an anomaly in U.S. society (Delgado, 
1995).  Critical race theorists assert that the U.S. was founded on property rights, and specifically the 
fact that enslaved African Americans were considered property, rather than civil rights (Ladson-
Billings & Tate, 1995).  CRT reveals the way race and racism continue to structure U.S. society.  In 
relation to educational interventions, critical race theorists have addressed the issue of over-
representation of students of color in special education.   

Often, however, these analyses leave ableist assumptions in place; similarly, DS perspectives 
often fail to adequately consider race.  DisCrit is a perspective that acknowledges that racism and 
ableism are both “normalizing processes that are interconnected and collusive.  In other words, 
racism and ableism often work in ways that are unspoken, yet, racism validates and reinforces 
ableism, and ableism validates and reinforces racism” (Connor, Ferri, & Annamma, 2016, ch. 1). 
Studies of administrators’ and teachers’ perceptions related to overrepresentation of students of color 
in special education have revealed that their perceptions tend to be rooted in “deficit thinking and 
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infused with racial and cultural factors” (Connor, Ferri, Annamma, 2016, ch. 1; also see Abram et al., 
2001 and Skiba et al, 2006).  DisCrit perspectives, therefore, identify the individual problematic 
attitudes of teachers and administrators as one “accessible entry point for intervention” (Connor, 
Ferri, Annamma, 2016, ch. 1).   

Summary of the Problem 
This working group will investigate issues related to disability in mathematics education.  Using 

multiple theoretical frameworks, the working group participants will analyze current practices in 
mathematics interventions, including the power relations involved, and develop and elaborate on 
alternatives.  The working group participants will also plan ways to evaluate these alternatives in 
various educational settings and contexts. 

Plan for Active Engagement of Working Group Participants 

Session 1 
In the first session, the organizers will introduce the rationale for the working group and its one-

year history.  We anticipate spending some time again hearing about how each of the members is 
theoretically addressing disability from a critical perspective in our ongoing work. The group will 
collaboratively refine the goals of the working group.   

Session 2 
In the second session, (based on input from session 1) participants will either: 

• brainstorm potential collaborative endeavors,  
• brainstorm how to position this critical work to make inroads into historically 

inhospitable venues for this work (e.g., Council for Exceptional Children)  
• break up into subgroups to make progress on collective projects (e.g., NSF Conference 

grant, book proposal, collaborative work)  
• discuss how to develop projects around member’s PMENA presentations or 
• discuss a shared reading (distributed to the list-serv before the conference and handed out 

during session 1) to push our thinking and shared understanding of critical perspectives.  

Session 3 
Session 3 will be devoted to planning our ongoing collaboration and distributing responsibilities 

for the group’s shared endeavors (e.g., conference / book proposals, developing a shared online 
repository of research and teaching resources). 

Plan for Sustainability: Anticipated Follow-up Activities 
The working group sessions during the conference are designed to enable the participants to 

develop concrete plans for collaborative work beyond the end of the conference timeframe.  We plan 
on continuing to communicate between working groups through our email list-serv.  Specifically, the 
third session is allotted for developing specific plans for future collaborative work.   
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In this working group, we consider design and research methodologies related to teacher learning in 
online professional development contexts. We describe the extant literature on online professional 
development, including a review of digital technologies and the applicability of this practice to 
teacher learning in education. We then describe an innovative project designed to support the 
development of middle school mathematics teachers in rural contexts, with a focus on three distinct 
forms of online learning: digitally communicated demonstration lessons, an online course, and 
online video coaching. Given recent technological advances and demands to support teachers in 
various contexts, we contend that researching and understanding these online models, as well as 
other online models is important for the broader field of mathematics education. As a result, the 
proposed discussion group will combine whole-group and subgroup time to converse about: (a) the 
challenges of online professional learning experiences, (b) research tools, methods, and analyses, (c) 
the connections among different projects and studies, and (d) future collaborations and research. 

Keywords: Teacher Education-Inservice/Professional Development, Research Methods, Learning 
Theories 

All teachers need access to high quality professional development in order to meet the needs of 
students and to teach rigorous mathematics as outlined in college and career-ready standards 
(Marrongelle, Sztajn, & Smith, 2013). Given the limited resources in some areas, including rural and 
urban school districts, online professional development has the potential to provide access to a wider 
range of teachers than what is possible face to face. Furthermore, given the propensity of millennials 
to seek online learning experiences, we feel that more attention needs to be given to the design, 
dissemination, and research of online professional development. Given the emerging importance and 
availability of online professional development, we propose a working group that will focus on the 
design, dissemination, and research on online professional development. The working group 
participants will analyze current practices in online professional development, including the 
technology affordances and limitations. Major themes that will be addressed are: 

• affordances of online platforms,  
• affordances and constraints of synchronous vs. asynchronous experiences,  
• challenges related to scaling up high-quality online professional development, and  
• methodologies used to research professional learning in online contexts.   

As schools turn to digital learning contexts, it is inevitable that professional development will 
follow a similar trend. It is imperative to have research-based models that demonstrate how the 
features of high quality face-to-face professional development can be matched or augmented in 
online contexts.  As an example of necessity, teachers in rural areas face constraints in terms of 
accessing the expertise and resources required for high-quality professional learning experiences, 
often because of lack of proximity to such resources as institutions of higher education and critical 
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masses of teachers required to collectively reflect on problems of practice (Howley & Howley, 
2005). Rural contexts are thus ideal sites for online professional development, which can be offered 
at a distance and can involve geographically dispersed participants (Francis & Jacobsen, 2013). At 
the same time, teachers in urban and suburban areas may have more regular access to professional 
development, but online formats afford conveniences and other applications that may not be 
available in face-to-face settings. Digital learning contexts provide opportunities for connections and 
visual supports that may otherwise not be accessible through more traditional forms of professional 
development. As a result, we consider it necessary to research and study online learning in these 
contexts and consider the importance of engaging in dialogue with mathematics educators and 
researchers about advancing technologies, specifically online professional learning, as related to 
mathematics professional development. This working group is intended to advance the practices of 
designing and researching online professional learning experiences by investigating the challenges of 
balancing high quality learning experiences and accessibility for teachers.   

Below we provide an overview of the literature related to professional learning in online 
contexts. Then we describe one model of online professional development that is being implemented 
with funding from the National Science Foundation (NSF). We will devote part of the first session 
explaining the components of the project as a means of introducing possible models and 
methodologies to study online professional development, leaving opportunities over the next working 
sessions to incorporate discussion of other models and methodologies. We then discuss Focal Issues 
in the Psychology of Mathematics Education, and conclude with aims for the 2017 working group.  

Overview of Literature Related to Online Professional Learning 

Digital Technologies 
Online professional learning experiences combine longstanding and emerging digital 

technologies to provide high-quality, interactive, content-focused professional development. 
Longstanding digital technologies (e.g., electronic learning management systems) have been used to 
implement online courses to design and implement professional development for the past couple of 
decades. Emerging digital technologies involve an internet-based platform to implement online video 
coaching, or other online communications, in ways that augment the interactivity of face-to-face 
coaching. Online video coaching emerges from the content-focused face-to-face coaching that the 
project personnel have engaged in over the last ten years.  

Research shows that while online communication lacks some of the modalities (e.g., gestures, 
facial expressions) and spontaneity of face-to-face communication (Tiene, 2000), there are also 
affordances unique to its asynchronous and text-based nature. In online discussions, communication 
tends to be more exact and organized (Garrison, Anderson, & Archer, 2001; McCreary, 1990), 
involve more formal and complex sentences (Sotillo, 2000; Warschauer, 1995) and incorporate 
critical thinking, reflection, and complex ideas (Davidson-Shivers, Muilenburg, & Tanner, 2001; 
Marra, Moore, & Klimczak, 2004). Research on synchronous online communication – which can 
include text chat windows and shared space in learning management systems – shows that it is 
experienced as more social than asynchronous spaces (Chou, 2002). Synchronous sessions induce 
personal participation, which Hrastinski (2008) compared to cognitive participation in that personal 
communication in synchronous spaces “involves more intense interaction … while cognitive 
participation is a more reflective type of participation supported by asynchronous communication” 
(p. 499). Furthermore, synchronous communication fosters multiple communication channels based 
on emerging networks within the larger group, including the use of chat boxes and personal email 
during synchronous sessions (Haythornthwaite, 2000, 2001). Researchers have reported positive 
outcomes from professional development involving synchronous exchanges via typing (e.g. Chen, 
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Chen, & Tsai, 2009). However, synchronous verbal online discussions and group activities have not 
been a focus of research. 

Online Professional Development in Education.  
Despite the growing popularity of online professional development, there is a need for empirical 

research regarding its quality and effectiveness (Dede, Ketelhut, Whitehouse, Breit, & McCloskey, 
2009). Prior research has not demonstrated advantages for online professional development in terms 
of teacher outcomes (cf. Fishman et al., 2013), in part due to the lack of online professional 
development contexts that involve teachers in sustained, intensive reflection on their practices. 
Furthermore, teacher learning in online spaces can be challenging, especially related to complex 
forms of learning. Sing and Khine (2006) found that a number of factors make it difficult for teachers 
to engage in complex or difficult forms of learning in an online context, such as teachers’ roles as 
implementers rather than producers, cultural norms where disagreement is seen as confrontational, 
and the cognitive demands relative to the available teacher time. Teacher learning in online contexts 
is discussed in more detail below. 

In order to illustrate professional learning in an online context, we present a model that the 
authors are currently using in a project situated in rural contexts. We present the model in order to 
begin the discussion of this model and other potential models, as well as the learning platforms and 
other features, such as the synchronous or asynchronous nature of learning in online environments.  

A Model of Online Professional Development 
The innovative online professional learning experiences in the author’s project focus on the 

development of teacher capacity to enact ambitious, responsive instruction aligned with the rigorous 
content and practice elements of the Common Core State Standards for Mathematics (CCSSM). We 
use the term professional learning experiences to denote that the professional development we 
employ differs from traditional workshop or other models that are too short or fragmented to be 
effective (Garet, Porter, Desimone, Birman, & Yoon, 2001).  

In the project, we identified three primary research goals. To study and understand: (a) the ways 
online-based professional development can help teachers improve their instructional practices and 
their ability to notice and respond to student thinking; (b) the characteristics of the feedback cycles in 
the online coaching, the role of video feedback, and the asynchronous components of feedback cycle; 
and (c) the features of the professional development model that would inform efforts to scale up the 
model, including the resource commitments, the requisite capacity of the course instructors and 
coaches, and the logistical requirements of the courses and coaching. We are currently in year one of 
four years of the project. The following describes the three online components of our project. In the 
working group, we envision these and other components used by other researchers serving as the 
catalysts for dialogue around online professional learning.  

Demonstration “Fishbowl” Lessons  
In order to address the challenges of engaging teachers in learning complex practices in an online 

context, we include a component aimed at initiating and reinforcing relationships between 
participants and project personnel and at helping participants to understand the types of learning 
experiences and design and feedback cycles that will be the core of the project. Research on lesson 
study (e.g., Amador & Weiland, 2016; Stigler & Hiebert, 1999) has led to an emphasis on 
demonstration lessons where teams of teachers collectively plan, enact, and reflect on lessons in 
ways that make public the features of the lessons and teachers’ instructional practices (Saphier & 
West, 2009). Consequently, one component of our project is a collaborative classroom activity (a 
demonstration “fishbowl” lesson) that builds from the studio classroom model developed by the 
Teachers Development Group (2010), with features consistent with content-focused coaching (West 
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& Staub, 2003). For each lesson, a group led by project personnel plans a lesson around a cognitively 
demanding task. On the day of the lesson, project participants review the lesson plan and explore the 
task, the mathematics embedded in the task and anticipated student approaches to solving the task, 
and the related CCSSM practice and content standards, making necessary revisions to facilitate the 
lesson. The project personnel then enact the lesson while the rest of the group observes and collects 
evidence of student thinking and learning. The group then collectively reflects on the experience, 
with a focus on describing evidence for student understanding using the data gathered by the teachers 
and observers. This process is repeated regularly with participants. 

In the beginning of the project all demonstration lesson activities are face-to-face.  However, by 
the third demonstration lesson this model is moved to an online format of synchronous and 
asynchronous activities.  The planning and debriefing portions are held via a video conferencing 
platform, Zoom, allowing for synchronous engagement in both whole group and small group 
discussions of the lessons.  Asynchronous activities include watching and reflecting on the video 
recording of the demonstration lesson between the planning and debriefing sessions. Discussion in 
the working group will center on the affordances and constraints of the online model and possible 
modifications to ensure the intended professional development goals are met.  

Online course - Orchestrating Mathematical Discussions 
The second component of our project is the two online course modules, Orchestrating 

Mathematical Discussions Parts One and Two, aimed at orienting the participants toward high-
leverage discourse practices that facilitate mathematically productive classroom discussions (Smith 
& Stein, 2011). In this course, the participants solve and discuss a series of high cognitive demand 
tasks, activities that will be accompanied by synchronous and asynchronous discussions around the 5 
Practices for Orchestrating Productive Mathematics Discussions (i.e. anticipating, monitoring, 
selecting, sequencing, connecting; Smith & Stein, 2011). The courses are designed to develop 
awareness of specific teacher and student discourse moves that facilitate productive mathematical 
discussions, to understand the role of high cognitive demand tasks in eliciting a variety of approaches 
worthy of group discussions, and to further develop participants’ mathematical knowledge, 
particularly the rich connections around big mathematical ideas that are helpful to teach with 
understanding (Ball, 1991; Ma, 1999). The discourse moves are designed to expand student 
participation in the development of mathematical ideas in the classroom. These actions position 
students as actively constructing mathematical knowledge, and consequently develop productive 
mathematical dispositions and students’ mathematical identities (Boaler & Staples, 2008; Chapin, 
O’Connor, & Anderson, 2003; Choppin, 2007a; 2007b; 2014; Herbel-Eisenmann, Steele, & Cirillo, 
2013; O’Connor & Michaels, 1993).    

In order to take advantage of the affordances of both asynchronous and synchronous 
characteristics of online communication, the course is embedded in a learning management system 
(LMS) that: allows for synchronous whole class and small group interaction; the sharing of artifacts, 
including those collectively developed in the LMS; and asynchronous discussion threads. In the 
online course modules in the LMS, the facilitator verbally presents a challenging task to the 
participants, which is viewed in the shared work space. The course instructor then assigns 
participants to virtual breakout rooms, in which the participants work synchronously in a common 
workspace, creating virtual white boards to share with the other groups. They can talk to each other, 
work simultaneously in the virtual space, and use the chat window to communicate. The course 
instructor can listen to and participate in these group discussions to determine when the groups are 
ready to present their solutions. The course instructor then closes the virtual breakout rooms, which 
automatically returns all participants to the main room to  conduct a summary discussion of the 
different strategies, in effect modeling the practices in the 5 Practices book. Asynchronously, the 
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group can continue to go back and reflect and comment on the task and related solutions, as well as 
on the readings from the 5 Practices book using discussions threads in the LMS.  Participants are 
also encouraged to share resources, lesson plans, and student work as appropriate. The working 
group will discuss this format for online professional learning as well as other formats and tools that 
have proven beneficial for users.  

Online Video Coaching 
The third – and most innovative – component of our project’s professional development program 

is the online video coaching that builds from models of content-focused coaching (West & Staub, 
2003). More recently, thanks to the advent of improved internet-based software aimed at increasing 
collaboration around video data, the project personnel have begun conducting online video coaching 
with teachers. The coaching cycles are focused on identifying and unpacking the mathematics with 
the teacher, while anticipating likely student strategies, conceptions, and misconceptions. The coach 
helps the teacher identify evidence for demonstrating how students are thinking (from the video as 
well as from student artifacts) and make connections between different student approaches in order to 
help the teacher structure the summary discussion of the lesson.  

The online coaching experiences involve synchronous and asynchronous components, with the 
goal of engaging participants in reflective or deliberative practice. The online coaching has features 
similar to face-to-face coaching, such as video conferencing conversations via Zoom, in which the 
coach and participant collaborate to plan lessons and reflect on the qualities of lessons. However, the 
online coaching includes an innovative component that involves asynchronous collaboration and 
feedback that structures the post-lesson collaborative reflection, features that augment or surpass the 
kind of feedback that can be given face-to-face. Teachers video-record themselves using Swivl, 
which allows them to place a camera (iPhone or other device) on a robot that tracks them around the 
room, allowing for teacher-focused video without the necessity of someone operating the camera. 
The video is automatically uploaded into a password-protected site and processed, and is 
immediately accessible to view and notate. The notation feature in Swivl allows the coach and the 
candidate to separately view and annotate the video. For example, a teacher can stop the video by 
hitting the pause button and type in a comment or question that is synced with the video, so that 
when the coach watches the video, she can read the comment during the point in the video referenced 
by the comment. The coach can do the same. The video can be viewed repeatedly, which allows for 
more thorough reflection and analysis. The notation provides for more in-depth and substantive 
feedback, pointing to specific instances of practice. The discussion group will focus on this model for 
professional coaching as well as other models or avenues for supporting individual teachers in online 
professional learning.  

Researching Online Professional Learning Experiences 
There is a dearth of research on online professional development, especially online professional 

development that is sustained and intensive. Similarly, while there have been 15 years of intensive 
efforts to implement coaching in schools, much of the research have revolved around the role and 
impact of coaches (Coburn & Russell, 2008; Penuel, Riel, Krause, & Frank, 2009), and less around 
the impact on reflective or deliberative practice. Although coaching has now been around for over 
ten years, there is limited research on the effectiveness of coaching in terms of improving teacher 
quality (Matsumura, Garnier & Spybrook, 2012). The greatest dearth of research involves online 
video coaching in education, as opposed to face-to-face video coaching, which has no peer-reviewed 
research yet associated with it. 
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Structure of the Working Group Sessions 
Within this working group we propose to explore the following questions related to researching 

online professional learning experiences: 

1. What are various platforms and models for online professional development? 
2. What theoretical framework and methodologies are salient for researching online digital 

technologies and online professional learning experiences? 
3. What data analysis methods are suited to the data captured in online environments? 
4. In what ways can online professional learning experiences help teachers improve their 

instructional practices and their ability to notice and respond to student thinking? 
5. In what ways can the characteristics of the feedback cycles in online coaching, the role of 

video feedback, and the asynchronous components of feedback cycle inform the design on 
online professional learning experiences to maximize teacher learning? 

6. What features of the professional development model would inform efforts to scale up the 
model, including the resource commitments, the requisite capacity of the course instructors 
and coaches, and the logistical requirements of the courses and coaching? 

Plan for Working Group: 
In Session 1, the organizers will present brief reports on the Author’s project and research design. 

Subgroups will be formed to explore current design and implementation efforts with online 
professional learning experiences from their own research and current efforts in the field.  

During Sessions 2 and 3 we will provide the subgroups time to continue collaborating. 
Participation in the subgroup work times will involve: a) identifying the challenges of online 
professional learning experiences that are the most challenging and why, b) refine research tools, 
methods, and analyses, c) explore connections among different projects and studies, and d) discuss 
future collaborations and research. We will close Session 3 with time to review group progress and 
discuss next steps for our work as shown in Table 1. Meeting notes, work, and documents will 
continue to be shared and distributed via our Google Folder (set up for this Working Group). The use 
of Google documents allows members to create an institutional memory of activities during the 
working group that we will continue to use and add to following the 2017 working group. This 
shared folder will also provide a shared space for future collaborations and writing projects related to 
online professional learning experiences within the 2017 working group members.      
 

Table 1. Overview of Proposed Working Subgroup Sessions 

 Activities Guiding Questions 

Session 1 1. Introductions and Agenda 
2. Brief Presentations of Authors’ 

Project and Research Questions 
3. Subgroup formation and initial work 

time - designing Online PD 
experiences 

1. What research is being done related to 
online professional development? 

2. Which aspects of online professional 
learning experiences are the most 
challenging and why?  

3. Goals of attendees for attending this 
working group 
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Session 2 1. Overview of subgroup’s work from 
previous day 

2. Subgroup work time - engagement 
in online professional learning 
experiences 

3. Brief sharing of work in subgroups 

1. Identifying factors of engagement in 
online professional learning experiences 

2. What platforms are used for online 
learning? What are the affordances of 
various platforms? 

3. How can online learning support teacher 
learning? 

4. What are the affordances and constraints 
of synchronous and asynchronous 
experiences? 

Session 3 1. Overview of subgroup’s work from 
previous day 

2. Subgroup work time - researching 
online professional learning 
experiences 

3. Brief sharing of work in subgroups 
4. Final reflections – future 

collaborations and research 

1. What theories and theoretical 
frameworks have informed the design of 
your research 
project(s)? 

2. How might your work inform theory in 
researching online professional learning 
experiences? 

3. What issues and challenges have you 
faced in designing studies in this area? 

4. What challenges may exist for scaling up 
high-quality online professional 
development? 
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DEVELOPING A RESEARCH AGENDA OF MATHEMATICS TEACHER LEADERS AND 
THEIR PREPARATION AND PROFESSIONAL DEVELOPMENT EXPERIENCES 
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This working group will discuss mathematics teacher leaders and the assessment and evaluation of 
programs for their professional development. Mathematics teacher leaders (MTLs) are school-based, 
teacher leaders who are responsible for supporting other teachers with mathematics teaching and 
learning. Mathematics teacher leaders learn to lead professional development, coach other teachers, 
and work on school-level initiatives for mathematics. The challenge is that understanding of the role 
is still evolving as are the areas in which they need the most professional development. Many 
programs focus on developing their mathematical content knowledge for teaching, but they also need 
to learn about curriculum, assessment, pedagogy, and leadership for school change. This working 
group will start by discussion of existing tools and resources for documenting the work and 
development of MTLs. The discussion will continue with setting an agenda for research about their 
professional development.  

Keywords: Assessment and Evaluation, Design Experiments, Teacher Education In-
service/Professional Development 

Defining Mathematics Teacher Leaders 
The organizers of this working group find common purpose in considering the roles, 

responsibilities, knowledge and development of school-based mathematics teacher leaders (MTLs), 
specifically on their role as leaders of other teachers. An ongoing challenge and opportunity in 
research and development is the diverse interpretations and implementations of mathematics teacher 
leadership. Such leaders may have formal titles like “mathematics specialist” or “mathematics 
coach.”  While in this role, MTLs may support teachers of mathematics, continue to teach whole 
mathematics classes, work with small groups of students or lead within the school in an informal 
capacity.  This working group is focused on the MTLs leadership role with the purpose of examining 
the learning experiences and assessments that need to be created to understand their work. In some 
settings, MTLs are referred to as elementary mathematics specialists or coaches so we draw on 
literature and background for those roles in crafting this working group. 

Knowledge & Skills 
While MTLs are accomplished mathematics teachers, an additional layer of knowledge and skills 

is required to be a leader (e.g., Bitto, 2015). Notably, the Association of Mathematics Teacher 
Educators (AMTE) Standards for Elementary Mathematics Specialists (AMTE, 2010 & 2013) 
distinguish the role of teacher of mathematics from the role of teacher leader. This separation of roles 
recognizes that the knowledge and skills for being a teacher of mathematics are distinct from the 
knowledge and skills to be a mathematics leader. Specific leadership skills required of MTLs to 
support adult learning include: leading professional development, working one-on-one with teachers, 
collaborating with teacher professional learning communities, and creating school-level initiatives.  
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Brief History of the Working Group 
The organizers originally convened at a meeting run by the Brookhill Institute in 2015 to 

examine research and create working groups of researchers to study MTLs, specifically mathematics 
specialists and coaches. Since then, the organizers have published a book about elementary 
mathematics specialists (McGatha & Rigelman, 2017), presented at conferences (McGatha & 
Rigelman, AMTE, 2017; Larsen, Bailey & Baker, National Council of Supervisors of Mathematics 
[NCSM], 2017), written book chapters (Baker, Bailey, Larsen, & Galanti, 2017) and published 
articles related to mathematics teacher leadership (McGatha, Davis, & Stokes, 2015). While this is 
the first organized working group of these leaders at a PME-NA conference, the proposed working 
group is a continuation of previous efforts and seeks to engage additional researchers in examining 
research and development projects related to MTLs. A significant goal in this effort is to build on the 
momentum that began at the 2015 Brookhill meeting and advance the mathematics teacher leadership 
research community.  Significant research is still required that centers on MTLs including: their 
professional development, knowledge, and practices particularly in terms of their leadership 
development and their work with teachers both individually and in groups (McGatha et al., 2015). 

Rationale for Working Group 
In 2015, McGatha, Davis, and Stokes published an NCTM Research Brief that examined the 

current compilation of MTL literature.  Comprised of 24 articles, an increase from the 9 articles 
available in 2009 (McGatha et al., 2015), the need for additional research on MTLs was 
illuminated.  Specifically, the NCTM Research Brief included a review of literature centered on 
MTL experiences, roles and effectiveness to impact both mathematics teachers and students. Studies 
were placed on a continuum from less-directive to most-directive. In less-directive activities, MTLs 
encouraged teachers to reflect through activities that promoted the thoughtful practice of teaching 
mathematics.  The opposite end of the continuum, most-directive, involves the MTL reflecting and 
doing most of the work. The teacher or collaborative team are passive participants, not active in the 
planning, taking the materials provided and accept being told what actions need to occur. In the 
middle of the continuum were actions, such as co-teaching and co-planning, that involved the MTL 
and classroom teacher collaborating to improve instruction and student learning. McGatha, et al., 
(2015) concludes that more research needs to be conducted on the work of the MTL while coaching 
individual and groups of teachers, their roles as leaders in their schools, how systems might establish 
and support the MTL, and what are the actions that lead to transforming instruction and productive 
student outcomes.   

The 2015 NCTM Research Brief guided A Critical Analysis of Emerging High-Leverage 
Practices for Mathematics Specialists (Baker, Bailey, Larsen & Galanti, 2017) which was presented 
at the 2017 AMTE annual conference. In this book chapter, the authors present an analysis of the 24 
articles through two distinct lenses that aim to identify effective practices for MTL: 1) the NCTM 
CAEP Standards (2012); and 2) the potentially productive coaching practices which included 
engaging in mathematics, examining student work, analyzing classroom video, rehearsing, lesson 
study or studio day, co-teaching, and modeling (Gibbons & Cobb, 2012). The analyses revealed that 
co-teaching and modeling were the practices most frequently mentioned in MTL research, with 
eleven and twelve mentions respectively. With respect to the role and actions of the MTL, engaging 
in mathematics and lesson study was discussed in five articles each (Alloway & Jilk, 2010; Campbell 
& Malkus, 2011; Chval, et al., 2010; Gibbons, 2015; Polly, 2012), two of the research articles 
employed analyzing classroom video  (Alloway & Jilk, 2010; Campbell & Malkus, 2011) and 
rehearsing was not mentioned at all. Although the frequency of MTL actions speaks to the need for 
additional research, the research on MTLs did not provide enough specific information about the 
practices used so that they might be replicated to provide evidence of impact or transform instruction. 
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Baker et al. identified a need for MTL researchers to develop and use a common language to achieve 
the clarity and cohesiveness required to advance the work of the MTL. 

The work of the MTL and transforming instruction takes time with the leaders requiring support 
in their work (Borko, Koellner & Jacobs 2014; Campbell, 2012; Chval, et al., 2010). Campbell 
(2011) posits that stakeholders on a global scale (e.g. policymakers, mathematics educators, 
mathematicians, professional developers) need to come together with research to further the work of 
MTLs in a “non-competitive sense of mutual obligation and responsibility.” A support structure must 
exist that includes the opportunity to share the implementation and research challenges. 

Background and Theoretical Perspective 

Elementary Mathematics Specialists: A Movement to Advance MTLs 
A single MTL can have an incredible impact on the development and effectiveness of others. 

Leaders in mathematics education at all levels of the school or district organization are crucial for 
ensuring attainment of high-quality school mathematics programs. In response to such leadership 
needs Elementary Mathematics Specialist (EMS) programs and job roles have been created across 
the United States.  Many have made the case that practicing elementary school teachers are not 
adequately prepared to meet the demands for increasing student achievement in mathematics 
(NCTM, 2000; National Mathematics Advisory Panel, 2008; National Research Council, 1989). The 
main reason given to explain this insufficiency is that most elementary teachers are generalists—that 
is, they study and teach all core subjects, rarely developing in depth knowledge and expertise in 
teaching elementary mathematics. 

More recently, the National Mathematics Advisory Panel (2008) noted that ―the use of teachers 
who have specialized in elementary mathematics teaching could be a practical alternative to 
increasing all elementary teachers’ content knowledge (a problem of huge scale) by focusing the 
need for expertise on fewer teachers. Building on the Panel’s recommendations, Wu (2009) 
advocated for mathematics specialists by suggesting the “problem of scale” could be addressed by 
utilizing a smaller cadre of well-prepared teachers to focus on mathematics at the elementary grades. 
Over the past two decades, others made similar recommendations (Battista, 1999; Conference Board 
of the Mathematical Sciences, 2001, p. 11; Learning First Alliance, 1998; National Council of 
Teachers of Mathematics, 2000, pp. 375–376; Reys & Fennell, 2003). 

Beginning in 2009, under the leadership of then President Barbara Reys, AMTE began its 
advocacy for Elementary Mathematics Specialist certification and programs. They developed the 
EMS Standards (2010 & 2013) to support establishment of state certifications and development of 
programs. From there, they collaborated with ASSM, NCSM, and NCTM to develop a position 
statement, host two state certification conferences, and a conference for those with research 
connected to EMS. In this time, the number of states with EMS certification has increased from 9 to 
20 which has resulted in an increase in the number of programs for EMS. 

Together with AMTE, the Association of State Supervisors of Mathematics (ASSM), NCSM, 
and NCTM (2010) endorsed and recommended the use of elementary mathematics specialists to 
“enhance the teaching, learning, and assessing of mathematics in order to improve student 
achievement” (p. 1). Furthermore, they recommended that “every elementary school have access to 
an EMS [elementary mathematics specialist]. Districts, states/provinces, and higher education should 
work in collaboration to create: (1) advanced certification for EMS professionals; and (2) rigorous 
programs to prepare EMS professionals” (AMTE, ASSM, NCSM, & NCTM, 2010, p. 1). 

The hope of state-level EMS certification would be to provide formal recognition, opportunities, 
and incentives for teachers to increase their knowledge and skill to teach or to lead others in teaching 
mathematics in elementary classrooms. With a formal certificate program, school and district 
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administrators would be better positioned to create EMS positions and identify qualified personnel, 
thus, improving support for their teachers and students. Expectedly, with the increase in the call for 
mathematics specialist and increase in formal certification programs, the need for additional 
evaluation and research about mathematics specialist is critically needed. Articulating the knowledge 
and skills needed by EMS professionals is a necessary step in initiating state-level certification and 
program development. Although there is substantive and ongoing research on the effectiveness of 
EMS “as coaches,” research related to elementary mathematics teachers is almost nonexistent 
(McGatha 2009; McGatha et. al., 2015). 

Numerous publications and presentations have resulted from the work to develop Elementary 
Mathematics Specialist programs that now spanned more than two decades. Notably, EMSs have 
demonstrated the potential to positively influence teachers’ instructional practices and beliefs in 
results from both qualitative and quantitative research (e.g., Baldinger, 2014; Campbell, 1996; Race, 
Ho, & Bower, 2002); however, some studies have noted limited changes in teachers’ beliefs and 
practices even after the coaching process (e.g., Ai and Rivera, 2003; Olson & Barrt, 2004). EMSs 
have also shown to be effective on positively impacting students’ mathematics learning and 
achievement (e.g., Balfanz, Mac Iver, & Byrnes, 2006; Campbell & Malkus, 2011). Large-scale 
projects focused on the relationship between EMSs and students’ mathematics achievement provide 
evidence that these instructional leaders may provide schools the avenue needed for improved 
student performance (Balfanz et. al., 2006; Brosnan & Erchick, 2010; Campbell, 1996; Campbell & 
Malkus, 2011; Foster & Noyce, 2004). However, study limitations and the narrow number of 
empirical studies requires additional research to corroborate these promising findings. 

Assessment and Evaluation of Elementary Mathematics Specialists 
Many EMS programs are in their infancy and while the curriculum may exist the assessment and 

evaluation plan may not be fully developed. This is due in part to the various roles of an EMS as an 
elementary mathematics teacher, mathematics teacher leader, mathematics intervention specialist, 
and mathematics coach (McGatha & Rigelman, 2017) and the lack of specificity of the high leverage 
practices associated with the varied roles (Baker et al., 2017).  

In a late 2014 survey of AMTE members (n=70), only 21% of the programs represented by 
survey respondents had program evaluation systems in place. Those without evaluation systems 
reported that their program was new and that program evaluation was under development. 
Respondents describe their EMS programs as aligned with state competencies for EMS professionals, 
NCTM/NCATE/CAEP EMS Standards, and/or AMTE EMS Standards. Of the programs with 
evaluation systems, 92% of the respondents commented on their program evaluation as tied to 
periodic reviews at the local, state, or national level.  

Of those programs with evaluation plans in place, only two (17%) characterized their evaluation 
as innovative. Typical of the EMS program evaluation models described was an assessment process 
parallel to other advanced degree programs in the department/school (e.g., key assessments in 
particular courses, course evaluations, action research projects). Some programs use a portfolio as a 
measure of outcomes, while others use mathematics content knowledge assessments.  A few 
commented on gathering data pre- and post-program on teacher beliefs and their ability to analyze 
classroom practice. Those programs with the most robust and for program evaluation described their 
work as based on their grant evaluation.  

EMS program developers can learn from the various recommendations to teacher education 
programs about how to best assess teacher knowledge and skills. Researchers discuss the need to 
include assessments of practical knowledge, determine through multiple measures (AMTE, 2017; 
Beijard & Verloop, 1996; Darling-Hammond, 2006; Dwyer, 1993, NCTM, 1995). Some describe the 
potential of a teaching portfolio (Beijard & Verloop, 1996; Darling-Hammond, 2006; Zeichner, 
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2001) as a performance-based measure which could provide evidence of teacher leaders learning in 
and from their practice (Ball & Cohen, 1999). Program developers need to consider both the 
possibilities and limitations of the various tools they select for candidate and program assessment.  

Session Organization and Plan for Engagement 
This working group aims to explore the current avenues of and intentionally develop approaches 

for studying the improvement of mathematics teacher leaders, their preparation programs and 
professional development experiences. We first focus on the examination of existing assessment and 
evaluation tools, as well as the recommendations from the professional literature regarding high-
quality candidate and program assessment.  After generating questions of practice, participants will 
break into two groups to develop a plan of research that both builds capacity among and advances the 
research centered on MTLs.  

Session 1: Examination of Assessment and Evaluation Tools 
The first session will begin with introductions that share the areas of interest and expertise of 

each participant. Session leaders will provide a brief overview of the current status of the evaluation 
and assessment of mathematics teacher leader candidates and programs. Afterwards, session leaders 
will facilitate a large group discussion that connects the current status of candidate and program 
assessment with participants’ research. This discussion will result in a list of collaboratively-
generated research questions. Sample anticipated questions from the small group collaboration are: 

• What might it look like to align EMS candidate and program assessment with high 
quality assessment principles?  

• What are examples of key assignments, rubrics, and other instruments that have 
effectively measured the knowledge, skills, and practices of EMSs? To which aspects of 
the EMSs’ role and/or knowledge needs do they attend? What are our development 
needs? 

• Often, when programs are developed with support of grant funding, they develop robust 
candidate and program evaluation to comply with funders’ expectations. What might it 
look like to maintain a robust assessment and evaluation system after the grant is over? 

• What are some ways that programs can effectively maintain access to their graduates so 
they can determine efficacy of the EMS and/or programs that prepared the EMS?  

• In what ways is the work of a MTL supported or hindered by various stakeholders? How 
can advocacy of the position of a MTL increase?  

• Which aspects of the work of an MTL are most impactful for teachers and students? 

Group members will then break into small groups to explore existing assessment and evaluation 
tools for not only mathematics teacher leaders and programs, but also other school personnel and 
university programs in which there is intersectionality and overlap in roles and responsibility (e.g. 
reading specialists, school administrators, special educators). During this time participants will 
determine how the provided tools might be adapted for their current research contexts and aligned 
with the group generated research questions. The session will conclude with small groups sharing 
their conversations and session leaders recording the tools into a matrix that connects the group-
generated research questions with purposefully identified tools for one of two categories: Tools to 
Evaluate and Assess Mathematics Teacher Leaders and Tools to Evaluate and Assess Preparation 
Programs and Professional Development.  
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Session 2: Developing a Common Research Agenda 
Initial whole group conversations during the second session will center on participant reflections 

from the matrix created on the first day. Participants will then determine their research interest and 
split into two to three small groups to: 1) allow participants to flexibly meet their needs based on 
context; and 2) align their research interests with a population they have access to. Session leaders 
will divide among the groups based on their own research experiences and interests, as well as the 
size of the groups. The group discussions will explore the following questions aimed at developing a 
common context, language and purpose: 

• What access or relationships do you have to either candidates or programs (e.g.
individuals, schools, districts, universities)

• Which of the research questions generated from the first session are of interest?
• What research tools are available or adaptable that will support the exploration of the

identified research questions?
• In what ways can we align our research interests with the available populations and tools?

The session will conclude with each group sharing their conversations and questions as they 
develop a common research agenda.  

Session 3: Designing Research Studies 
In the third session, participants will build on the collaborative work they began in the second 

session and further design a research study. Session leaders will facilitate group discussions that 
support the participants in developing an outline of a research study.  Conversations will center on 
creating an outline of a research study that includes the following aspects: research question, 
participants/location, specific evaluation or assessment tool that will be used/modified during the 
study, identified research activities, a timeline for research activities with set goals and a method of 
communication. After each group shares the outline of their research study, the session will conclude 
with the session leaders providing information on the anticipated follow-up activities and possible 
research products and outcomes.  

Anticipated Follow-Up Activities 
It is anticipated that the participants from this working group will continue to meet virtually over 

the course of the year using Google Tools, synchronous online platforms, social media and phone 
conferencing to develop several research products. Although the participants will influence the 
direction of the research, session leaders are prepared to develop the following products with 
participants: a database or list of the mathematics teacher leader and program assessment and 
evaluation tools, collaborative share results of studies at mathematics education conferences (e.g. 
AMTE, NCSM, NCTM-Research) or in journal submissions, the exploration of grant funding to 
advance the collaboration, submitting a symposium for PME-NA 2018, and developing a proposal 
for the continuation of the working group at PME-NA 2018.  
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Embodied cognition is growing in theoretical importance and as a driving set of design principles for 
curriculum activities and technology innovations for mathematics education. The central aim of the 
EMIC (Embodied Mathematical Imagination and Cognition) Working Group is to attract engaged 
and inspired colleagues into a growing community of discourse around theoretical, technological, 
and methodological developments for advancing the study of embodied cognition for mathematics 
education. A thriving, informed, and interconnected community of scholars organized around 
embodied mathematical cognition will broaden the range of activities, practices, and emerging 
technologies that count as mathematical. EMIC builds upon our 2015 and 2016 working groups with 
a specific focus on examining the embodied nature of mathematical collaboration. In particular, we 
view collaboration as a type of crossroad that brings together people and artifacts, from which 
EMIC communication and activities can emerge. 

Keywords: Classroom Discourse, Cognition, Informal Education, Learning Theory 

Motivations for This Working Group 
Recent empirical, theoretical and methodological developments in embodied cognition and 

gesture studies provide a solid and generative foundation for the establishment of a regularly held 
Embodied Mathematical Imagination and Cognition (EMIC) Working Group for PME-NA. 
The central aim of EMIC is to attract engaged and inspired colleagues into a growing community of 
discourse around theoretical, technological, and methodological developments for advancing the 
study of embodied cognition for mathematics education, including, but not limited to, studies of 
mathematical reasoning, instruction, the design and use of technological innovations, learning in and 
outside of formal educational settings, and across the lifespan.  

The interplay of multiple perspectives and intellectual trajectories is vital for the study of 
embodied mathematical cognition to flourish. Partial confluences and differences have to be 
maintained throughout the conversations; this is because instead of being oriented towards a single 
and unified theory of mathematical cognition, EMIC strives to establish a philosophical/ educational 
“salon” in which entrenched dualisms, such as mind/body, language/materiality, or signifier/signified 
are subject to an ongoing and stirring criticism. A thriving, informed, and interconnected community 
of scholars organized around embodied mathematical cognition will broaden the range of activities 
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and emerging technologies that count as mathematical, and envision alternative forms of engagement 
with mathematical ideas and practices (e.g., De Freitas & Sinclair, 2014). This broadening is 
particularly important at a time when schools and communities in North America face persistent 
achievement gaps between groups of students from many ethnic backgrounds, geographic regions, 
and socioeconomic circumstances (Ladson-Billings, 1995; Moses & Cobb, 2001; Rosebery, Warren, 
Ballenger & Ogonowski, 2005). There also is a need to articulate evidence-based findings and 
principles of embodied cognition to the research and development communities that are looking to 
generate and disseminate innovative programs for promoting mathematics learning through 
movement (e.g., Ottmar & Landy, 2016; Smith, King, & Hoyte, 2014). Generating, evaluating, and 
curating empirically validated and reliable methods for promoting mathematical development and 
effective instruction through embodied activities that are engaging and curricularly relevant is an 
urgent societal goal.  

Past Meetings and Achievements of the EMIC Working Group 
The first meeting of the EMIC working group took place in East Lansing, MI during PME-NA 

2015, and has been continuing to expand ever since into a website 
(https://sites.google.com/site/emicpmena), a second EMIC working group in Tucson, AZ, at PME-
NA 2016, and a sister pre-conference workshop event at the upcoming Computer Supported 
Collaborative Learning conference (Williams-Pierce et al., accepted). It has a somewhat longer 
origin, dating back to the 2007 AERA symposium, “Mathematics Learning and Embodied 
Cognition.” By now, several research programs have formed to investigate the embodied nature of 
mathematics (e.g., Abrahamson 2014; Alibali & Nathan, 2012; Arzarello et al., 2009; De Freitas & 
Sinclair, 2014; Edwards, Ferrara, & Moore-Russo, 2014; Lakoff & Núñez, 2000; Ottmar & Landy, 
2016; Radford 2009; Nathan, Walkington, Boncoddo, Pier, Williams, & Alibali, 2014; Soto-Johnson 
& Troup, 2014; Soto-Johnson, Hancock, & Oehrtman, 2016), demonstrating a “critical mass” of 
projects, findings, senior and junior investigators, and conceptual frameworks to support an on-going 
community of likeminded scholars within the mathematics education research community. 

Since our first meeting at PME-NA 2015, some of our collaborative accomplishments include:  

1. Creating a contact list with names and emails of attendees, and other interested scholars who 
could not attend PME-NA 2015 or 2016 

2. Developing a group website using the Google Sites platform to support ongoing interactions 
throughout the year, and regularly adding additional resources/activities 

3. Joint submission of an NSF DRK-12 by members who first met during the 2015 EMIC 
sessions 

4. Some senior members joining a junior member’s NSF ITEST and Cyberlearning grant 
proposals 

5. Submission to the IES CASL program to study the role of action in pre-college proof 
performance in geometry (Funded 2016-2020 for Nathan & Walkington) 

6. Submitting a proposal for the continuation of the EMIC WG to PME-NA 2016 
7. Examining the potential for an NSF Research Coordination Network (RCN) 
8. Application for a grant from Association for Psychological Science (APS) to develop a better 

website and offer stipends for contributors 
9. Proposing a pre-conference workshop to CSCL 2017 on the embodied tools to promote 

STEM education, which was accepted as a full-day event (Williams-Pierce et al., accepted) 

Current WorkingGroup Organizers 
As the WorkingGroup has matured and expanded, we have a broadening set of organizers for the 

coming year that represent a range of institutions and theoretical perspectives (and is beyond the limit 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1499 

of six authors in the submission system). This, we believe, enriches the WorkingGroup experience 
and the long-term viability of the scholarly community. The current organizers for 2017 are 
(alphabetical by first name): 

• Candace Walkington, Southern Methodist University 
• Carmen J. Petrick Smith, University of Vermont 
• Caro Williams-Pierce, University at Albany, SUNY 
• David DeLiema, University of California, Berkeley 
• David Landy, Indiana University 
• Dor Abrahamson, University of California, Berkeley 
• Erin Ottmar, Worcester Polytechnic Institute 
• Hortensia Soto–Johnson, University of Northern Colorado 
• Martha W. Alibali, University of Wisconsin-Madison 
• Mitchell J. Nathan, University of Wisconsin-Madison 
• Rebecca Boncoddo, Central Connecticut State University 

Focal Issues in the Psychology of Mathematics Education 
Emerging, yet influential, views of thinking and learning as embodied experiences have grown 

from several major intellectual developments in philosophy, psychology, anthropology, education, 
and the learning sciences that frame human communication as multi-modal interaction, and human 
thinking as multi-modal simulation of sensory-motor activity (Clark, 2008; Hostetter & Alibali, 
2008; Lave, 1988; Nathan, 2014; Varela et al., 1992; Wilson, 2002). These views acknowledge the 
centrality of both unconscious and conscious motor and perceptual processes for influencing 
conscious awareness, and of embodied experience as following /producing pathways through social 
and cultural space. As Stevens (2012, p. 346) argues in his introduction to the JLS special issue on 
embodiment of mathematical reasoning,  

it will be hard to consign the body to the sidelines of mathematical cognition ever again if our 
goal is to make sense of how people make sense and take action with mathematical ideas, tools, 
and forms. 

Four major ideas exemplify the plurality of ways that embodied cognition perspectives are 
relevant for the study of mathematical understanding: (1) Grounding of abstraction in perceptuo-
motor activity as one alternative to representing concepts as purely amodal, abstract, arbitrary, and 
self-referential symbol systems. This conception shifts the locus of “thinking” from a central 
processor to a distributed web of perceptuo-motor activity situated within a physical and social 
setting. (2) Cognition emerges from perceptually guided action (Varela, Thompson, & Rosch, 1991). 
This tenet implies that things, including mathematical symbols and representations, are understood 
by the actions and practices we can perform with them, and by mentally simulating and imagining 
the actions and practices that underlie or constitute them. (3) Mathematics learning is always 
affective: There are no purely procedural or “neutral” forms of reasoning detached from the 
circulation of bodily-based feelings and interpretations surrounding our encounters with them. (4) 
Mathematical ideas are conveyed using rich, multimodal forms of communication, including gestures 
and tangible objects in the world.  

Alongside these theoretical developments have been technical advances in multi-modal and 
spatial analysis, which allow scholars to collect new sources of evidence and subject them to 
powerful analytic procedures, from which they may propose new theories of embodied mathematical 
cognition and learning. Just as the “linguistic turn” in the social sciences was largely made possible 
by the innovation that enabled scholars to collect audio recordings of human speech and conversation 
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in situ, growth of interest in multi-modal aspects of communication have been enabled by high 
quality video recording of human activity (e.g., Alibali et al., 2014; Levine & Scollon, 2004), motion 
capture technology (Hall, Ma, & Nemirovsky, 2014; Sinclair, 2014), developments in brain imaging 
(e.g., Barsalou, 2008; Gallese & Lakoff, 2005), multimodal learning analytics (Worsley & Blikstein, 
2014), and data logs generated from embodied math learning technologies that interacts with touch 
and mouse-based interfaces  (Manzo, Ottmar, & Landy, 2016). 

Theme: The Crossroads of Collaboration 
Inspired by the PME-NA 2017 theme, we will specifically focus on the ways in which people can 

influence one another. Examples that we will use during the Working Group include: the interactions 
of two middle school-aged friends playing a mathematics game together and using both physical and 
digital gesture to augment their spoken communication (Williams-Pierce, 2016); a teacher guiding 
the movements of a learner exploring ratios (Abrahamson & Sánchez-García, 2016); pre-service 
teachers using their distributed gestures to explore a mathematical conjecture and establish its truth 
and justification using embodied and extended cognition (Walkington, Woods & Nathan, under 
review); pre-service teachers interacting with designed dynamic algebraic notations as a means of 
engaging embodied aspects of mathematical derivation (Jacobson, Landy, & Ottmar, in prep); having 
students and teachers play and create embodied technology games to teach mathematics and 
computational thinking (Arroyo & Ottmar, 2016), and pairs of elementary students working together 
on a series of body-based tasks centered on angle concepts (Smith et al., 2016).  

Through these examples, we will explore questions such as: when students meet within a 
common arena, how might an activity design motivate them to develop mathematical notions through 
making pragmatic ideas mutually intelligible, and how do they accomplish this feat? What are the 
roles of more knowledgeable members of the community in facilitating this process? During the 
conference, participants in our EMIC workshop will engage in dedicated activities and guided 
reflections as a basis for exploring the interpersonal and interactive crossroads of goals, action, and 
discourse as these play out in the emergence of mathematics learning. This investigative effort will 
be crafted so as to align with recent developments in embodiment literature, whereby scholars are 
struggling to model individual sensorimotor learning within established cultural practices, norms, and 
values. 

Plan for Active Engagement of Participants  
Our formula from PME-NA 2015 and 2016 proved to be effective: By inviting participants into 

math activities at the beginning of each session, we were rapidly drawn into those very aspects of 
mathematics that we find most rewarding. We plan to facilitate collaborative EMIC activities, 
followed by group discussions (and we now have many activities and members who can trade off in 
these roles!) that will help us all to “pull back” to the theoretical and methodological issues that are 
central to advancing math education research. Within this structure of beginning with mathematical 
activities and facilitated discussions, on Day 1 we plan to begin with activities that forefront 
collaboration around EMIC activities, with four different groups engaging in different activities.  
These activities will serve as the foundation for a broad group discussion about the varied roles of 
collaboration in EMIC.  See Figure 1 below for examples of collaborative activities from PME-NA 
2016. 
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Figure 1. Collaborative activities.  Martha Alibali and two participants form a triangle together with 
their arms (left); a group just finished jointly assembling a large icosahedron in an activity facilitated 

by Dor Abrahamson and Leah Rosenbaum (right). 

In previous years, we have found that the full first session will generally be taken up by introductions 
and and a round of activities followed by discussion.  If there is additional time, we will begin 
brainstorming new collaborative EMIC activities - if there is not, then we will ask attendees to jot 
down any new activity ideas they have to share at the following session. 

On Day 2, we will begin the session with technology-based collaborative activities, with four 
stations that pairs of participants rotate through. Examples of two of those stations are in Figure 2. 
Continuing with the routine established in Day 1, a full group discussion will follow, with a 
particular focus on designing EMIC digital contexts to support collaboration. 
 

 
Figure 2. Digital collaborative activities.  Rolly’s Adventure by Caro Williams-Pierce (left); and 

Graspable Math by David Landy and Erin Ottmar (right). 

 

After the discussion, we will discuss different EMIC activity ideas that participants began jotting 
down the day before, with the goal of developing additional collaborative activities that can be used 
in various research and learning contexts.  The final activities will be shared on the EMIC website. 

Day 3 is agenda-setting day, where we all discuss how we will keep the momentum going, such 
as developing an NSF Research Coordination Network (RCN), as a potential complement to the 
PME-NA Working Group. The RCN is not intended to promote any one particular research program, 
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but rather to build the networked community of international scholars from which many fruitful lines 
of inquiry can emerge. Commensurate with the aims of the RCN, we will explore ways to 

share information and ideas, coordinate ongoing or planned research activities, foster synthesis 
and new collaborations, develop community standards, and in other ways advance science and 
education through communication and sharing of ideas. 

Another example is to develop a proposal for a special issue of the Journal of Research in 
Mathematics Education that focuses on sharing the different theoretical perspectives, research 
activities, and operationalization of EMIC by the working group members.   

In order to find common ground for the RCN submission and the JRME special issue, we may 
perform a live concept mapping activity that is displayed for all participants to explore the range of 
EMIC topics and identify common conceptual structure.  We will discuss different general foci, such 
as teacher professional development with EMIC, designing EMIC games or museum exhibits, etc.  
Then, harkening back to the four major ideas that we developed earlier, sample seed topics for 
organizing this activity will be explored, such as: 

1. Grounding Abstractions 

a. Conceptual blending (Tunner & Fauconnier, 1995) & metaphor (Lakoff & Núñez, 2000)  
b. Perceptuo-motor grounding of abstractions (Barsalou, 2008; Glenberg, 1997; Ottmar & 

Landy, 2016; Landy, Allen, & Zednik, 2014) 
c. Progressive formalization (Nathan, 2012; Romberg, 2001) & concreteness fading (Fyfe, 

McNeil, Son, & Goldstone, 2014) 
d. Use of manipulatives (Martin & Schwartz, 2005) 

2. Cognition emerges from perceptually guided action: Designing interactive learning 
environments for EMIC 

a. Development of spatial reasoning (Uttal et al., 2009)   
b. Math cognition through action (Abrahamson, 2014; Nathan et al., 2014) 
c. Perceptual boundedness (Bieda & Nathan, 2009) 
d. Perceptuomotor integration (Ottmar, Landy, Goldstone, & Weitnauer, 2015; Nemirovsky, 

Kelton, & Rhodehamel, 2013) 
e. Attentional anchors and the emergence of mathematical objects (Abrahamson & Bakker, 

2016; Abrahamson & Sánchez–García, 2016; Abrahamson et al., 2016; Duijzer et al., 
2017) 

f. Mathematical imagination (Nemirovsky, Kelton, & Rhodehamel, 2012) 
g. Students’ integer arithmetic learning depends on their actions (Nurnberger-Haag, 2015). 

3. Affective Mathematics 

a. Modal engagements (Hall & Nemirovsky, 2012; Nathan et al., 2013) 
b. Sensuous cognition (Radford, 2009) 

4. Gesture and Multimodality 

a. Gesture & multimodal instruction (Alibali & Nathan 2012; Cook et al., 2008; Edwards, 
2009) 

b. Bodily activity of professional mathematicians (Nemirovsky & Smith, 2013; Soto-
Johnson, Hancock, & Oehrtman, 2016)  
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c. Simulation of sensory-motor activity (Hostetter & Alibali, 2008; Nemirovsky & Ferrara, 
2009) 

We will also discuss the implications of this work and the different areas of the concept map for 
teaching, and discuss ideas for bridging the gap between research and practice. 

Finally, we will introduce the EMIC website (publicly available at 
https://sites.google.com/site/emicpmena/home). On this website, we have a list of members with their 
emails and bios, information about our PME-NA presence, and short personal introduction videos.  
We’ve also created a space for members to share information about their research activities – 
particularly for videos of the complex gesture and action-based interactions that are difficult to 
express in text format. In addition, we have a common publications repository to share files or links 
(including to ResearchGate or Academia.edu publication profiles, so members don’t have to upload 
their files in multiple places). At our 2015 working group, some junior members expressed particular 
interest in this literature support for their pending theses, while more senior members were eager to 
share and organize the emerging body of work on embodied math education.  We’ve also linked the 
Google Sites platform directly to a Google Group, so members can participate in online forums (or 
the linked listserv), and discuss cutting edge topics, share in-progress working papers for review, or 
advertise for conferences, special issues, or other EMIC-relevant opportunities. 

Follow-up Activities 
We envision an emergent process for the specific follow-up activities based on participant input 

and our multi-day discussions. At a minimum, we will continue to develop a list of interested 
participants and grant them all access to our common discussion forum and literature compilation. 
Those that are interested in the NSF RCN plan will work to form the international set of 
collaborations and articulate the intellectual topics that will knit the network together; and those that 
are interested in the JRME special issue proposal will outline a specific timeline for progressing.  
One additional set of activities we hope to explore is to introduce educational practitioners at all 
levels of administration and across the lifespan to the power and utility of the EMIC perspective.  

In the past three years, we have seen a great deal of progress. This is perhaps best exemplified by 
coming together of the EMIC website, the ongoing collaborations between members, and the 
proposals here and to CSCL, which each draws across multiple institutions. We thus will strive to 
explore ways to reach farther outside of our young group to continually make our work relevant, 
while also seeking to bolster and refine the theoretical underpinnings of an embodied view of 
mathematical thinking and teaching.  

References 
Abrahamson, D. (2014). The monster in the machine, or why educational technology needs embodied design. In V. 

Lee (Ed.), Learning technologies and the body: Integration and implementation (pp. 21-38). New York: 
Routledge (Taylor & Francis Group). 

Abrahamson, D., & Bakker, A. (2016). Making sense of movement in embodied design for mathematics learning. 
Cognitive Research: Principles and Implications, 1(1), article 33. doi:10.1186/s41235-016-0034-3 

Abrahamson, D., & Sánchez-García, R. (2016). Learning is moving in new ways: The ecological dynamics of 
mathematics education. Journal of the Learning Sciences, 25, 203–239. 

Abrahamson, D., Shayan, S., Bakker, A., & Van der Schaaf, M. F. (2016). Eye-tracking Piaget: Capturing the 
emergence of attentional anchors in the coordination of proportional motor action. Human Development, 58(4-
5), 218-244. 

Alibali, M. W. & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners' 
and teachers' gestures. Journal of the Learning Sciences. (Special Issue on Embodiment in Mathematics.), 
21(2), 247-286. DOI: 10.1080/10508406.2011.611446. 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1504 

Alibali, M. W., Nathan, M. J., Wolfgram, M. S., Church, R. B., Jacobs, S. A., Martinez, C. J., & Knuth, E. J. (2014). 
How teachers link ideas in mathematics instruction using speech and gesture: A corpus analysis. Cognition and 
Instruction. 32(1), 65-100, doi: 10.1080/07370008.2013.858161.  

Alibali, M. W., Nathan, M. J., Wolfgram, M. S., Church, R. B., Jacobs, S. A., Martinez, C. J., & Knuth, E. J. (2014). 
How teachers link ideas in mathematics instruction using speech and gesture: A corpus analysis. Cognition and 
Instruction. 32(1), 65-100, doi: 10.1080/07370008.2013.858161. 

Arroyo, I, & Ottmar, E. (2016). Developing Computational Thinking Through Embodied Math Games. National 
Science Foundation.  

Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the mathematics 
classroom. Educational Studies in Mathematics, 70(2), 97-109. 

Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-645. 
Bieda, K. N. & Nathan, M. J. (2009). Representational disfluency in algebra: Evidence from student gestures and 

speech. ZDM - The International Journal on Mathematics Education, 41(5), 637- 650. [DOI 10.1007/S11858-
009-0198-0.] 

Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension: Embodiment, Action, and 
Cognitive Extension. Oxford University Press, 2008. 

Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 1047-
1058. 

De Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the classroom. 
Cambridge University Press. 

Duijzer, A. C. G., Shayan, S., Bakker, A., Van der Schaaf, M. F., & Abrahamson, D. (2017). Touchscreen tablets: 
Coordinating action and perception for mathematical cognition. Frontiers in Psychology, 8(144). 
doi:10.3389/fpsyg.2017.00144 

Edwards, L. D. (2009). Gestures and conceptual integration in mathematical talk. Educational Studies in 
Mathematics, 70(2), 127-141. 

Edwards, L., Ferrara, F., & Moore-Russo, D. (Eds). (2014). Emerging perspectives on gesture and embodiment in 
mathematics. Charlotte, N.C.: Information Age.  

ESM. Educational Studies of Mathematics (2009): PME Special Issue: Bodily Activity and Imagination in 
Mathematics Learning. 

Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science 
instruction: a systematic review. Educational Psychology Review, 26(1), 9-25. 

Gallese & Lakoff, 2005) 
Glenberg, A. M. (1997). What memory is for: Creating meaning in the service of action. Behavioral and brain 

sciences, 20(01), 41-50. 
Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary Reviews: 

Cognitive Science, 1(4), 586-596. 
Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. 

The Journal of the Learning Sciences, 14(1), 69-110. 
Hall, R., & Nemirovsky, R. (2012). Introduction to the special issue: Modalities of body engagement in 

mathematical activity and learning. Journal of the Learning Sciences, 21(2), 207-215. 
Hall, R., Ma, J. Y., & Nemirovsky, R. (2014). Rescaling Bodies in/as Representational Instruments in GPS 

Drawing. Learning Technologies and the Body: Integration and Implementation In Formal and Informal 
Learning Environments, 112. 

Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin 
& Review, 15(3), 495-514. 

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics 
into being. Basic books. 

Landy, D., Allen, C., & Zednik, C. (2014). A perceptual account of symbolic reasoning. Frontiers in psychology, 5, 
275. 

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge University Press. 
LeVine, P., & Scollon, R. (Eds.). (2004). Discourse and technology: Multimodal discourse analysis. Georgetown 

University Press. 
Ma, J. Y., Hall, R., & Leander, K. M. (2010, June). Shifting between person, structure and settlement scales in 

anthropological field work. In Proceedings of the 9th International Conference of the Learning Sciences-
Volume 2 (pp. 158-159). International Society of the Learning Sciences. 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1505 

Martin, T., & Schwartz, D. L. (2005). Physically distributed learning: Adapting and reinterpreting physical 
environments in the development of fraction concepts. Cognitive science, 29(4), 587-625. 

Nathan, M. J. (2014). Grounded Mathematical Reasoning. In L. Shapiro (Ed.). The Routledge Handbook of 
Embodied Cognition (pp. 171-183). Routledge: New York. 

Nathan, M. J., Srisurchan, R., Walkington, C., Wolfgram, M., Williams, C., & Alibali, M. (2013). Cohesion as a 
mechanism of STEM integration. Journal of Engineering Education, 102(1), 77-116. 

Nathan, M. J., Walkington, C., Boncoddo, R., Pier, E. L., Williams, C. C., & Alibali, M. W. (2014). Actions speak 
louder with words: The roles of action and pedagogical language for grounding mathematical proof. Learning 
and Instruction, 33, 182-193. DOI: 10.1016/j.learninstruc.2014.07.001 

Nemirovsky, R., (2007). AERA Symposium, “Mathematics Learning and Embodied Cognition” presented to the 
American Educational Research Association annual meeting. Chicago, IL. 

Nemirovsky, R., &  Smith, M. (2013). Diagram-Use and the Emergence of Mathematical Objects. In B. M. Brizuela 
& B. E. Gravel (Eds.), ‘Show me what you know' Exploring representations across STEM disciplines (pp. 143-
162). New York, NY. Teachers College Press. 

Nemirovsky, R., & Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educational Studies in 
Mathematics, 70(2), 159-174. 

Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2012). Gesture and imagination: On the constitution and uses of 
phantasms. Gesture, 12(2), 130-165. 

Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical instruments: Emerging 
perceptuomotor integration with an interactive mathematics exhibit. Journal for Research in Mathematics 
Education, 44(2), 372-415. 

Núñez, R. (2004). Do real numbers really move? Language, thought, and gesture: The embodied cognitive 
foundations of mathematics. In Embodied artificial intelligence (pp. 54-73). Springer Berlin Heidelberg. 

Nurnberger-Haag, J. (2015).  How students’ integer arithmetic learning depends on whether they walk a path or 
collect chips. In Bartell, T. G., Bieda, K. N., Putnam, R.T., Bradfield, K.,& Dominguez, H.(Eds.).(pp. 165-172). 
Proceedings of the 37th annual meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education. East Lansing, MI: Michigan State University. 

Ottmar, E.R. & Landy. D. (2016). Concreteness fading of algebraic instruction: Effects on mathematics learning. 
Journal of the Learning Sciences. http://dx.doi.org/10.1080/10508406.2016.1250212 

Ottmar, E. R., Landy, D., Goldstone, R. L., & Weitnauer, E. (2015). Getting from here to there: Testing the 
effectiveness of an interactive mathematics intervention embedding perceptual learning. Proceedings of the 
Thirty-Seventh Annual Conference of the Cognitive Science Society. (pp. 1793-1798). Pasadena, CA: Cognitive 
Science Society. 

Petrick Smith, Carmen, King, Barbara, & Hoyte, Jennifer (2014). Learning angles through movement: Critical 
actions for developing understanding in an embodied activity. The Journal of Mathematical Behavior, 2014; 36: 
95 DOI: 10.1016/j.jmathb.2014.09.001 

Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. 
Educational Studies in Mathematics, 70(2), 111-126. 

Romberg, T. A., (2001). Designing Middle School Mathematics Materials Using Problems Created to Help Students 
Progress from Informal to Formal Mathematical Reasoning. In L.P. Leutzinger, & S.P. Smith (Eds.) 
Mathematics in the Middle (pp. 107-119). Reston, VA: National Council of Teachers of Mathematics.  

Sinclair, N. (2014). Generations of research on new technologies in mathematics education. Teaching Mathematics 
and its Applications, 33(3), 166-178. 

Soto-Johnson, H., Hancock, B., & Oehrtman, M. (2016). The Interplay Between Mathematicians’ Conceptual and 
Ideational Mathematics about Continuity of Complex-Valued Functions. International Journal of Research in 
Undergraduate Mathematics Education, 2(3), 362-389. 

Smith, C., King, B., González, D., Garon, T., Barr, K., Craft, J., & Scrivani, S. (April, 2016). Patterns of 
collaborative actions in a body-based mathematics task.  Paper presented at the annual meeting of the American 
Educational Research Association, Washington, DC. 

Stevens, R. (2012). The missing bodies of mathematical thinking and learning have been found. Journal of the 
Learning Sciences, 21(2), 337-346. 

Tunner, M., & Fauconnier, G. (1995). Conceptual integration and formal expression. Metaphor and Symbol, 10(3), 
183-204. 

Uttal, D. H., Meadow, N. G., Hand, L. L., Lewis, A. R., Warren, C., & Newcombe, N. S. (2009). Training spatial 
skills: What works, for whom, and for how long. Psychological Bulletin. 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1506 

Varela, F. J., Rosch, E., & Thompson, E. (1992). The embodied mind: Cognitive science and human experience. 
MIT press. 

Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. 
Cambridge, MA: M.I.T. Press. 

Walkington, C., Nathan, M., Wolfgram, M., Alibali, M., & Srisurichan, R. (2014). Bridges and barriers to 
constructing conceptual cohesion across modalities and temporalities: Challenges of STEM integration in the 
precollege engineering classroom. In S. Purzer, J. Strobel, & M. Cardella (Eds.). Engineering in pre-college 
Settings: Research into Practice (pp.183-210). West Lafayette, Indiana: Purdue University Press. 

Williams-Pierce, C., Walkington, C., Landy, D., Lindgren, R., Levy, S., Nathan, M.J., & Abrahamson, D. 
(accepted).  Enabling and understanding embodied STEM learning.  Pre-conference workshop submitted to the 
2017 International Conference on Computer-Supported Collaborative Learning. 

Williams-Pierce, C. (2016).  Provoking mathematical play through hidden deep structures.  In Looi, C. K., Polman, 
J. L., Cress, U., and Reimann, P. (Eds.), Transforming Learning, Empowering Learners: The International 
Conference of the Learning Sciences, Vol. 2 (pp. 1241-1242). Singapore: National Institute of Education, 
Nanyang Technical University.  

Wilson, M. (2002). Six views of embodied cognition. Psychonomic bulletin & review, 9(4), 625-636. 
Worsley, M., & Blikstein, P. (2014). Using multimodal learning analytics to study learning mechanisms. In J. 

Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on 
Educational Data Mining (pp. 431-432). London, UK: Institute of Education. 
 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1507 

EXAMINING SECONDARY MATHEMATICS TEACHERS’ MATHEMATICAL 
MODELING KNOWLEDGE FOR TEACHING 

 Kimberly Groshong  Joo Young Park 
 The Ohio State University  Florida Institute of Technology 
 groshong.4@osu.edu  jpark@fit.edu 

This 3rd year working group addresses the research question: What knowledge do secondary 
teachers need to possess to advance and foster mathematical modeling abilities in students? In the 
previous sessions, definitions and exemplar task distinguishing modeling mathematics and 
mathematical modeling were made. A task analysis framework, with three distinct features – 
openness, authenticity, and complexity, was created to investigate differences between mathematical 
modeling tasks and other problems. The group identified characteristics for both mathematical and 
modeling knowledge. Researchers considered the content and real world knowledge required when 
using different types of mathematical models, e.g. mechanistic and deterministic. The type of 
pedagogical knowledge needed for using different types of modeling tasks in classrooms still needs 
considerable research. While pedagogical knowledge discussions occurred during previous sessions, 
the nature of this knowledge was fully developed. This will be the primary focus of this year’s work 
so that a more complete Mathematical Modeling Knowledge for Teaching (MMKT) can be defined to 
inform teacher training programs. Progress on grant writing, national survey distribution, and 
current journal writing from previous years’ work will be reported. New research questions will be 
developed during these sessions. 

Keywords: Modeling, Mathematical Knowledge for Teaching, Teacher Knowledge, Teacher 
Education-Inservice/Professional Development 

The Common Core State Standards for Mathematics (CCSSM), launched in 2009, are the current 
academic standards in 42 states. The CCSSM includes modeling mathematics as both a content 
standard and a mathematical practice (National Governors Association & Council of Chief State 
School Officers, 2010). The CCSSM, as well as the standards from other states such as Texas (TEA, 
2015) and Virginia (VDOE, 2017), specifically include mathematical modeling in their high school 
mathematics content and modeling with mathematics in their elementary and middle grades 
mathematics materials. Mathematical modeling (MM) and modeling with mathematics (MWM) 
differ in problem authenticity, degree of task openness, and complexity of mathematics and decision 
making needed. Modeling with mathematics (MWM) activities can either be mathematical in context 
or consider real life situations whereas mathematical modeling problems are drawn from authentic 
real life phenomena. MWM require the problem solver to make fewer decisions than mathematical 
modeling situations indicating that the MWM tasks are less open, in that, their problem statements 
reduce the number of assumptions, variables, and relationships needed. Because of their less complex 
nature, MWM tasks allow the student fewer mathematical approaches available, which limits the 
number of solutions students can generate.  

Mathematical modeling provides a decision-making process to address the messy, ill-posed 
problems found in real life. For example, when asked to identify the stopping distance of a vehicle 
(NGA & CCSSO, 2010), the student must identify a problem statement in the less structured world 
environment, make simplifying assumptions, identify needed variables, and recognize constraints in 
order to produce and manipulate a mathematical model that may describe or make predictions about 
the real world situation (Jensen, 2007). The model’s success depends on the decisions made by the 
student, and these decisions are influenced by the student’s experiences, which means that each 
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student may travel a different solution path and produce a different mathematical model for the same 
situation (Confrey & Maloney, 2007).  

Because few teacher education programs include specific training to develop secondary teachers’ 
mathematical modeling abilities, both as mathematicians and as teachers of mathematical modeling, 
implementing the academic standards surrounding mathematical modeling is challenging (Goos, 
2014). From discussions in previous working group sessions, mathematics educators and researchers 
have confirmed this challenge and expressed concern about the limited availability of training 
materials including access to previously used mathematical modeling problems with potential 
solutions and pedagogical guidance for planning, implementing and assessing learning when using 
these ill-posed problems. This proposed working group will continue to collect mathematical 
modeling resources and share mathematical modeling experiences to build understanding about the 
mathematical and modeling content knowledge teachers’ need. Research attention will be focused on 
the pedagogical demands that surround these types of problems. It is the intent of this research to 
more fully understand teacher knowledge surrounding mathematical modeling in order to increase 
the body of research on this topic and inform teacher training programs, which may ultimately 
promote a richer environment for student learning so that students may better understand the world 
that surrounds them.    

Progress From Previous Working Group Sessions 
The fundamental research question for this working group asks, “What knowledge do secondary 

teachers need to possess to advance and foster mathematical modeling abilities in students? This 
knowledge includes the facts and skills a person acquires either through education or life experiences 
(Oxford University Press, 2016), and this knowledge expands through increased exposure to different 
types of modeling activities (Doerr, 2007). Through collaborative discussions of published research 
regarding mathematical modeling activities in K-12 education, basic definitions for modeling with 
mathematics and mathematical modeling were founded, then the working group considered the types 
of knowledge needed by teachers when working with mathematical modeling problems and the 
group considered that this knowledge may change according to the problem context, which draws 
upon both conceptual and experiential knowledge of the world as well as the breadth of mathematical 
topics potentially needed for the problem-solving process, and the type of modeling situation the 
teachers experienced, which requires a specific set of mathematical skills to answer questions that are 
descriptive, explanatory, or predictive. For example, the knowledge and skills needed to answer 
“how far will a vehicle travel when coming to a stop” may vary if the question was more predictive, 
such as “what is the likelihood the vehicle will stop in 20 feet”. To provide insight into the 
complexity of mathematical modeling knowledge, the researchers facilitated discussions with session 
participants about the cognitive demands surrounding both the context of mathematical modeling 
tasks, which resulted in the development of a task analysis framework, and the purpose of the 
mathematical modeling question, which introduced session participants to different types of 
mathematical modeling situations, e.g. descriptive or analytic, qualitative or quantitative, and 
deterministic or mechanistic.   
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During the process of distinguishing modeling applications and modeling with mathematics from 
mathematical modeling problems, the mathematical modeling task analysis framework (Figure 1) 
was created and operational definitions for authenticity, complexity, and openness were stated to aid 
in revealing the cognitive demands surrounding the problem’s context. The framework also provided 
a method to promote individual and group participation while analyzing mathematical modeling 
tasks and discussions found in research literature.  

Both authenticity and complexity have two components. Authenticity measures the closeness of 
fit in the mathematical modeling experience between the classroom and the research field with 
regards to the data sources, computer techniques and software, and modeling approach (Vos, 2011). 
Authenticity also addresses the genuineness of the real life context in being situated in a subject area 
outside of mathematics (Niss, 1992) and originating from reality outside the classroom (Lesh & 
Lamon, 1992) in that it describes a real event, asks a meaningful question, and produces a realistic 
solution (Palm, 2007). Modeling complexity depends on the amount of assistance the students need, 
the number of techniques available, and the number of modeling techniques needed to reach a 
solution (Stillman, 2000). Mathematical complexity relies on the degree of mathematical 
sophistication used in creating the mathematical model (Jensen, 2007). Openness describes problems 
with multiple solutions, interpretations, answers, and new questions (Abrams, 2001, p.18). 

Figure 1. Mathematical modeling task analysis framework (Groshong & Park, 2015). 

Given that mathematical models can describe, explain, or predict events, it is possible that the 
way students and teachers think about these different models changes with each type of mathematical 
model, so studying modeler’s experiences in different modeling situations may reveal gaps in our 
understanding of mathematical modeling knowledge. Each type of mathematical model can be 
classified by its characteristics, properties, and features (Groshong, 2016). When reading about 
mathematical modeling in literature, the same mathematical model can be described using several 
terms, which can be very confusing for students, educators, and researchers (Figure 2). Empirical 
models are sometimes referred to as data models because of their reliance on data whereas 
mechanistic models are also called theoretical models as they originate with theoretical statements. 
Deterministic models are fixed and generate nonrandom outputs, but their counterparts, stochastic 

Authenticity 

Complexity Openness 
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models, include randomness in their output (Edwards & Hamson, 2007). 

 
Figure 2. Different types of mathematical models (Groshong, 2016). 

When the problem statement requires a single solution to meet exact criteria, a specific model, is 
produced; but when the model needs to address multiple yet similar situations, general models are 
the result. Quantitative models are mathematical expressions for predicting or explaining phenomena, 
and qualitative models use logical arguments explaining patterns and trends. In the initial modeling 
stages, descriptive models provide narratives or representations to state assumptions, define 
variables, and describe real-life issues (Tam, 2011), but analytic models capture the full modeling 
process and generate exact solutions using sophisticated mathematical methods. When time is held 
constant, static models describe this equilibrium condition, but when the situation changes with the 
passage of time, dynamic models examine the changing conditions. Continuous models allow 
variables to assume any value between two endpoints acceptable, but discrete models consider 
variables to have distinct, finite, and countable values.   

Mathematical Modeling Knowledge for Teaching Framework 
Adapting the 3-d representation of mathematical modeling competency by Jensen (2007), this 

framework defines three types of knowledge needed by teachers when planning, implementing, and 
assessing student learning with mathematical modeling activities (Figure 3). Each category of 
knowledge can be increased through formal and personal learning as well as experience. 
Mathematical Knowledge includes mathematical content and skills and the knowledge needed to 
apply mathematics to relevant situations. Modeling Knowledge consists of the understanding and 
ability to navigate the mathematical modeling process using a variety of mathematical methods and 
in different modeling situations. Pedagogical Knowledge comprises the broad set of information and 
practices teachers need in order to prepare for and facilitate modeling lessons guiding and assessing 
student learning throughout the activity (Groshong & Park, 2015).      
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Figure 1. Mathematical modeling knowledge for teaching framework – MMKT (Groshong, Gomez, 

& Manouchehri, 2015; Groshong & Park, 2015). 

In the previous working group session, it was noted that difficulties in one area of knowledge 
influenced performance in other areas of knowledge causing the participant to struggle with 
progressing through the modeling process. Throughout the time spent on this task analysis, 
participants frequently shifted their discussions from being a mathematician, a modeler, and a 
teacher. The historic activity was initially proposed by Wagner (1976) and asks the modeler to 
determine the maximum area a sofa can take as the sofa moves around a right angled hallway. The 
authentic context strikes a chord of familiarity with modelers in that most people have experienced 
the challenge of moving furniture. The openness of this problem challenges mathematics, computer 
science, and engineering students.  A high school variation of the problem is found in Gould, 
Murray, and Sanfratello (2012) and provides students more structure by providing fixed dimensions 
for the sofa and hallway and asking students to determine if it is possible to move a fixed length, 
width, and height sofa around a fixed dimension hallway corner. Students need to generate and test a 
specific model. Although providing students with prescribed dimensions reduces the number of 
decisions students need to make and reduces the generality of the model, it does not reduce the 
complexity of the problem, as there are still many solution approaches that can be made, as was 
demonstrated in the discussion by the working group participants. One participant asked when the 
teacher should allow students to construct physical or computer models of the situation versus 
solving it mathematically. This led to the pedagogical discussion surrounding the importance of 
learning objectives to guide both mathematical and modeling skill and knowledge development. As 
researchers, the need to spend considerable time studying the breadth and depth of pedagogical 
knowledge required by teachers became apparent.   

Mathematical Knowledge for Teaching 
Areas of the mathematical modeling knowledge for teaching may be linked to the more 

generalized mathematical knowledge for teaching (MKT), which distinguishes teachers’ 
mathematical content knowledge from their pedagogical knowledge (Ball, Thames, & Phelps, 2008). 
The working group researchers are making considerable progress in connecting an extensive 
literature review that defines sub-areas of MKT to the pedagogical discussions that occur during the 
task analysis activities focusing on areas of distinction between the mathematical knowledge for 
teaching other mathematics topics from the specific mathematical modeling knowledge for teaching 
when working with modeling activities.   
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In Ball, Thames, and Phelps’ (2008) framework, the mathematical content knowledge, which has 
been demonstrated by participants during the task analysis as important features in the mathematical 
knowledge component of MMKT, are common content knowledge (CCK) that describes the average 
mathematics needs of educated adults as they carry on their lives;  specialized content knowledge 
(SCK) that separates the mathematical knowledge of citizens from that of teachers who needed to 
present information to students, explain concepts, and predict areas of difficulties; and, horizon 
content knowledge (HCK) links mathematics to other academic subjects and across grade levels.  

In working with the “moving the couch” problem, participants demonstrated CCK in qualitative 
statements of length and width explaining their experiences with moving furniture of fixed 
dimensions in fixed spaces. SCK was observed as participants described their problem solving steps 
as they progressed through the mathematical modeling process suggesting that SCK may be a 
component of both mathematical and modeling knowledge in the MMKT. The teacher’s 
understanding of how mathematics fits in the world, including the depth of encyclopedic knowledge 
the breadth of factual knowledge from other disciplines that inform the real life situation (Stillman, 
2000), is involved in HCK. In the couch problem, engineering comments about constructing scaled, 
physical models of the situation were evidence of HCK in using bodies of knowledge from other 
disciplines to aid mathematical problem solving.  

Currently, working group participants are including mathematical modeling activities in teacher 
training programs with the intent of identifying mathematical and modeling content knowledge along 
with the experiential knowledge of the world and encyclopedic knowledge of other disciplines with 
regards to the CCK, SCK, and HCK deliberated during the workshops. Research is continuing in the 
area of needed content knowledge when employing different types of mathematical models, and 
reports on this progress may encourage other researchers to identify features of CCK, SCK, and HCK 
as they specifically apply to mathematical modeling events.  

 This year’s working group focus will consider in detail Ball, Thames, and Phelps’ (2008) 
pedagogical content knowledge (PCK), which may aid in defining the MMKT framework. With 
regards to mathematical modeling in the classroom knowledge of content and students (KCS) may be 
demonstrated not only as teachers predict, recognize, and assist students in overcoming mathematical 
barriers but also as teachers assist students in prevailing over modeling obstacles, which can impede 
students’ mathematical modeling performance. Knowledge of content and teaching (KCT) can be 
evident in selecting appropriate mathematical modeling task when teachers take into account the 
advantages and disadvantages of using or the appropriate sequencing of open and complex problems. 
Knowledge of curriculum (KC) may include teachers’ knowledge of where mathematical modeling 
fits in their course curriculum as well as in the courses that precede or follow and in other disciplines. 
In considering teachers’ PCK, the amount and influence of experiential and encyclopedic knowledge 
of the real-world and of other academic disciplines needed by teachers and students in order to be 
successful mathematical modelers is still an area that needs extensive research.  

Working Group Plan 
The working group plans to continue expanding on our understanding of mathematical content 

and modeling knowledge through year-long research. The focus of the working group sessions will 
be directed towards discussing the mapping of the PCK knowledge subcategories outlined by Ball, 
Thames, and Phelps (2008) to mathematical, modeling, and pedagogical content areas of the MMKT 
in hopes of recognizing common areas or identifying gaps to increase our understanding of the scope 
of knowledge needed by teachers in order to promote student learning through rich mathematical 
modeling experiences. Discussions will also consider whether this PCK changes with the type of 
modeling task used in classroom instruction. Thus, the primary discussion topic will address the 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1513 

following research question:  What pedagogical knowledge is needed for working with different types 
of mathematical modeling tasks?  

Working Group Plan for Active Engagement of Participants 
Participants are eagerly invited to join this working group to actively participate in defining this 

important research area. To continue examining this research question, we propose that members of 
the working group will divide into smaller groups, in order to provide an intellectual support system, 
to continue critiquing the definitions, taxonomies, and MMKT framework; to discuss the suggested 
focus questions; and to generate new research questions. The working group is committed to the 
goals of PME-NA while emphasizing collective reflection and collaborative inquiry, addressing 
challenges, and expanding the field of research. The working group will meet three times during the 
conference and will be invited to continue meeting virtually during the course of one year. 

Session 1: Foundation 
To welcome new participants and lay a solid foundation for future work, the first session will 

review the definitions of applications, modeling with mathematics, and mathematical modeling 
determined by the previous year’s work; and review the task analysis framework and the MMKT. A 
report of current research projects, the status of publications, and the dissemination of the secondary 
mathematics teachers’ survey will be given. Goals of this years’ research along with an outline of 
session activities will be presented. Since it has been successful in furthering member participation 
and solidifying common understanding with regards to definitions, taxonomies, and frameworks, 
members will again be provided a mathematical modeling task and using the task analysis 
framework, they will identify areas of mathematical and modeling knowledge. The final part of the 
session will include sharing contact information, providing participants access to the group’s on-line 
information, and encouraging the formation of research groups based on the interests of the 
participants. 

Session 2: MMKT Framework – Pedagogical Knowledge - Introduced 
The second session will continue the work from the previous session to further explain the 

MMKT as defined with mathematical knowledge, modeling knowledge, and pedagogical knowledge 
components. Employing a sample task and the task analysis framework as a vehicle to elicit 
understanding of the different knowledge types, participants will discuss the role of the teacher in 
selecting tasks, such as the exemplar, planning learning experiences, implementing activities, and 
assessing learning. The next step will be a discussion mapping Ball, Thames, and Phelp’s (2008) 
MKT and a potential MMKT framework more clearly focusing on the pedagogical knowledge 
subcategories. Participants will revisit last year’s lively discussion about the influence of the real 
world contextual knowledge and experiences in modeling and, then, consider the placement of the 
knowledge of the real world, with regards to its influence on pedagogy, in the MMKT framework.  

Session 3: MMKT Framework – Pedagogical Knowledge - Detailed 
The last session will summarize the previous days’ findings, articulate research goals, and outline 

a working plan for designing research projects to be conducted during the upcoming year. 
Participants will be encouraged to join the ongoing research discussions virtually.   

Post-Conference 
To promote the working group’s efforts, the results of all sessions and meetings will be 

documented and disseminated to all members. Following the conference, participants will be invited 
to continue discussing research interests in this area through a virtual meetings as a platform for 
suggesting and reviewing research, posing and critiquing mathematical modeling tasks, posting and 
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discussing teacher and student solutions, developing an archive of useful and productive 
mathematical modeling tasks, and writing scholarly summaries of findings. 

Conclusion 
While this working group is still young, significant progress has been made in formalizing 

definitions, grounding work on theoretical principles, summarizing literature for research gaps, 
establishing a clear research focus, and developing active research projects. By articulating clear 
definitions and considering the influence a taxonomy of mathematical modeling types may have on 
teacher and student learning, a theoretical basis for areas of mathematical, modeling, and pedagogical 
knowledge has been outlined. Research projects, grants, and a large-scale survey have been 
developed and are in the process of being implemented. This research and these working group 
sessions are needed to expand understanding and inform the field of research in mathematical 
modeling teacher knowledge.  
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EXPLORING AND EXAMINING QUANTITATIVE MEASURES  
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The purpose of this working group is to continue to bring together scholars with an interest in 
examining the use of and access to large-scale quantitative tools used to measure student- and 
teacher-related outcomes in mathematics education. The working group session will focus on (1) 
updating the workgroup on the progress made since the first working group at PME-NA in 
Tucson, Arizona, specifically focusing on the outcomes of the Validity Evidence for Measurement 
in Mathematics Education conference that took place in April, 2017, in San Antonio, (2) 
continued development of a document of available tools and their associated validity evidence, 
and (3) identification of potential follow-up activities to continue this work. The efforts of the 
group will be summarized and extended through both social media tools and online 
collaboration tools to further promote this work. 

Keywords: Assessment and Evaluation; Research Methods  

Introduction 
There is value in the knowledge that large-scale quantitative research can bring to the field in 

terms of generalizability to educational practice when appropriately conducted (American 
Statistical Association, 2007; Hill & Shih, 2009). The American Statistical Association’s report 
(2007) on Use of Statistics in Mathematics Education Research states: 

If research in mathematics education is to provide an effective influence on practice, it must 
become more cumulative in nature. New research needs to build on existing research to 
produce a more coherent body of work… Studies cannot be linked together well unless 
researchers are consistent in their use of interventions; observation and measurement tools; 
and techniques of data collection, data analysis, and reporting. (pp. 4-5). 

As education has shifted more towards data driven policy and research initiatives in the last 25 
years (Carney, Brendefur, Thiede, Hughes, & Sutton, 2016; Hill & Shih, 2009), the data for 
policy-related aspects are often expected to be quantitative in nature (e.g., end-of-course 
assessments and numerical value of reform-oriented teaching).  Funding agencies encouraging 
research (i.e., National Science Foundation and Institute of Education Sciences) often request 
proposals to employ quantitative measures with sufficient validity evidence (see 
http://ies.ed.gov/ and http://www.nsf.gov/). 

Measure (instrument) quality strongly influences the quality of data collected and relatedly, 
findings of a research study (Gall, Gall, & Borg, 2007). Measures with a clearly defined purpose 
and supporting validity evidence are foundational to conducting high quality large-scale 
quantitative work (Newcomer, 2009). There are few syntheses of quantitative tools for 
mathematics educators to employ and even fewer discussions of the validity evidence necessary 
to support the use of measures in a particular context. Syntheses of measures for use in 
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mathematics education can be found in the literature but these are typically not intended as a 
comprehensive analysis. For example, Carney et al. (2015a) conducted a brief review of self-
report instructional practice survey scales applicable to mathematics education. Boston, Bostic, 
Lesseig, & Sherman (2015b) conducted a review of three widely known classroom observation 
protocols to assist mathematics educators in determining the appropriate tool for their particular 
research question and context. Both reviews provided a background on existing measures and 
their associated validity evidence in relation to a new measure under development. It is important 
that this type of work continues and is encouraged by the field. Thus, this working group aims to 
increase conversation around quantitative tools for use on a large-scale with this working group.  
We share three goals for this proposed working group: (a) To bring together scholars with an 
interest in examining the research on quantitative tools and measures for gathering meaningful 
data; (b) To spark conversations and collaboration across individuals and groups with an interest 
in large-scale tools and those conducting research on student- and teacher-related outcomes; (c) 
To generate products to disseminate widely across the field of mathematics education scholars.  

Related Literature 

Historical Context, Terms, and Rationale for Working Group 
The National Mathematics Advisory Panel (2008) found that only a “small proportion of 

those [reviewed] studies have met methodological standards. Most ….failed to meet standards of 
quality because they do not permit strong inferences about causation or causal mechanisms” (pp. 
2-7). Sound methodology is guided by appropriate measure or instrument choice. Good research 
takes on quantitative, qualitative, and at times both methodologies to become mixed-
methodologies (Hill & Shih, 2009; Cresswell, 2012). Our focus for this proposal is quantitative-
inclusive methodologies, specifically focusing on measures and tools associated with them, to 
support mathematics educators use of and need for quantitative tools that may be used in large-
scale studies. 

Near the core of any methodology is the measure or instrument used to collect data 
(Newcomer, 2009). The American Psychological Association, National Council on Measurement 
Education, and American Educational Research Association ([APA, NCME, AERA] 2014; 
1999) provide clear guidelines regarding measurement validity and reliability. At a minimum, 
sufficient evidence for five variables must be shared related to validity: (1) content evidence, (2) 
evidence for relationship to other variables, (3) evidence from internal structure, (4) evidence 
from response processes, and (5) evidence from consequences of testing (AERA, APA, & 
NCME, 1999, 2014; Gall et al., 2007). Unfortunately, “evidence of instrument validity and 
reliability is woefully lacking” (Ziebarth, Fonger, & Kratky, 2014, p. 115) in the literature.  
Validation studies of quantitative measures are noticeably absent from mathematics education 
journals, which present the challenge of determining whether an instrument is appropriate for a 
given study much less whether it will generate valid and reliable data for analysis (Hill & Shih, 
2009). Hill and Shih (2009) reported that eight of 47 studies published in the Journal for 
Research in Mathematics Education provided any evidence related to validity and the majority 
provided only psychometric evidence. Our goal for this literature review is to present a need for 
a working group at PME-NA 39 that will bring individuals together from North America to 
conduct more syntheses and further explore needed areas of tools that can be used to study both 
student- and teacher- related measures in large-scale research by mathematics educators. 
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Examining Student-Focused Measures 
Quantitative measures of student’s mathematics content knowledge, problem solving, beliefs, 

and other factors have been employed across various contexts. We share an initial set of 
literature to frame the thinking for working group participants. Moreover, we welcome those that 
have interests not necessarily listed in this section.  

Mathematics content knowledge. Students’ mathematics content knowledge has been 
assessed in large-scale studies using end-of-course (high-stakes) measures during the last decade, 
Trends in Mathematics and Science Study (TIMSS), and National Assessment for Educational 
Progress (NAEP). Researchers who developed the PISA and NAEP report the validation process; 
however, the end-of-course measures are often shrouded by commercial entities (e.g., American 
Institutes of Research and Pearson).  The latter group makes examining the quality of the 
measures for content knowledge problematic.  Broadly speaking, it is challenging for researchers 
aiming to make decisions regarding use of items (or previously used measures) without 
syntheses describing measure qualities as well as similarities and differences across measures.  
Thus, a measure may claim to measure students’ (at one grade- or developmental-level) content 
knowledge but how is content knowledge defined for each measure?  

Beliefs. Students’ beliefs of mathematics, mathematics teaching, and usefulness of 
mathematics for the real world have been examined in various ways. Students taking the NAEP 
assessment also responded to questions designed to measure their perceptions of mathematics 
(Dossey, Mullis, Lindquist, & Chambers, 1988).   In the survey created by Dossey and 
colleagues, students responded to several Likert scale items regarding their attitudes and beliefs 
about mathematics. Similarly, Lazim, Osman, and Salihin (2004) created a mathematics belief 
questionnaire that had four belief dimensions: “[about] the nature of mathematics, about the role 
of teachers, about teaching and learning mathematics, and about their competency in 
mathematics” (p. 5).  Again, the instrument consisted of Likert scale items self-reported by the 
students.  The authors claim they achieved high reliability after the development of the survey 
but it was not reported. Hence, greater examination of these instruments is needed to benefit 
mathematics education research.   

Examining Teacher-Focused Measures 
A couple articles have provided syntheses of the literature related to quantitative teacher-

focused measures. We explore three sets here: observation protocols (of instruction), teachers’ 
content knowledge, and teachers’ beliefs.  Again, we use this as a starting point and welcome 
interests within teacher-focused measures that are not necessarily represented within this frame.  

Observation protocols. In 2015, Boston and colleagues compared the Reformed Teaching 
Observation Protocol, Mathematical Quality of Instruction, and Instructional Quality 
Assessment. A key finding of the study was that these three unique large-scale teacher-related 
observation protocols provided three unique lenses into teachers’ instruction (Boston et al., 
2015b). The authors encouraged the field of mathematics education to execute further work to 
closely examine other observation tools and share syntheses of relevant literature. 

Teachers’ content knowledge. The components of the Mathematical Knowledge for 
Teaching (MKT) construct (Ball, Thames, & Phelps, 2008) can serve as a useful tool for 
exploring and examining quantitative measures of teachers’ knowledge. Quantitative measures 
designed for teacher certification purposes (e.g., the Praxis series) tend to focus on the 
component of common content knowledge, ignoring other important components of the MKT 
framework often deemed important to mathematics educators. Other assessments are designed 
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specifically with the intent of measuring teachers’ knowledge of particular content areas (e.g., 
Knowledge of Algebra for Teaching measure, McCrory, Floden, Ferrini-Mundy, Reckase, & 
Senk, 2012) or grade bands (e.g., Diagnostic Teacher Assessment in Mathematics and Science, 
Saderholm, Ronau, Brown, & Collins, 2010).  The most commonly used quantitative measures 
for teachers’ content knowledge in mathematics come from the Learning Mathematics for 
Teaching (LMT) project (2005). The LMT assessments aims to measure teachers’ content and 
pedagogical knowledge for teaching and are parsed into different content areas (e.g., K-6 
geometry, 6-8 Number and Operations, and 4-8 proportional reasoning; LMT, 2005). A review 
of the NSF database for measures of teachers’ math content knowledge for teaching (a) 
generating quantitative data, (b) with reliability and validity evidence, and (c) could be used in 
large-scale studies resulted in 16 measures, 11 of which were part of the set from the LMT 
series. While tools such as the NSF database or the National Council for Teachers of 
Mathematics Handbook Chapter “Assessing teachers’ mathematical knowledge: What knowledge 
matters and what evidence counts”  (Hill, Sleep, Lewis, & Ball, 2007) provide a brief summary 
of some potential measures a mathematics education researcher could use to examine teachers’ 
knowledge, it does not provide a comprehensive synthesis that might aid in determining which 
measure to use for a given research question, much less describe the validity evidence associated 
with the measure. Again, there is no available synthesis of available tools to measure teachers’ 
knowledge of mathematics. 

Beliefs. Philipp (2007) defines beliefs as “held understandings, premises, or propositions 
about the world that are thought to be true.  …Beliefs, unlike knowledge, may be held with 
varying degrees of conviction and are not consensual” (p. 259). Beliefs and attitudes are 
different; they are related and at times have been discussed synonymously in the literature 
(Philipp, 2007). One of the oldest and still used measures is the Fennema-Sherman Mathematics 
Attitude scale (see Fennema & Sherman, 1976).  This measure uses a Likert-scale to assess 
respondents’ attitudes towards several domains.  The study describes four Likert-scale self-report 
measures and accurately suggests the limited scope of self-report measures with regards to 
validity evidence.  The Integrating Mathematics and Pedagogy (IMAP, 2004; see also Ambrose, 
Clement, Philipp, & Chauvot, 2004) is a web-based survey with open-ended items. This measure 
overcame the challenges of Likert scales, the lack of context for an overall score, and that 
respondents may give an opinion when one is not naturally held (Ambrose et al., 2004). A search 
of academic journals for measures of mathematics teachers’ beliefs provided numerous hits but 
few are found in mathematics education journals, much less a synthesis of those available with 
validity and reliability evidence to be used in studies with large data samples. Put simply, no 
syntheses of measures in this are shared.  

Session Organization and Plan for Engagement 
The purpose of continuing this working group is to reconvene individuals from the previous 

meetings held at PME-NA 38, as well as include new participants across North America, 
interested in the appropriate use of quantitative tools in mathematics education that can be used 
in studies with large samples to examine student- and teacher-related outcomes. The primary 
goal of this group is to bring together scholars with an interest in examining the research on 
quantitative tools and measures for gathering meaningful data, and to spark conversations and 
collaboration across individuals and groups with an interest in synthesizing the literature on 
large-scale tools used to measure student- and teacher-related outcomes. 
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The sequencing of the activities for the purposes of this working group will begin with a 
review of the products and outcomes from the previous working group meetings and the Validity 
Evidence for Measurement in Mathematics Education (V-M2Ed) conference, a conference 
funded by the National Science Foundation that brought together researchers from different 
theoretical and methodological perspectives to contextualize current conceptions of validity 
within the field of mathematics education.  The organizers of the working group also led the V-
M2Ed conference. This segues into further growing the products developed at these meetings. 
We primarily focus on two of the main themes for PME-NA 39: 

1. Crossroads as access. 
2. Crossroads as a place of community. 

Prior Work 
The idea for this working group proposal started at PME-NA 37 (2015). We explored interest 

across the field from potential attendees before writing this proposal.  We sought feedback from 
colleagues using the Association Mathematics Teacher Educators’ (AMTE) bulletin board 
feature as well as the Service, Teaching, and Research (STaR) list-serv. An interest survey was 
shared broadly with both groups (i.e., AMTE and STaR members) to gather an idea of the level 
of interest in this idea.  Twenty-six people expressed interest, including from individuals who 
could not attend AMTE’s 2016 annual meeting.  We held a follow-up meeting at AMTE to meet 
with fourteen individuals who expressed interest and were attending AMTE’s annual meeting. A 
majority of those at the AMTE follow-up meeting shared that they planned to attend the working 
group if accepted for PME-NA 38 (2016).  The proposal for PME-NA 38 was accepted and in 
total, 27 different individuals attended the meetings and 12 were present for all three meetings.  
We received numerous inquiries for future meetings and continuing our work in face-to-face as 
well as online mediums.  Although there are numerous mathematics education conferences, all of 
which include quantitative and/or measurement researchers, there is no specific conference that 
brings them together.  This working group serves as a “crossroads as a place of community” 
(https://www.conf.purdue.edu/landing_pages/pme-na/submission.aspx) because it not only 
provides space for this group of researchers to meet, but PME-NA’s working group is the only 
conference format which allows for this type of work to happen. 

To that end, we plan on organizing the sessions in the following manner to address our two 
primary goals for the PME-NA 39 working group session. 

Session 1 
The first session of PME-NA 39 will focus on what the working group has accomplished in 

the past year, beginning with the PME-NA 38 working group sessions.  Specifically, we will re-
visit our generated definitions of the terms “quantitative tools” and “large-scale,” as well as the 
framework that we used for organizing our discussions around quantitative tools that can be used 
with large samples to examine student- and teacher-related outcomes.  During PME-NA38, the 
working group leadership and attendees created an initial instrument database that includes 
quantitative measures that have validity evidence. We will also summarize the work and 
outcomes of the V-M2Ed conference for those in the group that were unable to attend. That 
conference was held April 1-2, 2017 just prior to the National Council of Teachers of 
Mathematics’ Research Conference. The goal of this review session is to update all of the 
participants about the status of the work so that the entire group can move forward together on 
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the tasks of Sessions 2 and 3: building the criteria for a future repository of quantitative 
measures. 

Session 2  
The focus of the second session is to decide two key aspects of the repository: (1) What are 

the necessary and sufficient criteria for including an instrument in the database? (2) What 
information should be presented to the user of this database? Both of these aspects build from the 
work of the previous year. The second session will begin with a discussion of the criteria 
necessary for including an instrument in a database of quantitative measures.  This future 
database addresses the conference theme of “crossroads as access” by providing researchers 
access to quantitative tools as well as the guidance to use these tools appropriately. Moreover, 
access is distinctly grounded in use of tools that have met some or all of the standards for 
evaluation (AERA, APA, NCME, 2014). This unique grounding in validity evidence and 
arguments assures access and rigor to users of the database. We are offering the field 
opportunities to approach research questions in different ways. Group facilitators will offer two 
examples for the larger group to discuss as a means to explore criteria for including an 
instrument and how results might appear to a user. 

Session 3 
The third session will primarily be a working session, focusing on placing instruments within 

the database. Logistically, attendees will divide into small-group teams based on interest, with 
each group working on their own tools and then presenting to the whole group towards the end 
of the session. At PME-NA 38, we started to create an instrument database during the third 
session as a result of the working group. At the time, we had not considered necessary and 
sufficient criteria for including an instrument nor the associated validity evidence. The purpose 
was merely to include instruments. Thus, our working group makes progress on our broad goal 
as well as sub-goals specific to this proposal. By the end of this third session, we intend to have a 
draft database of some instruments and their associated validity evidence. We do not anticipate 
this will be comprehensive at this time; the work will continue after PME-NA 39. We plan to 
conclude session 3 with a discussion of anticipated follow-up activities to determine the level of 
interest and commitment from the group in continuing with this work. 

Anticipated Follow-up Activities 
As a result of our working group discussion and document development, we anticipate 

several potential follow-up activities. Participants will greatly influence the specific follow-up 
activities; however, we outline a potential progression of activities to guide discussion of 
potential ‘next-steps’. 

One outcome of the working group sessions is a draft database inclusive of the available 
tools and their associated validity evidence. An anticipated outcome will be to determine how 
this should be further refined and later distributed. For instance, if attendees are interested and 
willing to continue this work then we will generate plans to move it forward and become more 
available to the broad scholarly community.  

We see several possible venues for further conversations and work related to access to 
quantitative tools in mathematics education that can be used with studies of large-scale samples 
to examine student- and teacher-related outcomes. First, we anticipate using both social media 
tools (e.g., creating a Facebook group) and online collaboration tools (e.g., Google hangouts and 
documents) to promote these syntheses.  Second, we anticipate using mathematics education 
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conferences venues to further the conversations and synthesis work around the project. More 
specifically, we plan on proposing to continue the PME-NA 40 (2018) working group.  In 
addition, we anticipate submitting for a symposium at the 2018 annual meetings of the 
Association of Mathematics Teacher Educators and National Council of Teachers of 
Mathematics Research Conference. Finally, there is potential to apply for grant funding through 
an NSF proposal to provide the means to actually create an instrument database, which connects 
with the aim of this working group as well as the V-M2Ed conference.  
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The purpose of this working group is to examine the use of co-planning and co-teaching in 
clinical experiences of pre-service, secondary mathematics teachers, especially during their 
internship.  We have developed an Apprenticeship Model for Learning where mentor teachers 
and pre-service teachers co-plan and co-teach focusing on learning, and our network 
improvement community is currently using improvement science to study co-planning and co-
teaching during the internship experience.  This working group is appropriate for those 
interested in (or already engaged in) co-planning or co-teaching as part of secondary 
mathematics clinical experiences.  Our sessions will 1) introduce specific co-teaching and co-
planning strategies, 2) consider the challenges and complexities of implementing co-planning 
and co-teaching, 3) provide an overview of our productivity so far, and 4) allow time for 
participants to share their ideas and work.  We would also like to set up a plan to continue 
research efforts related to co-planning and co-teaching by arranging consistent follow-up 
meeting times to support research efforts, grant writing, and future submissions for working 
groups, conference proposals, and articles for publication.  

Keywords: High School Education, Instructional Activities and Practices, Teacher Education-
Preservice, Teacher Education-Inservice/Professional Development 

Introduction 
One of the most important areas of pre-service teacher (PST) development is the clinical 

experiences component.  However, there is often a disconnect between theoretical course work 
for PSTs and what the PST encounters in the field of practice (Darling-Hammond, 2006), leaving 
interns and novice teachers to make connections on their own. This disconnect is exacerbated by 
adherence (implicit or explicit) to very dissimilar theories of learning.  Other areas of disconnect 
include school-university differences in philosophy regarding the teaching and learning of 
mathematics, insufficient opportunities for professional learning that might assist novice teachers 
implement new standards and curriculum materials, and challenges with the recruitment and 
retention of mathematics teachers for high-needs schools (Sears et al., 2017).  Further, many 
mentor teachers often are uncertain about how to mentor (Anderson, 2007), many interns believe 
they are ill-prepared to teach mathematics (Ingersoll, 2012), and university faculty may be less 
than effective in the role of change agent (Veal and Rikard, 1998). 

Based on the experiences of the working group members, one of the most difficult pieces for 
PSTs to master (or even become marginally competent in) is the workable lesson plan – not the 
plan that one submits to the mathematics methods instructor, but the one enacted in the 
mathematics classroom.  Following close behind, in terms of difficulty, are the moves and 
decisions the novice teacher makes in the classroom during instruction.  Given these challenges, 
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a number of universities are using co-teaching and co-planning as an integral part of their teacher 
preparation (Sears et al., 2017).  

In addition to the possible efficacy of co-teaching to assist interns with the minute-by-minute 
decision-making process and the potential of co-planning to expose some of the mystery of the 
lesson planning process, there are other benefits for using these particular innovations.  
Notification and subsequent dialog about co-teaching and co-planning address the problem of 
insufficient communication between school and university personnel (Zeichner, 2010).  The 
innovation provides a solid reason for mentors and interns to gather for common professional 
development (Grady et al., 2016), which sets the stage for goal setting, provides common 
professional learning opportunities, and casts university personnel in leadership roles for 
providing new ideas to be used during the internship experience.  Simply, the professional 
development needed to implement co-teaching and co-planning provides a reason for mentors, 
interns, and university faculty members to come together, develop common language and goals, 
and deepen their understanding of the differences and similarities within their varied roles.  
When implemented properly, co-teaching and co-planning provides a platform for transparency 
into the implicit decisions for planning and teaching made by mentor teachers, making them 
explicit for the PST.  Thus, there is potential for what is often unseen to be seen. 

Related Literature 

Background and Rationale for Working Group  
The current members of the proposed working group are part of the Mathematics Teacher 

Educator Partnership (MTEP), itself a working group of university faculty members who are 
addressing the challenges in secondary mathematics teacher preparation from recruitment to 
induction.  The MTEP operates under the Association of Public and Land Grant Universities and 
is part of the work of the Science and Mathematics Teaching Imperative.  Organized in 2012, 
MTEP “provides a coordinated research, development, and implementation effort for secondary 
mathematics teacher preparation programs to promote research and best practices in the field” 
(http://www.aplu.org/projects-and-initiatives/stem-education/mathematics-teacher-education-
partnership/). Members of the partnership are organized into Research Action Clusters (RAC), 
including the Clinical Experiences RAC within which the members of this group work.  Given 
the Clinical Experiences group is large and there are many different types of experiences, one 
portion of the group operates as the Co-Teaching and Co-Planning sub-RAC.  This sub-group 
has worked over the past three years to identify issues, develop tentative solutions, and then 
research the efficacy of its work.  The research is done using the Carnegie model for continuous 
improvement, particularly through network improvement communities (more about that later in 
the paper). 

The proposed working group at PME-NA 39 will allow for the current group to expand, 
bringing new ideas and providing additional opportunities to test these ideas.  Certainly, there are 
mathematics education researchers doing work with co-teaching and co-planning whose 
universities are not part of MTEP, and this working group will provide a platform for cross-
collaboration.  Work done with the group is at the heart of what PME-NA promotes, helping 
develop a deeper and better understanding of the psychological aspects involved in mathematics 
teacher preparation.  

Co-Teaching 
Co-teaching began in special education as a new way for general-education and special-
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education teachers to work together in the classroom (Friend et al., 2010).  The ideas have since 
come to be more widely used in other settings, particularly in teacher education programs as 
PSTs and their mentors seek to find new ways to engage in full-time internships (Bacharach et 
al., 2010).   

Table 1: Co-Teaching Strategies (Adapted from Bacharach, Heck, Dahlberg, 2010; Murawski 
and Spencer, 2011) 

Strategy Definition Benefits Concerns 
One Teach, 
One Observe 

One teacher leads 
instruction, while the 
other teacher gathers 
specific information. 

Extra set of eyes; provides 
data about instruction or 
student learning; easy to 
implement. 

Easy to become a 
habit; must agree in 
advance what is to be 
observed. 

One Teach, 
One Assist 

One teacher works with 
the whole class, while 
the other assists 
individual students or 
groups of students. 

Provides assistance to 
individual students; easy to 
implement; may provide a 
“voice” to share student 
concerns. 

Too easy to become a 
habit and for one 
teacher to always feel 
like an assistant; 
changing roles is 
essential. 

Station 
Teaching 

Students divided into 
three or more groups; 
students rotate through 
multiple stations; 
teachers facilitate 
individual stations or 
circulate among 
stations. 

Smaller groups are better for 
instruction, assessment, and 
class management; allows for 
differentiation, movement, 
and hands-on activity. 

Teachers may need to 
use space differently; 
class management and 
transition needs to be 
structured; 
independent stations 
need to be carefully 
planned. 

Parallel 
Teaching 

Each takes half the 
class.  Groups may be 
doing the same or 
different content in the 
same or different ways. 
Groups do not switch 
during lesson. 

Smaller groups better for 
instruction, assessment, and 
class management; teachers 
have their own groups; 
interns teach same 
lesson/mirror teacher. 

Teachers need to be 
willing to use their 
space differently; both 
teachers need to plan 
for their group; class 
management needs to 
be structured. 

Alternative 
Teaching 

One teacher works with 
large group of students, 
other teacher works 
with smaller group (re-
teaching, pre-teaching, 
or enrichment). 

Good for smaller and more 
specific group work; good 
for addressing IEP/504 goals; 
teachers can plan separately. 

DO NOT always pull 
the same kids; need 
place for group to 
meet; watch noise 
levels; plan how to 
integrate group back 
into class. 

Team 
Teaching 

Both teachers 
presenting.  This may 
take the form of 
debates, modeling 
information, compare/ 
contrast, or role-
playing. 

Demonstrates parity and 
collaboration between 
teachers; good for modeling; 
fun for role-playing. 

Takes willingness to 
“share the stage”; both 
need to feel 
comfortable in front of 
the class. 

 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1527 

More recently, members of the Clinical Experiences Research Action Cluster of the Mathematics 
Teacher Education Partnership have worked to adapt the ideas for use in secondary mathematics 
classrooms and begun to study the effectiveness of both co-teaching and co-planning in these 
settings (Sears et al., 2017; Grady et al., 2016).   

Co-teaching is more than just a collection of strategies for how two teachers work together in 
a single classroom setting; especially in an internship setting, it is a paradigm shift in how what it 
means to be an intern and a mentor teacher.  Many traditional internship programs tend to have 
sink-or-swim structure, in which interns may go directly from observing their mentor to taking 
on entire responsibility for teaching of a class (Bediali, 2010).  In the co-teaching model, the 
emphasis is on shared responsibility for instruction from the beginning to the end of the 
internship.  The level of responsibility may shift over time and even vary from day to day as 
different co-teaching strategies are employed but both teachers maintain an identity as a teacher 
in the classroom.   

The literature on co-teaching provides some specific strategies for engaging in co-teaching.  
Table 1 provides a synopsis of these strategies, along with some potential benefits and concerns 
of each. 

Co-Planning 
Similar to co-teaching, we view co-planning as an environment where two or more teachers 

actively engage in planning together. When co-planning together teachers need to agree on 
instructional goals for a lesson, as well as the timeline for how the instruction will occur. Co-
planning involves analyzing student learning, as well as development of instructional tasks to 
reach learning goals. The teachers must work together to select instructional tools to utilize and 
create their own learning tools when necessary. Another important aspect teachers must agree 
upon is an assessment plan to ascertain student understanding in relation to the learning goals. 

Research identifies co-planning as an integral component for successful co-teaching (e.g., 
Howard & Potts, 2009; Magiera, Smith, Zigmond, & Gebauer, 2005). As described above, the 
literature defines specific ways that two teachers may share instructional responsibilities, 
organizes their physical space, and articulates the role each co-teacher might assume during co-
teaching. Conspicuously absent from the literature base are similar strategies for co-teachers to 
co-plan effectively to support co-teaching. This is a major concern when considering pre-service 
teachers entering their internship experience. The internship experience marks a crossroads in a 
pre-service teacher’s program where their skills in planning for instruction are put to the test. 
Due to their lack of experience, interns are likely to have more difficulty than experienced 
teachers, such as their mentor teacher, being flexible and attentive to student needs as they plan 
for instruction (Borko, Livingston, & Shavelson, 1990; Leinhardt & Greeno, 1986; Livingston & 
Borko, 1989). Another issue that arises as the intern must shift from planning several lessons 
during methods courses, where their access to students varies, and planning for daily instruction 
to promote student learning. Co-planning has the potential to bridge the gap between these 
expectations. 

Realizing the need to provide a bridge for the gap described, the mathematics educators at 
one of the presenting institutions developed six specific co-planning strategies. These strategies, 
summarized in Table 2, operationalize the process of co-planning between an intern and mentor 
teacher to provide structure and support for intern development. 
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Table 2: Co-Planning Strategies 
 Definition Benefits Concerns 

One Plans, 
One Assists 

Each co-teacher brings 
a portion of the lesson, 
although one clearly has 
the main responsibility. 
The team works jointly 
on final planning. 

Better instructional 
materials; intern sees how a 
good lesson can be 
improved; final planning 
done jointly. 

Initial planning done 
separately may not 
mesh well; critical that 
intern not remain in 
assistant role. 

Partner 
Planning 

Co-teachers take 
responsibility for about 
half of the components 
of the lesson plan.  
Then they complete the 
plan collaboratively.  

It is efficient; each teacher 
provides initial planning for 
only part of a lesson. 

Pieces of lesson may 
not mesh well; 
requires initial 
visioning together. 

One Reflects, 
One Plans 

Mentor thinks aloud 
about the main parts of 
the lesson and the intern 
writes the plan. 

Lesson content is a 
reasonable fit; Intern is not 
planning blindly; provides 
transparency early in 
planning process. 

May be a gap between 
what the mentor spoke 
out loud and what the 
intern heard; excessive 
use of this strategy 
may not support intern 
development.  

One Plans, 
One Reacts 

One co-teacher plans 
and the other makes 
suggestions for 
improvement. 

Provides opportunity for 
good feedback and 
discussion of lesson plan 
elements, primarily for the 
intern; gives interns space 
for creativity in initial plans. 

Provides response 
after the fact instead of 
in real time; initial 
approach may be off 
base; one may feel like 
an assistant. 

Parallel 
Planning 

Each member of the co-
teaching team develops 
a lesson plan, and the 
two bring them together 
for discussion and 
integration. 

Allows for compare and 
contrast of examples and 
points of emphasis; gives 
both teachers opportunity 
for creativity in planning. 

Duplicate work done; 
teachers may become 
heavily invested in 
their own plan, making 
collaboration difficult. 

Team 
Planning 

Both teachers actively 
plan at the same time 
and in the same space 
with no clear distinction 
of who takes leadership. 

Resulting lesson plan may 
be better than a plan done 
independently by either; 
may be more efficient 
because feedback and 
collaboration happen in real 
time. 

One co-teacher, likely 
the intern, may be less 
prepared to contribute 
than the other; requires 
a very high level of 
trust and 
communication. 

 

Theoretical Approach to Examine Co-Planning & Co-Teaching 
Our work with co-teaching and co-planning during pre-service teachers’ internship 

experiences is grounded in Lave’s (1991) construct of situated learning.  As interns go out into 
the field, their learning moves from a predominately academic experience to an apprenticeship in 
a community of practice.  In such a setting the working relationship between intern and mentor 
teacher becomes a major determining factor in the intern’s ability to participate productively and 
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collaboratively in the practice of classroom teaching.  In our work we consider ways to expand 
traditional visions of this working relationship between intern and mentor, envisioning mentor 
and intern as collaborators in classroom planning and instruction. 

In a co-planning and co-teaching internship, the instructional responsibilities for the mentor 
and the intern change over time (Figure 1).  As Figure 1 indicates, the mentor initially assumes 
more instructional responsibility, with the intern gradually increasing their level of 
responsibility.  

Guided          Shared 

 
Figure 1: Instructional Responsibilities for Co-Teaching Internship (Brosnan, Jaede, 

Brownstein, & Stroot, 2014). 

Notice that the intern eventually takes on the majority of instructional responsibilities; 
however, within a co-planning/co-teaching paradigm the mentor remains an active, participating 
teacher throughout the internship experience. 

A common issue with the implementation of innovative ideas in education is that the research 
so often lags behind the pace of implementation.  By the time we have examined the 
effectiveness of an innovation, it has often either been abandoned because there were perceived 
issues with implementation or fully adopted because serious concerns had not yet been 
identified.  Improvement science research methods, with their emphasis on short improvement 
cycles, offer an alternative that may better meet some of our needs as educators.  Improvement 
science is designed to study practices, make modifications, and provide a cycle of continual 
improvement (Bryk, Gomez, Grunow and LeMahieu, 2015). Improvement science is based on 
three questions, “1. What specifically are we trying to accomplish? 2. What change might we 
introduce and why? 3. How will we know that a change is actually an improvement?” (Bryk et 
al., 2015, p. 114).  The process of inquiry is based in the Plan-Do-Study-Act cycle, in which 
plans are made for possible improvements in a system, the plan is enacted and studied, and then 
decisions are made about adjustments to make for the next PDSA cycle. This iterative process 
provides a mechanism for modifying interventions and research methods as the study progresses.   
At this time, the co-planning/co-teaching research group from the Mathematics Teacher 
Education Partnership has enacted several PDSA cycles, each of which has resulted in 
modifications to the implementation of co-planning/co-teaching and each increasing the scale on 
which the research is being conducted. 
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Connections to PME-NA 
Our working group objectives fit well with the overall goals of PME-NA by promoting and 

stimulating interdisciplinary research and the exchange of scientific information in the area of 
clinical experiences for PST, as we involve mathematics teacher educators, mathematics 
teachers, and pre-service teachers, all working to learn more about the psychological foundation 
necessary for a prospective mathematics teacher to develop the particular knowledge and skills 
to be a successful mathematics teacher. With respect to the 2017 PME-NA theme – Synergy at 
the Crossroads: Future Directions for Theory, Research, and Practice – the combined work of the 
group has the potential of pushing our efforts further that the sum of the individual parts. We 
clearly are attempting to move theory into practice, research this effort, refine our theory and 
practice, and then research its impact. The working group format has the potential to greatly 
increase the scale of our work as other partners come on board. With respect to crossroads, our 
work is at an intersection, where we are ready to move from the state highway to the interstate, 
allowing more participants to test drive the work done so far and help push the thinking forward. 

Session Organization and Participant Engagement 
Presenting institutions have a range of experience from a few years to more than a decade 

related to co-teaching and co-planning, and we invite anyone interested in co-teaching or co-
planning, regardless of prior work in these areas. The sequence of sessions will provide working 
group participants with the opportunity to engage in discussions related to co-teaching and co-
planning during internship experiences. Paradigm shifts from more traditional internship 
experiences to co-teaching, as well as co-planning with a focus on student learning will frame the 
first two sessions. Specific co-teaching and co-planning strategies will be shared, and presenting 
institutions will discuss current co-teaching and co-planning training materials and research 
efforts. Working group participants will be invited to share what their institutions are doing (or 
may be interested in doing) related to co-teaching and co-planning as part of each session.  

Session 1: Transitioning from Traditional Internship Experience to Co-Teaching 
The first session will begin by contrasting the role of the intern and mentor teacher in 

traditional versus co-teaching internship settings. Presenting institutions will share their 
experiences navigating the crossroads between these two models, explain where they are 
currently in the process of implementing co-teaching, and discuss issues related to the process of 
shifting paradigms, including buy-in from all stakeholders involved in the process. The session 
will continue with a review of specific co-teaching strategies, followed by sharing current 
training materials utilized by presenting institutions to train university supervisors, mentor 
teachers, and interns. The session will conclude with discussion of the data collection and 
instruments we are currently using to capture co-teaching during the internship experience. 
During each phase, particular emphasis will be placed on having working group participants 
share where they are in the process of co-teaching, as well as how we can coordinate our efforts 
to support each other. 

Session 2: Focus on Student Learning & Co-Planning 
The second session will focus on co-planning as a critical support for co-teaching. The 

session will begin with our description of planning for student learning. Planning for learning 
pushes interns and mentor teachers to think deeply about instructional decisions to focus on their 
students. We utilize three guiding questions to frame co-planning for student learning; 1) What 
do students need to learn? (content), 2) How will you know if they have learned? 
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(formative/summative assessment), and 3) What tasks/activities will students engage in to ensure 
learning happens? (pedagogy). The session will continue with a description of six co-planning 
strategies developed at one of the presenting institutions, as well as co-planning training 
materials utilized with university supervisors, mentor teachers, and interns. The session will 
culminate with a discussion of how presenting institutions are collecting data to capture co-
planning during the internship experience, and where each institution is currently in navigating 
the shift toward co-planning. During each portion of the session, working group participants will 
be asked to share their ideas about co-planning, where they are in relation to co-planning during 
the internship experience. A by-product of this session will be to document strategies to support 
each other in the implementation of co-planning during co-teaching or traditional internship 
experiences. 

Session 3: Mine, Yours, and Ours 
The third session will be a working session incorporating the information and ideas gleaned 

from the first two sessions. We will consider what presenting and participating institutions are 
doing in relation to co-teaching and co-planning to review the research questions currently under 
study, and we will also discuss what tools are being used for training and research. This process 
will inform our discussion of possible gaps in our work and will provide participants in the 
working group an opportunity to identify further research questions related to co-teaching and 
co-planning. The goal of this session will be to bring these pieces together to create a collective 
set of training and research materials to support work at presenting institutions and working 
group participants that allow for the individualities of each context. One product will be a draft 
PDSA cycle for data collection and research across interested institutions. We will also discuss 
potential next steps including, but not limited to, collecting/sharing training and data collection 
materials, future working group sessions at other conferences, and grant opportunities to support 
our work. 

Anticipated Follow-up Activities 
One of the first follow-up activities will be to create a collective space to share and refine 

training and research materials. Potential tools for this include Dropbox and Google Drive, as 
well as other suggestions from working group participants. A second activity will be periodic 
virtual meetings to check in about data collection and research. A third activity will be to submit 
future working group proposals to AMTE and PME-NA to continue our work with co-teaching 
and co-planning. One longer-term goal will be to utilize data collected during the 2016-2017 and 
2017-2018 PDSA cycles to submit research symposium proposals at conferences. These data 
results may also be utilized to submit as research manuscripts, as well as grant proposals to 
continue work across institutions. 
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This working group will engage PMENA members to consider ways in which early introduction to 
mathematical modeling can promote 21st century skills such as critical thinking, creativity, 
collaboration and communication, as well as connect to interdisciplinary topics in STEM.  In 
particular, we will gather interested individuals to deepen our understanding of the learning 
progression of mathematical modeling that can connect elementary to secondary mathematics 
education. Second, we will discuss efforts to design and implement professional development that 
introduces K-8 teachers to mathematical modeling. Finally, based on the interests of the 
participants, we will devote work time to finding synergistic collaborative topics to pursue for future 
research and practice. 

Keywords: Mathematical Modeling, Elementary Education, Teaching Practices, Professional 
Development, Learning Progressions 

Overview of the Working Group 
This is a new working group that will build on PMENA’s long tradition of working groups on 

Models and Modeling. Our goal is to broaden the access of mathematical modeling to elementary 
grades and advance the field’s collective understanding of the interrelated processes of mathematical 
modeling in the elementary grades and beyond. Although there has been a long history of 
mathematical modeling at PME and PMENA, the focus has primarily been on middle, high school 
and university levels. We believe it is critically important to understand the learning progression of 
mathematical modeling from elementary to secondary grades to ensure coherence and rigor in the 
mathematics curriculum. Implementing mathematical modeling in the elementary grades is not just 
going “light” with the high school math modeling curriculum. Instead we advocate integrating 
aspects of mathematical modeling in the early grades effectively to enhance student learning and to 
help build their competency in real-world problem solving using their current mathematical 
knowledge. The latter content knowledge is expected to evolve as students continue to learn new 
mathematics as they progress towards high school and beyond.  

The working group leaders come from a three university collaboration working with school 
districts (with diverse populations) to understand the nature of mathematical modeling in the 
elementary grades. In our design-based implementation research, each university site worked with 
the collaborating district’s teacher leaders to co-plan the professional development.  Teachers became 
co-designers of the mathematical modeling curriculum for the elementary classrooms. In our project, 
we engaged elementary teachers in considering mathematical modeling using real world tasks that 
contained several of the following attributes: (a) Open-endedness; (b) Problem-posing; (c) Creativity 
and choices; d) Iteration and revisions.   
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Why focus on early grades? In addition to the direct benefits of modeling, the elementary school 
environment affords many advantages that complement work in mathematical modeling. Elementary 
students often rely on using concrete referents such as objects, drawings, diagrams, and actions or 
pictures to help conceptualize and to construct carefully formulated arguments to solve a problem. 
Such arguments can make sense and be correct, even though they are not generalized or made formal 
until later grades (CCSSO 2010). Young students have high potential to become fluent – native 
speakers, thinkers and dreamers of mathematics. Thinking creatively may come more easily to 
children first learning and exploring mathematical concepts. Kindergarten students can use 
manipulatives to independently solve traditional multiplication or division problems they have never 
seen before, which is evidence that students come with knowledge--we don’t have to wait to 
incorporate modeling activities until we have “shown them how” to do everything. Because early 
grade teachers are generalists, they can address several subjects simultaneously through modeling 
activities. Mathematical Modeling is of interest and relevance to the mathematics education 
community especially because it connects to the need for professional development focused on 
mathematical modeling in the elementary grades. 

Our researchers used Design-Based Implementation Research methodology, DBIR (Fishman, 
Penuel, Allen, Cheng, & Sabelli, 2013) to examine the design of our professional development and to 
study and enhance our design through feedback from our iterative implementation cycles.  DBIR was 
a method of choice for our study because it has (1) a focus on problems of practice from multiple 
stakeholders’ perspectives; (2) a commitment to iterative, collaborative design; (3) a concern with 
developing theory and knowledge related to both classroom learning and capacity for sustaining 
change in systems (Fishman, Penuel, Allen, Cheng, & Sabelli, 2013, p. 136). 

Through our work, we are gaining a better sense of teaching practices and classroom routines that 
support modeling. We are contributing to the understanding of what is possible in early elementary 
grades and how these processes support the development of critical 21st century skills. As we 
continue in our research to consider what constitutes the practice of Mathematical Modeling (MM) 
and how it could be implemented in classrooms at different grain size, we invite the larger PMENA 
community to build on this knowledge. Over the past decades, working group leaders have 
individually and in subgroups, been theorizing about as well as collecting, analyzing, and reporting 
on data relating to mathematics modeling. This Working Group builds on and extends the work of 
previous Model and Modeling tradition by discussing current work from leading scholars from 
diverse perspectives. 

Relevance to Psychology of Mathematics Education  
The purpose of this working group is to invite individuals across the research community 

interested in synthesizing the literature and collaborating on research focused on mathematical 
modeling along the developmental continuum. Our goal of mapping a learning progression of 
mathematical modeling from K-12 education, particularly starting from elementary to middle grades 
is critically important to provide coherence in the mathematics curriculum.  

The primary focus for this working group will be around the following three goals:  

1. Bring together scholars with an interest in examining research with meaningful data 
consisting of student MM artifacts and teachers’ content and modeling competencies.  

2. Map the learning progression for mathematical modeling and task design for K-6 
mathematics education and beyond. 

3. Begin dialogue and collaboration among individuals and groups conducting research on 
student- and teacher-related outcomes related to implementing mathematical modeling, ways 
mathematical modeling promotes 21st century skills, and interdisciplinary skills in STEM.  
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Related Research 
The complexity of the modern world places more demand and importance in developing 

students’ abilities to deal with demands of our society (e.g. Gravemeijer, Stephan, Julie, Lin, & 
Ohtani, 2017). These abilities include interdisciplinary problem solving, techno-mathematical 
literacy, flexibility in applying numerical and algebraic reasoning, thinking critically, and 
constructing, describing, explaining, manipulating and predicting complex systems (English, 2013). 
Mathematical modeling (MM) is seen as a powerful tool for advancing students understanding of 
mathematics and for developing an appreciation of mathematics as a tool for analyzing critical issues 
in the real-world, that is, the world outside of the mathematics classroom (Greer & Mukhopadhyay, 
2012). Traditionally, MM has been implemented primarily in secondary schools, but recent research 
examines this approach with elementary students to promote their problem solving and problem-
posing abilities (e.g. English, 2010). MM provides the opportunity for students to solve genuine 
problems and to construct significant mathematical ideas and processes instead of simply executing 
previously taught procedures and is important in helping students understand the real world (English, 
2010). 

It must be pointed out that the phrases mathematical modeling and modeling mathematics are 
used in different ways. Cirillo, Pelesko, Felton-Koestler, and Rubel (2016) succinctly describe 
modeling mathematics as the use of representations to communicate mathematical concepts or ideas.  
The central characteristic of modeling mathematics is that the process “begins in the mathematical 
world, rather than in the real world (Cirillo et al., 2016, p. 4). For example, Lesh, Post, and Behr 
(1987) describe five representations that support students in understanding mathematical concepts or 
ideas: pictures, manipulatives, written symbols, oral language and real-world situations. For Lesh et 
al. (1987), the real-world situations provided a context for the problems; the representations began in 
the mathematical world. A form of mathematical modeling instruction introduced by Lesh & Doerr, 
2003, Model-eliciting activities (MEAs), incorporate client-driven, real-life contexts and open-ended 
problem solving. Mathematical modeling is a process that starts in the real world and makes sense of 
non-mathematical situations in a mathematical format (English, Fox and Watters, 2005). The 
mathematical modeling process involves both the creation and the continuous modification of models 
of empirical situations to both understand them better and enhance decision-making in real-time. As 
students create and modify mathematical models to understand and solve real-world problems, they 
engage in a cyclical process of generating and validating their model and results. The figure below 
illustrates a cycle used with elementary students to help organize reasoning in mathematical 
modeling by using terms comprehensible to young math modelers.  
 

 
Figure 1. Proposed Modeling Cycle for Elementary Students (Levy R., Cordeiro J., E. Lane, A. 

Sierra, Sinclair D., Yang L. & Matson K., 2016). 

So what does mathematical modeling look like in the elementary grades? One of the ways, the 
researchers in this working group approached MM in the elementary grades was to immerse students 
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in a real world situation within their local context that was relatable to and personally meaningful. To 
keep the initial problem open-ended, students were encouraged to develop the habit of mind of being 
problem posers by identifying the many questions around the real phenomenon, then defining a 
mathematical problem that can be solved by way of mathematics.  After the identification process of 
the problem, the modeler makes assumptions, eliminates unnecessary information, and identifies 
important quantities in order to form the model. This real-world model becomes a mathematical 
model when the processes are replaced by mathematical symbols, relations and operations. It should 
be noted that there can be several mathematical models for a given real-world situation. Next, the 
model is solved mathematically and results are translated back to the real-world and interpreted in the 
original context. The problem solver then validates the model by checking whether the solution is 
appropriate or reasonable for the purpose. This process of making assumptions, identifying variables, 
formulating the model, interpreting the result, and validating the model is iterative in nature and is 
modified or changed and repeated until a satisfactory solution has been obtained and communicated 
(Blum, 2002).  It is important to note that teachers play a crucial role in MM.  The teacher must be 
able to: (a) provide opportunities for students to acquire mathematical competencies and make 
connections between the real world and mathematics; (b) maintain the high cognitive demand of the 
MM process; and (c) provide classroom management that is learner-centered (Blum & Ferri, 2009). 

Previous work with elementary school children demonstrated it is feasible for them to develop a 
disposition towards realistic mathematical modeling (Lieven & De Corte, 1997).  One of the issues in 
implementing MM at the elementary level is that MM can be difficult for both teachers and students 
to implement (Blum & Ferri, 2009). MM can be difficult for teachers to implement as they must be 
able to merge mathematical content and real-world applications while teaching in a more open-ended 
and less predictable way (Blum & Ferri, 2009). It can be a challenge for students because each step 
of the modeling process presents a possible cognitive barrier (Blum & Ferri, 2009).   As stated in the 
Common Core Standards for Mathematical Modeling, “Real-world situations are not organized and 
labeled for analysis; formulating tractable models, representing such models, and analyzing them is 
appropriately a creative process. These real-world problems tend to be messy and require multiple 
math concepts, a creative approach to math, and involves a cyclical process of revising and 
analyzing the model” (Carter et. al., 2009). 

In a previous PMENA report, Suh, Matson, Williams and Seshaiyer (2016) reported the 
challenges and affordances of mathematical modeling in the early grades. 

 

 
 

Teacher Challenges.The challenges teachers faced when implementing mathematics modeling 
in the elementary grades included: a) Novelty and ambitious nature of the modeling process-When 
implementing MM in the classrooms for the first time, teachers found it was difficult to move 
students through the full process as it was a novel approach and students had never been introduced 
to creating and validating their mathematical models; b) Managing discourse- Another difficulty 
encountered by teachers in the MM process was in defining their role as facilitators.  The teachers 
commented that  “...it is really difficult as a teacher to help students find a direction to go with their 
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solution but not direct or guide them toward a teacher goal.”; and c) Constraints around mandated 
standards-Participants acknowledged that MM takes time to implement in the classroom and that 
additional class time to implement these tasks would be helpful. An additional challenge noted by 
teachers was that mathematical modeling didn't go the way they expected it to and they wrestled with 
the need to meet state standards.  

Affordances of Mathematical Modeling. The main affordances our teacher-designers 
mentioned were that mathematical modeling provided opportunity for content to be covered without 
direct instruction, had interdisciplinary connections, and provided mathematical relevance, and 
student engagement: a) Content covered without direct instruction- When teachers implemented MM 
in their classrooms for the first time they were amazed at the amount of content that could be covered 
without direct instruction. Students could see how the mathematics could serve their needs as they 
used the mathematics they learned while other times, the mathematics related to future learning 
objectives which allowed them to revisit their model as their learning progressed; b) Interdisciplinary 
opportunities-Another positive take-away from implementing MM in these teachers’ classrooms for 
the first time was how MM created a space where content covered was interdisciplinary connecting 
to social studies, STEM and language arts; c) Relevance-By providing authentic tasks for students to 
grapple with through the MM process, mathematics became relevant to the students; d) Student 
engagement-A number of our teachers indicated how engaged their students were in their MM tasks. 
Mathematical modeling inspired these teachers’ endeavors and provided pictures of practices that 
served as the proof of concept they needed to sustain their professional commitment to mathematical 
modeling. 

Support Teachers Need. The three main areas of support teacher-designers requested were 
access to MM resources, pictures of practice, time and collaboration with like-minded teachers: a) 
Resources and pictures of practice-Teachers indicated a desire to use MM in their classrooms but 
indicated a need for a bank of open-ended MM lessons and new ideas for continuing to create these 
lessons; b) Time-Teachers expressed the need for more time to work through and become 
comfortable with implementing the modeling process in their classrooms. Teachers noted it was only 
in working through the MM cycle several times that they felt comfortable with the process and felt 
their students were able to understand the whole MM process; and c) Teacher collaboration-
Teachers indicated a desire to continue to work with a cohort to build MM lessons; to observe other 
teachers implement MM in their classrooms; and to work alongside a colleague who valued MM and 
with whom they could share ideas. 

Other related research the team will share include, Carlson, Wickstrom, Burroughs & Fulton’s  
(2016) work,  A Case for Mathematical Modeling in the Elementary School Classroom, where they 
provide a teaching framework for MM using  the "organize - monitor - regroup" cycle to support the 
teachers’ work in engaging young students in modeling. Wickstrom, Carr and Lackey (2017) will 
showcase an engaging article using mathematical modeling to explore Yellowstone National Park. 
Suh, Matson, & Seshaiyer (2017) will also share ways in which mathematical modeling enhanced 
students creativity, collaboration, critical thinking and communication skills and exposed students to 
interdisciplinary themes of service learning and STEM integration. 

 Plan for Active Engagement of Participants 
The working group will meet three times during the conference and virtually during the course of 

one year. In each session, PMENA members will engage in mathematical modeling while sharing 
their perspectives in teaching and learning mathematics, considering synergistic areas fruitful for 
future research and practice, and finding collaborators within our group.  
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Session 1: Exploring the Nature of Mathematical Modeling in the Early Grades 
The first session will focus on better understanding the nature of mathematical modeling in the 

elementary grades while considering the student perspective and recognizing the importance of 
teachers knowing their students and the contexts that are meaningful to their students.  We will 
examine how mathematical modeling used by K-6 teachers demonstrates the interdisciplinary nature 
of mathematical modeling, the diversity of mathematical approaches taken by student modelers, and 
the multiple pathways the teacher can use to elicit students’ mathematical thinking. Exemplar tasks 
that emphasized local contexts and tapped into students’ funds of knowledge and student artifacts  
will be shared to illustrate the child’s perspective and the developmental progression. These topics 
will facilitate group discussions exploring the learning progression for mathematical modeling 
thinking and habits of mind that can develop for emergent mathematical modelers from an early 
grade. 

Session 2: Identifying the Knowledge of Content and Pedagogy Needed for Mathematical 
Modeling in the Elementary Grades  

In our second session, we will focus on clearly defining modeling teaching practices and 
competencies needed for mathematical modeling and outlining research goals and objectives to 
monitor the enactment of these practices. We will detail classroom routines, such as the "organize - 
monitor - regroup" cycle (Carlson, et al. 2017), and the Pedagogical Practices for Mathematical 
Modeling (Suh, Matson, & Seshaiyer, in press) as we share designed activities and lesson vignettes 
to solicit more ideas around high leverage MM teaching practices. We will explore what 
mathematical knowledge is needed to “successfully” facilitate mathematical modeling tasks in 
elementary grades. 

Session 3: Finding the Synergy Between Mathematical Modeling and the 21st Century Skills 
Frameworks and PBLs in STEM 

The third session will outline several 21st century skill frameworks and teaching approaches and 
how mathematics educators, researchers and practitioners can find a synergistic way to bring 
important process skills without overwhelming teachers and students.  We will discuss the ways 
elementary teachers can make connections between the problem-based ways they have engaged 
students in mathematical modeling and STEM.  The teachers are able to take advantage of 
interdisciplinary opportunities across the subjects they teach and find complementary connections 
between subjects and common classroom practices that support MM. 

Anticipated Follow-up Activities and Goals of Working Group 
In the spirit of exploring the theme of the Synergy at the Crossroads: Future Directions for 

Theory, Research, and Practice, each session will engage participants to share their research interests 
related to mathematical modeling and form groups that might pursue research collaboratively based 
on the interests of the participants. Some of the questions include:  

• What defines successful mathematical modeling lessons at different grade levels? 
• What can we learn from teachers who implement MM regularly in their classrooms? 
• How can we support teachers enacting MM through lesson plans and other resources? 
• How can we map out the learning progression of MM across grade levels? 
• How and what can we learn about models elicited from student artifacts from MM tasks? 
• What do “successful” modeling practices look like in our elementary mathematics 

classrooms? How are they similar or different from practices in secondary classrooms? 
• What does it mean to “see the math” in the components of mathematical modeling? 
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• How do teachers select and/or develop modeling problems? How can PLCs or Teacher 
Study Groups help teachers anticipating how students will answer the MM questions? 

Our goal is for the working group leaders to propose an edited handbook or a special issues 
journal venue for mathematical modeling where participants interested in submitting manuscripts can 
work together to provide a comprehensive research trajectory documenting the progression of 
mathematical modeling from emergent levels to more sophisticated levels of modeling. 
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Modeling continues to be a central feature of mathematical teaching and learning from both 
researcher and teacher perspectives. It is one of eight core mathematical practices called out in the 
Common Core State Standards for Mathematics; 2016 APME yearbook was dedicated to the theme 
of modeling; and international volumes reporting on new developments in Europe are expected out 
in 2017. The Models and Modeling Working Group at PME-NA has provided a venue for discussing 
and collaborating on research projects fundamental to this area since the first PME-NA conference 
in 1978. We propose to convene this Working Group at PME-NA 39 to build on energetic discussions 
that took place at PME-NA 37 and 38 and to establish a collaborative framework for shared 
research projects that integrate interested newcomers with established researchers within the Models 
& Modeling Perspective. 

Keywords: Modeling, Problem Solving, Design Experiments 

The Models and Modeling Working Group has been a significant presence in the community of 
PME-NA since the Conference was inaugurated in 1978. It has used the working-group format not 
only to support substantive research efforts, but also to grow collaboration and mentoring 
relationships between researchers in this field. An important historical purpose of the Working Group 
has been to pursue innovations in design-based research – in particular to discuss and extend the 
ways in which a focus on models and modeling can be used both to support learning in mathematics, 
science and engineering, and to study such learning processes in action. Moreover, we found that 
many of our participants in the Group meeting in PME-NA 38 were engaged in work that addressed 
teacher-identified problems of practice, and we expect that opportunities for such innovations will 
continue to be foregrounded for participants in this year’s meeting.  

Early in its history, the Group focused heavily on the design and analysis of particular activities 
that enabled groups of learners to engage in a deep form of modeling and that produced an auditable 
trail of thinking, exposing their thought processes to teacher and researcher observers. In this phase 
of the field’s development, a primary effort involved elaborating design principles for these activities 
as learning environments and documenting the idea development they promoted. Gradually over 
time, however, researchers associated with the Group have expanded their perspective to consider 
implementations and curricular sequences that have longer time-duration, and that integrate models 
and modeling into the experience of learning mathematics in more extensive ways. Several broad 
patterns in this more extensive and disseminated approach to modeling in the curriculum have 
emerged, and there is no sense that we have yet exhausted the space of possibilities. These broader 
perspectives open both exciting opportunities and significant challenges. On the one hand, new 
questions can be researched, opening the way for new forms of contact and interaction with 
classroom practice; on the other, the approach raises new challenges at the level of methodology, 
data analysis, and forms of evidence that are convincing backings for claims about learner activity.  

We propose convening the Group at PME-NA 39 to continue work begun at PME-NA 37 and 
expanded at PME-NA 38. Based on our experience in these previous working group sessions, we 
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propose a work-session structure that can serve two dual purposes: (a) integrating newcomers to 
Models and Modeling as a research area and (b) making substantive progress in concrete work – 
planning collaborative research and framing a shared writing project. For this Working Group, these 
two goals are both essential: we do not propose to gather as a closed expert group (Broadening 
exposure to this kind of learning design is important to the individuals of the Group as well as to the 
group as a collective whole). And we also do not aim only at providing an initial introduction to the 
forms of learning enabled by Model-Eliciting Activities (There are urgent problems and 
opportunities of research and practice which we see the Working Group as providing essential means 
for addressing). In the following sections, we provide a very brief overview of the field of research 
represented by the Models and Modeling Perspective; we outline patterns in research efforts that 
have extended modeling activities over longer timescales; we identify key themes that the Group will 
address in its discussions; and we describe our plan of work in detail, illustrating how these goals are 
addressed as well as how we plan to productively integrate newcomers to the Group over the three 
working sessions of the Conference. 

The Models and Modeling Perspective (M&MP) 
For nearly forty years, M&MP researchers and educators have engaged in design research 

directed at understanding the development of mathematical ideas among groups of learners. A key 
principle behind this work has been that learners’ ideas develop through, and in relation to 
conceptual entities called models, which we define as follows: 

conceptual systems (consisting of elements, relations, operations, and rules governing 
interactions) that are expressed using external notation systems, and that are used to construct, 
describe, or explain the behaviors of other system(s)—perhaps so that the other system can be 
manipulated or predicted intelligently (Lesh & Doerr, 2003, p. 10) 

As conceptual systems expressed through representational media, models can provide 
illumination into how students, teachers, and researchers adapt, formulate, and apply relevant 
mathematical concepts (Lesh, Doerr, Carmona, & Hjalmarson, 2003). An early finding was that, 
under appropriate conditions, groups of learners can be supported in rapidly producing and 
expressing such models. Once expressed, these productions can become objects of reflection by 
learners and collaborative groups, and they can form the basis for rich exploratory communication. In 
particular, when individuals and groups encounter problem situations with specifications that demand 
a model-rich response, their models are observed to grow through relatively rapid cycles of 
development toward solutions that satisfy these specifications.  

It should be noted that the above account is not an account of development (of learners), nor even 
yet an account of learning. Instead, it is an account of idea development, as observed in the discourse 
and other representations produced by groups of learners as they iteratively work to mathematize and 
formulate a solution that meets the needs of a concrete client in a realistic setting. This note is 
important, in order to distinguish the analytical work of the early M&MP from accounts of 
microgenesis of learning and development, for instance those expressed in the debates about whether 
learners have “theories” about the world (as held by the so-called “theory-theory,” (McCloskey, 
1983), or whether their knowledge is better represented as a loose and context-dependent assemblage 
of knowledge “pieces” (as held by the Knowledge-in-Pieces perspective, (diSessa, 1993; diSessa, 
Sherin, & Levin, 2016) as well as by some connectionist approaches to modeling knowledge (e.g., 
Minksy, 1986). The M&MP was initially agnostic to these debates, as the questions at hand had to do 
with the interactional achievement of small groups when exposed to particular kinds of realistic 
problem. In fact, it was an important apparent paradox of this research that some features of idea 
development during these activities have appeared to mimic or shadow aspects of cognitive 
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development as reported by Piaget, van Heile, or other accounts (Lesh & Harel, 2003). We defer 
discussion of the relation of the M&MP to such questions of learning and development until the 
section on longer instructional sequences on modeling, below. 

Thus, originally, the M&MP tradition was focused squarely on very local conceptual 
development (Lesh & Harel, 2003): that is, on investigating the nano-evolution of ideas in teachers 
and students. Thus, the resources and tools produced were first and foremost designed to study idea 
development (as opposed on one hand to serving teaching or curricular goals and on the other hand to 
explaining the phenomena of group productions by reference to a theory of individual cognition or 
learning). The results of this work include a body of Model-Eliciting Activities (MEAs), in which 
students are presented with authentic, real-world situations where they repeatedly express, test, and 
refine or revise their current ways of thinking as they endeavor to generate a structurally significant 
product—that is, a model, comprising conceptual structures for solving the given problem. These 
activities differ markedly from some “problem-solving” settings, which emphasize applications. In 
contrast, MEAs give students the opportunity to create, apply and adapt scientific and mathematical 
models in interpreting, explaining, and predicting the behavior of real-world systems (Zawojewski, 
2013). Extensive research with MEAs has produced accounts of learning in these environments 
(Lesh & Doerr, 2003; Lesh, Hoover, Hole, Kelly, & Post 2000), design principles to guide MEA 
development (Doerr & English, 2006; Hjalmarson & Lesh, 2007; Lesh, et. al., 2000; Lesh, Hoover, 
& Kelly, 1992) and accounts and reflections on the design process of MEAs (Zawojewski, 
Hjalmarson, Bowman, & Lesh, 2008). 

Example MEA: The Shadows Problem 
Students are usually introduced to the Shadows Problem by reading a “math rich newspaper 

article” that describes an exhibit at a nationally-known children’s museum. The newspaper article 
focuses attention on the optical phenomena of the exhibit and places it in a mathematical and 
historical context. The students’ challenge in the Shadows Problem is to assist exhibit designers in a 
local museum who want to create a similar experience. Thus, these ‘clients’ are interested in ways in 
which the optical perception one particular shape (a square) can be produced through shadows cast 
by different shapes and light sources. Below is the statement of the problem as given to students: 

A local museum is interested in building an interactive show on the topic of optical illusions. 
Inspired by a shadows exhibit that they saw at the Indianapolis Children’s Museum (ICM), they 
are interested in creating something similar for one of their show’s stations. The exhibit at the 
ICM used a small flashlight that had a point source of light, and it showed surprising shadows 
that different shapes could cast. Their museum designers’ goal for this station is to make square 
shadows using a point source of light and shapes like the ones shown below (similar shapes are 
included in your packet). For the purposes of the exhibit, the “stranger” the shape that can cast a 
square shadow, the better.  

 

 
Your Task: Write a letter to the museum’s show designers, 
explaining, for as many as possible of the shapes: (a) exactly how to 
hold the light and shapes so that they make square shadows on a 
wall (like the one shown here), and (b) which, if any, of the shapes 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1544 

can never make a square shadow – no matter how you tilt the shape 
and the light with respect to the wall. If it is impossible to make a 
completely square shadow with a given shape, explain why. If you 
have additional ideas about the show, include them as well. 

Student groups iteratively develop solutions to this problem in the time allotted—usually 50-60 
minutes for this MEA. Afterwards, the teacher may choose to organize a structured “poster session” 
event. In one version of this activity structure, one member of each 3-person group hosts a poster 
presentation showing the results of their group. The other two students use a Quality Assurance 
Guide to assess the quality of the results produced by other groups in the class. These instruments are 
submitted to the teacher and contribute to assessment in various ways, providing evidence for the 
achievements of both individuals and groups. 

MEAs like the Shadows problem present learners with situations in which familiar procedures 
and constructs are applicable but also insufficient. That is, on the one hand they are accessible to 
learners from a wide range of levels of ability, experiences, or knowledge (upper elementary school 
through graduate school). On the other hand, learners encountering these problems find that they 
have no ready-made solution they can apply to address the client’s needs. As a result, learners engage 
in sense-making and solution-construction processes that put them off balance in comparison to 
typical school-mathematics tasks. Indeed, this uncertainty is part of the design of MEAs, illuminating 
fundamental conceptual issues associated with the core mathematical structures involved.  

MEA Design Principles 
Historically, as individual MEAs emerged, an intense period of design research ensued to 

establish these activivities as a compelling genre of learning tasks that would (a) stimulate 
mathematical thinking representative of that which occurs in contexts outside of artificial school 
settings (Lesh, Caylor, & Gupta, 2007; Lesh & Caylor, 2007); (b) enable the growth of productive 
solutions through rapid modeling cycles; and (c) leave behind researchable traces of learners’ ways 
of thinking during the process. This line of work produced the notion of Thought-Revealing Artifacts 
and Model-Eliciting Activities (MEAs) (English et al., 2008; Kelly & Lesh, 2000; Kelly, Lesh & 
Baec, 2008). The success of MEAs as research tools was both enabled by and illustrated through the 
articulation of a set of six design principles for such activities (Hjalmarson & Lesh, 2007; Lesh & 
Harel, 2003; Lesh et al., 2000); these principles indicate the key structural and dynamical elements in 
MEAs as contexts for problem solving. Table 1, below, also indicates “touchstone” tests for whether 
each of these six principles has been realized in a given implementation setting. 

Table 1: Six Design Principles for MEAs 
Principle Touchstone Test for its Presence 

Reality Principle Students are able to make sense of the task and perceive it as meaningful, 
based on their own real-life experiences. 

Model Construction 
Principle 

To solve the problem, students must articulate an explicit and definite 
conceptual system (model). 

Self-Evaluation 
Principle 

Students are able to judge the adequacy of their in-process solution on 
their own, without recourse to the teacher or other “authority figure”. 

Model 
Generalizability 
Principle 

Students’ solutions are applicable to a whole range of problems, similar to 
the particular situation faced by the “client” in the MEA. 

Model-
Documentation 
Principle 

Students generate external representations of their thinking during the 
problem-solving process. 
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Simplest Prototype 
Principle 

The problem serves as a memorable representative of a kind of 
mathematical structure, which can be invoked by groups and by 
individuals in future problem solving.  

Nested Levels of Modeling: Multi-Tiered Design Research 
In parallel with learner-focused research using MEAs, researchers also have observed that 

teachers’ efforts to understand their students’ thinking involve yet another process of modeling: In 
this case, teachers engage in building models of student understanding. Although these teacher-level 
models are of a different category from student-level models, students’ work while engaged in MEAs 
does provide a particularly rich context for teachers’ modeling processes. Following this line of 
inquiry, the M&MP community has also produced tools and frameworks that can be useful to 
teachers in making full use of MEAs in classroom settings, while also providing researchers with 
insights into teachers’ thinking. 

Finally, at a third level of inquiry, researchers’ own understandings of the actions and 
interactions in curricular activity systems (Roschelle, Knudsen, & Hegedus, 2010) involving 
students, teachers, and other participants in the educational process can also be studied through the 
lens of model development. Multi-tier design experiments in the M&MP tradition have done 
precisely this, involving researcher teams in self-reflection and iterative development as well (Lesh, 
2002). Therefore, multi-tier design research involves three levels of investigators— students, 
teachers, and researchers—all of whom are engaged in developing models that can be used to 
describe, explain, and evaluate their own situations, including real-life contexts, students’ modeling 
activities, and teachers’ and students’ modeling behaviors, respectively. 

From Single Activities to Curricular Materials Supporting Modeling at Larger Timescales  
Over the past 10 years, M&MP researchers have continued this direction of work in their own 

teaching and in partnerships with K-12 classroom teachers. Within the domain of statistical thinking 
in particular, this effort has produced resources and tools sufficient to support entire courses in 
several versions and including accompanying materials related to learning and assessment aimed at 
both student and teacher levels. Because the courses supported by these materials were designed 
explicitly to be used as research settings, for investigating the interacting development of students’ 
and teachers’ ways of thinking, the materials were modularized so that important components could 
be easily modified or rearranged for a variety of purposes in different implementations. In particular, 
by selecting from and adapting the same basic bank of materials, parallel versions of the course have 
been developed for: (a) middle- or high-school students, (b) elementary and secondary preservice 
teachers, and (c) in-service teachers. When these courses have been taught by M&MP researchers 
familiar with the underlying theory, they have produced impressive gains (e.g., Lesh, Carmona, & 
Moore, 2009). 

Moving beyond a single MEA and sustaining modeling over longer timescales will bring M&MP 
research more directly into contact with theories of learning and development (including the 
questions mentioned in the first section, above). This will spur theoretical and methodological 
reflections on topics such as the relations of models to constructs seen to mediate perception and 
understanding in emerging experts (e.g., coordination classes [diSessa & Sherin, 1998] or disciplined 
perception [Stevens & Hall, 1998]). 

Approaches to Longer-Timescale Modeling Research 
At a more pragmatic level, however, ongoing investigations are exploring ways of integrating 

M&MP work into larger time-scale curriculum structures. And as might be expected, different 
approaches to sequencing and integrating modeling activities within curricular structures to expand 
the scale of modeling reveal different aspects of students’ and teachers’ thinking. In broad terms, we 
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distinguish these approaches on the basis of the relationship that they create between individual 
MEAs and the structure of the larger instructional unit or course (Eames, Brady, Jung, & Glancy, in 
review).  

In a common form of initial curricular integration, MEAs are deployed in a series, allowing 
students and the teacher to experience the type of learning characteristic of MEAs several times. 
Here, each new iteration offers opportunities for teachers to revise their approaches to facilitating 
MEAs, based on their emerging expectations of how students will engage with problems, their 
experiences of implementing them, and their knowledge of students’ mathematical thinking.  

This “series” experience of modeling through MEAs is how many teachers first experience 
activities from within the M&MP. However, our research has led us to ask how ideas and practices 
that emerge in these settings can build toward supporting longer-term disciplinary goals, norms, and 
concepts. These are critical issues in helping modeling to move beyond “island” activities and impact 
the core experience of mathematics learning for students. Here, we identify two approaches to 
modeling at this course-level scale that have emerged. 

In the first, students’ work in MEAs is seen to produce rich but idiosyncratic mathematical ideas 
and products that need to be unpacked and placed into relationship with each other and with more 
canonical concepts, practices, and procedures from the discipline. Thus, a family of activities is 
elaborated around the MEA, focusing on refining and extending student modeling work. These 
“Model Development Sequences” or MDSs (e.g., Brady, Eames, & Lesh, 2015; Brady, Lesh & Sevis, 
2015; Doerr & English, 2003; Lee et al, 2016; Lesh, Cramer, Doerr, Post, & Zawojewski, 2003) 
provide opportunities for classroom groups to reflect on and refine the thinking they have done in 
MEAs. Research over the last 15 years on MDSs has helped to elaborate a suite of tools and activity 
types along with cases of their use to support model exploration, extension, adaptation, and analysis.  

An alterative approach to course-level modeling has emerged through work in engineering 
education. Hamilton, Lesh, Lester, & Brilleslyper (2008) have argued that MEAs themselves connect 
mathematics and engineering, and many researchers have found success using MEAs to develop 
engineering concepts in K-12 and undergraduate settings (e.g., Diefes-Dux, Moore, Zawojewski, 
Imbrie & Follman, 2004, English & Mousoulides, 2011, Moore, Miller, Lesh, Stohlmann, & Kim, 
2013, Yildirim, Shuman, & Besterfield-Sacre, 2010). In a project coming out of this tradition, larger-
timescale modeling units were developed with an engineering focus, engaging learners in extended 
inquiry on a theme. This engagement was patterned on the shape of inquiry cycles, similar in nature 
to the modeling cycles that characterize student work within a single MEA, though at a much larger 
time scale. Thus, this approach aims to scale up qualities of the MEA experience itself to help 
structure the dynamics of a project that extends over weeks of sustained work. In doing so, 
researchers hope to see how model development continues over longer time scales along as well as 
how effectively the MEA design principles extend to larger course or time units. 

Research and Discussion Themes to Guide the Working Group 
Our working group in Tucson brought together 25 participants from the US, Canada, and 

Mexico. Participants were interested in wide range of grade levels, engaging in a diverse array of 
modeling projects. In their work, they applied a variety of interpretive lenses and frameworks to the 
activity of modeling. Throughout the conference, and particularly on the final day, we had significant 
participation from teachers and researchers from Mexico, interested in bringing both materials and 
research publications from the M&MP to Spanish-speaking teachers and researchers in Mexico and 
across Latin America. Leadership from the Tec of Monterrey and supporting enthusiasm from both 
Canada and the US gave evidence that this could be a strong area for future work.  

One of the principal efforts of the 2016 working group was to identify possible topics and areas 
for future collaborative research and writing, as well as to imagine structures that would support and 
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encourage such collaborations. At the level of research themes, a large number of possible synergies 
were identified, including the following questions or areas of study. This list was not generated to be 
exhaustive but rather to reflect identified common areas of interest during the immediate discussions 
of the working sessions themselves. 

Student-Level Modeling 
How might we gain analytic purchase on topics such as students’ motivation and engagement; 

creativity and innovation; patterns in discourse and interpersonal dynamics in small group work; and 
student’s epistemologies and beliefs about the nature of mathematics? 

Teacher Professional Development and Implementation Issues 
What knowledge and competencies do teachers need, to facilitate modeling activities? To pursue 

larger-timescale modeling sequences along any of the three approaches described above? How do 
modeling practices change in the presence of software environments that provide dynamic 
representations?  How do the MEA design principles help teachers to conceptualize STEM 
integration in math? What is the impact of decisions to sequence model-based activities in different 
ways, and to sequence modeling activities with more traditional activities in different ways? What 
are the differences in student modeling behavior across different grade bands? Is group work 
necessary for modeling activities? 

Social Justice, Equity, and Cultural Relevance 
What community and cultural connections are possible within modeling task? How can modeling 

tasks be designed or adapted to increase cultural relevance? What connections can MEAs have with 
social justice concerns? Is it possible to establish client-type relations with community members to 
structure modeling tasks?   

Classroom Structures, Interactions, and Behavior 
How do individual and group learning interact?  How do enactments of “the same” MEA in 

different classrooms illuminate classroom ‘cultures’ and local communities? What mathematical 
practices and competencies do students take away from repeated exposures to modeling tasks? How 
do elementary-school, middle-school, and high-school classroom contexts differ with respect to 
MEAs (including procedures and supports for setup, facilitation, and poster-session sharing)? How 
do age differences affect the design and implementation of activities that surround MEAs? 

The Development of Mathematical Concepts and Practices 
How do we describe the relation between modeling sequences and standards for content and 

practices? Is it possible to use MEA tasks repeatedly (multiple encounters with the same task) to 
gauge changes in the mathematics tools and content that learners bring? How does developing a 
solution to an MEA relate to content mastery? 

Assessment Issues 
Can modeling tasks be a context where it is possible to discern evidence not only of students’ 

appropriation of the modeling practice but also of connections between this practice and other 
practices? Similarly for connections between content areas? What evidence do teachers need to 
evaluate student learning/growth in MEAs?  

These themes and questions, illustrate the breadth of the common ground that 2016 participants 
found in their research interests. This has prompted us to organize the 2017 meeting around 
elaborating specific shared research and writing projects. 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1548 

Concrete High-Leverage Actions Identified by the Group as Desirable Projects 
In addition to identifying themes of common interest, participants at the Tucson meetings 

identified activities and projects to pursue in future working group sessions, including: 

1. Opportunities to familiarize themselves with more of the curricular materials and research 
from the M&MP (Concretely: establishing guided pre-reading for before the working group, 
along with opportunities to discuss during the conference, though perhaps extending outside 
of the three time-limited sessions) 

2. Time and supports to establish a collaborator network for one or more shared writing 
projects. Two ideas discussed were: 

3. Implementing the same MEA across two or more contexts and collaboratively analyzing the 
data generated.  

4. Formulating a successor volume to Beyond Constructivism 
5. Related to project 2a, the group identified a need for identifying solutions to institutional 

barriers to cross-institutional collaboration and exploring/proposing solutions (specifically, 
writing IRB proposals that may allow data sharing, including video) 

6. Creating an online repository of materials and tools for both research and teaching in the 
M&MP.  

7. Developing translations and localizations of materials and research papers into Spanish, to 
support the growth of research and practice in Mexico and elsewhere in Latin America. 

In the time since the PME-NA 2016 meeting, the Group has gotten a preliminary start on 
possible project 2a, above, supporting planning and implementation of an MEA by a participant at 
the Tucson sessions, collecting data to allow cross comparisons with two other implementations with 
contrasting learner populations. Analysis of these data will provide a ‘proof of concept’ for this 
proposed line of collaborative research, as well as offering an indication of what is to be gained in 
such a comparative study. Further work to test the viability of other suggested strands of work will 
continue in advance of the Indianapolis meeting, so that the Group can “hit the ground running.” 

Working Group Session Outline: Advancing our Agendas While Building Community 
Capacity 

The working group will meet in three sessions over the course of the conference. As preparatory 
work continues, the precise contents of each of these sessions will be more clearly defined, but the 
broad outlines are given in this section.  

The concrete research projects identified in the section above will be a primary focus of the 2017 
meetings. During the summer months, the facilitator group will meet to plan activities to address the 
desires expressed by participants in Tucson. Then, approximately 2 months before the Conference, 
we will send out a draft agenda for comment to our email list of all Tucson attendees, plus 
collaborators and researchers in the field that have participated in the past (approximately 60 names). 
This will enable final refinement of the agenda as well as circulation of the “pre-reading” requested 
in point #1, above. Collaboration prior to, during, and after the Conference will be supported by a 
Google Group (Models and Modeling), a Working Group wiki, and a website for hosting materials 
and collaborative products (https://sites.google.com/view/modelsandmodelingpmena/home). 

In addition to these project goals, our agenda will also ensure that we serve the “building 
capacity” objective of the working group, inviting newcomers to the M&MP and providing them 
with an engaging introduction to the experience of MEAs.  

Session One 
The capacity-building objective for this session is to introduce newcomers to the M&MP 
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tradition and its approach to research. At the same time, more experienced participants want to get an 
early start on defining collaborative work toward the several high-leverage projects that the group 
has identifies. Thus, in Session 1 we will be divided into two groups: 

The Newcomer Group will have the opportunity to experience an MEA as a student. We will use 
the Pelican Nesting Ground MEA that we used in 2016, to enable newcomers to discuss their 
experience with any participant from the Tucson meeting, ensuring a common ground of experience. 
This Newcomer Group will be facilitated by a researcher who has experience with this MEA and has 
seen a variety of learner responses to the task. By the end of Session 1, each modeling team within 
the Newcomer Group will have developed their solution and prepared a presentation for Session 2. 

In the meantime, the More Experienced Group will gather to discuss collaborative efforts toward 
the projects of Shared Implementation of a particular activity or joint production of an edited volume. 
Email discussions will likely lead to a group-level decision about which of these two possible 
projects to pursue during the Conference. By the end of Session 1, each project team of the More 
Experienced Group will have prepared a plan for collaborative work to be presented in Session 2. 

Session Two 
The first half of this day will be dominated by presentations. The Newcomer and More 

Experienced groups will be re-joined as a larger community. Newcomers will present their solutions 
to the MEA as well as reflect briefly on the experience and their modeling process. The More 
Experienced Group teams will present the proposed collaborations for comment and review by the 
larger group. By the end of this day, newcomers will select a collaboration group to join with, with 
either the objective of participating in the project or getting a deeper understanding of the practice of 
M&MP research by watching the discussion unfold. By the end of Session 2, small working groups 
will have formed and begun to dig into their project work. 

Session Three 
Project working groups will continue to press forward on their agendas during this session, which 

we leave flexibly structured. By the end of the session, each group will publish to the wiki their 
“roadmap” for collaborative work. Time permitting, we will have working groups report out verbally 
to allow other groups visibility into progress and plans. 

Throughout our agenda for the Conference sessions, we will be particularly attentive for 
opportunities to foster mentoring relations between established names in the M&MP tradition and 
newcomers. One of the signature strengths of the M&MP has been the generosity of leading names in 
the field, who act as advisors to the Working Group as well as periodic participants. We anticipate 
attendance by one or more of these senior leaders in Indianapolis, and we will take the opportunity to 
organize activities for younger scholars to interact with and learn from them. 
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This working group was formed to create collaborative opportunities for researchers/practitioners 
from math and special education, with an intention to move forward the teaching and learning of 
mathematics involving students with learning disabilities/difficulties in mathematics (LDM).  This 
working group was driven by following premises: (1) students with LDM are capable of and need to 
develop conceptual understanding of mathematics, and (2) special education instruction needs to 
transition toward this focus. Participants will (a) continue to develop and refine collaborative 
research agenda for the group, (b) brainstorm specific research questions that will address that 
agenda, and (c) continue the dissemination effort. 

Keywords: Instructional Activities and Practices, Learning Trajectories, Mathematical Knowledge 
for Teaching, Equity and Diversity 

About five to ten percent of school-age children have been identified as having mathematics 
disabilities, whereas students whose math performance was ranked at or below the 35 percentile are 
often considered at risk for learning disabilities or for having learning difficulties in mathematics 
(LDM). Recent National Assessment of Educational Progress (NAEP, 2015) data indicates that 
mathematics performance gap between students with disabilities and their same-age peers has not 
been closing—in fact, it seems to get wider. The purpose of our working group (WG) is to explore 
issues of research around the intersection of mathematics education and special education. 
Substantial work exists that focuses on development of mathematical cognition and reasoning of 
students in general education. However, much less is known about the mathematical development of 
students with disabilities or how to support the learning of these students. The absence of research 
addressing this subset of students may be due in part to theoretical orientation of the field of special 
education, which emphasizes explicit teaching of targeted skill-sets, rather than exploratory models 
such as inquiry-based learning. In addition, it seems that many special educators consider “research-
validated” curriculum (or intervention) to largely include studies that follow large-scale, Randomized 
Control Trial (RCT) approaches (Woodward & Tzur, 2017). Often, the role of pedagogical content 
knowledge of interventionists or how the intervention helps students construct the concept or develop 
conceptual understanding of mathematical ideas are lost in “data crunching” of RCT studies. 

This WG was formed five years ago to create sustainable opportunities for collaborative work 
between researchers and practitioners from both the fields of math education and special education, 
with an intention to promote the teaching and learning of mathematics education involving students 
with LDM. Understanding how students with disabilities /difficulties develop mathematics concepts 
and skills, an important dimension of the psychology of mathematics education, has several 
implications for both research and practice. 

First, practitioners in both general and special education can benefit from diverse perspectives 
and gain a richer understanding of how students with LDM learn mathematical concepts. Second, 
active study of the development of mathematics concepts and skills for students with disabilities 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1553 

provides both researchers and practitioners with mechanisms for moving toward a methodological 
focus on pedagogy rooted in assessment of what students with disabilities are capable of learning. 

For the purposes of continuing the conversation around mathematics in special education, this 
group is concerned with students who have significant issues with mathematics, including: 

• students with learning disabilities specific to mathematics (MD); 
• students with cognitive differences in how they understand and process numbers; 
• students who are placed in special education and have difficulties with mathematics. 

We refer to these students as having learning disabilities or difficulties in mathematics (LDM) in the 
remainder of this paper. while acutely recognizing those difficulties may reflect, in part, inadequate 
teaching (Tzur, 2013). 

History of the Working Group 
Our PME-NA/PME working group has met five times; each year our group had good 

participation of both returning and new members.  In 2012, 15 researchers (faculty and graduate 
students) and 2 practitioners met during PME-NA in Kalamazoo, MI.  This first meeting was 
specifically focused on better understanding mathematical learning disabilities (MD).  The working 
group began with a discussion of the issues around identification and definition of MD.  In particular, 
the group discussed the unique characteristics of students with MD (e.g., slow speed of processing 
despite average reasoning; fundamental issues with number sense; over learning of procedural 
knowledge at the expense of mathematical reasoning) and implications for instruction and 
assessment.  We took up a theoretical stance that positioned disability as an issue of diversity and 
considered the origin of the disability as the inaccessibility of instruction rather than a defect within 
the individual. Most importantly, within this stance on diversity we agreed to a critical premise that 
underlies our work, namely, rejection of deficit models of those capable learners and focusing on 
how research and practice can be integrated to support their mathematical abilities (Woodward & 
Tzur, 2017). Members shared videotapes of various students with MD solving problems in 
assessment and teaching situations and discussed the need for teachers to target and teach toward the 
specific mathematical strengths and weaknesses demonstrated by the student. We further discussed at 
what point(s) the learning paths of students with MD may differ from what is documented among 
students in general education, how existing developmental trajectories may or may not fit the 
population of students with MD, and the need to expand or further document current trajectories to 
include students with MD. Moreover, discussions focused on issues surrounding motivation related 
to the design and use of instruction, mathematical tools, and mathematical tasks.  A rich discussion 
was held concerning the nature and sequencing of mathematical tasks, the use of concrete and 
pictorial representations and the extent to which they are (or not) supportive of the abstraction of 
mathematical concepts for this population. All WG participants agreed about the need for increased 
research to inform the creation of adequate, empirically grounded, practitioner tools and resources. 

During the first year of our WG, our focus was specifically on MD- those students with a 
biological and cognitively-based difference in how their brain processes numerical information.  
Based on our discussions during the first year of our working group we decided to expand from a 
narrow focus on MD to a more inclusive focus on students in special education who struggle with 
mathematics (i.e., learning disabilities/difficulties in mathematics, LDM).  This stance not only 
avoids the definitional issues at the forefront of the field of special education (i.e., the lack of 
assessments to accurately identify students with MD and the resulting conflation of low achievement 
and MD) but also more accurately reflects the diversity of interests of the members of this group—
and how their own work seemed to provide a way forward. 
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In the second year of our WG (2013), 14 participants focused on collaboration that was a result 
of the progress made during the first year.  Specifically, two faculty members worked together on a 
teaching experiment about fraction knowledge, a compliment to a 2012 funded National Science 
Foundation (NSF) CAREER project (Hunt, 2012). Their collaboration resulted in each bringing 
unique expertise; the mathematics education scholar brought insight into the mathematical thinking 
of the student, while the special education scholar brought insight into learning differences and 
opportunities. The goal of the teaching experiment was to document how the foundational scheme of 
unit fractions (1/n) evolves in the mathematical activity of two cases of students with learning 
disabilities.  The students’ evolving conceptions were supported by constructivist-oriented pedagogy. 
Video data segments (i.e., each girl’s conceptualization of the multiplicative nature of and inverse 
relation (1/m > 1/n if m < n) among unit fractions; the girls’ solutions to novel problems) from this 
project served as starting points for discussions in the subsequent PME-NA working group meeting.  
Specifically, WG members used the video segments and descriptions of the collaboration as a 
springboard for discussing possible research questions and methods of data analysis to employ in 
future, collaborative work. The proposed WG is designed to foster further collaboration of this 
nature. 

In 2014, the WG met at the joint PME and PME-NA conference in Vancouver. We continued to 
expand (25 members), by the opportunity to include members from the international group of PME. 
During that meeting, two working group members (one from math education and one from special 
education) shared a multiplicative reasoning assessment tool resulting from their NSF-funded 
research project (Xin, Tzur, & Si, 2008). Upon examining this instrument, the WG discussed 
alternative ways for assessing students with LDM and implications for intervention development. 
Our collaboration in Vancouver yielded two main accomplishments. First, as a group we identified 
three research subgroups: (a) cognitive characteristics of students with LDM, (b) interventions for 
students with LDM, and (c) teacher preparation or professional development, that represented the 
interests of the members.  Each research subgroup identified pertinent research questions and an 
agenda for further collaboration.  

Second, as a group, we proposed an idea for developing a proposal for a special issue to be 
published in an influential special education journal to address the research around the intersection of 
math and special education. Later in the year, members of the working group developed the proposal 
for the special issue and worked extensively with the editors of a special education journal Learning 
Disabilities Quarterly (LDQ).  The quality of our proposal led to the acceptance of this special issue 
proposal by the co-Editors of LDQ. Two members from the working group served as co-Guest 
Editors of this special issue and identified potential contributing works from the working group 
members. In addition, we invited a well-known scholar from the field of special education for co-
authoring a commentary paper as part of this special issue. To date, all five papers of this special 
issue series, as well as an introduction and final commentary papers (Xin & Tzur, 2016; Woodward 
& Tzur, 2017) have been recently published in the 2016 and 2017 issues of LDQ.  

In 2015 PME-NA, we continued and expanded collaborations between members of this WG, by 
focusing discussions around two central themes: (a) math concept development and corresponding 
methodologies for studying its emergence in students with special needs, and (b) framing research 
questions and designing a research plan around this topic.  We invited interested researchers and 
educators to the WG sessions.  We had several new members joining, including international 
scholars. During that meeting, equity was raised as a new focal point.  Following 2015 PME-NA, 
two members of this working group, along with a new member, formed a new collaboration; and 
they have been working on writing a practitioner piece pertinent to differentiating instruction for 
diverse students—that article has been accepted to MTMS.   
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In 2016, the Math and Special Education Working Session met twice during PME 40 held in 
Australia. Nine people from five continents attended these sessions, while another three people 
actively participate in our projects throughout the year. On the first day there were several new 
members to the group. Thus, we introduced each other and explained the history and goal of the 
working session. We then discussed a project that we started at PME 38 and have recently concluded, 
namely, the special series of Learning Disabilities Quarterly (LDQ). Our discussions yielded a 
number of questions that we would like to explore (e.g., challenges and strategies of collaborative 
work between professionals/scholars from the field of math education and the field of special 
education) and consider questions from an international perspective. 

On the second day of that PME working session, we discussed our next big project for the group. 
We decided to produce a book that teacher educators can use for teaching undergraduate and 
graduate students about the intersection between mathematics education and special education. We 
are committed to working on this book project throughout the year and look forward to discussing 
our progress on this project at PME-NA-39 in Indianapolis, Indiana. 

Issues Relating to Psychology of Mathematics Education 
Historically, special education researchers and teachers focused almost exclusively on students’ 

mastery of procedural skills, such as basic number combinations and ability to execute mathematical 
algorithms (Jackson & Neel, 2006; Fuchs et al., 2005; Geary, 2010; Swanson, 2007; Kameenui & 
Carnine, 1998). A recent literature review comparing instructional domains for students with 
disabilities found that the majority of special education research addressed basic computation and 
problem solving, with the primary focus placed on mnemonics, cognitive strategy instruction (e.g., 
general heuristic four-step strategy: read, plan, solve, and check), or curriculum-based measurement  
(Van Garderen, Scheuermann, Jackson, & Hampton, 2009).  Instructional practices either focused on 
task analysis (breaking up skills into decontextualized steps that need to be memorized and 
followed), flash cards, or general heuristics that do not help with domain knowledge learning and 
concept development (Cole & Washburn-Moses, 2010). In particular, the procedure-driven 
instruction and primary focus on rote memorization skills seem to result in students’ incomplete and 
inaccurate understanding of fundamental mathematical concepts, as well as a lack of retention and/or 
transfer (Baroody, 2011).  

Importance of Both Conceptual and Procedural Knowledge  
Crucial for rich mathematical understandings that enable retention and transfer of fundamental 

concepts is the iterative development of conceptual understanding along with procedural proficiency 
(Rittle-Johnson, Siegler, & Alibali, 2001; Rittle-Johnson & Koedinger, 2005).  Rittle-Johnson and 
Alibali (1999) noted that conceptual knowledge supports procedural generalization. In particular, 
conceptual knowledge could aid children in mindfully avoiding the use of procedures that fail to 
work in novel situations. Additionally, an ability to understand and manipulate different 
mathematical representations to conceptually navigate a mathematical context contributes to 
conceptual understanding and procedural skill (Ball, 1993; Kaput, 1987; Rittle-Johnson et al., 2001). 
It seems that any investigation into mathematical cognition, whether related to disability or not, must 
fundamentally engage with issues of conceptual understanding (Hunt & Empson, 2014). 

A focus on procedural skills limits students with disabilities’ access to the general education 
curriculum, which is a requirement of the Individuals with Disabilities Educational Improvement Act 
(Maccini & Gagnon, 2002). In mathematics, access to the general education curriculum means 
addressing problem-solving, mathematical modeling, higher order reasoning, and algebra readiness 
as required by the new Common Core Standards (CCSSI, 2012).   To accomplish these Standards, 
mathematics educators need to actively engage students in making conjectures, justifying and 



Working Groups 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

1556 

questioning each other’s ideas, and operating in ways that lead to deep levels of mathematical 
understanding (Kazemi & Stipek, 2001; Lampert, 1990; Martino & Maher, 1999; Yackel, 2002).  

Pedagogy Based on Conceptual Diagnosis  
A pedagogical approach to be explored and advanced during this WG’s meeting is one that 

focuses on promoting conceptual learning in students with LDM. This approach is rooted in a 
constructivist stance (Piaget, 1985; von Glasersfeld, 1995), particularly the notion of assimilation, 
which stresses the need to build instruction on what students already know and are able to think/do. 
That is, teaching needs to be sensitive, relevant, and adaptive to students’ available ways of operating 
mathematically (Steffe, 1990). To this end, teachers must learn how to: (a) diagnose students’ 
available conceptions, and (b) design and use learning situations that both reactivate these 
conceptions and lead to intended transformations in these conceptions.  

Building on Simon (2006)’s core idea of hypothetical learning trajectories, Tzur (2008) has 
articulated such an adaptive pedagogy, which revolves around the Teaching Triad notion: (a) 
students’ current conceptions, (b) goals for students’ learning (intended math), and (c) tasks/activities 
to promote progression from the former to the latter. Key here is that in designing every lesson one 
proceeds from conceptual diagnosis of the mathematics students are capable of thinking/doing. That 
is, assessment methods need to focus on dynamic (formative) inquiry into student understandings, as 
opposed to on testing correct and incorrect answers per se. Such day-to-day diagnosis, which a 
teacher conducts via engaging students in solving tasks and probing for their reasoning processes, 
gives way to selecting goals for students’ intended learning. Building on such diagnosis, a 
mathematics lesson begins with problems that students can successfully solve on their own, which 
Vygotsky (1978) referred as the Zone of Actual Development (see also Tzur & Lambert, 2011). 
Recent studies of mathematics teaching in China (e.g., Jin, 2012) revealed a strategic, targeted 
method, Bridging, which is geared specifically toward both: (a) bringing forth mathematical 
conceptions the teacher supposes all students know, and (b) directing their thinking to the new, 
intended ideas. 

Exemplar Research Activities with Students with LDM  
Multiplicative Reasoning Project. From 2008 to 2015, two members of this working group 

(one from math education and one from special education) have been working collaboratively on a 
federal funded grant project (Xin, Tzur, & Si, 2008).  This project integrated research-based practices 
from mathematics education and special education and was aimed to promote multiplicative 
reasoning and problem solving of elementary students with LDM. As an outcome of this 
collaborative project, the research team has developed an intelligent tutor, PGBM-COMPS. The 
intelligent tutor draws on three research-based frameworks: a constructivist view of learning from 
mathematics education (Steffe & D’Ambrosio, 1995), data (or statistical) learning from computer 
sciences (Sebastiani, 2002), and Conceptual Model-based Problem Solving (COMPS) (Xin, 2012) 
that generalizes word-problem underlying structures from special education.  

Rooted in a constructivist perspective on learning (Piaget, 1985; von Glasersfeld, 1995), the 
PGBM part of the intelligent tutor focused on how the aforementioned student-adaptive teaching 
approach, which tailors goals and activities for students’ learning to their diagnosed available 
conceptions, can foster advances in multiplicative reasoning. This approach eschews a deficit view of 
students with learning disabilities. Rather, it focuses on and begins from what students do know and 
uses task-based activities to foster transformation into advanced ways of knowing. On the other hand, 
intelligent computer systems can play an important role in students’ learning by effectively modeling 
their thinking and dynamically recommending tasks tailored to their conceptual profiles. Going hand-
in-hand, the COMPS part of the program (Xin, 2012) generalizes students’ understanding of 
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multiplicative reasoning to the level of mathematical models. At this stage, students no longer rely on 
concrete or semi-concrete models for problem solving; rather, the mathematical models directly drive 
the solution plan. 

The collaborative research team has conducted several piloting studies to field test the PGBM-
COMPS intelligent tutor with elementary students with LDM. The preliminary studies have shown 
promising results—participating students with LDM who interacted with this intelligent tutor not 
only enhanced their problem solving skills on a researcher-designed criterion test but also a norm-
reference standardized test (Xin et al., 2017). In addition, the results of these studies have shown 
success in promoting students’ conceptual advances (e.g., concept of number, multiplicative 
reasoning). In fact, a paper resulting from a randomized control trial (RCT) study of this project has 
been published as part of the special series (Xin & Tzur, 2016) produced by this working group. As a 
follow up, the research team has continued on this line of work and recently embarked on a new NSF 
supported project (Xin, Kastberg, & Chen, 2015), which focuses on additive reasoning.  

Fraction Project. Another working group member is documenting learning trajectories of 
elementary school children with LDM as they come to understand fractions as quantities (Hunt & 
Empson, 2014). In its first year, the goal of this work was to produce models of children’s key 
developmental understandings (KDU; see Simon, 2006), or critical transitions in how children may 
conceive of a mathematical idea along a carefully sequenced combination of tasks and varying 
instructional guidance necessary to grow conceptual knowledge not yet well formed (Daro, Mosher, 
and Corcoran, 2011).  During the proposed WG, this researcher will illustrate varying levels of a 
students’ informal notions of fractions, how the mathematical ideas can be elicited, the grappling of 
ideas a student might experience, and how more solidified notions of mathematics form through a 
student’s activity (i.e., external manipulation or representation; internal mental activity; actions; 
strategies for problem solving).  This research aims to map trajectories that can assist educators 
looking to individualize instruction for students with LDM and improve students’ conceptual 
understanding of fractions. 

As part of that grant’s Year 1 activities, the research team has documented an initial trajectory 
from semi-structured interviews with fifty 2nd, 3rd, 4th, and 5th graders with LDM.  Interviews 
followed a protocol that established a basis for questioning while maximizing researcher flexibility to 
fully examine student thinking.  Information pertaining to the children’s specific needs was also 
collected to allow for an examination of any trends occurring across similar cognitive profiles. The 
constructed trajectory is also being tested with a smaller subset of four students and an expanded 
group of tasks from which the trajectory is based.  Data collected from mini-interventions will 
undergo analysis (Siegler, 2006) to confirm the robustness of the preliminary trajectory. That grant’s 
Year 2 activities will use a teaching experiment methodology, much like those used in the 
collaborative pilot that resulted from this WG, to document how children with LDM construct 
conceptions of fractions. 

As forgoing, the proposed WG participants will use artifacts from projects described above as 
possible starting points to further explore possible applications of student-adaptive pedagogy 
(conceptual diagnosis based) as well as conceptual development trajectories in the design of 
effective/efficient assessment and intervention programs for students with LDM. We believe such 
approaches are complimentary and have the potential to constitute core methodologies for teaching 
and studying the conceptual understandings of students with LDM. In a similar way, this working 
group provides a venue to give and receive feedback on ongoing cutting-edge empirical work, which 
is reshaping how students with LDM are researched.  
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Plan for Working Group 
The aim of this proposed WG is to continue the productive collaboration and conversation about 

the intersection of mathematics education and special education. One of the major goals of this year’s 
working group sessions is to draft a proposal for publishing a book that university professors and 
teacher educators can use for teaching undergraduate and graduate students about the intersection 
between mathematics education and special education.  

This working group intends to accomplish the following: 

• identify the content of the book and identify the primary audience for the book   
• develop a table of content for this book proposal;  
•  Identify book titles with which our book will compete and discuss how our book will 

differ from these titles. What are the selling points of our book? 
• Discuss the logistics of collaborations to carrying out the identified tasks, and  
• Discuss further collaborations leading to additional publication and funding 

opportunities.  

These goals are further outlined across sessions as follows: 

Session 1: Introduction and Progress-to-Date 
GOAL: Identify participant’s affinity for established sub-groups and identify potential new sub-
group possibilities. 

• Prior members will briefly introduce the working group’s history and describe the 
collaborations that have emerged in prior years, supposing everybody reads this proposal. 

• Participants will each introduce themselves and their current research and interest in 
students with LDM.  

• New sub-groups may be formed among participants on the basis of common (research) 
interests to be shared.  

• Begin discussion of the tentative ideas for the book.  

Session 2: Book Proposal Development 
GOAL: Brainstorm and draft book proposal.  

• Identify the contents and possible sections of the book as well as its primary audience.   
• Develop a table of content for this book proposal and list key words to assist readers  
•  Identify other book titles with which ours may compete; discuss how our book will differ 

from these titles. What are the “selling points” of our proposed book? 

Session 3: Continue the Ongoing Collaboration 
GOAL: Establish next steps for both the sub-groups and the whole working group.  

• Within the group or sub-groups we will: 
o Articulate the overarching research agenda for the group/sub-group  
o Articulate potential research questions that the group/subgroup would like to 

address through collaborative work. 
o Explore a variety of methodological and analytic approaches that can be 

leveraged to address the research questions.  
• Discuss the logistics of collaborations to carrying out the identified tasks, and  
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• Determine what our next whole group meeting will entail (e.g., PMENA working group 
for the following year) 

Anticipated Follow-Up Activities  
Throughout the year, the members of this WG are working on research problems of common 

interest. They will contribute to a common website in which they will update other members of the 
WG about the progress of the various research collaborations.  We will continue our effort in 
disseminating the collaborative work resulting from this working group to broaden its impact in the 
field of mathematics education for students with LDM. 
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